WO2016032001A1 - MnZn系フェライトおよびその製造方法 - Google Patents

MnZn系フェライトおよびその製造方法 Download PDF

Info

Publication number
WO2016032001A1
WO2016032001A1 PCT/JP2015/074622 JP2015074622W WO2016032001A1 WO 2016032001 A1 WO2016032001 A1 WO 2016032001A1 JP 2015074622 W JP2015074622 W JP 2015074622W WO 2016032001 A1 WO2016032001 A1 WO 2016032001A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
terms
mnzn
core loss
Prior art date
Application number
PCT/JP2015/074622
Other languages
English (en)
French (fr)
Inventor
多田 智之
康晴 三吉
小湯原 徳和
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020177006579A priority Critical patent/KR102094797B1/ko
Priority to EP15835796.2A priority patent/EP3187475B1/en
Priority to JP2016545661A priority patent/JP6451742B2/ja
Priority to US15/507,108 priority patent/US10304602B2/en
Priority to CN201580046549.7A priority patent/CN106660883B/zh
Publication of WO2016032001A1 publication Critical patent/WO2016032001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air

Definitions

  • the present invention relates to a MnZn-based ferrite used for electronic parts such as transformers, inductors, reactors, choke coils, and the like used in various power supply apparatuses and a method for manufacturing the same.
  • Electric vehicles such as EVs (Electric Vehicles) and PHEVs (Plug-in Hybrid Electric Vehicles), which are rapidly spreading in recent years, are equipped with devices such as high-power electric motors and chargers. They use electronic components that can withstand high voltages and large currents.
  • the electronic component is basically composed of a coil and a magnetic core, and the magnetic core is made of a magnetic material such as MnZn ferrite.
  • MnZn-based ferrites that are designed to have a minimum core loss (also called power loss) of 100 ° C. or less are used.
  • a minimum core loss also called power loss
  • Pcv minimum temperature of the core loss Pcv at a high temperature exceeding 100 ° C.
  • low core loss is also required over a wide temperature range.
  • the core loss Pcv of ferrite consists of hysteresis loss Ph, eddy current loss Pe, and residual loss Pr.
  • the hysteresis loss Ph increases in proportion to the frequency due to the DC hysteresis
  • the eddy current loss Pe increases in proportion to the square of the frequency due to the electromotive force generated by the eddy current generated by the electromagnetic induction action.
  • the residual loss Pr is a remaining loss caused by domain wall resonance or the like, and becomes apparent at a frequency of 500 kHz or more. That is, the hysteresis loss Ph, the eddy current loss Pe, and the residual loss Pr vary depending on the frequency, and the ratio of the total core loss varies depending on the frequency band.
  • the magnetic core loss of MnZn-based ferrite has temperature dependence, and the hysteresis loss is small at a temperature where the magnetocrystalline anisotropy constant K1 is 0, and has a minimum value with respect to the temperature. Further, since the initial permeability ⁇ i becomes maximum at that temperature, it is also called a secondary peak of the initial permeability ⁇ i. Since the core loss has a minimum value with respect to temperature, the temperature at which the core loss is minimized is usually adjusted by the magnetocrystalline anisotropy constant K1 in anticipation of heat generation due to the core loss, and the temperature is exposed to the electronic component. The temperature is set slightly higher than the ambient temperature to prevent the ferrite from losing its magnetism due to thermal runaway.
  • the temperature at which the magnetic core loss is minimized is mainly a metal exhibiting a positive magnetocrystalline anisotropy constant K1 among the metal ions constituting the spinel in the MnZn-based ferrite.
  • the amount of ions and the amount of metal ions exhibiting a negative magnetocrystalline anisotropy constant K1 can be appropriately adjusted and varied depending on the sum.
  • Metal ions constituting spinel include Fe 2+ and Co 2+ as metal ions exhibiting positive K1, and Fe 3+ , Mn 2+ , Ni 2+ and the like as metal ions exhibiting negative K1.
  • Patent Document 1 includes Fe 2 O 3 : 52.0 to 55.0 mol%, MnO: 32.0 to 44.0 mol%, ZnO: 4.0 to 14.0 mol% as main components, An MnZn-based ferrite having CaO: 200 to 1000 ppm, SiO 2 : 50 to 200 ppm, Bi 2 O 3 : 500 ppm or less, Ta 2 O 5 : 200 to 800 ppm, CoO: 4000 ppm or less is disclosed.
  • Bi 2 O 3 is added to obtain a MnZn-based ferrite having a low magnetic core loss in a wider temperature range.
  • Patent Literature 2 and Patent Literature 3 disclose controlling the atmospheric oxygen concentration during firing. Firing is basically performed by a temperature raising process, a high temperature holding process, and a temperature lowering process. In Patent Document 2 and Patent Document 3, the atmospheric oxygen concentration in the high temperature holding process and the temperature lowering process is strictly controlled.
  • Patent Document 1 does not describe the temporal change in magnetic characteristics.
  • the atmospheric oxygen concentration It has been found that attempts to suppress changes over time in magnetic properties by control may increase the core loss. Therefore, an object of the present invention is to provide a MnZn-based ferrite having a low magnetic core loss, further suppressing a change in magnetic characteristics with time under a high temperature environment, and suppressing an increase in magnetic core loss, and a method for manufacturing the same.
  • the first invention includes Fe, Mn, and Zn as main components, Si, Ca, Co, and Bi as subcomponents, at least one of Ta or Nb, and at least one of Ti or Sn.
  • Is composed of Fe 2 O 3 , ZnO, and MnO the total amount is 100 mol%
  • Fe is 53.25 mol% to 54.00 mol% in terms of Fe 2 O 3
  • Zn is in terms of ZnO 2.50 mol% or more and 8.50 mol% or less
  • Mn as the balance in terms of MnO, Si in excess of 0.001 mass% in terms of SiO 2 and less than 0.02 mass%
  • Ca in the form of CaCO 3 .
  • Co is less than 0.5 mass% in terms of Co 3 O 4 (0 is not included)
  • Bi is less than 0.05 mass% in terms of Bi 2 O 3 (0 is included) not
  • (including 0) in terms of TiO 2 less than 0.3 wt% of Ti Sn in the terms of SnO 2
  • the total amount of Ta 2 O 5 and Nb 2 O 5 that satisfy less than 0.3% by mass (including 0) is less than 0.05% by mass (not including 0), and the converted TiO 2 And SnO 2 is less than 0.3% by mass (excluding 0), and the core loss (Pcv130A) at 130 ° C.
  • the MnZn-based ferrite is characterized in that the change rate Ps of the core loss represented by the following formula is 5% or less using the core loss (Pcv130B) at 130 ° C. after being held at 96 ° C. for 96 hours.
  • Ps (%) [(Pcv130B ⁇ Pcv130A) / Pcv130A] ⁇ 100
  • Si is 0.003 to 0.015 mass% in terms of SiO 2
  • Ca is 0.06 to 0.3 mass% in terms of CaCO 3
  • Co is Co 3 O 4.
  • Bi in the range of 0.0075 mass% or more and 0.04 mass% or less in terms of Bi 2 O 3 and containing Ta or Nb alone
  • Ta is Ta 2 O 5 0.04 mass% or more 0.015% by mass in terms of less
  • the core loss between 100 ° C. and 150 ° C. is preferably 500 kW / m 3 or less, and the minimum temperature of the core loss is preferably between 110 ° C. and 150 ° C.
  • the magnetic core loss (Pcv130B) at 130 ° C. after being held at 200 ° C. for 96 hours is preferably 400 kW / m 3 or less.
  • the second invention is a method for producing an MnZn-based ferrite, and includes a firing step of firing the compact by molding the main component and subcomponent oxide powders defined in the first invention into a compact.
  • the firing step includes a temperature raising step, a high temperature holding step, and a temperature lowering step, wherein the temperature in the high temperature holding step is between 1250 ° C. and 1400 ° C., and the oxygen concentration in the atmosphere in the high temperature holding step is set to 0.00% by volume.
  • the MnZn-based ferrite manufacturing method is characterized in that the oxygen concentration at 1200 ° C. is 0.5% or less and the oxygen concentration at 1100 ° C. is 0.1% or less in the temperature lowering step.
  • a MnZn-based ferrite having a low magnetic core loss and capable of suppressing an increase in magnetic core loss by suppressing a change with time in magnetic characteristics under a high temperature environment and a method for manufacturing the same.
  • the MnZn-based ferrite according to an embodiment of the present invention a magnetic core using the same, and a manufacturing method thereof will be described in detail.
  • the present invention is not limited to this, and can be appropriately changed within the scope of the technical idea.
  • composition of MnZn ferrite In order to reduce the magnetic core loss Pcv at a desired temperature, the composition is optimized so that the metal ion exhibiting the positive magnetocrystalline anisotropy constant K1 and the metal ion exhibiting the negative magnetocrystalline anisotropy constant K1 that constitute the spinel. It is necessary to adjust the amount of the above as appropriate. However, the degree of freedom in selecting the composition is small because of limitations due to required magnetic characteristics other than the core loss Pcv, such as the saturation magnetic flux density Bs, the Curie temperature Tc, and the initial permeability ⁇ i.
  • Fe 2 O 3 is 53.25 mol% or more and 54.00 mol% or less as a main component so that the minimum temperature of magnetic core loss is between 110 ° C. and 150 ° C.
  • ZnO was selected from the range of 2.50 mol% to 8.50 mol%, with the balance being MnO.
  • the main component mainly refers to the elements and compounds constituting spinel ferrite, while the subcomponent refers to the elements and compounds that are used auxiliary to the formation of the spinel ferrite. Containing elements.
  • the constituents of spinel ferrite, such as Co have a smaller content than the main component and are used as subcomponents.
  • the MnZn-based ferrite of the present invention contains Fe, Mn, and Zn as main components, Si, Ca, Co, and Bi as subcomponents, at least one of Ta or Nb, and at least one of Ti or Sn.
  • Si and Ca are in a predetermined range, a ferrite sintered body (for example, a magnetic core) formed by firing MnZn-based ferrite, high-resistance Si and Ca are present in the crystal grain boundaries, By insulating the crystal grains, the volume resistivity ⁇ is increased and the relative loss coefficient tan ⁇ / ⁇ i is reduced.
  • a ferrite sintered body for example, a magnetic core
  • SiO 2 and Si including less than 0.04 mass percent 0.4 wt% of Ca in terms of CaCO 3.
  • it is 0.003 to 0.015 mass% Si in terms of SiO 2 and 0.06 to 0.3 mass% Ca in terms of CaCO 3 . More preferably, Ca is more than 0.06 mass% and 0.3 mass% or less in terms of CaCO 3 .
  • Si is segregated exclusively at the crystal grain boundary and its triple point, but Ca is dissolved in the spinel phase in the course of the firing process, and a part of the Ca may be dissolved and remain in the crystal grain after firing.
  • Increasing the amount of Ca dissolved in the spinel phase increases the resistance in the crystal grains and increases the volume resistivity ⁇ , but relatively decreases the Ca at the grain boundaries.
  • appropriately adjust Ca dissolved in the spinel phase and Ca segregated at the crystal grain boundary to increase the resistance in the crystal grain and increase the resistance. It is effective to form a grain boundary. Such adjustment can be performed by controlling the firing temperature and firing atmosphere described later.
  • Co to be added is set to be less than 0.5 mass% (excluding 0) in terms of Co 3 O 4 . More preferably, it contains 0.16 mass% or more and 0.4 mass% or less of Co in terms of Co 3 O 4 . More preferably, Co is 0.16% by mass or more and less than 0.4% by mass in terms of Co 3 O 4 .
  • Bi segregates exclusively at the crystal grain boundary and its triple point, and contributes to the formation of a high-resistance crystal grain boundary. Moreover, it functions as a sintering accelerator and densifies the crystal structure. In addition, the crystal grain size increases, the hysteresis loss is reduced, and the magnetic core loss is reduced. Bi is included in an amount of less than 0.05% by mass (not including 0) in terms of Bi 2 O 3 . If it is too much, abnormal sintering is caused and the core loss is increased. Preferably it is 0.0075 mass% or more and 0.04 mass% or less Bi in terms of Bi 2 O 3 . More preferably, Bi is 0.01% by mass or more and less than 0.04% by mass in terms of Bi 2 O 3 .
  • Ta and Nb are Va group elements, and these components appear in the crystal grain boundary layer together with Si and Ca, and contribute to increasing the resistance of the grain boundary layer and thereby reducing the loss.
  • Ta and Nb may be included singly or both. If containing alone respectively Ta 2 O 5, Nb 2 O 5 in terms is less than 0.05 mass%, in the case of including both the Ta and Nb, in terms have been of Ta 2 O 5 and Nb 2 O 5
  • the total amount is preferably less than 0.05% by mass (excluding 0). More preferably, when Ta or Nb is contained alone, Ta 2 O 5 and Nb 2 O 5 are each 0.015% by mass or more and 0.04% by mass or less, and both Ta and Nb are contained.
  • the total amount of Ta 2 O 5 and Nb 2 O 5 is 0.015 mass% or more and 0.04 mass% or less.
  • Nb is contained alone, it is more preferably 0.015% by mass or more and less than 0.04% by mass in terms of Nb 2 O 5 .
  • the amount exceeds the predetermined amount, the magnetic core loss is increased, and when the amount is small, it is difficult to obtain the effect of reducing the core loss.
  • the core loss is further improved in synergy with other subcomponents including Bi, and the magnetic properties in a high temperature environment are improved. Changes over time can be suppressed.
  • Sn and Ti are tetravalent stable metal ions which can be dissolved in the crystal grains to increase the volume resistivity ⁇ and reduce the core loss Pcv.
  • Ti and Sn exist exclusively in the crystal grains, but some of them may exist in the crystal grain boundaries. When contained alone, Ti is preferably contained in an amount of less than 0.3% by mass in terms of TiO 2 and Sn is contained in an amount of less than 0.3% by mass in terms of SnO 2 .
  • the total amount of TiO 2 and SnO 2 converted is preferably less than 0.3% by mass (not including 0). More preferably, when Ti or Sn is contained alone, Ti and Sn are 0.02% by mass or more and 0.2% by mass or less in terms of TiO 2 and SnO 2 , respectively, even when both Ti and Sn are contained.
  • the total amount of TiO 2 and SnO 2 is 0.02 mass% or more and 0.2 mass% or less.
  • the raw materials constituting the MnZn-based ferrite may include sulfur S, chlorine Cl, phosphorus P, boron B, etc. as impurities.
  • these impurities are not particularly defined, but it is empirically known that reduction in magnetic core loss and improvement in magnetic permeability can be obtained by reducing them.
  • S a compound with Ca is generated and segregated as a foreign substance at the crystal grain boundary, thereby reducing the volume resistivity ⁇ and increasing the eddy current loss.
  • impurities are reduced.
  • S is 0.03% by mass or less
  • Cl is 0.01% by mass or less
  • P is 0.001% by mass or less
  • B is reduced.
  • the content is preferably 0.0001% by mass or less.
  • MnZn-based ferrite After weighing the raw materials so as to have a predetermined composition amount as MnZn-based ferrite, Fe 2 O 3 , MnO (using Mn 3 O 4 ) and ZnO as the main components are calcined and pulverized, and then the auxiliary components SiO 2 , CaCO 3 , Co 3 O 4 , Bi 2 O 3 , Ta 2 O 5 or Nb 2 O 5 and TiO 2 or SnO 2 are appropriately added and mixed, and a binder is added to granulate and mold After that, it is subjected to firing.
  • the fired MnZn-based ferrite may be referred to as a ferrite sintered body.
  • the firing step includes a high temperature holding step for holding in a predetermined temperature range, a temperature rising step before the high temperature holding step, and a temperature lowering step subsequent to the high temperature holding step, and any one of room temperature to 750 ° C. to 950 ° C.
  • the temperature raising process during the course of temperature is performed in the atmosphere, and is replaced with N 2 at any temperature between 750 ° C. and 950 ° C., and is set at any temperature between 1250 ° C. and 1400 ° C.
  • the oxygen concentration is preferably controlled in the range of 0.2% to 0.7%
  • the N 2 atmosphere is preferably set from the equilibrium oxygen partial pressure.
  • the temperature increase rate in a temperature rising process suitably according to the carbon residual state in a binder removal, and a composition.
  • it is in the range of 50 to 200 ° C./hr.
  • Ca is segregated at the grain boundary as the oxygen concentration is increased, and solid solution in the spinel phase occurs in a low oxygen partial pressure to N 2 atmosphere at a high temperature exceeding 1100 ° C. Therefore, in the present invention, it is preferable to adjust the oxygen partial pressure to segregate Ca to the grain boundary and to appropriately control the solid solution in the crystal grains to reduce the core loss.
  • the temperature reduction rate control according to the composition is adopted as the firing condition, and the cooling rate from the high temperature holding temperature to 1000 ° C. is preferably 50 to 150 ° C./hr, 1000 ° C. to 900 ° C.
  • the cooling rate is from 50 to 300 ° C./hr, and the cooling rate from 900 ° C. to 600 ° C. is from 150 to 500 ° C./hr.
  • b is large, the oxygen concentration decreases and wustite precipitates, and neither the crystal grains nor the grain boundary layer is sufficiently oxidized, resulting in a low resistance. More preferably, a is 6.4 to 11.5, b is 10,000 to 18000, the oxygen concentration in the high temperature holding step is 0.7% or less, the oxygen concentration at 1200 ° C. is 0.5% or less, and at 1100 ° C. By controlling the oxygen concentration to 0.1% or less, it is possible to further reduce the time-dependent change in magnetic characteristics under a high temperature environment.
  • the average crystal grain size of the MnZn-based ferrite is appropriately set depending on the frequency of use of the electronic component using the MnZn-based ferrite. However, if the frequency is 500 kHz or higher, the eddy current loss is reduced to 5 ⁇ m or less and the crystal grain It is preferable to subdivide the magnetic domain to reduce loss due to domain wall resonance, and if the frequency is less than 500 kHz, the coercive force Hc is reduced to more than 5 ⁇ m and not more than 30 ⁇ m to reduce hysteresis loss. Is preferred.
  • the MnZn-based ferrite was weighed so as to have compositions with different amounts of Bi 2 O 3 and TiO 2 shown in Table 1.
  • Fe 2 O 3 , MnO (using Mn 3 O 4 ), and ZnO were used as raw materials for the main components, and these were wet-mixed, dried, and calcined at 900 ° C. for 3 hours.
  • the calcined powder and SiO 2 , CaCO 3 , Co 3 O 4 , Ta 2 O 5 , Bi 2 O 3 and TiO 2 are added to the ball mill until the average pulverized particle size becomes 1.2 to 1.5 ⁇ m. Crushed and mixed.
  • Polyvinyl alcohol is added as a binder to the resulting mixture, granulated with a spray dryer, and then molded into a predetermined shape to obtain a ring-shaped molded body, which is fired to have an outer diameter ⁇ 25 mm ⁇ inner diameter ⁇ 15 mm ⁇ thickness 5 mm.
  • Magnetic core ferrite sintered body
  • FIG. 1 shows the temperature conditions for the firing step. Firing was carried out in the air in the temperature raising step from room temperature to 800 ° C., and N 2 was substituted at the temperature.
  • the oxygen concentration was set to the value shown in the column of O 2 concentration in Table 1, and the holding time was 4 hours.
  • the equilibrium oxygen partial pressure was from 1300 ° C. (high temperature holding temperature) to 900 ° C., and the cooling rate was 100 ° C./hr, and after 900 ° C., the cooling rate was 300 ° C./hr.
  • the magnetic core obtained was evaluated for magnetic core loss Pcv, saturation magnetic flux density Bs, and average crystal grain size.
  • the evaluation method is as follows.
  • Core loss Pcv For the core loss Pcv, a BH analyzer (SY-8232) manufactured by Iwasaki Tsushinki Co., Ltd. was used, and the primary side winding and the secondary side winding were wound around the magnetic core for 5 turns, respectively, with a frequency of 100 kHz and a maximum magnetic flux density of 200 mT.
  • the core loss at room temperature (23 ° C.) to 150 ° C. was measured. Furthermore, it is kept in a high-temperature bath at 200 ° C. for 96 hours and left in a high-temperature environment. After that, it is taken out from the high-temperature bath and the temperature of the magnetic core is lowered to room temperature.
  • the change rate Ps of the core loss was calculated from the core loss at 130 ° C. before and after being left in the high temperature environment by the following equation.
  • Ps (%) [(Pcv130B ⁇ Pcv130A) / Pcv130A] ⁇
  • Pcv130A is a magnetic core loss at 130 ° C. before being left in a high temperature environment
  • Pcv 130B is a magnetic core loss at 130 ° C. after being left in a high temperature environment.
  • the magnetic core is placed in a thermostat adjusted to an atmosphere of a maximum of 150 ° C. for about 10 to 15 minutes when the temperature of the magnetic core stabilizes. Substantially no change in magnetic properties including the magnetic core occurred.
  • the saturation magnetic flux density (Bs) is obtained by winding a primary side winding and a secondary side winding around a magnetic core 40 times, applying a magnetic field of 1.2 kA / m, and making a DC magnetization measurement test device (Metron Giken Co., Ltd.) SK-110 type) at 130 ° C.
  • the average grain size is determined by thermal etching (1100 ° C. ⁇ 1 hr, N 2 medium treatment) of the crystal grain boundary on the mirror polished surface of the ferrite sintered body, and photographing the surface with an optical microscope at a magnification of 400 times. It calculated by the quadrature method in a 140 ⁇ m ⁇ 105 ⁇ m rectangular region on the photograph.
  • Table 2 shows the evaluation results of the core loss Pcv, the saturation magnetic flux density Bs, and the average crystal grain size. In the mean crystal grain size, “ ⁇ ” indicates that it has not been evaluated.
  • the core losses of the MnZn ferrites of the examples shown in Nos. 9, 10, 12, and 13 are all low, the core loss at 130 ° C. before leaving the high temperature environment is 380 kW / m 3 or less, the core loss after leaving the high temperature environment ( Pcv 130B) was 400 kW / m 3 or less, the core loss between 100 ° C. and 150 ° C. was 430 kW / m 3 or less, and the minimum temperature of the core loss was between 110 ° C. and 150 ° C. Further, as shown in No. 11 and No. 12, by controlling the oxygen concentration so as to suppress the temporal change of the core loss, the increase rate of the core loss (Pcv130A) at 130 ° C.
  • FIG. 2 shows the core loss before and after leaving the MnZn-based ferrite shown in No. 8, No. 10, and No. 12 to 14 in a high temperature environment.
  • the solid line shows the core loss before leaving the high temperature environment
  • the broken line shows the core loss after leaving the high temperature environment. It can be seen that the magnetic core loss is minimal with respect to the amount of Bi 2 O 3 .
  • the MnZn-based ferrite was weighed so as to have compositions with different amounts of TiO 2 and SnO 2 shown in Table 3. Since other process conditions are the same as those in the first embodiment, description thereof is omitted.
  • the magnetic core obtained was evaluated for magnetic core loss Pcv, saturation magnetic flux density Bs, and average crystal grain size. Since the evaluation method is the same as that of Example 1, the description thereof is omitted. The results are shown in Table 4.
  • FIG. 3 shows the core loss before and after leaving the MnZn ferrites No. 5 and No. 15 to 24 in a high temperature environment.
  • solid circles indicate the core loss before leaving the high temperature environment of Nos. 5 and 15 to 19 with the TiO 2 amount varied, and the broken line similarly indicates the core loss after leaving the high temperature environment.
  • the solid line in the triangle indicates the core loss before leaving the high temperature environment of No. 20 to 24 with the SnO 2 amount changed, and the broken line similarly indicates the core loss after leaving the high temperature environment. It can be seen that the magnetic core loss is minimal with respect to the amounts of TiO 2 and SnO 2 .
  • the magnetic core loss Pcv and the saturation magnetic flux density Bs were evaluated for the obtained magnetic core. Since the evaluation method is the same as in Example 1, the description thereof is omitted. The results are shown in Table 6. The magnetic core losses of the MnZn ferrites of the examples were all low, and excellent magnetic properties were obtained.
  • the magnetic core loss Pcv and the saturation magnetic flux density Bs were evaluated for the obtained magnetic core. Since the evaluation method is the same as in Example 1, the description thereof is omitted. The results are shown in Table 8.
  • the magnetic core losses of the MnZn ferrites of the examples were all low, and excellent magnetic properties were obtained. Further, the temperature at which the magnetic core loss Pcv is minimized varies depending on the composition amount of Fe 2 O 3 , MnO, and ZnO. In the example, the minimum temperature of the magnetic core loss was between 110 ° C. and 150 ° C. The temperature was over 150 ° C. for No55.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 低磁心損失で、雰囲気酸素濃度の制御による高温環境下での磁気特性の経時変化の抑制において磁心損失の増加を抑えることが出来るMnZn系フェライトとその製造方法を提供する。 MnZn系フェライトは、Fe23換算で53.25モル%以上54.00モル%以下、ZnO換算で2.50モル%以上8.50モル%以下、及びMnO換算で残部とし、SiO2換算で0.001質量%超0.02質量%未満、CaCO3換算で0.04質量%超0.4質量%未満、Co34換算で0.5質量%未満、Bi23換算で0.05質量%未満、Ta25換算で0.05質量%未満、Nb25換算で0.05質量%未満、TiO2換算で0.3質量%未満、SnO2換算で0.3質量%未満を満たし、ただし換算されたTa25とNb25の総量は0.05質量%未満であり、換算されたTiO2とSnO2の総量は0.3質量%未満である。

Description

MnZn系フェライトおよびその製造方法
 本発明は、各種電源装置に用いられるトランス、インダクタ、リアクトル、チョークコイル等の電子部品に用いるMnZn系フェライトとその製造方法に関する。
 近年急速に普及しつつあるEV(Electric Vehicle)、PHEV(Plug-in Hybrid Electric Vehicle)等の電動輸送機器の一つである電気自動車には、大出力の電気モータや充電器等の機器が設けられており、それらには高電圧・大電流に耐える電子部品が用いられている。前記電子部品はコイルと磁心とを基本構成とし、前記磁心はMnZn系フェライトなどの磁性材料で構成される。
 このような用途では、走行時に電子部品に対して様々な機械的・電気的な負荷状態が生じ、また使用される環境温度も様々である。家庭用電子機器用途で使用される電子部品においては、例えば磁心損失(電力損失とも呼ばれる)の極小温度が100℃以下となるように組成設計されたMnZn系フェライトを用いるが、車載用途では高温環境下での使用を前提に、100℃を超える高温で磁心損失Pcvの極小温度を有するものを用いる場合が多い。また広い温度範囲で低磁心損失であることも求められる。
 一般にフェライトの磁心損失Pcvは、ヒステリシス損失Ph、渦電流損失Pe、残留損失Prからなる。ヒステリシス損失Phは直流ヒステリシスにより周波数に比例して増加し、渦電流損失Peは電磁誘導作用により生じた渦電流よって発生する起電力により周波数の二乗に比例して増加する。残留損失Prは磁壁共鳴等を要因とする残りの損失であって、500kHz以上の周波数で顕在化する。即ち、ヒステリシス損失Ph、渦電流損失Pe、残留損失Prは周波数によって変化し、また周波数帯によって、全体の磁心損失に占める割合も異なる。
 MnZn系フェライトの磁心損失は温度依存性を有し、結晶磁気異方性定数K1が0となる温度でヒステリシス損失が小さく、温度に対して極小値を持つ。またその温度で初透磁率μiは極大となるので、初透磁率μiのセカンダリーピークとも呼ばれる。磁心損失は温度に対して極小値を持つので、通常、磁心損失による発熱を見越して、磁心損失が極小となる温度を結晶磁気異方性定数K1によって調整し、その温度を電子部品が晒される環境温度よりも僅かに高い温度に設定して、熱暴走によりフェライトが磁性を失うことを防いでいる。
 磁心損失が極小となる温度、即ち結晶磁気異方性定数K1が0となる温度は、主にMnZn系フェライトにおけるスピネルを構成する金属イオンのうち、正の結晶磁気異方性定数K1を示す金属イオンと、負の結晶磁気異方性定数K1を示す金属イオンの量を適宜調整し、その総和によって異ならせることが出来る。スピネルを構成する金属イオンは、正のK1を示す金属イオンとしてFe2+、Co2+があり、負のK1を示す金属イオンとしてFe3+、Mn2+、Ni2+等がある。磁心損失が極小となる温度を変化させることは、Fe2+、Fe3+、Zn2+及びMn2+等の金属イオンを調整することにより比較的容易に可能だが、それだけでは磁心損失の温度依存性を改善するのは困難であるので、Fe2+よりも十分に大きな結晶磁気異方性定数及び磁歪定数を有するCo2+を導入して、磁心損失の温度依存性を改善することが行われる。
 特許文献1には、Fe23:52.0~55.0mol%、MnO:32.0~44.0mol%、ZnO:4.0~14.0mol%を主成分とし、副成分として、CaO:200~1000ppm、SiO2:50~200ppm、Bi23:500ppm以下、Ta25:200~800ppm、CoO:4000ppm以下を有するMnZn系フェライトが開示されている。特許文献1のMnZn系フェライトでは、Fe23、CoO、ZnOやMnO等の組成量で前記金属イオンのバランスを調整し、磁心損失が極小となる温度を変化させ、磁心損失の温度依存性を改善するとともに、Bi23を添加して、いっそう広い温度範囲において低磁心損失なMnZn系フェライトとしている。
 この様なCo2+の導入は、磁心損失の温度依存性を改善するに有効である。しかしながら、Fe2+、Co2+などの2価の金属イオンは格子欠陥を介して移動し易くて磁気異方性の増大を招き、磁心損失の増加、透磁率の低下といった磁気特性の経時変化をもたらす。特にCoを含むMnZn系フェライトはその傾向が大きくて、高温環境下ではその経時変化が早められることが知られている。そのため高温にさらされ易い電子部品に用いるMnZn系フェライトは一層の低磁心損失化と、磁気特性の経時変化を抑えることが求められる。
 MnZn系フェライトの磁気特性の経時変化を抑える方法として、特許文献2や特許文献3には、焼成における雰囲気酸素濃度を制御することが開示されている。焼成は昇温工程、高温保持工程、降温工程を基本工程とされており、特許文献2や特許文献3では、特に高温保持工程や降温工程における雰囲気酸素濃度を厳密に制御する。
特開2001-220146号公報 特開2004-292303号公報 特開2007-70209号公報
 特許文献1では磁気特性の経時変化について述べられていないが、本発明者等の検討によれば特許文献1に記載されたMnZn系フェライトのようにBiを含む組成の場合に、雰囲気酸素濃度の制御によって磁気特性の経時変化を抑えようとすると磁心損失の増加を招く場合があることが判明した。 そこで本発明では、低磁心損失で、更に高温環境下での磁気特性の経時変化を抑制し、磁心損失の増加を抑えることが出来るMnZn系フェライトとその製造方法を提供することを目的とする。
 第1の発明は、主成分としてFe、Mn及びZnと、副成分としてSi、Ca、Co、及びBiと、Ta又はNbの少なくとも一種と、Ti又はSnの少なくとも一種とを含み、前記主成分がそれぞれFe23、ZnO、MnOで構成されるとしたときの総量を100モル%として、FeをFe23換算で53.25モル%以上54.00モル%以下、ZnをZnO換算で2.50モル%以上8.50モル%以下、及びMnをMnO換算で残部とし、SiをSiO2換算で0.001質量%超0.02質量%未満、CaをCaCO3換算で0.04質量%超0.4質量%未満、CoをCo34換算で0.5質量%未満(0は含まず)、BiをBi23換算で0.05質量%未満(0は含まず)、TaをTa25換算で0.05質量%未満(0を含む)、NbをNb25換算で0.05質量%未満(0を含む)、TiをTiO2換算で0.3質量%未満(0を含む)、SnをSnO2換算で0.3質量%未満(0を含む)を満たし、ただし換算されたTa25とNb25の総量は0.05質量%未満(0は含まず)であり、換算されたTiO2とSnO2の総量は0.3質量%未満(0は含まず)であって、周波数100kHzで最大磁束密度が200mTにおいて130℃での磁心損失(Pcv130A)が400kW/m3以下であり、200℃にて96時間保持した後の130℃での磁心損失(Pcv130B)を用いて下記式で表される磁心損失の変化率Psが5%以下であることを特徴とするMnZn系フェライトである。
 Ps(%)=〔(Pcv130B-Pcv130A)/Pcv130A〕×100
 第1の発明において、SiをSiO2換算で0.003質量%以上0.015質量%以下、CaをCaCO3換算で0.06質量%以上0.3質量%以下、CoをCo34換算で0.16質量%以上0.4質量%以下、BiをBi23換算で0.0075質量%以上0.04質量%以下で、Ta又はNbを単独で含む場合、TaをTa25換算で0.015質量%以上0.04質量%以下、NbをNb25換算で0.015質量%以上0.04質量%以下、Ti又はSnを単独で含む場合、TiをTiO2換算で0.02質量%以上0.2質量%以下、SnをSnO2換算で0.02質量%以上0.2質量%以下含み、TaとNbとを両方含む場合、換算されたTa25とNb25の総量は0.015質量%以上0.04質量%以下であり、TiとSnとを両方含む場合、換算されたTiO2とSnO2の総量は0.02質量%以上0.2質量%以下であることが好ましい。
 第1の発明のMnZn系フェライトにおいて100℃から150℃の間での磁心損失が500kW/m3以下で、磁心損失の極小温度が110℃から150℃の間にあるのが好ましい。
 第1の発明のMnZn系フェライトにおいて、更に、200℃にて96時間保持した後の130℃での磁心損失(Pcv130B)が400kW/m3以下であるのが好ましい。
 第2の発明はMnZn系フェライトの製造方法であって、第1の発明に規定する主成分及び副成分の酸化物粉末を成形して成形体とし、前記成形体を焼成する焼成工程を有し、前記焼成工程は昇温工程と高温保持工程と降温工程とを備え、高温保持工程における温度は1250℃から1400℃の間であり、高温保持工程における雰囲気中の酸素濃度を体積百分率で0.7%以下とし、前記降温工程において1200℃における酸素濃度を0.5%以下、1100℃における酸素濃度を0.1%以下としたことを特徴とするMnZn系フェライトの製造方法である。
 本発明によれば、低磁心損失で、更に高温環境下での磁気特性の経時変化を抑制して磁心損失の増加を抑えることが出来るMnZn系フェライトとその製造方法を提供することができる。
本発明の一実施形態に係る焼成工程の温度条件を示す図である。 MnZn系フェライトのBi23量と高温保持前後での磁心損失との関係を示す図である。 MnZn系フェライトのTiO2、SnO2量と高温保持前後での磁心損失との関係を示す図である。
 以下、本発明の一実施形態に係るMnZn系フェライト、及びそれを用いた磁心とその製造方法ついて具体的に説明する。ただし、本発明はこれに限定されるものではなく、技術的思想の範囲内で適宜変更可能である。
(MnZn系フェライトの組成)
 所望の温度での磁心損失Pcvを低減するには組成を適正化して、スピネルを構成する正の結晶磁気異方性定数K1を示す金属イオンと負の結晶磁気異方性定数K1を示す金属イオンの量を適宜調整することが必要である。しかしながら飽和磁束密度Bs、キュリー温度Tc、初透磁率μiなどの磁心損失Pcv以外の要求磁気特性による制限から、組成選択の自由度は少ない。またFe23が多い組成では、外部磁場印加によって得られる磁化曲線が原点付近でくびれ、いわゆるパーミンバー型となりやすく、磁心損失が増加する。そこで以上の観点から、磁心損失の極小温度が110℃から150℃の間にあるように、本発明では、主成分としてFe23が53.25モル%以上54.00モル%以下、ZnOが2.50モル%以上8.50モル%以下、残部がMnOの組成範囲を選択した。なお本発明においては、主成分とは主としてスピネルフェライトを構成する元素、化合物を言い、対して副成分とはその形成に補助的に用いられる元素、化合物を言い、一部がスピネルフェライトに固溶する元素を含む。また、Coのようにスピネルフェライトを構成するものも、前記主成分と比べて含有量が少なく副成分としている。
 本発明のMnZn系フェライトにおいては、主成分としてFe、Mn及びZnと、副成分としてSi、Ca、Co、及びBiと、Ta又はNbの少なくとも一種と、Ti又はSnの少なくとも一種とを含む。
 本発明のMnZn系フェライトでは、SiやCaを所定の範囲とし、MnZn系フェライトを焼成してなるフェライト焼結体(例えば磁心)にて高抵抗のSi、Caを結晶粒界に存在させて、結晶粒を絶縁することで体積抵抗率ρを増加し、相対損失係数tanδ/μiを小さくする効果を発揮する。本発明においては、SiをSiO2換算で0.001質量%超0.02質量%未満、CaをCaCO3換算で0.04質量%超0.4質量%未満含む。更に好ましくはSiO2換算で0.003質量%以上0.015質量%以下のSi、CaCO3換算で0.06質量%以上0.3質量%以下のCaである。より好ましくは、CaはCaCO3換算で0.06質量%超0.3質量%以下である。
 Siは専ら結晶粒界及びその三重点に偏析するが、Caは焼成工程の途中ではスピネル相に固溶し、焼成後も一部が固溶し結晶粒内に残留する場合がある。スピネル相に固溶するCaを多くすると結晶粒内の抵抗が高められ体積抵抗率ρを増加させることが出来るが、相対的に粒界のCaは減少する。高い体積抵抗率ρを得て低損失なMnZn系フェライトとするには、スピネル相に固溶するCaと結晶粒界に偏析するCaを適宜調整し、結晶粒内の抵抗を高めるとともに高抵抗の結晶粒界を形成するのが有効である。このような調整は、後述する焼成温度と焼成雰囲気制御によって行うことが出来る。
 Fe2+の他に更にCo2+を加えることで、損失の温度変化が小さくなって広い温度範囲において低損失で、かつ相対温度係数αμirを小さくすることが出来る。また、Co2+を加えることで残留磁束密度Brを低減できるので、一層ヒステリシス損失Phを低減することが出来る。しかしながら、このようなCo2+による効果は、Coの含有量が多すぎると、磁化曲線がパーミンバー型となりやすく、また低温側で結晶磁気異方性定数が正の側に大きくなりすぎて却って磁心損失が劣化する場合がある。このため本発明では添加するCoを、Co34換算で0.5質量%未満(0は含まず)とした。更に好ましくはCo34換算で0.16質量%以上0.4質量%以下のCoを含む。より好ましくは、CoはCo34換算で0.16質量%以上0.4質量%未満である。
 Biは専ら結晶粒界及びその三重点に偏析し、高抵抗の結晶粒界を形成するのに寄与する。また焼結促進剤として機能して結晶組織を緻密化させる。また結晶粒径が増加して、ヒステリシス損失が減少し磁心損失が低減される。BiはBi23換算で0.05質量%未満 (0は含まず)含むものとする。多すぎると異常焼結を招き磁心損失を増加させる。好ましくはBi23換算で0.0075質量%以上0.04質量%以下のBiである。より好ましくは、BiはBi23換算で0.01質量%以上0.04質量%未満である。
 Ta、NbはVa族元素であって、これらの成分はSi、Caとともに結晶粒界層に現れ、前記粒界層を高抵抗化し、もって低損失化するのに寄与する。Ta、Nbはそれぞれ単独で含んでも良いし、両方を含んでも良い。単独で含む場合、Ta25、Nb25換算でそれぞれが0.05質量%未満であり、TaとNbとを両方含む場合では、換算されたTa25とNb25の総量は0.05質量%未満(0は含まず)であるのが好ましい。より好ましくは、Ta又はNbを単独で含む場合、Ta25、Nb25換算でそれぞれが0.015質量%以上0.04質量%以下であり、TaとNbとを両方含む場合、Ta25とNb25の総量は0.015質量%以上0.04質量%以下である。Nbを単独で含む場合、更に好ましくはNb25換算で0.015質量%以上0.04質量%未満である。所定量を超えると磁心損失が増加するように転じ、少ないと低磁心損失化の効果が得られ難い。
 更に本発明においては、Ti又はSnの少なくとも一方を副成分として含有することで、Biを含む他の副成分と相乗して一層の磁心損失の改善を得るとともに、高温環境下での磁気特性の経時変化を抑えることが出来る。Sn、Tiは4価の安定な金属イオンであって、結晶粒内に固溶して体積抵抗率ρを増加させ、磁心損失Pcvを低減することができる。なおTi、Snは専ら結晶粒内に存在するが、その一部が結晶粒界に存在する場合もある。単独で含む場合、TiはTiO2換算で0.3質量%未満、SnはSnO2換算で0.3質量%未満含むのが好ましい。TiとSnとを両方含む場合では、換算されたTiO2とSnO2の総量は0.3質量%未満(0は含まず)であるのが好ましい。より好ましくは、Ti又はSnを単独で含む場合、Ti、SnはTiO2、SnO2換算でそれぞれが0.02質量%以上0.2質量%以下であり、TiとSnとを両方含む場合でもTiO2とSnO2の総量は0.02質量%以上0.2質量%以下である。好ましい組成量を超えると、異常粒成長を生じ易く電力損失の劣化や飽和磁束密度の低下を招く場合がある。
 MnZn系フェライトを構成する原材料には、不純物として硫黄S、塩素Cl、リンP、ホウ素Bなどが含まれる場合がある。本発明においては、これら不純物を特に規定するものではないが、減じることで磁心損失の低減、透磁率の向上が得られることが経験的に知られている。特にSについては、Caとの化合物を生じて結晶粒界に異物として偏析し、体積抵抗率ρを低下させ、渦電流損失を増加させる場合がある。このため、磁心損失の更なる低減のためには、不純物を減じ、好ましくは、Sを0.03質量%以下、Clを0.01質量%以下、Pを0.001質量%以下、Bを0.0001質量%以下とするのが好ましい。
(MnZn系フェライトの製造方法)
 MnZn系フェライトとして所定の組成量となるように原料を秤量した後、主成分であるFe23、MnO(Mn34を使用)、ZnOを仮焼成し、解砕した後、副成分であるSiO2、CaCO3、Co34、Bi23と、Ta25又はNb25と、TiO2又はSnO2とを適宜添加混合し、バインダを加えて造粒、成形の後、焼成に供する。本発明においては焼成後のMnZn系フェライトをフェライト焼結体と呼ぶ場合がある。
 焼成工程は所定温度域で保持する高温保持工程と、前記高温保持工程の前段の昇温工程と、前記高温保持工程に続く降温工程を含み、室温から750℃から950℃の間のいずれかの温度にいたる間の昇温工程においては大気中で行い、750℃から950℃の間のいずれかの温度にてN2で置換し、1250℃から1400℃の間のいずれかの温度に設定された高温保持工程では酸素濃度を0.2%ないし0.7%の範囲で制御し、さらに降温工程では平衡酸素分圧からN2雰囲気とするのが好ましい。
 昇温工程における昇温速度は、脱バインダにおける炭素残留の状態や、組成に応じて適宜選択すればよい。好ましくは50~200℃/hrの範囲内である。また、Caは酸素濃度が高いほど結晶粒界に偏析し、1100℃を超える高温では、低酸素分圧~N2雰囲気中においてスピネル相への固溶が生じることが知られている。そこで本発明においては、酸素分圧を調整することによってCaを粒界に偏析させるとともに、結晶粒内に固溶するのを適宜制御して磁心損失を低減するのが好ましい。
 結晶粒界の抵抗を高めるには、焼成条件としては組成に応じた降温速度制御を採択し、好ましくは高温保持温度から1000℃までの冷却速度が50~150℃/hr、1000℃から900℃までの冷却速度が50~300℃/hr、900℃から600℃までの冷却速度が150~500℃/hrの範囲内である。
 降温工程での制御は、更に好ましくは酸素濃度PO2(体積百分率;%)と温度T(℃) の関数である次式で規定される。
 log(PO2)=a-b/(T+273)  ・・・式
 なお、a、bは定数であり、aは3.1~12.8、bは6000~20000であるのが好ましい。aは高温保持工程の温度と酸素濃度から規定される。また、bが所定の範囲よりも小さいと温度が下がっても酸素濃度が高く酸化が進み、スピネルからヘマタイトが析出する場合がある。また、bが大きいと酸素濃度が低下しウスタイトが析出したりして、結晶粒や粒界層とも十分に酸化されずに抵抗が小さくなる。より好ましくは、aは6.4~11.5、bは10000~18000であり、高温保持工程における酸素濃度を0.7%以下、1200℃における酸素濃度を0.5%以下、1100℃における酸素濃度を0.1%以下に制御することにより、高温環境下での磁気特性の経時変化をより一層低減することが可能となる。
 MnZn系フェライトの平均結晶粒径は、MnZn系フェライトを用いる電子部品の使用周波数によって適宜設定されるが、周波数が500kHz以上の高周波用途であれば5μm以下として渦電流損失を低減するとともに、結晶粒を微細化することで磁区を細分化して磁壁共鳴による損失を減じるようにするのが好ましく、周波数が500kHz未満であれば、5μm超30μm以下として保磁力Hcを低減してヒステリシス損失を低減するのが好ましい。
 以下、具体的実施例を挙げて本発明をさらに詳細に説明する。MnZn系フェライトとして表1に示すBi23、TiO2の量が異なる組成となるように秤量した。主成分の原料には、Fe23、MnO(Mn34を使用)、及びZnOを用い、これらを湿式混合した後乾燥させ、900℃で3時間仮焼成した。次いで、ボールミルに仮焼成粉と、SiO2、CaCO3、Co34、Ta25、Bi23、TiO2を加えて平均粉砕粒径が1.2~1.5μmとなるまで粉砕・混合した。得られた混合物にバインダとしてポリビニルアルコールを加え、スプレードライヤーにて顆粒化した後、所定形状に成形してリング状の成形体を得て、それを焼成して外径φ25mm×内径φ15mm×厚み5mmの磁心(フェライト焼結体)を得た。以下、表1を含め、Noに“*“が付されたものは比較例を示す。
 図1に焼成工程の温度条件を示す。焼成は、室温から800℃にいたる間の昇温工程においては大気中で行い、前記温度にてN2で置換した。1300℃に設定された高温保持工程では酸素濃度を、表1のO2濃度の欄に示す値とし、保持時間を4時間とした。降温工程においては1300℃(高温保持温度)から900℃の間は平衡酸素分圧で、100℃/hrの冷却速度とし、900℃以降は300℃/hrの冷却速度とした。
Figure JPOXMLDOC01-appb-T000001
 得られた磁心について、磁心損失Pcv、飽和磁束密度Bs、平均結晶粒径を評価した。評価方法は以下の通りである。
(磁心損失Pcv)
 磁心損失Pcvは岩崎通信機株式会社製のB-Hアナライザ(SY-8232)を用い、磁心に一次側巻線と二次側巻線とをそれぞれ5ターン巻回し、周波数100kHz、最大磁束密度200mTで、室温(23℃)~150℃における磁心損失を測定した。
 更に高温槽にて200℃の雰囲気で96時間保持して高温環境に放置し、その後、高温槽から取り出して磁心の温度が室温まで下がってから、磁心損失を同様の条件で130℃にて評価し、高温環境放置前後の130℃における磁心損失から次式にて磁心損失の変化率Psを算出した。
 Ps(%)=〔(Pcv130B-Pcv130A)/Pcv130A〕×100
 なおPcv130Aは高温環境放置前の130℃における磁心損失であり、Pcv130Bは高温環境放置後の130℃における磁心損失である。なお、高温環境放置前の磁心損失の測定においては、磁心の温度が安定する10分から15分程度、磁心を最高で150℃の雰囲気に調整された恒温槽内におくが、以降の実施例の磁心を含めて磁気特性の経時変化は実質的に生じなかった。
(飽和磁束密度Bs)
 飽和磁束密度(Bs)は、磁心に一次側巻線と二次側巻線とをそれぞれ40回巻回し、1.2kA/mの磁場を印加し、直流磁化測定試験装置(メトロン技研株式会社製SK-110型)を用いて130℃において測定した。
(平均結晶粒径)
 平均結晶粒径は、 フェライト焼結体の鏡面研磨面にて結晶粒界をサーマルエッチング(1100℃×1hr、N2中処理)し、その表面を光学顕微鏡で400倍にて写真撮影し、この写真上の140μm×105μm長方形領域において求積法により算出した。
 磁心損失Pcv、飽和磁束密度Bs、平均結晶粒径を評価した結果を表2に示す。なお、平均結晶粒径にて“-”は未評価であることを表す。
Figure JPOXMLDOC01-appb-T000002
 No9、10、12、13に示す実施例のMnZn系フェライトの磁心損失はいずれも低くて、高温環境放置前の130℃での磁心損失が380kW/m3以下、高温環境放置後の磁心損失(Pcv130B)が400kW/m3以下、100℃から150℃の間での磁心損失が430kW/m3以下で、磁心損失の極小温度が110℃から150℃の間にあった。またNo11とNo12に示す様に、磁心損失の経時変化を抑えるように酸素濃度を制御することで、130℃における磁心損失(Pcv130A)の増加率を比較例と比べて大きく減じることが出来た。図2にNo8、No10、No12~14に示すMnZn系フェライトの高温環境放置前後での磁心損失を示す。図中、実線は高温環境放置前の磁心損失を示し、破線は高温環境放置後の磁心損失を示している。磁心損失はBi23量に対して極小を示すことがわかる。
 MnZn系フェライトとして表3に示すTiO2、SnO2の量が異なる組成となるように秤量した。他の工程条件は実施例1と同じであるのでその説明を省略する。
Figure JPOXMLDOC01-appb-T000003
 得られた磁心について、磁心損失Pcv、飽和磁束密度Bs、平均結晶粒径を評価した。 評価方法は実施例1と同様なのでその説明を省略する。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例のMnZn系フェライトの磁心損失はいずれも低かった。図3にNo5、No15~24に示すMnZn系フェライ トの高温環境放置前後での磁心損失を示す。図中、丸に実線はTiO2量を変化させたNo5、No15~19の高温環境放置前の磁心損失を示し、破線は同じく高温環境放置後の磁心損失を示している。また、三角に実線はSnO2量を変化させたNo20~24の高温環境放置前の磁心損失を示し、破線は同じく高温環境放置後の磁心損失を示している。磁心損失はTiO2、SnO2量に対して極小を示すことがわかる。
 MnZn系フェライトとして表5に示す組成となるように、Fe23、MnO(Mn34を使用)、ZnO、SiO2、CaCO3、Co34、Ta25、Nb25、Bi23、TiO2を秤量した。他の工程条件は実施例1と同じであるのでその説明を省略する。
Figure JPOXMLDOC01-appb-T000005
 得られた磁心について、磁心損失Pcv、飽和磁束密度Bsを評価した。評価方法は実施例1と同様なのでその説明を省略する。結果を表6に示す。実施例のMnZn系フェライトの磁心損失はいずれも低く、優れた磁気特性が得られた。
Figure JPOXMLDOC01-appb-T000006
 MnZn系フェライトとして表7に示す組成となるように、Fe23、MnO(Mn34を使用)、ZnO、SiO2、CaCO3、Co34、Ta25、Bi23、TiO2を秤量した。他の工程条件は実施例1と同じであるのでその説明を省略する。
Figure JPOXMLDOC01-appb-T000007
 得られた磁心について、磁心損失Pcv、飽和磁束密度Bsを評価した。評価方法は実施例1と同様なのでその説明を省略する。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例のMnZn系フェライトの磁心損失はいずれも低く、優れた磁気特性が得られた。またFe23、MnO、ZnOの組成量によって磁心損失Pcvが最小となる温度が変化し、実施例では磁心損失の極小温度が110℃から150℃の間にあったが、比較例のNo54では40℃となり、No55では150℃を超える温度となった。

Claims (5)

  1.  主成分としてFe、Mn及びZnと、副成分としてSi、Ca、Co、及びBiと、Ta又はNbの少なくとも一種と、Ti又はSnの少なくとも一種とを含み、
     前記主成分がそれぞれFe23、ZnO、MnOで構成されるとしたときの総量を100モル%として、FeをFe23換算で53.25モル%以上54.00モル%以下、ZnをZnO換算で2.50モル%以上8.50モル%以下、及びMnをMnO換算で残部とし、
     SiをSiO2換算で0.001質量%超0.02質量%未満、CaをCaCO3換算で0.04質量%超0.4質量%未満、CoをCo34換算で0.5質量%未満(0は含まず)、BiをBi23換算で0.05質量%未満(0は含まず)、TaをTa25換算で0.05質量%未満(0を含む)、NbをNb25換算で0.05質量%未満(0を含む)、TiをTiO2換算で0.3質量%未満(0を含む)、SnをSnO2換算で0.3質量%未満(0を含む)を満たし、ただし換算されたTa25とNb25の総量は0.05質量%未満(0は含まず)であり、換算されたTiO2とSnO2の総量は0.3質量%未満(0は含まず)であって、
     周波数100kHzで最大磁束密度が200mTにおいて130℃での磁心損失(Pcv130A)が400kW/m3以下であり、200℃にて96時間保持した後の130℃での磁心損失(Pcv130B)を用いて下記式で表される磁心損失の変化率Psが5%以下であることを特徴とするMnZn系フェライト。
     Ps(%)=〔(Pcv130B-Pcv130A)/Pcv130A〕×100
  2.  請求項1に記載のMnZn系フェライトであって、
     SiをSiO2換算で0.003質量%以上0.015質量%以下、CaをCaCO3換算で0.06質量%以上0.3質量%以下、CoをCo34換算で0.16質量%以上0.4質量%以下、BiをBi23換算で0.0075質量%以上0.04質量%以下で、Ta又はNbを単独で含む場合、TaをTa25換算で0.015質量%以上0.04質量%以下、NbをNb25換算で0.015質量%以上0.04質量%以下、Ti又はSnを単独で含む場合、TiをTiO2換算で0.02質量%以上0.2質量%以下、SnをSnO2換算で0.02質量%以上0.2質量%以下含み、TaとNbとを両方含む場合、換算されたTa25とNb25の総量は0.04質量%以下であり、TiとSnとを両方含む場合、換算されたTiO2とSnO2の総量は0.2質量%以下であることを特徴とするMnZn系フェライト。
  3.  請求項1又は2に記載のMnZn系フェライトであって、
     100℃から150℃の間での磁心損失が500kW/m3以下で、磁心損失の極小温度が110℃から150℃の間にあることを特徴とするMnZn系フェライト。
  4.  請求項3に記載のMnZn系フェライトであって、
     200℃にて96時間保持した後の130℃での磁心損失(Pcv130B)が400kW/m3以下であることを特徴とするMnZn系フェライト。
  5.  MnZn系フェライトの製造方法であって、
     請求項1に規定する主成分及び副成分の酸化物粉末を成形して成形体とし、前記成形体を焼成する焼成工程を有し、前記焼成工程は昇温工程と高温保持工程と降温工程とを備え、高温保持工程における温度は1250℃から1400℃の間であり、高温保持工程における雰囲気中の酸素濃度を体積百分率で0.7%以下とし、前記降温工程において1200℃における酸素濃度を0.5%以下、1100℃における酸素濃度を0.1%以下としたことを特徴とするMnZn系フェライトの製造方法。
PCT/JP2015/074622 2014-08-29 2015-08-31 MnZn系フェライトおよびその製造方法 WO2016032001A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177006579A KR102094797B1 (ko) 2014-08-29 2015-08-31 MnZn계 페라이트 및 그 제조 방법
EP15835796.2A EP3187475B1 (en) 2014-08-29 2015-08-31 MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING THE SAME
JP2016545661A JP6451742B2 (ja) 2014-08-29 2015-08-31 MnZn系フェライトおよびその製造方法
US15/507,108 US10304602B2 (en) 2014-08-29 2015-08-31 MnZn-based ferrite and method for manufacturing the same
CN201580046549.7A CN106660883B (zh) 2014-08-29 2015-08-31 MnZn系铁氧体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174996 2014-08-29
JP2014-174996 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016032001A1 true WO2016032001A1 (ja) 2016-03-03

Family

ID=55399881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074622 WO2016032001A1 (ja) 2014-08-29 2015-08-31 MnZn系フェライトおよびその製造方法

Country Status (6)

Country Link
US (1) US10304602B2 (ja)
EP (1) EP3187475B1 (ja)
JP (1) JP6451742B2 (ja)
KR (1) KR102094797B1 (ja)
CN (1) CN106660883B (ja)
WO (1) WO2016032001A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164350A1 (ja) * 2016-03-25 2017-09-28 日立金属株式会社 MnZn系フェライトの製造方法及びMnZn系フェライト
CN108885938A (zh) * 2016-03-25 2018-11-23 日立金属株式会社 MnZn铁氧体磁芯及其制备方法
CN110156451A (zh) * 2019-03-13 2019-08-23 横店集团东磁股份有限公司 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108059451A (zh) * 2017-12-07 2018-05-22 天长市昭田磁电科技有限公司 一种高频功率软磁铁氧体材料及其制备方法
CN108129143B (zh) * 2018-01-18 2021-01-19 常熟市三佳磁业有限公司 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN108424136B (zh) * 2018-03-21 2021-04-06 电子科技大学 MHz级开关电源用MnZn功率铁氧体及其制备方法
CN110970207A (zh) * 2018-09-30 2020-04-07 广东德昌电机有限公司 印刷电路板以及使用该印刷电路板的电机
WO2020158333A1 (ja) * 2019-01-31 2020-08-06 Jfeケミカル株式会社 MnZn系フェライトおよびその製造方法
JP6730547B1 (ja) * 2019-01-31 2020-07-29 Jfeケミカル株式会社 MnZn系フェライトおよびその製造方法
KR102261729B1 (ko) * 2019-07-19 2021-06-08 엘지이노텍 주식회사 자성 코어
CN110511016A (zh) * 2019-08-26 2019-11-29 严华军 一种锰锌铁氧体磁性材料的生产工艺
JP2021093465A (ja) * 2019-12-11 2021-06-17 Tdk株式会社 磁性シート、および、磁性シートを備えるコイルモジュール、並びに非接触給電装置。
CN111039669A (zh) * 2019-12-30 2020-04-21 苏州冠达磁业有限公司 高强度抗变形锰锌铁氧体及其制备方法
CN111116188B (zh) * 2019-12-30 2022-08-19 江门安磁电子有限公司 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
CN111170731A (zh) * 2019-12-30 2020-05-19 江门安磁电子有限公司 一种锰锌高磁导率高居里温度高频材料及其制备方法
JP7185791B2 (ja) * 2020-07-14 2022-12-07 Jfeケミカル株式会社 MnZn系フェライト
CN112408969A (zh) * 2020-11-25 2021-02-26 广东泛瑞新材料有限公司 一种宽温低功耗的锰锌铁氧体材料及其制备方法
US20230290554A1 (en) * 2022-03-14 2023-09-14 Proterial, Ltd. SINTERED MnZn FERRITE AND ITS PRODUCTION METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220146A (ja) * 2000-02-07 2001-08-14 Hitachi Metals Ltd 低損失フェライトおよびこれを用いた磁心
JP2007031240A (ja) * 2005-07-29 2007-02-08 Tdk Corp MnZnフェライトの製造方法及びMnZnフェライト
JP2007051052A (ja) * 2005-07-22 2007-03-01 Hitachi Metals Ltd 低損失MnZnNi系フェライト及びこれを用いた電子部品、スイッチング電源
JP2007070209A (ja) * 2005-09-09 2007-03-22 Tdk Corp MnZn系フェライトの製造方法
JP2008169072A (ja) * 2007-01-11 2008-07-24 Nippon Ceramic Co Ltd Mn−Zn系フェライト
JP2009227554A (ja) * 2008-03-25 2009-10-08 Tdk Corp フェライト焼結体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381947B2 (ja) 1992-10-27 2003-03-04 ティーディーケイ株式会社 電源用フェライトおよび電源用磁心
DE69428593T2 (de) * 1994-04-27 2002-06-06 Tdk Corp Ferrit und ferritkern für schaltnetzteile
JP3924272B2 (ja) 2002-09-02 2007-06-06 Tdk株式会社 Mn−Zn系フェライト、トランス用磁心およびトランス
TWI228729B (en) 2002-09-02 2005-03-01 Tdk Corp Mn-Zn ferrite, transformer magnetic core and transformer
JP4244193B2 (ja) * 2004-01-30 2009-03-25 Tdk株式会社 MnZnフェライトの製造方法及びMnZnフェライト
JP2006140330A (ja) 2004-11-12 2006-06-01 Fuji Photo Film Co Ltd プリント配線板の製造方法および装置
JP2007150006A (ja) 2005-11-29 2007-06-14 Jfe Ferrite Corp フェライトコアの磁気特性回復方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220146A (ja) * 2000-02-07 2001-08-14 Hitachi Metals Ltd 低損失フェライトおよびこれを用いた磁心
JP2007051052A (ja) * 2005-07-22 2007-03-01 Hitachi Metals Ltd 低損失MnZnNi系フェライト及びこれを用いた電子部品、スイッチング電源
JP2007031240A (ja) * 2005-07-29 2007-02-08 Tdk Corp MnZnフェライトの製造方法及びMnZnフェライト
JP2007070209A (ja) * 2005-09-09 2007-03-22 Tdk Corp MnZn系フェライトの製造方法
JP2008169072A (ja) * 2007-01-11 2008-07-24 Nippon Ceramic Co Ltd Mn−Zn系フェライト
JP2009227554A (ja) * 2008-03-25 2009-10-08 Tdk Corp フェライト焼結体及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164350A1 (ja) * 2016-03-25 2017-09-28 日立金属株式会社 MnZn系フェライトの製造方法及びMnZn系フェライト
CN108780697A (zh) * 2016-03-25 2018-11-09 日立金属株式会社 MnZn铁氧体及其制备方法
CN108885938A (zh) * 2016-03-25 2018-11-23 日立金属株式会社 MnZn铁氧体磁芯及其制备方法
JPWO2017164350A1 (ja) * 2016-03-25 2019-02-07 日立金属株式会社 MnZn系フェライトの製造方法及びMnZn系フェライト
EP3441996A4 (en) * 2016-03-25 2019-08-14 Hitachi Metals, Ltd. METHOD FOR PRODUCING A FERRITE MAGNET FOR MN-ZN SYSTEM AND FERRITMAGNETKERN OF AN MN-ZN SYSTEM
US10919809B2 (en) 2016-03-25 2021-02-16 Hitachi Metals, Ltd. MnZn ferrite and its production method
US10950375B2 (en) 2016-03-25 2021-03-16 Hitachi Metals. Ltd. MnZn ferrite core and its production method
TWI722151B (zh) * 2016-03-25 2021-03-21 日商日立金屬股份有限公司 錳鋅系鐵氧體的製造方法及錳鋅系鐵氧體
JP2022003690A (ja) * 2016-03-25 2022-01-11 日立金属株式会社 MnZn系フェライトを用いた磁心
JP7089686B2 (ja) 2016-03-25 2022-06-23 日立金属株式会社 MnZn系フェライトを用いた磁心
JP2022122983A (ja) * 2016-03-25 2022-08-23 日立金属株式会社 インダクタ
CN110156451A (zh) * 2019-03-13 2019-08-23 横店集团东磁股份有限公司 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法

Also Published As

Publication number Publication date
KR20170044130A (ko) 2017-04-24
CN106660883A (zh) 2017-05-10
EP3187475A4 (en) 2018-05-30
JP6451742B2 (ja) 2019-01-16
US20170278607A1 (en) 2017-09-28
EP3187475B1 (en) 2020-07-29
KR102094797B1 (ko) 2020-03-30
US10304602B2 (en) 2019-05-28
EP3187475A1 (en) 2017-07-05
JPWO2016032001A1 (ja) 2017-07-20
CN106660883B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
JP6451742B2 (ja) MnZn系フェライトおよびその製造方法
TWI699789B (zh) 錳鋅系鐵氧體磁心的製造方法及錳鋅系鐵氧體磁心
JP7089686B2 (ja) MnZn系フェライトを用いた磁心
KR102558229B1 (ko) MnZn계 페라이트의 제조 방법 및 MnZn계 페라이트
JP2007051052A (ja) 低損失MnZnNi系フェライト及びこれを用いた電子部品、スイッチング電源
CN110494408B (zh) MnZn系铁氧体烧结体
JP5560436B2 (ja) MnZnNi系フェライト
JP6416808B2 (ja) MnZnCo系フェライト
EP4245738A1 (en) Sintered mnzn ferrite and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545661

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15507108

Country of ref document: US

Ref document number: 2015835796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006579

Country of ref document: KR

Kind code of ref document: A