WO2016032212A1 - 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터 - Google Patents

폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터 Download PDF

Info

Publication number
WO2016032212A1
WO2016032212A1 PCT/KR2015/008887 KR2015008887W WO2016032212A1 WO 2016032212 A1 WO2016032212 A1 WO 2016032212A1 KR 2015008887 W KR2015008887 W KR 2015008887W WO 2016032212 A1 WO2016032212 A1 WO 2016032212A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
gate insulating
metal
semiconductor
Prior art date
Application number
PCT/KR2015/008887
Other languages
English (en)
French (fr)
Inventor
강영훈
이창진
조성윤
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2016032212A1 publication Critical patent/WO2016032212A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a thin film transistor gate insulating film including a polysilazane compound and a thin film transistor including the same.
  • the dielectric thin film used as the gate insulating film is a material widely used in electronic components such as organic and inorganic capacitors and thin film transistors.
  • Currently widely used gate dielectric is silicon dioxide (SiO 2 ) and has a dielectric constant of 3.9.
  • Wet and dry dense amorphous silicon dioxide layers provide thermal and electrically stable properties and exhibit excellent insulating properties with the interface with silicon underneath the silicon dioxide layer.
  • Processes for forming a silicon dioxide thin film typically include thermal oxidation, low pressure chemical vapor deposition (LPCVD), atmospheric chemical vapor deposition (APCVD), and plasma chemical vapor deposition (APCVD). plasma enhanced chemical vapor depostion (PECVD), but the process temperature is relatively high above 400 °C.
  • the thickness of the silicon oxide gate insulating film is currently reduced to implement a thin film transistor device capable of driving a low voltage, but the thin gate insulating film has problems such as impurity transmission, reliability of an electronic device, and lifetime.
  • the thin gate insulating film has problems such as impurity transmission, reliability of an electronic device, and lifetime.
  • the thin film is capable of minimizing the low voltage driving and leakage current between the source and drain electrodes and the lower gate electrode, despite the thin equivalent oxide thickness.
  • electrical characteristics such as aspect ratio (on / off) and mobility may be improved.
  • a gate insulating film having a high dielectric constant requires the following characteristics.
  • the first is thermal stability.
  • the semiconductor circuit integration process is performed below 400 ° C., but the gate insulating film should exhibit thermally stable characteristics at a temperature corresponding to heat treatment of various active layers used in the thin film transistor.
  • the second should have a higher dielectric constant than the conventional silicon dioxide oxide film. If the dielectric constant is too high, the thickness of the thin film must be very thick. Since the thickness of the thick insulating film inhibits the gate control, a high dielectric material having an appropriate dielectric constant must be manufactured.
  • the high dielectric material is advantageously amorphous. This is because leakage current increases along the grain boundary of the crystallized thin film.
  • the polysilazane contains a structure of silazane, and is a material having an advantage of forming a silica-based film by a simple heat treatment.
  • Currently used polysilazane materials can be easily produced with silica oxide and nitrided silica coating film in low temperature heat treatment environment, and because of its excellent thermal and chemical stability, display (LED, OLED, touch panel), solar, automotive coating, building materials It is applied to various industrial fields.
  • the semiconductor industry is mainly used as an insulating film to protect the static electricity generated between the interlayer of the wafer or the metal wiring of the semiconductor and has good properties such as flatness, heat resistance, high durability, chemical resistance.
  • the present inventors developed a dielectric composition for a thin film transistor including a polysilazane compound, while studying the thin film transistor, which can be used as a gate insulating film material of the thin film transistor, and is suitable for a solution process.
  • the present invention has been found to be easy to manufacture a thin film, to enable a low temperature process, and to manufacture a thin film transistor having excellent reliability.
  • An object of the present invention to provide a thin film transistor gate insulating film comprising a polysilazane compound and a thin film transistor comprising the same.
  • R 1 and R 2 are each independently hydrogen, hydroxy, amino, silyl, straight or branched C 1-9 alkyl or C 5-12 allyl,
  • R 3 is hydrogen, a hydroxy group, straight or branched C 1-9 alkyl or C 5-12 allyl,
  • n 10 to 1,000,000
  • It provides a method of manufacturing a thin film transistor gate insulating film comprising the step (step 2) of heating the film prepared in step 1 to a temperature of 200 °C to 350 °C.
  • a thin film transistor gate insulating film manufactured by the above method.
  • a gate electrode, the gate insulating film, and a semiconductor thin film are sequentially stacked on the substrate, and a source and a drain electrode are stacked on the semiconductor thin film, and the source and drain electrodes are spaced at regular intervals.
  • a thin film transistor is provided.
  • step 1 Forming a gate electrode on the substrate (step 1));
  • Step 2 Preparing a film by applying a dielectric composition including a polysilazane compound including Formula 1 on the gate electrode formed in Step 1 (Step 2);
  • step 3 Heating the film prepared in step 2 to a temperature of 200 ° C to 350 ° C to form a gate insulating film (step 3);
  • step 4 Forming a semiconductor thin film on the gate insulating film formed in step 3 (step 4);
  • step 5 forming a source and a drain electrode on the semiconductor thin film formed in the step 4 (step 5).
  • An electronic device including the thin film transistor is provided.
  • the dielectric composition for a thin film transistor including the polysilicon compound according to the present invention can be used as a gate insulating film material of a thin film transistor.
  • the composition according to the present invention can produce a thin film transistor gate insulating film through a solution process is easy to manufacture a thin film, there is an effect that can be a low temperature process.
  • the thin film transistor including the gate insulating film manufactured through the composition according to the present invention has an excellent electrical performance and reliability.
  • the method for manufacturing a thin film transistor according to the present invention uses the indium zinc oxide-based semiconductor ink composition in which a spontaneous combustion reaction is formed to form an oxide semiconductor of the thin film transistor, thereby making it possible to manufacture a thin film transistor having more excellent electrical performance.
  • the gate insulating film it is suitable for the solution process, making it easy to manufacture a thin film and allowing a low temperature process, and is compact and uniform thin film by spontaneous combustion reaction generated by mixing two metal precursors coordinating fuel material and oxidizing material. Can be prepared.
  • FIG. 1 is a schematic diagram illustrating a thin film transistor.
  • the present invention is a.
  • R 1 and R 2 are each independently hydrogen, hydroxy, amino, silyl, straight or branched C 1-9 alkyl or C 5-12 allyl,
  • R 3 is hydrogen, a hydroxy group, straight or branched C 1-9 alkyl or C 5-12 allyl,
  • n 10 to 1,000,000
  • the polysilazane-based materials currently used can be easily produced from silica oxide and nitrided silica coating films in low temperature heat treatment environments. Due to its excellent thermal and chemical stability, it is applied to various industrial fields such as display (LED, OLED, touch panel), solar, automotive coating, and building materials.
  • the polysilazane compound is provided as a dielectric composition for a thin film transistor, and the dielectric composition for a thin film transistor according to the present invention is suitable for a solution process, so that a thin film is easily manufactured and a low temperature process is possible.
  • the polysilazane compound may be, for example, a polysilazane compound including hydrogen, a hydroxyl group, a straight or branched C 1-9 alkyl or C 5-12 allyl, and polysila It may be a glass, but is not limited thereto.
  • a compound including the following Chemical Formulas 2 to 5 may be used.
  • HTT1800 (Clariant) may be used as an example of the compound of Formula 5.
  • n 10 to 1,000,000
  • m 10 to 1,000,000
  • the dielectric composition further includes a solvent, and the concentration of the mixture of the polysilazane compound and the solvent is preferably 5% by weight to 30% by weight. If the dielectric composition further comprises a solvent and the concentration of the mixture of the polysilazane compound and the solvent is less than 5 wt%, the thickness of the film is too thin and the leakage current is high, making it difficult to use as a gate insulating film of a transistor. If it exceeds 30% by weight, the film thickness is too thick, so the capacitance is very low, which makes it difficult to use as a gate insulating film of the transistor.
  • the solvent is preferably one type selected from the group consisting of isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol, methanol, 2-methoxyethanol and mixtures thereof, but is not limited thereto.
  • It provides a method of manufacturing a thin film transistor gate insulating film comprising the step (step 2) of heating the film prepared in step 1 to a temperature of 200 °C to 350 °C.
  • step 1 is a step of coating the dielectric composition on the substrate to produce a film.
  • step 1 a dielectric composition including a polysilazane compound, which is a dielectric composition according to the present invention, is coated on the substrate to prepare a film.
  • the coating of step 1 is ink-jet printing (Ink-jet printing), roll printing (Roll printing), gravure printing (Gravure printing), aerosol printing (Aaerosol printing), screen printing (Screen printing), roll coating (Roll coating) ), Spin coating, bar coating, spray coating, dip coating, etc., but are not limited thereto. But is not limited thereto.
  • step 2 is a step of heating the film prepared in step 1 to a temperature of 200 °C to 350 °C.
  • Step 2 is a step of manufacturing a gate insulating film by heat-treating the thin film coated on the substrate in the step 1, in particular, the gate insulating film formed by heating to a temperature of 200 °C to 350 °C has a high dielectric constant.
  • the heating in step 2 is preferably carried out at a temperature of 200 °C to 350 °C, more preferably at a temperature of 220 °C to 280 °C, it is most preferably carried out at a temperature of 250 °C.
  • the heating of the step 2 is performed below the temperature of 200 °C, since the organic material in the polysilazane does not decompose, the dielectric constant and capacitance of the silica-based insulating film is low, the leakage current is high, used as the gate insulating film of the transistor In this difficult problem, when the temperature is exceeded 350 ° C., the leakage current characteristics are excellent, but a silicon dioxide film having a low dielectric constant and a low capacitance is formed, thereby degrading the performance of the transistor.
  • the structure of the gate insulating film formed by the above-described manufacturing method may increase the values of x and y and decrease the value of z as the heating temperature is increased to Si x O y N z .
  • x and y have a similar value of 30 to 50
  • z preferably has a value of 10 or less, but is not limited thereto.
  • a thin film transistor gate insulating film manufactured by the above method.
  • the thin film transistor gate insulating film manufactured by the manufacturing method according to the present invention is a gate insulating film manufactured by a solution process and a low temperature process, and the gate insulating film exhibits excellent performance by having a high dielectric constant of 4 to 10. Accordingly, when applied to the thin film transistor, it is possible to provide a thin film transistor having excellent gate insulating film leakage current characteristics and a high dielectric constant.
  • the thickness of the gate insulating film is preferably 50 nm to 500 nm. If the thickness of the gate insulating film is less than 50 nm, there is a problem that the mechanical and thermal characteristics of the gate insulating film is insufficient, and if it exceeds 500 nm, there is a problem that the performance of the gate insulating film is degraded.
  • a gate electrode, the gate insulating film, and a semiconductor thin film are sequentially stacked on the substrate, and a source and a drain electrode are stacked on the semiconductor thin film, and the source and drain electrodes are spaced at regular intervals.
  • a thin film transistor is provided. A schematic diagram of a thin film transistor according to the present invention is shown in FIG.
  • the thin film transistor according to the present invention includes the gate insulating film according to the present invention, and thus has excellent leakage current characteristics and high dielectric constant.
  • the substrate may be a silicon (Si) wafer, a glass substrate, a plastic substrate, and the like, and the substrate is selected according to a product to which the thin film transistor is to be applied.
  • a thin film transistor may be applied to a memory device, and in the case of a glass substrate, it may be applied to a display device, and in the case of a plastic substrate, flexible characteristics are required. It can be applied to the electronic device.
  • step 1 Forming a gate electrode on the substrate (step 1));
  • Step 2 Preparing a film by applying a dielectric composition including a polysilazane compound including Formula 1 on the gate electrode formed in Step 1 (Step 2);
  • step 3 Heating the film prepared in step 2 to a temperature of 200 ° C to 350 ° C to form a gate insulating film (step 3);
  • step 4 Forming a semiconductor thin film on the gate insulating film formed in step 3 (step 4);
  • step 5 forming a source and a drain electrode on the semiconductor thin film formed in the step 4 (step 5).
  • step 1 is a step of forming a gate electrode on the substrate.
  • the substrate of step 1 may be used a conventional semiconductor substrate, such as a silicon substrate, a flexible plastic substrate, but is not limited thereto.
  • the gate electrode is configured to apply a voltage for turning on / off the thin film transistor, and may be formed of a conductive material such as a metal or a metal oxide.
  • the gate electrode 120 may include platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), molybdenum (Mo), aluminum (Al), tungsten (W), copper (Cu), and the like.
  • Metal or conductive oxides such as indium tin oxide (ITO), fluorine doped tin oxide (FTO), IZO (InZnO), AZO (AlZnO), GZO (GaZnO), AGZnO (AlGaZnO) and IGZnO (InGaZnO) This is not restrictive.
  • the method of forming the gate electrode may be applied without a known technique.
  • the gate electrode can be formed by depositing a metal or conductive oxide onto a substrate and then patterning it.
  • step 2 is a dielectric composition for a thin film transistor comprising a polysilazane (Polysilazane) compound comprising the formula (1) on the gate electrode formed in the step 1 To prepare the membrane.
  • a polysilazane Polysilazane
  • step 2 a polysilazane compound suitable for a solution process and easy to manufacture a thin film and capable of a low temperature process is coated on the gate electrode formed in step 1 to form a gate insulating film to form a gate insulating film.
  • the polysilazane compound of Step 2 may be, for example, a polysilazane compound including hydrogen, a hydroxyl group, straight or branched C 1-9 alkyl or C 5-12 allyl, and may be polysilazane.
  • the present invention is not limited thereto, and as a specific example, a compound including Chemical Formulas 2 to 5 may be used.
  • HTT1800 (Clariant) may be used as an example of the compound of Formula 5.
  • n 10 to 1,000,000
  • m 10 to 1,000,000
  • the dielectric composition of step 2 further comprises a solvent, the concentration of the mixture of the polysilazane (Polysilazane) compound and the solvent is preferably 5% to 30% by weight. If the dielectric composition of step 2 further includes a solvent, and the concentration of the mixture of the polysilazane compound and the solvent is less than 5% by weight, the thickness of the film is too thin and the leakage current is high, making it difficult to use as a gate insulating film of a transistor. In the case of more than 30% by weight, the film thickness is too thick, so the capacitance is very low, making it difficult to use as a gate insulating film of a transistor.
  • the solvent is preferably one selected from the group consisting of isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol, methanol, 2-methoxyethanol and mixtures thereof, but is not limited thereto. no.
  • the coating of the step 2 is ink-jet printing (Ink-jet printing), roll printing (Roll printing), gravure printing (Gravure printing), aerosol printing (Aaerosol printing), screen printing (Screen printing), roll coating (Roll coating) ), Spin coating, bar coating, spray coating, dip coating, etc., but are not limited thereto. But is not limited thereto.
  • step 3 is a step of forming a gate insulating film by heating the film prepared in step 2 to a temperature of 200 °C to 350 °C.
  • Step 3 is a step of forming a gate insulating film by heat-treating the thin film coated in the step 2, in particular, the gate insulating film formed by heating to a temperature of 200 °C to 350 °C has a high dielectric constant.
  • the heating in step 3 is preferably performed at a temperature of 200 °C to 350 °C, more preferably at a temperature of 220 °C to 280 °C, it is most preferably carried out at a temperature of 250 °C. If the heating in the step 3 is performed below the temperature of 200 ° C., since the organic material in the polysilazane is not decomposed, the dielectric constant and capacitance of the silica-based insulating film are low, and the leakage current is high, so that the gate insulating film of the transistor is used. This difficult problem is caused when the temperature is higher than 350 ° C., but the leakage current characteristics are excellent, but a silicon dioxide film having a low dielectric constant and capacitance is formed, thereby degrading the performance of the transistor.
  • the structure of the gate insulating film formed by the above method may increase the values of x and y and decrease the value of z as the heating temperature increases with Si x O y N z .
  • x and y have a similar value of 30 to 50
  • z preferably has a value of 10 or less, but is not limited thereto.
  • step 4 is a step of forming a semiconductor thin film on the gate insulating film formed in the step 3.
  • step of forming the semiconductor thin film of step 4 As a specific example, the step of forming the semiconductor thin film of step 4,
  • step b heat treating the film prepared in step a (step b).
  • R 1 , R 2 and R 3 are each independently hydrogen or C 1-2 alkyl, wherein C 1-2 alkyl may be substituted with one or more F).
  • the metal A and the metal B of the oxidizing material and the combustion material of the step a is preferably one metal selected from the group consisting of indium, gallium, zinc, titanium, aluminum, lithium and zirconium, wherein the prize metal A and the metal It is preferable that B is mutually different.
  • metal A and metal B are indium and zinc, respectively; Or zinc and indium, wherein zinc: indium is a molar ratio of 1: 0.7 to 1:10 and wherein metals A and B are indium and gallium, respectively; Or gallium and indium, it is preferred that the indium: gallium is in a molar ratio of 1: 0.1 to 1: 0.7.
  • one kind selected from the group consisting of carbohydrazide, urea, citric acid and glycine could be used in addition to the oxide precursor composition as a combustion material. Since the above materials must be added to the composition solution in a quantitative manner, reproducibility problems may occur in the performance of the transistor device, and thus, there is a problem that industrial utilization may be impaired in practical terms.
  • the fuel material in the step A is a zinc acetylacetonate hydrate (Zinc acetylacetonate hydrate, (Zn ( C 5 H 7 O 2) 2 ⁇ xH 2 O)), indium acetylacetonate hydrate (Indium acetylacetonate hydrate, (In (C 5 H 7 O 2 ) 3 xH 2 O)), gallium acetylacetonate, (Ga (C 5 H 7 O 2 ) 3 )), zinc citrate dihydrate, (Zn 3 (C 6 H 5 O 7 ) 2 ⁇ 2H 2 O)), zinc hexafluoroacetylacetonate dihydrate, (Zn (C 5 HF 6 O 2 ) 2 ⁇ 2H 2 O)) And glycine zinc salt monohydrate (ZnC 4 H 10 N 2 O 5 ), and the like.
  • Zinc acetylacetonate hydrate Zn ( C 5 H 7 O 2) 2 ⁇ xH 2 O
  • the metal C is one kind of metal selected from the group consisting of indium, gallium, zinc, titanium, aluminum, lithium and zirconium, and the metal C is preferably different from the metal A and the metal B.
  • the semiconductor ink composition of step a may be a mixture of two materials in which one oxide material and one fuel material are mixed, but is not limited thereto. Two kinds of oxidizing materials and one kind of combustion material, one kind of oxidizing material and two kinds of combustion material can be mixed and used, and also two kinds of oxidizing materials and two kinds of combustion materials can be mixed and used.
  • the oxidizing material and the fuel material each contain different metals.
  • the semiconductor ink composition of step a may further include a monoethyleneamine (MEA, monoethyleneamine) as a stabilizer.
  • a homogeneous semiconductor oxide thin film may be manufactured by coating and then heat-treating a solution in which the precursor material is uniformly dispersed on the substrate, thereby manufacturing an inorganic thin film transistor having excellent reliability.
  • monoethyleneamine (MEA, monoethyleneamine) as a stabilizer, a solution in which the precursor material is more stably dispersed in a solvent can be obtained, thereby producing a homogeneous semiconductor oxide thin film.
  • the zinc: indium is mixed in a molar ratio of 1: 0.7 to 1:10.
  • zinc: indium is mixed in a molar ratio of 1: 0.7 to 1: 5.
  • the metal A and the metal B are indium or gallium
  • the indium: gallium is 1: 0.1 to It is preferable to mix in a molar ratio of 1: 0.7. More preferably, indium: gallium is mixed in a molar ratio of 1: 0.2 to 1: 0.5.
  • the metal C is gallium
  • the mixture of zinc acetylacetonate and indium nitride or the mixture of gallium acetylacetonate and indium nitride further includes gallium acetylacetonate and gallium nitride
  • zinc: indium: gallium This is preferably mixed in a molar ratio of 1: 1-3: 0.1-2.
  • an inorganic thin film transistor having excellent charge mobility and an on / off ratio can be manufactured.
  • the semiconductor ink composition of step a further comprises a solvent, it is preferable that the concentration of the mixture of the oxidizing material, fuel material and solvent is 0.05M to 0.25M.
  • the concentration of the semiconductor ink composition in step a indicates the molarity of the precursor material relative to the solvent. Compared with the conventional semiconductor ink composition having a concentration of about 0.30 M to 0.50 M, the semiconductor ink composition of step a has a dilute concentration of about 3 to 5 times as a concentration of about 0.1 M, thereby reducing raw material cost. It has an effect.
  • the solvent is preferably one selected from the group consisting of isopropyl alcohol, chlorobenzene, N-methyl pyrrolidone, ethanol amine, ethanol, methanol, 2-methoxyethanol and mixtures thereof, but is not limited thereto.
  • step a is ink-jet printing (Ink-jet printing), roll printing (Roll printing), gravure printing (Gravure printing), aerosol printing (Aaerosol printing), screen printing (Screen printing), roll coating (Roll coating) ), Spin coating, bar coating, spray coating, dip coating, etc., but are not limited thereto. But is not limited thereto.
  • the semiconductor thin film is manufactured by heat-treating the thin film coated on the gate insulating film in the step a, and the indium zinc oxide nanostructure is homogeneously formed in the manufactured semiconductor thin film so that the electrical properties such as excellent charge mobility. Indicates.
  • a compact and uniform thin film may be manufactured by spontaneous combustion reaction generated by mixing two metal precursor solutions, and thus, reliability may be improved.
  • the spontaneous combustion reaction is an important feature of forming a semiconductor thin film from the inorganic semiconductor ink composition according to the present invention, through the combustion reaction of a metal precursor (oxidation material) having an oxidizing property and a metal precursor (combustion material) having a combustion property.
  • the internal heat generated can be used as the energy required for the conversion of the precursor to the oxide.
  • the external energy applied for forming the oxide that is, the temperature required for the heat treatment can be substantially reduced. Therefore, it is possible to reduce the high process temperature, which is considered a major disadvantage in the solution process of the oxide semiconductor.
  • step b is preferably carried out at 200 °C to 350 °C but is not limited thereto.
  • the spontaneous combustion reaction occurs and the oxide formation temperature is lowered by the exothermic reaction. Therefore, since the oxide is easily formed, the electrical properties of the transistor including the semiconductor thin film can be greatly improved, which is advantageous.
  • the oxide semiconductor of the thin film transistor is formed using the indium zinc oxide-based semiconductor ink composition in which spontaneous combustion occurs, a thin film transistor having excellent electrical performance can be manufactured.
  • step 5 is a step of forming a source electrode and a drain electrode on the semiconductor thin film formed in the step 4.
  • the source and drain electrodes may be formed to be spaced apart from each other and to be in contact with both sides of the upper portion of the semiconductor thin film formed in step 4.
  • the source and drain electrodes of step 4 may be formed of a conductive material such as metal or metal oxide.
  • the source and drain electrodes can be formed of a conductive material, such as a metal or metal oxide.
  • the source and drain electrodes may be formed of metals such as platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), molybdenum (Mo), aluminum (Al), tungsten (W), copper (Cu), and the like.
  • conductive oxides such as indium tin oxide (ITO), fluorine doped tin oxide (FTO), IZO (InZnO), AZO (AlZnO), GZO (GaZnO), AGZnO (AlGaZnO) and IGZnO (InGaZnO). This is not restrictive.
  • the method of forming the source electrode and the drain electrode in step 4 may be applied without a known technique.
  • the source and drain electrodes may be formed by depositing a metal or a conductive oxide on a substrate on which a semiconductor thin film is formed and then patterning it.
  • the present invention provides an electronic device including the thin film transistor.
  • the electronic device to which the thin film transistor of the present invention can be applied include a liquid crystal display, a flat panel display, a laser printer head, a scanner, and the like.
  • Step 1 A glass substrate coated with indium thin oxide (ITO) was prepared as a gate electrode.
  • ITO indium thin oxide
  • Step 2 A polysilazane solution (euphychemical) was applied on the ITO, the gate electrode formed in Step 1, by spin coating and dried on a hot plate at 150 ° C. to evaporate the solvent to form a film.
  • Step 3 The film formed in Step 2 was heated to a temperature of 200 °C for 1 hour while supplying moisture in an electric furnace to form a gate insulating film.
  • Step 4 After spin-coating the semiconductor composition on the gate insulating film formed in step 3, and heat-treated for 1 hour at a temperature of 150 °C on a hot plate to prepare a semiconductor thin film.
  • a zinc oxide semiconductor composition of 0.1 M was used as the semiconductor composition.
  • Step 5 The source / drain electrodes having a width / length of 3000 ⁇ m / 50 ⁇ m are deposited to a thickness of 120 nm on the semiconductor thin film prepared in Step 4 by using an evaporator. The transistor was manufactured.
  • Step 4 of Example 1 As a semiconductor composition in Step 4 of Example 1, using an indium zinc semiconductor composition mixed in a 1: 1 molar ratio of 0.2 M in which a spontaneous combustion reaction occurs, heat treatment at a temperature of 300 °C for 1 hour to produce a semiconductor thin film A thin film transistor was manufactured in the same manner as in Example 1, except that one was prepared.
  • Example 1 As a semiconductor composition in Step 4 of Example 1, using an indium zinc gallium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction, heat-treated at a temperature of 300 °C for 1 hour the semiconductor A thin film transistor was manufactured in the same manner as in Example 1, except that the thin film was manufactured.
  • Step 4 of Example 1 using an indium zinc zirconium semiconductor composition mixed in a molar ratio of 1: 0.8: 0.2 of 0.2 M to generate a spontaneous combustion reaction, the semiconductor by heat treatment for 1 hour at a temperature of 300 °C A thin film transistor was manufactured in the same manner as in Example 1, except that the thin film was manufactured.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 250 ° C. in Step 3 of Example 1.
  • Example 5 As a semiconductor composition in Step 4 of Example 5, using an indium zinc semiconductor composition mixed in a 1: 1 molar ratio of 0.2 M spontaneous combustion reaction, and heat-treated at a temperature of 300 °C for 1 hour to produce a semiconductor thin film A thin film transistor was manufactured in the same manner as in Example 5, except that one was prepared.
  • step 4 of Example 5 using an indium zinc gallium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction, the semiconductor by heat treatment for 1 hour at a temperature of 300 °C A thin film transistor was manufactured in the same manner as in Example 5, except that the thin film was manufactured.
  • Example 5 As a semiconductor composition in Step 4 of Example 5, using an indium zinc zirconium semiconductor composition mixed in a molar ratio of 1: 0.8: 0.2 of 0.2 M in which a spontaneous combustion reaction occurs, the semiconductor is heat-treated at a temperature of 300 °C for 1 hour A thin film transistor was manufactured in the same manner as in Example 5, except that the thin film was manufactured.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 300 ° C. in Step 3 of Example 1.
  • an indium zinc semiconductor composition mixed in a 1: 1 molar ratio of 0.2 M in which a spontaneous combustion reaction occurs was heat-treated at a temperature of 300 °C for 1 hour to manufacture a semiconductor thin film
  • a thin film transistor was manufactured in the same manner as in Example 9, except that one was prepared.
  • Example 9 As a semiconductor composition in Step 4 of Example 9, using an indium zinc gallium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction occurs, the semiconductor by heat treatment at a temperature of 300 °C for 1 hour A thin film transistor was manufactured in the same manner as in Example 9, except that the thin film was manufactured.
  • Example 9 As a semiconductor composition in Step 4 of Example 9, using an indium zinc zirconium semiconductor composition mixed in a molar ratio of 1: 0.8: 0.2 of 0.2 M to generate a spontaneous combustion reaction, the semiconductor by heat treatment at a temperature of 300 °C for 1 hour A thin film transistor was manufactured in the same manner as in Example 9, except that the thin film was manufactured.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 350 ° C. in Example 3 of Example 1.
  • Example 13 As the semiconductor composition in Step 4 of Example 13, using an indium zinc semiconductor composition mixed in a 1: 1 molar ratio of 0.2 M spontaneous combustion reaction, and heat-treated for 1 hour at a temperature of 300 °C to produce a semiconductor thin film A thin film transistor was manufactured in the same manner as in Example 13, except that one was prepared.
  • Example 13 As a semiconductor composition in Step 4 of Example 13, using an indium zinc gallium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction, and heat-treated at a temperature of 300 °C for 1 hour the semiconductor A thin film transistor was manufactured in the same manner as in Example 13, except that the thin film was manufactured.
  • Step 1 A silicon substrate coated with indium thin oxide (ITO) was prepared as a gate electrode.
  • ITO indium thin oxide
  • Step 2 A gate insulating layer was formed of a 300 nm thick silicon dioxide layer on the ITO, which is the gate electrode formed in Step 1.
  • Step 3 After spin-coating the semiconductor composition on the gate insulating film formed in step 3, and heat-treated for 1 hour at a temperature of 150 °C on a hot plate to prepare a semiconductor thin film.
  • a zinc oxide semiconductor composition of 0.1 M was used as the semiconductor composition.
  • Step 4 A thin film is formed by depositing a source and drain electrode having a width and length of 3000 ⁇ m / 50 ⁇ m in a thickness of 120 nm using an evaporator on the semiconductor thin film manufactured in Step 3. The transistor was manufactured.
  • step 4 of Comparative Example 1 using an indium zinc zirconium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction, and heat-treated at a temperature of 300 °C for 1 hour the semiconductor A thin film transistor was manufactured in the same manner as in Comparative Example 1 except that a thin film was manufactured.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 150 ° C. in Example 3 of Example 1.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 400 ° C. in Step 3 of Example 1.
  • a thin film transistor was manufactured in the same manner as in Example 1, except that the gate insulating layer was formed by heating to a temperature of 500 ° C. in Step 3 of Example 1.
  • step 4 of Comparative Example 13 using an indium zinc gallium semiconductor composition mixed in a 1: M: 0.8: 0.2 molar ratio of 0.2 M spontaneous combustion reaction, and heat-treated at 300 °C for 1 hour the semiconductor A thin film transistor was manufactured in the same manner as in Comparative Example 13 except that a thin film was manufactured.
  • the dielectric constant and the leakage current of the gate insulating film in the thin film transistors manufactured in Examples 1 to 12 and Comparative Examples 1 to 12 were measured, and the charge mobility and The on / off ratio was measured and the results are shown in Table 1 below.
  • the gate insulating film (Examples 1 to 12) manufactured at a heat treatment temperature of 200 °C to 350 °C is a high of 6.0 to 8.3 It was confirmed that the dielectric constant.
  • the comparative example is a case where the gate insulating film is formed by heating at a temperature outside the range according to the present invention In the case of 4 to 12, it was confirmed that the dielectric constant showed a relatively low value of 3.0 to 4.5.
  • Examples 1 to 12 which are thin film transistors using a dielectric composition comprising a polysilazane compound according to the present invention and comprising a gate insulating film prepared at a heat treatment temperature of 200 ° C. to 350 ° C., are 10.4 cm 2 / V ⁇ s It was confirmed that exhibits excellent charge mobility of 8 to 82.6 cm 2 / V ⁇ s and a flashing ratio of about 10 5 to 10 6 .
  • Comparative Examples 1 to 3 which are thin film transistors in which a silicon dioxide layer was formed as the gate insulating film, it was confirmed that they exhibit very low charge mobility of 0.2 cm 2 / V ⁇ s to 4.9 cm 2 / V ⁇ s.
  • Comparative Examples 4 to 12 which are thin film transistors formed by heating at a temperature outside the range according to the present invention, in which the gate insulating film is formed, relatively low charge mobility of 0.18 cm 2 / V ⁇ s to 5.2 cm 2 / V ⁇ s is obtained. It confirmed that it showed.
  • the dielectric composition containing the polysilazane compound according to the present invention exhibited the best charge mobility and the dielectric constant in the case of the thin film transistor including the gate insulating film manufactured at a heat treatment temperature of 250 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명은 폴리실라잔(Polysilazane) 화합물을 포함하는 박막 트랜지스터용 유전체 조성물을 제공한다. 본 발명에 따른 폴리실리잔 화합물을 포함하는 박막 트랜지스터용 유전체 조성물은 박막 트랜지스터의 게이트 절연막 재료로 사용될 수 있다. 본 발명에 따른 조성물은 용액공정을 통해 박막 트랜지스터 게이트 절연막을 제조할 수 있어 간단한 스핀 코팅법 등의 방법으로 박막으로의 제조가 용이하고, 저온공정이 가능한 효과가 있다. 또한, 본 발명에 따른 조성물을 통해 제조된 게이트 절연막을 포함하는 박막 트랜지스터는 전기적 성능 및 신뢰도가 우수한 효과가 있다. 나아가, 본 발명에 따른 박막 트랜지스터의 제조방법은 자발적 연소 반응이 발생하는 인듐아연 산화물계 반도체 잉크 조성물을 사용하여 박막 트랜지스터의 산화물 반도체를 형성하기 때문에 더욱 전기적 성능이 우수한 박막 트랜지스터를 제조할 수 있을 뿐만 아니라, 게이트 절연막과 마찬가지로 용액공정에 적합하여 박막으로의 제조가 용이하고 저온공정이 가능하며, 연료재료와 산화재료가 배위된 두 금속 전구체를 혼합함으로써 발생하는 자발적인 연소반응에 의하여 조밀하고 균일한 박막을 제조할 수 있다.

Description

폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터
본 발명은 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터에 관한 것이다.
게이트 절연막으로 사용되는 유전체 박막은 유ㆍ무기 커패시터, 박막 트랜지스터와 같은 전자 부품들에 널리 이용되는 소재이다. 현재 널리 이용되는 게이트 유전체는 이산화 실리콘(SiO2)이며 3.9의 유전상수를 나타낸다. 습식 및 건식으로 치밀하게(dense) 성장된 비결정질 이산화 실리콘층은 열과 전기적으로 안정된 특성을 제공하고, 이산화 실리콘층 아래에 있는 실리콘과의 계면과의 우수한 절연 특성을 보여준다. 이산화 실리콘 박막을 형성하는 공정은 대표적으로 열산화 방법(thermal oxidation), 저압화학기상증착법(low pressure chemical vapor depostion, LPCVD), 상압화학기상증착법(atmospheric chemical vapor deposition, APCVD ), 플라즈마화학기상증착법(plasma enhanced chemical vapor depostion, PECVD)이 있으나, 공정온도가 400 ℃ 이상으로 비교적 높다.
최근 유연(flexible)하고, 변형이 가능한(wearable) 디스플레이가 각광을 받으면서 매우 얇고 투명한 유리 기판 또는 플라스틱 기판을 사용하는 경우가 많아 열로 기판을 손상시키지 않는 증착 방법 및 열처리 공정의 저온화가 실제로 매우 중요하다고 할 수 있다.
한편, 저전압 구동이 가능한 박막 트랜지스터 소자를 구현하기 위하여 현재 실리콘 산화물 게이트 절연막 두께를 줄이고 있으나, 얇은 두께의 게이트 절연막은 불순물의 투과, 전자 소자의 신뢰성, 그리고 수명(lifetime) 등의 문제가 발생한다. 따라서, 산화막의 물리적 한계를 극복하기 위하여 유전율(dielelctic)을 증가시키는 새로운 방법에 대한 연구를 가속화시켰다. 높은 유전율(high-k dielectric)을 갖는 소재의 경우 박막이 얇은 등가 산화막 두께에도(equivalent oxide thickness) 불구하고 박막 트랜지스터의 저전압 구동 및 소스와 드레인 전극과 하부 게이트 전극 사이에 발생하는 누설전류를 최소화할 수 있으며, 박막 트랜지스터에 이용되는 활성층의 종류에 따라 종횡비(on/off), 이동도(mobility)와 같은 전기적 특성을 향상시킬 수 있다.
따라서 소자의 소형화, 고속화 및 단가 절감을 실현시킬 수 있기 때문에 미래형 부품 소재 산업에 필수적인 소재라 할 수 있다. 일반적으로 높은 유전율을 가지는 게이트 절연막은 다음과 같은 특성이 요구된다.
첫 번째는 열적인 안정성이다. 일반적으로 반도체 회로 집적 공정은 400 ℃ 이하에서 공정이 진행되나, 박막 트랜지스터에 사용되는 다양한 활성층의 열처리에 해당하는 온도에서 게이트 절연막은 열적으로 안정한 특성을 나타내어야 할 것이다.
두 번째는 기존의 이산화 실리콘 산화막 보다 높은 유전 상수를 가져야 한다. 유전 상수가 너무 높을 경우 박막의 두께는 매우 두꺼워져야 하는데, 두꺼운 절연막의 두께는 게이트 컨트롤을 오히려 저해하므로 적절한 유전상수를 가진 높은 유전체 소재를 제조해야 한다.
마지막으로 높은 유전체 소재는 비정질상(amorphous)인 것이 유리하다. 누설 전류는 결정화된 박막의 입계(grain boundary)를 따라 증가하기 때문이다. 앞에서 언급한 세 가지 뿐만 아니라 유전체와 실리콘 계면의 안정성, 계면의 상태, 박막의 형상(morphology)등 고려해야 할 특성들이 다양하다.
이때, 폴리실리잔은 실라잔의 구조를 함유하고 있으며, 간단한 열처리로 실리카 계열의 막을 형성시킬 수 있는 장점이 있는 소재이다. 현재 이용되고 있는 폴리실라잔 소재는 저온 열처리 환경에서 산화 실리카 및 질화된 실리카 코팅막으로 쉽게 생성할 수 있으며, 우수한 열적, 화학적 안정성 때문에 디스플레이 (LED, OLED, touch panel), 태양열, 자동차 코팅, 건축 소재 등 다양한 산업 분야에 적용되고 있다. 또한, 반도체 업계에서 웨어퍼의 층간 또는 반도체의 금속 배선간에 발생하는 정전기를 보호하는 절연막으로 주로 이용되며 평탄성, 내열성, 고내구성, 내화학성 등 좋은 특성을 가지고 있다.
이에, 본 발명자들은 박막 트랜지스터에 대하여 연구하던 중, 폴리실라잔 화합물을 포함하는 박막 트랜지스터용 유전체 조성물을 개발하였으며, 이를 박막 트랜지스터의 게이트 절연막 소재로 사용할 수 있으며, 용액공정에 적합하여 간단한 코팅방법으로 박막의 제조가 용이하고 저온공정이 가능하며 신뢰도가 우수한 박막 트랜지스터를 제조할 수 있음을 발견하고, 본 발명을 완성하였다.
본 발명의 목적은 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터를 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은
하기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 박막 트랜지스터용 유전체 조성물을 제공한다.
<화학식 1>
Figure PCTKR2015008887-appb-I000001
(상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소, 하이드록시기, 아미노기, 실릴기, 직쇄 또는 측쇄의 C1-9 알킬 또는 C5-12 알릴이고,
R3는 수소, 하이드록시기, 직쇄 또는 측쇄 C1-9 알킬 또는 C5-12 알릴이고,
n은 10 내지 1,000,000이다)
또한, 본 발명은
상기의 유전체 조성물을 기판 상부로 도포하여 막을 제조하는 단계(단계 1); 및
상기 단계 1에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하는 단계(단계 2);를 포함하는 박막 트랜지스터 게이트 절연막의 제조방법을 제공한다.
나아가, 본 발명은
상기의 제조방법으로 제조된 박막 트랜지스터 게이트 절연막을 제공한다.
또한, 본 발명은
기판 상부에 게이트 전극, 상기의 게이트 절연막 및 반도체 박막이 순차적으로 적층되고, 상기 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극이 적층되되, 상기 소스와 드레인 전극은 일정 간격으로 이격되어 있는 것을 특징으로 하는 박막 트랜지스터를 제공한다.
나아가, 본 발명은
기판 상부에 게이트 전극을 형성하는 단계(단계 1);
상기 단계 1에서 형성된 게이트 전극 상부에 상기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 유전체 조성물을 도포하여 막을 제조하는 단계(단계 2);
상기 단계 2에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하여 게이트 절연막을 형성하는 단계(단계 3);
상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 박막을 형성하는 단계(단계 4); 및
상기 단계 4에서 형성된 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극을 형성하는 단계(단계 5);를 포함하는 박막 트랜지스터의 제조방법을 제공한다.
더욱 나아가,
상기의 박막 트랜지스터를 포함하는 전자 디바이스를 제공한다.
본 발명에 따른 폴리실리잔 화합물을 포함하는 박막 트랜지스터용 유전체 조성물은 박막 트랜지스터의 게이트 절연막 재료로 사용될 수 있다. 본 발명에 따른 조성물은 용액공정을 통해 박막 트랜지스터 게이트 절연막을 제조할 수 있어 박막으로의 제조가 용이하고, 저온공정이 가능한 효과가 있다. 또한, 본 발명에 따른 조성물을 통해 제조된 게이트 절연막을 포함하는 박막 트랜지스터는 전기적 성능 및 신뢰도가 우수한 효과가 있다.
나아가, 본 발명에 따른 박막 트랜지스터의 제조방법은 자발적 연소 반응이 발생하는 인듐아연 산화물계 반도체 잉크 조성물을 사용하여 박막 트랜지스터의 산화물 반도체를 형성하기 때문에 더욱 전기적 성능이 우수한 박막 트랜지스터를 제조할 수 있을 뿐만 아니라, 게이트 절연막과 마찬가지로 용액공정에 적합하여 박막으로의 제조가 용이하고 저온공정이 가능하며, 연료재료와 산화재료가 배위된 두 금속 전구체를 혼합함으로써 발생하는 자발적인 연소반응에 의하여 조밀하고 균일한 박막을 제조할 수 있다.
도 1은 박막 트랜지스터를 나타낸 개략도이다.
본 발명은
하기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 박막 트랜지스터용 유전체 조성물을 제공한다.
<화학식 1>
Figure PCTKR2015008887-appb-I000002
(상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 수소, 하이드록시기, 아미노기, 실릴기, 직쇄 또는 측쇄의 C1-9 알킬 또는 C5-12 알릴이고,
R3는 수소, 하이드록시기, 직쇄 또는 측쇄 C1-9 알킬 또는 C5-12 알릴이고,
n은 10 내지 1,000,000이다)
이하, 본 발명에 따른 유전체 조성물에 대하여 상세히 설명한다.
현재 이용되고 있는 폴리실라잔 계열의 소재는 저온 열처리 환경에서 산화 실리카 및 질화된 실리카 코팅막으로 쉽게 생성할 수 있다. 우수한 열적, 화학적 안정성 때문에 디스플레이 (LED, OLED, touch panel), 태양열, 자동차 코팅, 건축 소재 등 다양한 산업 분야에 적용되고 있다.
이에, 본 발명에서는 폴리실라잔 화합물을 박막 트랜지스터용 유전체 조성물로 제공하며, 본 발명에 따른 박막 트랜지스터용 유전체 조성물은 용액공정에 적합하여 박막의 제조가 용이하고 저온공정이 가능하다.
본 발명에 따른 유전체 조성물에 있어서, 상기 폴리실라잔 화합물은 일례로써 수소, 하이드록시기, 직쇄 또는 측쇄 C1-9 알킬 또는 C5-12 알릴을 포함하는 폴리실라잔 화합물일 수 있으며, 폴리실라잔일 수 있으나, 이에 제한되지 않으며, 더욱 구체적인 일례로써, 하기 화학식 2 내지 5를 포함하는 화합물을 사용할 수 있다. 이때, 화학식 5의 화합물의 일례로써 HTT1800(Clariant)을 사용할 수 있다.
<화학식 2>
Figure PCTKR2015008887-appb-I000003
<화학식 3>
Figure PCTKR2015008887-appb-I000004
<화학식 4>
Figure PCTKR2015008887-appb-I000005
<화학식 5>
Figure PCTKR2015008887-appb-I000006
(상기 화학식 2 내지 5에서
n은 10 내지 1,000,000이고,
m은 10 내지 1,000,000이고,
Me는 메틸이다.)
본 발명에 따른 유전체 조성물에 있어서, 상기 유전체 조성물은 용매를 더 포함하고, 폴리실라잔(Polysilazane) 화합물 및 용매의 혼합물의 농도는 5 중량% 내지 30 중량%인 것이 바람직하다. 만약, 상기 유전체 조성물이 용매를 더 포함하고, 폴리실라잔 화합물 및 용매의 혼합물의 농도가 5 중량% 미만일 경우에는 막의 두께가 너무 얇고 누설 전류가 높아 트랜지스터의 게이트 절연막으로 사용하기 어려운 문제가 있으며, 30 중량%를 초과하는 경우에는 오히려 막의 두께가 너무 두꺼워 정전용량이 매우 낮으므로 트랜지스터의 게이트 절연막으로 사용하기 어려운 문제가 있다.
상기 용매는 이소프로필알코올, 클로로벤젠, N-메틸 피롤리돈, 에탄올 아민, 에탄올, 메탄올, 2-메톡시에탄올 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 1 종인 것이 바람직하나 이에 한정되는 것은 아니다.
또한, 본 발명은
상기의 유전체 조성물을 기판 상부로 도포하여 막을 제조하는 단계(단계 1); 및
상기 단계 1에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하는 단계(단계 2);를 포함하는 박막 트랜지스터 게이트 절연막의 제조방법을 제공한다.
이하, 본 발명에 따른 박막 트랜지스터 게이트 절연막의 제조방법에 대하여 각 단계별로 상세히 설명한다.
먼저, 본 발명에 따른 박막 트랜지스터 게이트 절연막의 제조방법에 있어서, 단계 1은 상기의 유전체 조성물을 기판 상부로 도포하여 막을 제조하는 단계이다.
상기 단계 1에서는 본 발명에 따른 유전체 조성물인 폴리실라잔 화합물을 포함하는 유전체 조성물을 기판 상부로 도포하여 막을 제조한다.
이때, 상기 단계 1의 도포는 잉크젯 프린팅(Ink-jet printing), 롤 프린팅(Roll printing), 그라비아 프린팅(Gravure printing), 에어로졸 프린팅(Aaerosol printing), 스크린 프린팅(Screen printing), 롤 코팅(Roll coating), 스핀 코팅(Spin coating), 바 코팅(Bar coating), 스프레이 코팅(Spray coating) 및 딥 코팅(Dip coating) 등의 방법으로 수행될 수 있으나, 이에 제한되지 않으며, 구체적인 일례로써 스핀 코팅을 이용하는 것이 바람직하나 이에 제한되는 것은 아니다.
다음으로, 본 발명에 따른 박막 트랜지스터 게이트 절연막의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하는 단계이다.
상기 단계 2는 상기 단계 1에서 기판 상부로 코팅된 박막을 열처리하여 게이트 절연막을 제조하는 단계로써, 특히 200 ℃ 내지 350 ℃의 온도로 가열함으로써 형성된 게이트 절연막은 높은 유전상수를 가진다.
구체적으로, 상기 단계 2의 가열은 200 ℃ 내지 350 ℃의 온도로 수행되는 것이 바람직하며, 220 ℃ 내지 280 ℃의 온도로 수행되는 것이 더욱 바람직하며, 250 ℃의 온도로 수행되는 것이 가장 바람직하다. 만약, 상기 단계 2의 가열이 200 ℃의 온도 미만으로 수행되는 경우에는 폴리실라잔 내의 유기물이 분해가 되지 않으므로 실리카계 절연막의 유전 상수와 정전용량이 낮고 누설전류가 높아, 트랜지스터의 게이트 절연막으로 사용이 어려운 문제가 있으며, 350 ℃의 온도를 초과하여 수행되는 경우에는 누설전류 특성은 우수하나 낮은 유전상수와 낮은 정전용량을 갖는 이산화규소 막이 형성되어 트랜지스터의 성능이 저하되는 문제가 있다.
이때, 상기와 같은 제조방법으로 형성된 게이트 절연막의 구조는 SixOyNz로 가열 온도가 높아짐에 따라 x와 y의 값이 커지고, z의 값이 작아질 수 있다. 이때 x와 y는 30 내지 50의 비슷한 값을 가지고, z는 10 이하의 값을 가지는 것이 바람직하나 이에 제한되지 않는다.
나아가, 본 발명은
상기의 제조방법으로 제조된 박막 트랜지스터 게이트 절연막을 제공한다.
본 발명에 따른 제조방법으로 제조되는 박막 트랜지스터 게이트 절연막은 용액공정 및 저온공정으로 제조된 게이트 절연막이며, 상기 게이트 절연막은 유전 상수가 4 내지 10으로 높은 값을 가짐으로써 우수한 성능을 보인다. 이에 따라 박막 트랜지스터에 적용하는 경우 게이트 절연막 누설 전류 특성이 우수하고, 유전 상수가 높아 우수한 박막 트랜지스터를 제공할 수 있다.
본 발명에 따른 박막 트랜지스터 게이트 절연막에 있어서, 상기 게이트 절연막의 두께는 50 nm 내지 500 nm인 것이 바람직하다. 만약, 상기 게이트 절연막의 두께가 50 nm 미만일 경우에는 게이트 절연막의 기계적, 열적 특성이 부족한 문제가 있으며, 500 nm를 초과하는 경우에는 게이트 절연막의 성능이 저하되는 문제가 있다.
또한, 본 발명은
기판 상부에 게이트 전극, 상기의 게이트 절연막 및 반도체 박막이 순차적으로 적층되고, 상기 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극이 적층되되, 상기 소스와 드레인 전극은 일정 간격으로 이격되어 있는 것을 특징으로 하는 박막 트랜지스터를 제공한다. 본 발명에 따른 박막 트랜지스터의 개략도는 도 1에 나타내었다.
본 발명에 따른 박막 트랜지스터는 본 발명에 따른 게이트 절연막을 포함함으로써, 누설 전류 특성이 우수하고, 유전 상수가 높아 우수한 특성을 가진다.
이때, 상기 기판은 실리콘(Si) 웨이퍼, 유리기판, 플라스틱 기판 등이 이용될 수 있으며, 박막 트랜지스터를 적용할 제품에 맞추어 기판을 선택한다. 예를 들어, 상기 기판이 실리콘(Si) 웨이퍼 기판인 경우 박막 트랜지스터를 메모리 소자에 적용할 수 있고, 유리기판인 경우 디스플레이 소자에 적용할 수 있으며, 플라스틱 기판인 경우 플렉서블(flexible)한 특성이 요구되는 전자소자에 적용할 수 있다.
나아가, 본 발명은
기판 상부에 게이트 전극을 형성하는 단계(단계 1);
상기 단계 1에서 형성된 게이트 전극 상부에 상기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 유전체 조성물을 도포하여 막을 제조하는 단계(단계 2);
상기 단계 2에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하여 게이트 절연막을 형성하는 단계(단계 3);
상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 박막을 형성하는 단계(단계 4); 및
상기 단계 4에서 형성된 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극을 형성하는 단계(단계 5);를 포함하는 박막 트랜지스터의 제조방법을 제공한다.
이하, 본 발명에 따른 박막 트랜지스터의 제조방법에 대하여 각 단계별로 상세히 설명한다.
먼저, 본 발명에 따른 박막 트랜지스터의 제조방법에 있어서, 단계 1은 기판 상부에 게이트 전극을 형성하는 단계이다.
구체적으로, 상기 단계 1의 기판은 실리콘 기판과 같은 통상의 반도체 기판, 유연한 플라스틱 기판 등을 사용할 수 있으나, 이에 제한되지 않는다.
게이트 전극은 박막 트랜지스터를 온/오프 하기 위한 전압을 인가하기 위한 구성으로서, 금속 또는 금속 산화물과 같은 전도성 물질로 형성될 수 있다. 일례로, 게이트 전극(120)은 백금(Pt), 루테늄(Ru), 금(Au), 은(Ag), 몰리브덴(Mo), 알루미늄(Al), 텅스텐(W), 구리(Cu) 등과 같은 금속 또는 ITO(indium tin oxide), FTO(fluorine doped tin oxide), IZO(InZnO), AZO(AlZnO), GZO(GaZnO), AGZnO(AlGaZnO) 및 IGZnO(InGaZnO) 등과 같은 전도성 산화물로 형성될 수 있으나, 이에 제한되지 않는다.
또한, 상기 게이트 전극의 형성방법은 공지의 기술이 제한 없이 적용될 수 있다. 예를 들면, 게이트 전극은 금속 또는 전도성 산화물을 기판 상에 증착한 후 이를 패터닝함으로써 형성될 수 있다.
다음으로, 본 발명에 따른 박막 트랜지스터의 제조방법에 있어서, 단계 2는 상기 단계 1에서 형성된 게이트 전극 상부에 상기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 박막 트랜지스터용 유전체 조성물을 도포하여 막을 제조하는 단계이다.
상기 단계 2에서는 용액공정에 적합하여 박막의 제조가 용이하고 저온공정이 가능한 폴리실라잔 화합물을 유전체 조성물로 사용하여 게이트 절연막을 형성하기 위해 상기 단계 1에서 형성된 게이트 전극 상부에 도포하여 막을 형성한다.
구체적으로, 상기 단계 2의 폴리실라잔 화합물은 일례로써 수소, 하이드록시기, 직쇄 또는 측쇄 C1-9 알킬 또는 C5-12 알릴을 포함하는 폴리실라잔 화합물일 수 있으며, 폴리실라잔일 수 있으나, 이에 제한되지 않으며, 더욱 구체적인 일례로써, 하기 화학식 2 내지 5를 포함하는 화합물을 사용할 수 있다. 이때, 화학식 5의 화합물의 일례로써 HTT1800(Clariant)을 사용할 수 있다.
<화학식 2>
Figure PCTKR2015008887-appb-I000007
<화학식 3>
Figure PCTKR2015008887-appb-I000008
<화학식 4>
Figure PCTKR2015008887-appb-I000009
<화학식 5>
Figure PCTKR2015008887-appb-I000010
(상기 화학식 2 내지 5에서
n은 10 내지 1,000,000이고,
m은 10 내지 1,000,000이고,
Me는 메틸이다.)
또한, 상기 단계 2의 유전체 조성물은 용매를 더 포함하고, 폴리실라잔(Polysilazane) 화합물 및 용매의 혼합물의 농도는 5 중량% 내지 30 중량%인 것이 바람직하다. 만약, 상기 단계 2의 유전체 조성물이 용매를 더 포함하고, 폴리실라잔 화합물 및 용매의 혼합물의 농도가 5 중량% 미만일 경우에는 막의 두께가 너무 얇고 누설 전류가 높아 트랜지스터의 게이트 절연막으로 사용하기 어려운 문제가 있으며, 30 중량%를 초과하는 경우에는 오히려 막의 두께가 너무 두꺼워 정전용량이 매우 낮으므로 트랜지스터의 게이트 절연막으로 사용하기 어려운 문제가 있다.
이때, 상기 용매는 이소프로필알코올, 클로로벤젠, N-메틸 피롤리돈, 에탄올 아민, 에탄올, 메탄올, 2-메톡시에탄올 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 1 종인 것이 바람직하나 이에 한정되는 것은 아니다.
또한, 상기 단계 2의 도포는 잉크젯 프린팅(Ink-jet printing), 롤 프린팅(Roll printing), 그라비아 프린팅(Gravure printing), 에어로졸 프린팅(Aaerosol printing), 스크린 프린팅(Screen printing), 롤 코팅(Roll coating), 스핀 코팅(Spin coating), 바 코팅(Bar coating), 스프레이 코팅(Spray coating) 및 딥 코팅(Dip coating) 등의 방법으로 수행될 수 있으나, 이에 제한되지 않으며, 구체적인 일례로써 스핀 코팅을 이용하는 것이 바람직하나 이에 제한되는 것은 아니다.
다음으로, 본 발명에 따른 박막 트랜지스터의 제조방법에 있어서, 단계 3은 상기 단계 2에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하여 게이트 절연막을 형성하는 단계이다.
상기 단계 3은 상기 단계 2에서 코팅된 박막을 열처리하여 게이트 절연막을 형성하는 단계로써, 특히 200 ℃ 내지 350 ℃의 온도로 가열함으로써 형성된 게이트 절연막은 높은 유전상수를 가진다.
구체적으로, 상기 단계 3의 가열은 200 ℃ 내지 350 ℃의 온도로 수행되는 것이 바람직하며, 220 ℃ 내지 280 ℃의 온도로 수행되는 것이 더욱 바람직하며, 250 ℃의 온도로 수행되는 것이 가장 바람직하다. 만약, 상기 단계 3의 가열이 200 ℃의 온도 미만으로 수행되는 경우에는 폴리실라잔 내의 유기물이 분해가 되지 않으므로 실리카계 절연막의 유전 상수와 정전용량이 낮고, 누설전류가 높아 트랜지스터의 게이트 절연막으로 사용이 어려운 문제가 있으며, 350 ℃의 온도를 초과하여 수행되는 경우에는 누설전류 특성은 우수하나, 낮은 유전상수와 정전용량을 갖는 이산화규소 막이 형성되어 트랜지스터의 성능이 저하되는 문제가 있다.
이때, 상기와 같은 방법으로 형성된 게이트 절연막의 구조는 SixOyNz로 가열 온도가 높아짐에 따라 x와 y의 값이 커지고, z의 값이 작아질 수 있다. 이때 x와 y는 30 내지 50의 비슷한 값을 가지고, z는 10 이하의 값을 가지는 것이 바람직하나 이에 제한되지 않는다.
다음으로, 본 발명에 따른 박막 트랜지스터의 제조방법에 있어서, 단계 4는 상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 박막을 형성하는 단계이다.
구체적인 일례로써, 상기 단계 4의 반도체 박막을 형성하는 단계는,
산화재료인 금속 A의 질화물(nitrate)과 연료재료인 금속 B의 하기 화학식 2로 표현되는 착화물을 포함하고, 상기 금속 A 및 금속 B는 각각 인듐, 갈륨, 아연, 티타늄, 알루미늄, 리튬 및 지르코늄으로 이루어진 군으로부터 선택되는 1 종의 금속이며, 금속 A와 금속 B는 서로 상이한 것을 특징으로 하는 반도체 잉크 조성물을 게이트 절연막 상부로 도포하여 막을 제조하는 단계(단계 a); 및
상기 단계 a에서 제조된 막을 열처리하는 단계(단계 b);를 포함할 수 있다.
<화학식 2>
Figure PCTKR2015008887-appb-I000011
(상기 화학식 2에서,
R1, R2 및 R3는 각각 독립적으로 수소 또는 C1-2 알킬이고, 여기서 C1-2 알킬은 하나 이상의 F로 치환될 수 있다).
상기 단계 a의 산화재료와 연소재료가 배위된 두 금속 전구체를 혼합함으로써 자발적인 연소반응이 발생할 수 있고, 이로 인해 조밀하고 균일한 박막을 제조할 수 있다. 상기 단계 a의 산화재료 및 연소재료의 금속 A 및 금속 B는 인듐, 갈륨, 아연, 티타늄, 알루미늄, 리튬 및 지르코늄으로 이루어진 군으로부터 선택되는 1 종의 금속인 것이 바람직하며, 이때 상금 금속 A와 금속 B는 서로 상이한 것이 바람직하다.
또한, 상기 금속 A 및 금속 B가 각각 인듐 및 아연; 또는 아연 및 인듐;일 때, 아연:인듐이 1:0.7 내지 1:10의 몰비이며, 상기 금속 A 및 금속 B가 각각 인듐 및 갈륨; 또는 갈륨 및 인듐;일 때, 인듐:갈륨이 1:0.1 내지 1:0.7의 몰비인 것이 바람직하다.
종래의 기술에 따르면 카바하이드라자이드(carbohydrazide), 유레아(urea), 시트르산(citric acid) 및 글라이신(glycine)으로 이루어진 군으로부터 선택되는 1 종을 연소재료로서 산화물 전구체 조성물에 추가하여 사용할 수 있었으나, 상기와 같은 물질을 추가적으로 조성물 용액에 정량적으로 첨가하여야 하고 이에 따른 트랜지스터 소자의 성능 구현에 있어 재현성 문제가 발생할 수 있으므로, 실용적인 측면에서 산업적인 활용도가 떨어질 수 있다는 문제점이 있었다.
그러나 상기 화학식 2의 착화물을 포함하는 금속 전구체를 사용하는 경우 추가적인 첨가물 및 장비 없이도 우수한 전기적 특성을 나타내는 전구체를 제조할 수 있다는 장점이 있다.
이때, 일례로써 상기 단계 a의 연료재료로는 징크 아세틸아세토네이트 하이드레이트(Zinc acetylacetonate hydrate, (Zn(C5H7O2)2·xH2O)), 인듐 아세틸아세토네이트 하이드레이트(Indium acetylacetonate hydrate, (In(C5H7O2)3·xH2O)), 갈륨 아세틸아세토네이트 (Gallium acetylacetonate, (Ga(C5H7O2)3)), 징크 시트레이트 디하이드레이트 (Zinc citrate dihydrate, (Zn3(C6H5O7)2·2H2O)), 징크 헥사플루오로아세틸아세토네이트 디하이드레이트 (Zinc hexafluoroacetylacetonate dihydrate, (Zn(C5HF6O2)2·2H2O)) 및 글리신 징크 솔트 모노하이드레이트 (Glycine zinc salt monohydrate, (ZnC4H10N2O5)) 등을 사용할 수 있다.
또한, 상기 단계 a의 반도체 잉크 조성물은,
산화재료로서 금속 C의 질화물(nitrate)과 연료재료로서 금속 C의 상기 화학식 2로 표현되는 착화물로부터 선택되는 1 종 이상을 더 포함하고,
상기 금속 C는 인듐, 갈륨, 아연, 티타늄, 알루미늄, 리튬 및 지르코늄으로 이루어진 군으로부터 선택되는 1 종의 금속이며, 금속 C는 상기 금속 A 및 금속 B와 서로 상이한 것이 바람직하다.
상기 단계 a의 반도체 잉크 조성물은 산화재료 1 종과 연료재료 1 종을 혼합한 2 종의 물질의 혼합물일 수 있으나 이에 한정되는 것은 아니다. 2 종의 산화재료 및 1 종의 연소재료, 1 종의 산화재료 및 2 종의 연소재료를 혼합하여 사용할 수 있고, 또한 2 종의 산화재료 및 2 종의 연소재료를 혼합하여 사용할 수 있다.
이때, 산화재료 및 연료재료는 각각 서로 다른 금속을 포함하는 것이 바람직하다
또한, 상기 단계 a의 반도체 잉크 조성물은 안정제로서 모노에틸렌아민(MEA, monoethyleneamine)을 더 포함할 수 있다. 상기 단계 a의 반도체 잉크 조성물은 전구체 물질이 균질하게 분산된 용액을 기판 상부에 코팅한 후 열처리함으로써 균질한 반도체 산화물 박막을 제조할 수 있고 이에 따라 신뢰도가 우수한 무기 박막 트랜지스터를 제조할 수 있다. 이에, 안정제로서 모노에틸렌아민(MEA, monoethyleneamine)을 더 포함함으로써 전구체 물질이 용매에 더욱 안정하게 분산된 용액을 얻을 수 있고, 이에 따라 균질한 반도체 산화물 박막을 제조할 수 있다.
이때, 상기 금속 A 및 금속 B가 아연 또는 인듐인 경우 아연:인듐이 1 : 0.7 내지 1 : 10의 몰비로 혼합되는 것이 바람직하다. 구체적으로, 아연질화물과 인듐 아세틸아세토네이트의 혼합물인 경우 또는 아연 아세틸아세토네이트와 인듐 질화물의 혼합물인 경우 아연:인듐이 1 : 0.7 내지 1 : 5의 몰비로 혼합되는 것이 더욱 바람직하다.
또한, 상기 금속 A 및 금속 B가 인듐 또는 갈륨일 때, 구체적으로 인듐 아세틸아세토네이트 및 갈륨 질화물의 혼합물이거나 또는 갈륨 아세틸아세토네이트 및 인듐 질화물의 혼합물인 경우인 경우에는 인듐:갈륨이 1 : 0.1 내지 1 : 0.7의 몰비로 혼합되는 것이 바람직하다. 더욱 바람직하게는 인듐:갈륨이 1 : 0.2 내지 1 : 0.5의 몰비로 혼합되는 것이 좋다.
나아가, 상기 금속 C가 갈륨일 때, 구체적으로 아연 아세틸아세토네이트 및 인듐 질화물의 혼합물 또는 갈륨 아세틸아세토네이트 및 인듐 질화물의 혼합물에 갈륨 아세틸아세토네이트, 갈륨 질화물이 더 포함되는 경우에는 아연: 인듐: 갈륨이 1 : 1 - 3 : 0.1 - 2의 몰비로 혼합되는 것이 바람직하다.
상기 제시된 혼합비율로 제조된 무기 반도체 잉크 조성물을 이용하면 전하이동도 및 점멸비(on/off ratio)가 우수한 무기 박막 트랜지스터를 제조할 수 있다
또한, 상기 단계 a의 반도체 잉크 조성물은 용매를 더 포함하고, 산화재료, 연료재료 및 용매의 혼합물의 농도는 0.05 M 내지 0.25 M인 것이 바람직하다.
상기 단계 a에서 반도체 잉크 조성물의 농도는 용매에 대한 전구체 물질의 몰농도를 나타낸다. 종래의 반도체 잉크 조성물이 약 0.30 M 내지 0.50 M의 농도인 것에 비해, 상기 단계 a의 반도체 잉크 조성물은 약 0.1 M의 농도로서 약 3 배 내지 5 배 정도 묽은 농도를 가지므로 원료비용이 절감될 수 있는 효과가 있다.
상기 용매는 이소프로필알코올, 클로로벤젠, N-메틸 피롤리돈, 에탄올 아민, 에탄올, 메탄올, 2-메톡시에탄올 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 1종인 것이 바람직하나 이에 제한되는 것은 아니다.
또한, 상기 단계 a의 도포는 잉크젯 프린팅(Ink-jet printing), 롤 프린팅(Roll printing), 그라비아 프린팅(Gravure printing), 에어로졸 프린팅(Aaerosol printing), 스크린 프린팅(Screen printing), 롤 코팅(Roll coating), 스핀 코팅(Spin coating), 바 코팅(Bar coating), 스프레이 코팅(Spray coating) 및 딥 코팅(Dip coating) 등의 방법으로 수행될 수 있으나, 이에 제한되지 않으며, 구체적인 일례로써 스핀 코팅을 이용하는 것이 바람직하나 이에 제한되는 것은 아니다.
한편, 상기 단계 b는 상기 단계 a에서 게이트 절연막 상부로 코팅된 박막을 열처리하여 반도체 박막을 제조하고, 제조된 반도체 박막 내부에 산화인듐아연 나노구조가 균질하게 형성되어 우수한 전하 이동도 등의 전기적 특성을 나타낸다. 또한, 두 금속 전구체 용액이 혼합되어 발생하는 자발적인 연소반응에 의하여 조밀하고 균일한 박막을 제조할 수 있고, 이에 따라 신뢰도가 향상될 수 있다는 장점이 있다.
상기 단계 b에서 발생하는 연소 반응의 대표적 화학 반응식은 하기와 같다.
5 Zn(C5H7O2)2·xH2O + 16 In(NO3)3·xH2O
→ 5 ZnO 8 In2O3 (s) + 24 N2 (g) + 5 CO2 (g) + x H2O (g)
상기 화학 반응식과 같이 산화재료와 연료재료의 화학 반응에 의해 이산화탄소와 물이 형성되는 연소반응이 진행되며 이에 수반하여 열이 발생한다.
상기 자발적인 연소반응은 본 발명에 따른 무기 반도체 잉크 조성물로부터 반도체 박막을 형성하는 중요한 특징인 바, 산화 특성이 있는 금속 전구체 (산화재료)와 연소 특성이 있는 금속 전구체 (연소재료)의 연소반응을 통해 발생하는 내부 발열이 전구체로부터 산화물로의 전환에 필요한 에너지로 이용될 수 있다. 이에 따라 산화물 형성을 위해 가해지는 외부 에너지, 즉 열처리에 필요한 온도를 상당 부분 낮출 수 있다. 따라서 산화물 반도체의 용액 공정에 있어 큰 단점으로 여겨지는 높은 공정 온도를 감소시킬 수 있다.
또한, 상기 단계 b의 열처리는 200 ℃ 내지 350 ℃에서 수행되는 것이 바람직하나 이에 제한되는 것은 아니다.
산화재료와 연료재료가 혼합됨에 따라 자발적인 연소반응이 일어나고 그에 따른 발열반응에 의해 산화물 형성 온도가 낮아진다. 따라서 산화물이 용이하게 형성되므로, 상기 반도체 박막을 포함하는 트랜지스터의 전기적 특성이 크게 향상될 수 있어 유용하다는 장점이 있다.
이와 같이, 자발적 연소 반응이 발생하는 인듐아연 산화물계 반도체 잉크 조성물을 사용하여 박막 트랜지스터의 산화물 반도체를 형성하기 때문에 더욱 전기적 성능이 우수한 박막 트랜지스터를 제조할 수 있다.
다음으로, 본 발명에 따른 박막 트랜지스터의 제조방법에 있어서, 단계 5는 상기 단계 4에서 형성된 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극을 형성하는 단계이다.
구체적으로, 소스와 드레인 전극은 서로 이격되도록 위치하고 상기 단계 4에서 형성된 반도체 박막 상부의 양쪽에 각각 접하도록 형성될 수 있다.
상기 단계 4의 소스와 드레인 전극은 금속 또는 금속 산화물과 같은 전도성 물질로 형성될 수 있다. 일례로, 소스와 드레인 전극은 금속 또는 금속 산화물과 같은 전도성 물질로 형성될 수 있다. 일례로, 소스와 드레인 전극은 백금(Pt), 루테늄(Ru), 금(Au), 은(Ag), 몰리브덴(Mo), 알루미늄(Al), 텅스텐(W), 구리(Cu) 등과 같은 금속 또는 ITO(indium tin oxide), FTO(fluorine doped tin oxide), IZO(InZnO), AZO(AlZnO), GZO(GaZnO), AGZnO(AlGaZnO) 및 IGZnO(InGaZnO) 등과 같은 전도성 산화물로 형성될 수 있으나, 이에 제한되지 않는다.
또한, 상기 단계 4에서 소스 전극 및 드레인 전극의 형성방법은 공지의 기술이 제한 없이 적용될 수 있다. 예를 들면, 소스와 드레인 전극은 반도체 박막이 형성된 기판 상에 금속 또는 전도성 산화물을 증착한 후 이를 패터닝함으로써 형성될 수 있다.
나아가, 본 발명은 상기 박막 트랜지스터를 포함하는 전자 디바이스를 제공한다. 본 발명의 박막 트랜지스터를 적용할 수 있는 전자 디바이스로는 액정디스플레이, 평면디스플레이, 레이저프린터 헤드 및 스캐너 등을 들 수 있다.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시예 및 실험예에 의해 한정되는 것은 아니다.
<실시예 1> 박막 트랜지스터의 제조 1
단계 1: 게이트 전극으로 ITO(Indium thin oxide)가 코팅된 유리 기판을 준비하였다.
단계 2: 상기 단계 1에서 형성된 게이트 전극인 ITO 상부에 폴리실라잔 용액(유피케미칼)을 스핀 코팅법으로 도포하고 용매를 증발시키기 위하여 150 ℃ 온도의 핫 플레이트 위에서 건조시켜 막을 형성하였다.
단계 3: 상기 단계 2에서 형성된 막을 전기로에서 수분을 공급하며 1 시간 동안 200 ℃의 온도로 가열하여 게이트 절연막을 형성하였다.
단계 4: 상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 조성물을 스핀 코팅한 후, 핫 플레이트에서 150 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조하였다.
이때, 상기 반도체 조성물은 0.1 M의 산화아연 반도체 조성물을 사용하였다.
단계 5: 상기 단계 4에서 제조된 반도체 박막 상부에 증발 증착기(Evaporator)를 이용하여 폭(Width)/길이(Length)가 3000 μm / 50 μm 크기의 소스와 드레인 전극을 120 nm 두께로 증착하여 박막 트랜지스터를 제조하였다.
<실시예 2> 박막 트랜지스터의 제조 2
상기 실시예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 3> 박막 트랜지스터의 제조 3
상기 실시예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 4> 박막 트랜지스터의 제조 4
상기 실시예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 5> 박막 트랜지스터의 제조 5
상기 실시예 1의 단계 3에서 250 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 6> 박막 트랜지스터의 제조 6
상기 실시예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 7> 박막 트랜지스터의 제조 7
상기 실시예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 8> 박막 트랜지스터의 제조 8
상기 실시예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 9> 박막 트랜지스터의 제조 9
상기 실시예 1의 단계 3에서 300 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 10> 박막 트랜지스터의 제조 10
상기 실시예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 11> 박막 트랜지스터의 제조 11
상기 실시예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 12> 박막 트랜지스터의 제조 12
상기 실시예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 13> 박막 트랜지스터의 제조 13
상기 실시예 1의 단계 3에서 350 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 14> 박막 트랜지스터의 제조 14
상기 실시예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 13과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 15> 박막 트랜지스터의 제조 15
상기 실시예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 13과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실시예 16> 박막 트랜지스터의 제조 16
상기 실시예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 실시예 13과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 1>
단계 1: 게이트 전극으로 ITO(Indium thin oxide)가 코팅된 실리콘 기판을 준비하였다.
단계 2: 상기 단계 1에서 형성된 게이트 전극인 ITO 상부에 300 nm 두께의 이산화 실리콘 층으로 게이트 절연막을 형성하였다.
단계 3: 상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 조성물을 스핀 코팅한 후, 핫 플레이트에서 150 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조하였다.
이때, 상기 반도체 조성물은 0.1 M의 산화아연 반도체 조성물을 사용하였다.
단계 4: 상기 단계 3에서 제조된 반도체 박막 상부에 증발 증착기(Evaporator)를 이용하여 폭(Width)/길이(Length)가 3000 μm / 50 μm 크기의 소스와 드레인 전극을 120 nm 두께로 증착하여 박막 트랜지스터를 제조하였다.
<비교예 2>
상기 비교예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 3>
상기 비교예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 4>
상기 비교예 1의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 5>
상기 실시예 1의 단계 3에서 150 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 6>
상기 비교예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 7>
상기 비교예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 8>
상기 비교예 5의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 5와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 9>
상기 실시예 1의 단계 3에서 400 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 10>
상기 비교예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 11>
상기 비교예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 12>
상기 비교예 9의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 9와 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 13>
상기 실시예 1의 단계 3에서 500 ℃의 온도로 가열하여 게이트 절연막을 형성한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 14>
상기 비교예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 1 몰비로 혼합된 인듐아연 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 13과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 15>
상기 비교예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연갈륨 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 13과 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<비교예 16>
상기 비교예 13의 단계 4에서 반도체 조성물로, 자발적 연소반응이 발생하는 0.2 M의 1 : 0.8 : 0.2 몰비로 혼합된 인듐아연지르코늄 반도체 조성물을 사용하고, 300 ℃의 온도로 1 시간 동안 열처리하여 반도체 박막을 제조한 것을 제외하고 상기 비교예 13 동일하게 수행하여 박막 트랜지스터를 제조하였다.
<실험예 1> 박막 트랜지스터의 성능 평가
본 발명에 따른 박막 트랜지스터의 성능을 확인하기 위하여, 상기 실시예 1 내지 12 및 비교예 1 내지 12에서 제조된 박막 트랜지스터에서 게이트 절연막의 유전 상수 및 누설전류를 측정하였고, 박막 트랜지스터의 전하 이동도 및 점멸비(on/off ratio)를 측정하였으며, 그 결과를 하기 표 1에 나타내었다.
구분 공정 조건 유전상수(1 kHz) 누설전류(1 MV/cm2) 전하이동도(cm2/V.s) 점멸비
폴리실리잔열처리 온도(℃) 반도체 종류 반도체열처리온도(℃)
비교예 5 150 ZnO 150 3.0 N/A N/A N/A
비교예 6 IZO 300 N/A N/A
비교예 7 IGZO 300 N/A N/A
비교예 8 IZrZO 300 N/A N/A
실시예 1 200 ZnO 150 7.2 0.184 nA/cm 54.2 ~105
실시예 2 IZO 300 71.6 ~106
실시예 3 IGZO 300 36.1 ~106
실시예 4 IZrZO 300 19.2 ~107
실시예 5 250 ZnO 150 8.3 0.186 nA/cm 72.1 ~106
실시예 6 IZO 300 82.6 ~106
실시예 7 IGZO 300 68.4 ~106
실시예 8 IZrZO 300 53.2 ~107
실시예 9 300 ZnO 150 6.6 0.132 nA/cm 18.2 ~105
실시예 10 IZO 300 64.8 ~106
실시예 11 IGZO 300 42.7 ~106
실시예 12 IZrZO 300 17.3 ~107
실시예 13 350 ZnO 150 6.0 0.096 nA/cm 10.4 ~105
실시예 14 IZO 300 34.2 ~106
실시예 15 IGZO 300 12.8 ~106
실시예 16 IZrZO 300 7.7 ~107
비교예 9 400 ZnO 150 4.5 0.042 nA/cm 3.6 ~106
비교예 10 IZO 300 5.2 ~106
비교예 11 IGZO 300 2.1 ~105
비교예 12 IZrZO 300 1.1 ~105
비교예 13 500 ZnO 150 3.8 0.013 nA/cm 0.18 ~106
비교예 14 IZO 300 2.7 ~106
비교예 15 IGZO 300 0.8 ~105
비교예 16 IZrZO 300 0.05 ~105
비교예 1 상용화된이산화 규소 ZnO 150 3.9 0.005 nA/cm 0.2 ~106
비교예 2 IZO 300 4.9 ~106
비교예 3 IGZO 300 1.1 ~105
비교예 4 IZrZO 300 0.02 ~105
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 폴리실라잔 화합물을 포함하는 유전체 조성물을 사용하고, 열처리 온도 200 ℃ 내지 350 ℃로 제조된 게이트 절연막(실시예 1 내지 12)은 6.0 내지 8.3의 높은 유전 상수를 나타내는 것을 확인할 수 있었다.
반면, 종래의 이산화 실리콘 층을 게이트 절연막으로 사용하는 경우(비교예 1 내지 3)에는 3.9의 낮은 유전 상수를 나타내며, 본 발명에 따른 범위를 벗어나는 온도에서 가열하여 게이트 절연막을 형성한 경우인 비교예 4 내지 12의 경우에는 유전 상수가 3.0 ~ 4.5로 비교적 낮은 값을 나타내는 것을 확인할 수 있었다.
또한, 본 발명에 따른 폴리실라잔 화합물을 포함하는 유전체 조성물을 사용하고, 열처리 온도 200 ℃ 내지 350 ℃로 제조된 게이트 절연막을 포함하는 박막 트랜지스터인 실시예 1 내지 12는 10.4 cm2/Vㆍs 내지 82.6 cm2/Vㆍs의 우수한 전하이동도와 약 105 내지 106의 점멸비를 나타내는 것을 확인할 수 있었다.
반면, 게이트 절연막으로 이산화 실리콘층이 형성된 박막 트랜지스터인 비교예 1 내지 3의 경우에는 0.2 cm2/Vㆍs 내지 4.9 cm2/Vㆍs의 매우 낮은 전하이동도를 나타내는 것을 확인하였다. 또한, 본 발명에 따른 범위를 벗어나는 온도에서 가열하여 게이트 절연막이 형성된 박막 트랜지스터인 비교예 4 내지 12의 경우에는 0.18 cm2/Vㆍs 내지 5.2 cm2/Vㆍs의 비교적 낮은 전하이동도를 나타내는 것을 확인하였다.
특히, 본 발명에 따른 폴리실라잔 화합물을 포함하는 유전체 조성물을 사용하고, 열처리 온도 250 ℃로 제조된 게이트 절연막을 포함하는 박막 트랜지스터의 경우에 가장 우수한 전하이동도와 유전상수를 나타내는 것을 확인할 수 있었다.
나아가, 본 발명에 따른 유전체 조성물을 사용하여 제조된 게이트 절연막과 더불어 자발적 연소 반응이 가능한 반도체 잉크 조성물을 사용하여 제조된 반도체 박막을 포함하는 경우에는 더욱 우수한 전하이동도를 나타내어 더욱 우수한 성능의 박막 트랜지스터를 제조할 수 있음을 확인하였다.
<부호의 설명>
10: 박막 트랜지스터
1: 기판
2: 게이트 전극
3: 게이트 절연막
4: 반도체 막
5: 소스 전극
6: 드레인 전극

Claims (13)

  1. 하기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 박막 트랜지스터용 유전체 조성물:
    <화학식 1>
    Figure PCTKR2015008887-appb-I000012
    (상기 화학식 1에서,
    R1 및 R2는 각각 독립적으로 수소, 하이드록시기, 아미노기, 실릴기, 직쇄 또는 측쇄의 C1-9 알킬 또는 C5-12 알릴이고,
    R3는 수소, 하이드록시기, 직쇄 또는 측쇄 C1-9 알킬 또는 C5-12 알릴이고,
    n은 10 내지 1,000,000이다).
  2. 제1항에 있어서,
    상기 유전체 조성물은 용매를 더 포함하고, 폴리실라잔(Polysilazane) 화합물 및 용매의 혼합물의 농도는 5 중량% 내지 30 중량%인 것을 특징으로 하는 유전체 조성물.
  3. 제1항의 유전체 조성물을 기판 상부로 도포하여 막을 제조하는 단계(단계 1); 및
    상기 단계 1에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하는 단계(단계 2);를 포함하는 박막 트랜지스터 게이트 절연막의 제조방법.
  4. 제3항에 있어서,
    상기 단계 1의 도포는 잉크젯 프린팅(Ink-jet printing), 롤 프린팅(Roll printing), 그라비아 프린팅(Gravure printing), 에어로졸 프린팅(Aaerosol printing), 스크린 프린팅(Screen printing), 롤 코팅(Roll coating), 스핀 코팅(Spin coating), 바 코팅(Bar coating), 스프레이 코팅(Spray coating) 및 딥 코팅(Dip coating)으로 이루어지는 군으로부터 선택되는 1 종의 방법으로 수행되는 것을 특징으로 하는 박막 트랜지스터 게이트 절연막의 제조방법.
  5. 제3항의 제조방법으로 제조된 박막 트랜지스터 게이트 절연막.
  6. 기판 상부에 게이트 전극, 제5항의 게이트 절연막 및 반도체 박막이 순차적으로 적층되고, 상기 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극이 적층되되, 상기 소스와 드레인 전극은 일정 간격으로 이격되어 있는 것을 특징으로 하는 박막 트랜지스터.
  7. 기판 상부에 게이트 전극을 형성하는 단계(단계 1);
    상기 단계 1에서 형성된 게이트 전극 상부에 상기 화학식 1을 포함하는 폴리실라잔(Polysilazane) 화합물을 포함하는 유전체 조성물을 도포하여 막을 제조하는 단계(단계 2);
    상기 단계 2에서 제조된 막을 200 ℃ 내지 350 ℃의 온도로 가열하여 게이트 절연막을 형성하는 단계(단계 3);
    상기 단계 3에서 형성된 게이트 절연막 상부에 반도체 박막을 형성하는 단계(단계 4); 및
    상기 단계 4에서 형성된 반도체 박막 상부에 소스(Source)와 드레인(Drain) 전극을 형성하는 단계(단계 5);를 포함하는 박막 트랜지스터의 제조방법.
  8. 제7항에 있어서,
    상기 단계 4의 반도체 박막을 형성하는 단계는,
    산화재료인 금속 A의 질화물(nitrate)과 연료재료인 금속 B의 하기 화학식 2로 표현되는 착화물을 포함하고, 상기 금속 A 및 금속 B는 각각 인듐, 갈륨, 아연, 티타늄, 알루미늄, 리튬 및 지르코늄으로 이루어진 군으로부터 선택되는 1 종의 금속이며, 금속 A와 금속 B는 서로 상이한 것을 특징으로 하는 반도체 잉크 조성물을 게이트 절연막 상부로 도포하여 막을 제조하는 단계(단계 a); 및
    상기 단계 a에서 제조된 막을 열처리하는 단계(단계 b);를 포함하는 것을 특징으로 하는 박막 트랜지스터의 제조방법:
    <화학식 2>
    Figure PCTKR2015008887-appb-I000013
    (상기 화학식 2에서,
    R1, R2 및 R3는 각각 독립적으로 수소 또는 C1-2 알킬이고, 여기서 C1-2 알킬은 하나 이상의 F로 치환될 수 있다).
  9. 제8항에 있어서,
    상기 단계 a의 반도체 잉크 조성물은
    산화재료로서 금속 C의 질화물(nitrate)과 연료재료로서 금속 C의 상기 화학식 2로 표현되는 착화물로부터 선택되는 1 종 이상을 더 포함하고,
    상기 금속 C는 인듐, 갈륨, 아연, 티타늄, 알루미늄, 리튬 및 지르코늄으로 이루어진 군으로부터 선택되는 1 종의 금속이며, 금속 C는 상기 금속 A 및 금속 B와 서로 상이한 것을 특징으로 하는 박막 트랜지스터의 제조방법.
  10. 제8항에 있어서,
    상기 단계 a의 금속 A 및 금속 B가 아연 또는 인듐일 때, 아연 : 인듐이 1 : 0.7 내지 1 : 10의 몰비인 것을 특징으로 하는 박막 트랜지스터의 제조방법.
  11. 제8항에 있어서,
    상기 단계 a의 반도체 잉크 조성물은 용매를 더 포함하고, 산화재료, 연료재료 및 용매의 혼합물의 농도는 0.05 M 내지 0.25 M인 것을 특징으로 하는 박막 트랜지스터의 제조방법.
  12. 제8항에 있어서,
    상기 단계 b의 열처리는 200 ℃ 내지 350 ℃에서 수행되는 것을 특징으로 하는 박막 트랜지스터의 제조방법.
  13. 제6항의 박막 트랜지스터를 포함하는 전자 디바이스.
PCT/KR2015/008887 2014-08-25 2015-08-25 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터 WO2016032212A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0110664 2014-08-25
KR20140110664 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016032212A1 true WO2016032212A1 (ko) 2016-03-03

Family

ID=55400038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008887 WO2016032212A1 (ko) 2014-08-25 2015-08-25 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터

Country Status (2)

Country Link
KR (1) KR101715083B1 (ko)
WO (1) WO2016032212A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992480B1 (ko) * 2016-11-07 2019-06-24 인하대학교 산학협력단 저온 용액공정을 이용한 산화물 반도체의 제조방법 및 산화물 반도체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064234A (ko) * 2005-12-15 2007-06-20 가부시끼가이샤 도시바 절연막의 제조 방법, 트랜지스터의 제조 방법 및 전자디바이스의 제조 방법
KR20070113893A (ko) * 2006-05-26 2007-11-29 삼성전자주식회사 유기 절연막 조성물 및 이를 이용하는 이중 두께를 갖는유기 절연막의 제조방법
KR20080007192A (ko) * 2006-07-14 2008-01-17 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 박막 트랜지스터를 위한 유전체 또는 평탄화 층으로서 낮은온도 졸-젤 실리케이트
JP2009302352A (ja) * 2008-06-13 2009-12-24 Brother Ind Ltd 酸化物薄膜トランジスタ、及びその製造方法
KR20140078543A (ko) * 2012-12-14 2014-06-25 한국화학연구원 자발적 연소 반응이 발생하는 인듐아연 산화물계 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191745B2 (ja) * 1997-04-23 2001-07-23 日本電気株式会社 薄膜トランジスタ素子及びその製造方法
JP5781323B2 (ja) * 2011-02-18 2015-09-16 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 絶縁膜の形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070064234A (ko) * 2005-12-15 2007-06-20 가부시끼가이샤 도시바 절연막의 제조 방법, 트랜지스터의 제조 방법 및 전자디바이스의 제조 방법
KR20070113893A (ko) * 2006-05-26 2007-11-29 삼성전자주식회사 유기 절연막 조성물 및 이를 이용하는 이중 두께를 갖는유기 절연막의 제조방법
KR20080007192A (ko) * 2006-07-14 2008-01-17 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 박막 트랜지스터를 위한 유전체 또는 평탄화 층으로서 낮은온도 졸-젤 실리케이트
JP2009302352A (ja) * 2008-06-13 2009-12-24 Brother Ind Ltd 酸化物薄膜トランジスタ、及びその製造方法
KR20140078543A (ko) * 2012-12-14 2014-06-25 한국화학연구원 자발적 연소 반응이 발생하는 인듐아연 산화물계 반도체 잉크 조성물 및 이를 통해 제조되는 무기 반도체 박막

Also Published As

Publication number Publication date
KR20160028366A (ko) 2016-03-11
KR101715083B1 (ko) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2017074103A1 (en) Electro-luminescence display apparatus
WO2020022751A1 (ko) 유기 전계 발광 소자
WO2013032304A2 (ko) 유기전자소자 및 그 제조방법
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2010147318A2 (ko) 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2018124459A1 (ko) 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
WO2017030424A1 (ko) 신규한 화합물 및 이를 포함하는 발광소자
WO2019083338A1 (ko) 산화물 반도체 박막 트랜지스터 및 그 제조방법
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2020145568A1 (ko) 태양전지 제조 방법
WO2022114501A1 (ko) 페로브스카이트 태양 전지 모듈 및 이의 제조 방법
WO2014133285A1 (ko) 전도성 박막, 이의 제조 방법 및 이를 포함한 전자 소자
WO2016032212A1 (ko) 폴리실라잔 화합물을 포함하는 박막 트랜지스터 게이트 절연막 및 이를 포함하는 박막 트랜지스터
WO2019164383A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021075873A1 (ko) 음극 전극, 전해 증착을 이용한 그 제조 방법, 및 그 제조 장치
WO2017213379A1 (ko) 유기트랜지스터 및 가스센서
WO2023096425A1 (ko) 산화물 반도체, 이의 제조방법 및 이를 포함하는 반도체 소자
WO2015178581A1 (ko) 신규한 화합물 및 이를 포함하는 발광소자
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021210907A1 (ko) 반도체층 및 그 제조방법, 그리고 이를 포함하는 트랜지스터
WO2013032303A2 (ko) 유기전자소자
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2019203481A1 (ko) 형광체 단분자 화합물, 이를 이용한 유기 트랜지스터 및 이를 이용한 물 분해 수소 생산 광 촉매 시스템
WO2020050549A1 (ko) 전기장을 이용한 전류 경로 범위 제어 방법 및 전자 회로
WO2021215854A1 (ko) 전자 소자 및 전자 소자 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835056

Country of ref document: EP

Kind code of ref document: A1