WO2016031801A1 - 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 - Google Patents

積層体フィルムと電極基板フィルムおよびこれ等の製造方法 Download PDF

Info

Publication number
WO2016031801A1
WO2016031801A1 PCT/JP2015/073800 JP2015073800W WO2016031801A1 WO 2016031801 A1 WO2016031801 A1 WO 2016031801A1 JP 2015073800 W JP2015073800 W JP 2015073800W WO 2016031801 A1 WO2016031801 A1 WO 2016031801A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
wavelength
extinction coefficient
metal
Prior art date
Application number
PCT/JP2015/073800
Other languages
English (en)
French (fr)
Inventor
大上 秀晴
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2016545536A priority Critical patent/JP6597621B2/ja
Priority to KR1020177005286A priority patent/KR102467260B1/ko
Priority to CN201580045991.8A priority patent/CN106796464B/zh
Priority to US15/501,305 priority patent/US10764997B2/en
Publication of WO2016031801A1 publication Critical patent/WO2016031801A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a transparent substrate made of a resin film, a laminate film having a laminate film provided on the substrate, and an electrode substrate film manufactured using the laminate film and used for a touch panel or the like.
  • the present invention relates to an electrode substrate film and a laminate film in which a circuit pattern such as an electrode is hardly visually recognized even under high-luminance illumination, and a method for manufacturing the same.
  • the “touch panel” is roughly divided into a resistance type and a capacitance type.
  • a “resistive touch panel” is a transparent substrate made of a resin film, an X coordinate (or Y coordinate) detection electrode sheet and a Y coordinate (or X coordinate) detection electrode sheet provided on the substrate, and a space between these sheets The main part is comprised with the insulator spacer provided in this.
  • the X-coordinate detection electrode sheet and the Y-coordinate detection electrode sheet are spatially separated from each other.
  • the “capacitance-type touch panel” has an X-coordinate (or Y-coordinate) detection electrode sheet and a Y-coordinate (or X-coordinate) detection electrode sheet laminated via an insulating sheet. It has a structure in which an insulator is disposed. When a finger is brought close to the insulator such as glass, the electric capacity of the X-coordinate detection electrode and the Y-coordinate detection electrode in the vicinity thereof changes so that the position can be detected.
  • a transparent conductive film such as ITO (indium oxide-tin oxide) has been widely used (see Patent Document 1).
  • ITO indium oxide-tin oxide
  • metal fine wires having a mesh structure disclosed in Patent Document 2, Patent Document 3, and the like have begun to be used.
  • the transparent conductive film when the transparent conductive film is compared with a metal fine wire, the transparent conductive film has an advantage that the circuit pattern such as an electrode is hardly visually recognized because of its excellent transparency in the visible wavelength region. Therefore, there is a disadvantage that is unsuitable for increasing the size of the touch panel and increasing the response speed.
  • thin metal wires are suitable for increasing the size of touch panels and increasing the response speed because of their low electrical resistance, but they have high reflectivity in the visible wavelength region, so even if they are processed into a fine mesh structure.
  • a circuit pattern may be visually recognized under high-intensity illumination, which has a drawback of reducing the product value.
  • a method of forming an antireflection film by combining a metal film and a dielectric multilayer film is conceivable.
  • a method of combining a metal film and a dielectric multilayer film is not preferable because a metal fine wire constituting a circuit pattern such as an electrode is formed by etching.
  • a blackened layer is formed between the resin film and the metal film by an electrolytic plating method or the like (see Patent Document 4), or a metal oxide is formed between the resin film and the metal film.
  • a method of reducing the reflection of the metal film observed from the resin film side by providing a light absorption layer (metal absorption layer) made of (see Patent Document 5) has been proposed.
  • JP 2003-151358 A (refer to claim 2) JP 2011-018194 A (refer to claim 1) JP 2013-0669261 A (see paragraph 0004) JP 2014-142462 A (see claim 5, paragraph 0038) JP 2013-225276 A (refer to claim 1, paragraph 0041)
  • the present invention has been made paying attention to such problems, and the object of the present invention is to provide an electrode substrate film in which the circuit pattern composed of the above-described fine metal wires is difficult to be seen even under high-luminance illumination. While providing the laminated body film used for manufacture of an electrode substrate film, it is providing the manufacturing method of these laminated body films and an electrode substrate film.
  • the present inventor repeatedly conducted a metal absorption layer deposition experiment and an optical thin film simulation.
  • the spectral reflectance in the visible wavelength region 400 to 780 nm
  • the spectral reflectance was low.
  • optical constants refractive index, extinction coefficient
  • film thickness conditions of the optimal metal absorption layer, and further, the metal constituting the circuit pattern such as electrodes by reducing the reflectance in the visible wavelength region
  • the line width of the fine wire can be increased.
  • the present invention has been completed by such technical discovery.
  • the first invention according to the present invention is: In a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on the transparent substrate,
  • the laminated film has a metal absorption layer having a thickness of 20 nm or more and 30 nm or less and a second metal layer as counted from the transparent substrate side, and
  • the optical constant of the metal absorption layer in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is
  • a film-forming material is a Cu-based alloy, or Cu alone or a Cu-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Ni are added, And it is formed by a vacuum film forming method in which a reactive gas is introduced into the film forming apparatus,
  • the fourth invention is: In the laminate film described in the first invention, The thickness of the metal layer is 50 nm or more and 5000 nm or less.
  • the fifth invention according to the present invention is: In a transparent substrate made of a resin film and an electrode substrate film having a mesh-structured circuit pattern provided on the transparent substrate and made of metal laminated fine wires,
  • the metal multilayer thin wire has a metal absorption layer having a line width of 20 ⁇ m or less and a first layer thickness of 20 nm to 30 nm counted from the transparent substrate side and a second metal layer.
  • the optical constant of the metal absorption layer in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, And Average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at the interface between the transparent substrate and the metal absorbing layer and between the metal absorbing layer and the metal layer is 20% or less and the highest in the visible wavelength region (400 to 780 nm) The difference between the transmittance and the minimum transmittance is 10% or
  • a film-forming material is a Cu-based alloy, or Cu alone or a Cu-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Ni are added, And it is formed by a vacuum film forming method in which a reactive gas is introduced into the film forming apparatus,
  • the eighth invention In the electrode substrate film described in the fifth invention, The thickness of the metal layer is 50 nm or more and 5000 nm or less.
  • a ninth invention includes In the method for producing a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on the transparent substrate, As the first layer counting from the transparent substrate side of the laminated film, The film thickness is 20 nm or more and 30 nm or less, and the optical constant in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, A first step of forming a metal absorption
  • the tenth invention is In the method for producing a laminate film described in the ninth invention, As the third layer counting from the transparent substrate side of the laminated film, The film thickness is 20 nm or more and 30 nm or less, and the optical constant in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, Comprising a third step of forming a second metal absorption layer which is a vacuum film formation method,
  • the eleventh invention is
  • the twelfth invention is In the method for producing a laminate film described in the eleventh invention,
  • the reactive gas is composed of a single gas of oxygen and nitrogen or a mixed gas thereof, or a mixed gas mainly composed of oxygen and nitrogen
  • the thirteenth aspect of the present invention is In a method for producing an electrode substrate film having a transparent substrate made of a resin film and a circuit pattern having a mesh structure provided on the transparent substrate and made of a metal thin wire, Etching the laminate film of the laminate film according to any one of the first to fourth inventions to perform wiring processing on the above-mentioned metal laminated thin wire having a line width of 20 ⁇ m or less Is.
  • the electrode substrate film of the present invention having a transparent substrate made of a resin film, and a circuit pattern of a mesh structure provided on the transparent substrate and made of a laminated thin wire made of metal,
  • the metal multilayer thin wire has a metal absorption layer having a line width of 20 ⁇ m or less and a first layer thickness of 20 nm to 30 nm counted from the transparent substrate side and a second metal layer.
  • the optical constant of the metal absorption layer in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4,
  • the average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface between the transparent substrate and the metal absorbing layer and between the metal absorbing layer and the metal layer is 20% or less and the visible wavelength region (400 to The difference between the maximum transmittance and the minimum transmittance at 780 nm) is 20% or
  • the average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface between the transparent substrate and the metal absorbing layer and between the metal absorbing layer and the metal layer is as low as 20% or less, and the maximum transmittance in the visible wavelength region. And the difference in the minimum transmittance is 10% or less, so it is possible to provide an electrode substrate film in which circuit patterns such as electrodes provided on the transparent substrate are not easily seen even under high-luminance illumination. Compared with this, it is possible to provide an electrode substrate film having a low electric resistance because a metal laminated thin wire having a larger line width can be applied.
  • the laminate film of the present invention composed of a transparent substrate made of a resin film and a laminate film provided on the transparent substrate,
  • the laminated film has a metal absorption layer having a thickness of 20 nm or more and 30 nm or less and a second metal layer as counted from the transparent substrate side, and
  • the optical constant of the metal absorption layer in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4,
  • the electrode board film of this invention is manufactured simply and reliably by carrying out the etching process of the said laminated film of the laminated body film which concerns on this invention, and wiring processing the metal lamination
  • FIG. 1A is a cross-sectional view showing the structure of a laminate film according to the present invention
  • FIG. 1B is a partially enlarged view of FIG. 1A
  • FIG. 1C is an electrode substrate film according to the present invention.
  • Sectional drawing which shows a structure.
  • the graph which shows the relationship between the wavelength (nm) and refractive index (n) in each metal absorption layer each formed on film-forming conditions AE.
  • the relationship between the wavelength (nm) and the reflectance (%) in each of the metal absorption layers having a film thickness of 0 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, and 30 nm formed under the film forming condition E (oxygen concentration 33%) is shown.
  • Graph diagram Explanatory drawing of the film-forming apparatus (sputtering web coater) which implements the vacuum film-forming method which forms a metal absorption layer and a metal layer on the transparent substrate which consists of a resin film.
  • Optical constant (refractive index, extinction coefficient) and film thickness condition of metal absorbing layer (1-1) As an example of vacuum film forming method, when forming metal absorbing layer by sputtering method, apparatus for performing sputtering method The metal absorption layer is formed while introducing a reactive gas such as oxygen or nitrogen gas into the film (called a sputtering web coater, and a sputtering target as a film forming material is attached to the cathode in the film forming apparatus).
  • a reactive gas such as oxygen or nitrogen gas
  • the And about the film-forming conditions reactive gas addition amount, such as oxygen and nitrogen gas
  • the shape of a film-forming apparatus the conveyance speed of the resin film which is a transparent substrate, the film-forming speed of a sputtering cathode, a reactive gas discharge pipe, Since it is affected by the positional relationship between the sputtering cathode and the resin film, it is difficult to define it uniquely. From the amount of the reactive gas introduced and the characteristic results of the formed metal absorption layer, the above-mentioned values are obtained for each film forming apparatus. Deposition conditions are derived.
  • the graph of FIG. 2 shows the wavelength (nm) of each metal absorption layer formed by oxygen-reactive sputtering deposition under the deposition conditions A to E described below using a Ni-based alloy (Ni—W) target. ) And the refractive index (n), and the graph of FIG. 3 shows the wavelength (nm) and extinction coefficient (k) in each metal absorption layer formed under the above film formation conditions A to E. Shows the relationship.
  • Film forming conditions A to E are film forming condition A (oxygen concentration 0%), film forming condition B (oxygen concentration 11%), film forming condition C (oxygen concentration 23%), film forming condition D (oxygen concentration). 28) and film-forming condition E (oxygen concentration 33%).
  • optical constant varies greatly depending on the degree of oxidation of the Ni-based alloy (Ni—W).
  • Oxygen concentration 0% has the lowest degree of oxidation, and the degree of oxidation increases toward film-forming condition E (oxygen concentration 33%).
  • the metal absorption layer it is difficult to specify the metal absorption layer to be formed by the film forming material (metal material such as Ni-based alloy) and the film forming conditions (addition amount of reactive gas such as oxygen and nitrogen gas). It is desirable to specify with a constant.
  • the graphs of FIGS. 4 to 8 show, as an example, a film thickness of 80 nm on a metal absorption layer formed on a resin film (PET: polyethylene terephthalate film) according to film formation conditions A to E.
  • PET polyethylene terephthalate film
  • Each of the laminated films on which the copper (metal layer) is formed shows spectral reflection characteristics due to reflection at each interface between the PET film and the metal absorption layer and between the metal absorption layer and the metal layer (copper).
  • the film thickness of the metal absorption layer is changed every 5 nm in the range of 0 nm (no metal absorption layer) to 30 nm.
  • the spectral reflection characteristics under the film forming condition A oxygen concentration 0%
  • the spectral reflection characteristic under the film forming condition E oxygen concentration 33%) with the highest degree of oxidation of the metal absorption layer has a low average reflectance, but the flatness of the spectral reflection characteristic (maximum reflection). It is confirmed that the difference between the reflectance and the minimum reflectance is large.
  • the average reflectance in the visible wavelength region (400 to 780 nm) is 20% or less, and the flatness of the spectral reflection characteristics (difference between the highest reflectance and the lowest reflectance) is 10% or less.
  • the metal absorbing layer satisfying the condition that is, the metal absorbing layer satisfying the condition that the spectral reflectance is low and the spectral reflectance in the visible wavelength region is uniform
  • a metal absorption layer having a film thickness of 20 nm or more and 30 nm or less and having a film thickness of (oxygen concentration 23%) and film formation condition D (oxygen concentration 28%) is selected.
  • optical constants reffractive index, extinction
  • visible wavelength region 400 to 780 nm
  • film formation condition C oxygen concentration 23%)
  • film formation condition D oxygen concentration 28%)
  • Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, Is guided.
  • Coefficient is the above condition, that is, Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4,
  • the metal absorption layer has an average reflectance of 20 in the visible wavelength region (400 to 780 nm) due to reflection at each interface between the PET film and
  • the spectral reflectance is low and the spectral reflectance in the visible wavelength region is uniform.
  • the material of the metal absorption layer is not limited to the above-described Ni-based alloy (Ni—W), and is, for example, selected from Ni alone or Ti, Al, V, Ta, Si, Cr, Ag, Mo, and Cu. Ni-based alloy to which more than one kind of element was added and Cu alone or one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Ni were added It has been confirmed that the metal absorption layer is formed of a Cu-based alloy.
  • Laminate film and electrode substrate film according to the present invention (2-1) Laminate film according to the present invention
  • the laminate film according to the present invention constituted by the laminated film
  • the laminated film has a metal absorption layer 41 having a first layer thickness of 20 nm to 30 nm and a second metal layer 40 counted from the transparent substrate 42 side, and
  • the optical constant of the metal absorption layer 41 in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive
  • the average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface between the transparent substrate 42 and the metal absorption layer 41 and between the metal absorption layer 41 and the metal layer 40 is 20% or less.
  • the difference between the maximum transmittance and the minimum transmittance in the visible wavelength region (400 to 780 nm) is 10% or less.
  • the laminated film has a second metal absorption layer whose thickness of the third layer is 20 nm or more and 30 nm or less counting from the transparent substrate 42 side, and
  • the optical constant of the second metal absorption layer in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive
  • Electrode Substrate Film According to the Present Invention As shown in FIG. 1 (C), a transparent substrate 52 made of a resin film, and a circuit pattern having a mesh structure provided on the transparent substrate 52 and made of metal laminated thin wires
  • the electrode substrate film according to the present invention having The metal multilayer thin wire has a line width of 20 ⁇ m or less, and the first layer has a film thickness of 20 nm or more and 30 nm or less and the second metal layer 50 counted from the transparent substrate 52 side.
  • the optical constant of the metal absorption layer 51 in the visible wavelength region (400 to 780 nm) is Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, And
  • the average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface between the transparent substrate 52 and the metal absorbing layer 51 and between the metal absorbing layer 51 and the metal layer 50 is 20% or less, and the visible wavelength region (400 to The difference between the maximum transmittance and the minimum transmittance at 780
  • Constituent material of laminate film and electrode substrate film according to the present invention (3-1) Resin film constituting transparent substrate As a material of the resin film applied to the laminate film and electrode substrate film according to the present invention Specific examples thereof include polyethylene terephthalate (PET), polyether sulfone (PES), polyarylate (PAR), polycarbonate (PC), polyolefin (PO), triacetyl cellulose (TAC) and norbornene.
  • PET polyethylene terephthalate
  • PES polyether sulfone
  • PAR polyarylate
  • PC polycarbonate
  • PO polyolefin
  • TAC triacetyl cellulose
  • norbornene resin materials representative examples include ZEONOR (trade name) manufactured by ZEON Corporation, Arton (trade name) manufactured by JSR Corporation, and the like.
  • the electrode substrate film according to the present invention is used for a “touch panel” or the like, it is desirable that the resin film has excellent transparency in the visible wavelength region.
  • the film material of the metal absorbing layer according to the present invention is Ni alone, or Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu.
  • An added Cu-based alloy is preferable.
  • the metal absorption layer is formed by a vacuum film forming method using the above Ni simple substance, Ni-based alloy, Cu simple substance or Cu-based alloy as a film forming material, and introducing a reactive gas into the film forming apparatus.
  • the vacuum film forming method include magnetron sputtering, ion beam sputtering, vacuum deposition, ion plating, CVD, and the like, and the reactive gas includes a single gas of oxygen and nitrogen or a mixed gas thereof, or And a mixed gas containing oxygen and nitrogen as main components and containing argon or the like.
  • the optical constant (refractive index, extinction coefficient) at each wavelength of the metal absorption layer is greatly influenced by the degree of reaction, that is, the degree of oxidation or nitridation, and is not determined only by the constituent material of the metal absorption layer. .
  • the constituent material of the metal layer according to the present invention is not particularly limited as long as it is a metal having a low electrical resistance value.
  • a metal having a low electrical resistance value For example, Cu alone, or Ti, Al, V, W, Ta, Cu-based alloy to which one or more elements selected from Si, Cr, Ag are added, or Ag alone, or one or more selected from Ti, Al, V, W, Ta, Si, Cr, Cu Examples thereof include an Ag-based alloy to which an element is added.
  • Cu alone is desirable from the viewpoint of circuit pattern workability and resistance value.
  • the film thickness of the metal layer depends on the electrical characteristics and is not determined by optical elements, but is usually set to a film thickness at which transmitted light cannot be measured.
  • the desirable thickness of the metal layer is preferably 50 nm or more, more preferably 60 nm or more from the viewpoint of electrical resistance.
  • 5 ⁇ m (5000 nm) or less is preferable, and 3 ⁇ m (3000 nm) or less is more preferable.
  • this film-forming apparatus is called a sputtering web coater, and is used when a film-forming process is continuously and efficiently performed on the surface of a long resin film conveyed by a roll-to-roll method.
  • a film forming apparatus for a long resin film conveyed by a roll-to-roll method is provided in a vacuum chamber 10 as shown in FIG.
  • a predetermined film forming process is performed on the unrolled long resin film 12, and then the film is wound by a winding roll 24.
  • a can roll 16 that is rotationally driven by a motor is disposed in the middle of the conveyance path from the unwind roll 12 to the take-up roll 24. Inside the can roll 16, a coolant whose temperature is adjusted outside the vacuum chamber 10 circulates.
  • the pressure is reduced to an ultimate pressure of about 10 ⁇ 4 Pa and the pressure is adjusted to about 0.1 to 10 Pa by introducing a sputtering gas thereafter.
  • a known gas such as argon is used as the sputtering gas, and a gas such as oxygen or nitrogen is further added depending on the purpose.
  • the shape and material of the vacuum chamber 10 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used.
  • various devices such as a dry pump, a turbo molecular pump, and a cryocoil are incorporated in the vacuum chamber 10.
  • a free roll 13 for guiding the long resin film 12 and a tension sensor roll 14 for measuring the tension of the long resin film 12 are arranged in this order on the conveyance path from the unwinding roll 11 to the can roll 16. ing.
  • the long resin film 12 fed from the tension sensor roll 14 toward the can roll 16 is adjusted with respect to the peripheral speed of the can roll 16 by a motor-driven front feed roll 15 provided in the vicinity of the can roll 16.
  • the long resin film 12 can be brought into close contact with the outer peripheral surface of the can roll 16.
  • the conveyance path from the can roll 16 to the take-up roll 24 is a motor driven post-feed roll 21 that adjusts the peripheral speed of the can roll 16 and a tension sensor roll that measures the tension of the long resin film 12. 22 and a free roll 23 for guiding the long resin film 12 are arranged in this order.
  • the tension balance of the long resin film 12 is maintained by torque control using a powder clutch or the like.
  • the long resin film 12 is unwound from the unwinding roll 11 and wound around the winding roll 24 by the rotation of the can roll 16 and the motor-driven front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation. It has come to be taken.
  • a film is formed at a position facing a conveyance path defined on the outer peripheral surface of the can roll 16 (that is, a region around which the long resin film 12 is wound on the outer peripheral surface of the can roll 16).
  • Magnetron sputtering cathodes 17, 18, 19 and 20 are provided as means, and reactive gas discharge pipes 25, 26, 27, 28, 29, 30, 31, 32 for releasing reactive gas are installed in the vicinity thereof. Yes.
  • a plate-like target When carrying out the sputtering film formation of the metal absorption layer and the metal layer, a plate-like target can be used as shown in FIG. 9, but when the plate-like target is used, nodules (foreign substance growth) are generated on the target. There are things to do. When this becomes a problem, it is preferable to use a cylindrical rotary target that generates no nodules and has high target use efficiency.
  • control of the reactive gas (4-2-1) A method of discharging a reactive gas at a constant flow rate. (4-2-2) A method of releasing reactive gas to maintain a constant pressure. (4-2-3) A method of releasing reactive gas (impedance control) so that the impedance of the sputtering cathode becomes constant. (4-2-4) A method of releasing reactive gas (plasma emission control) so that the plasma intensity of sputtering is constant.
  • the present invention is made by etching the laminated film of the laminate film according to the present invention and wiring it into a metal laminated thin wire having a line width of 20 ⁇ m or less.
  • the electrode substrate film which concerns on can be obtained.
  • the electrode substrate film which concerns on this invention can be used for a touch panel by making the electrode (wiring) pattern of an electrode substrate film into the stripe form or grid
  • the transparent substrate, the metal absorbing layer, the metal absorbing layer, and the metal layer The average reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface is as low as 20% or less, and the difference between the maximum transmittance and the minimum transmittance in the visible wavelength region is uniform at 10% or less. Therefore, even under high-luminance illumination, a circuit pattern such as an electrode provided on a transparent substrate can be provided as an electrode substrate film that is extremely difficult to visually recognize.
  • a photoresist film is formed on the laminate film surface of the laminate film, exposed and developed so that the photoresist film remains at a position where a wiring pattern is to be formed, and the photoresist film is formed on the laminate film surface.
  • etching solution for the above chemical etching a hydrogen peroxide-based etching solution or a cerium ammonium nitrate aqueous solution can be used. Further, a ferric chloride aqueous solution, a cupric chloride aqueous solution, a hydrochloric acid acidic permanganate aqueous solution or acetic acid can be used. An acidic permanganate aqueous solution can also be used.
  • ferric chloride aqueous solution cupric chloride aqueous solution, hydrochloric acid acidic permanganate aqueous solution and acetic acid acidic permanganate aqueous solution.
  • An ellipsometer was used to measure the optical characteristics (refractive index and extinction coefficient) of the metal absorption layer, and a self-recording spectrophotometer was used to measure the spectral reflection characteristics.
  • Example 1 The film forming apparatus (sputtering web coater) shown in FIG. 9 was used, oxygen gas was used as the reactive gas, and the amount of reactive gas was controlled by the impedance control.
  • the can roll 16 is made of stainless steel having a diameter of 600 mm and a width of 750 mm, and the surface of the roll body is hard chrome plated.
  • the front feed roll 15 and the rear feed roll 21 are made of stainless steel having a diameter of 150 mm and a width of 750 mm, and hard chrome plating is applied to the surface of the roll body.
  • Reactive gas discharge pipes 25, 26, 27, 28, 29, 30, 31, 32 are installed on the upstream side and downstream side of each cathode 17, 18, 19, 20, and the cathode 17 absorbs metal.
  • a Cu target for the metal layer was attached to the Ni—W target for the layer and the cathodes 18, 19 and 20.
  • the resin film constituting the transparent substrate was a PET film having a width of 600 mm, and the can roll 16 was controlled to be cooled to 0 ° C.
  • the vacuum chamber 10 was evacuated to 5 Pa with a plurality of dry pumps, and further evacuated to 3 ⁇ 10 ⁇ 3 Pa using a plurality of turbo molecular pumps and cryocoils.
  • the above-mentioned oxygen gas is used as the reactive gas, and the oxygen gas is controlled by a piezo valve so as to have a predetermined concentration.
  • film formation condition A oxygen concentration 0%
  • film formation condition B oxygen concentration 11%)
  • film formation condition C oxygen concentration 23%)
  • film formation condition D oxygen concentration 28%)
  • film-forming condition E oxygen concentration 33%).
  • argon gas sputtering gas
  • a cathode is formed so that a metal layer (Cu layer) with a thickness of 80 nm is formed.
  • 18, 19, and 20 are power-controlled, and film thicknesses of 0 nm, 5 nm, 10 nm, 15 nm, 20 nm, and 25 nm formed under film forming conditions A (oxygen concentration 0%) to film forming conditions E (oxygen concentration 33%), respectively.
  • a metal layer (Cu layer) having a film thickness of 80 nm was formed on each 30 nm metal absorption layer to produce a plurality of types of laminate films according to the examples.
  • a photoresist film is formed on the surface of the laminate film (a laminate film composed of a metal absorption layer and a metal layer) of the laminate film, exposed and developed so that the photoresist film remains at a position where a wiring pattern is to be formed, and Then, the laminated film where the photoresist film does not exist on the laminated film surface was removed by chemical etching to produce the electrode substrate film according to the example.
  • the circuit pattern of electrodes and the like was a stripe with a wiring width of 5 ⁇ m and an interval of 300 ⁇ m.
  • a cerium ammonium nitrate aqueous solution was applied as an etching solution for chemical etching. Further, the chemical etching was performed by immersing the laminate film provided with the developed photoresist film in an etching solution.
  • the film For a plurality of types of laminate films according to Examples obtained by forming a metal layer (Cu layer) having a thickness of 80 nm, a PET film, a metal absorption layer, and a metal absorption layer are formed by a self-recording spectrophotometer from the PET film side. Spectral reflectance in the visible wavelength region (400 to 780 nm) due to reflection at each interface of the metal layer was measured.
  • a metal absorption layer having a thickness of 20 nm was formed under film formation conditions A to E, and a metal layer (Cu layer) having a thickness of 80 nm was formed on these metal absorption layers.
  • the optical constants (refractive index and extinction coefficient) in the visible wavelength range (400 to 780 nm) of film formation conditions A to E were measured from the PET film side with respect to the five types of laminate films according to the examples by an ellipsometer.
  • the optical constant is a constant that does not depend on the film thickness
  • the optical constant is measured with five types of laminate films on which the metal absorption layer with a film thickness of 20 nm is formed as described above.
  • the laminated film according to the example to be satisfied that is, the laminated film satisfying the condition that the spectral reflectance is low and the spectral reflectance in the visible wavelength region is uniform
  • Refractive index at a wavelength of 400 nm is 2.0 to 2.2, extinction coefficient is 1.8 to 2.1, Refractive index at a wavelength of 500 nm is 2.4 to 2.7, extinction coefficient is 1.9 to 2.3, Refractive index at a wavelength of 600 nm is 2.8 to 3.2, extinction coefficient is 1.9 to 2.5, Refractive index at a wavelength of 700 nm is 3.2 to 3.6, extinction coefficient is 1.7 to 2.5, Refractive index at a wavelength of 780 nm is 3.5 to 3.8, extinction coefficient is 1.5 to 2.4, It was confirmed that.
  • Metal absorption layer formed under film formation condition A (oxygen concentration 0%), film formation condition B (oxygen concentration 11%), film formation condition C (oxygen concentration 23%), film formation condition D (oxygen concentration 28%) could be etched around the wiring pattern without any remaining etching. Note that the metal absorption layer formed under the film-forming condition E (oxygen concentration 33%) was not suitable for practical use because etching residue was observed around the wiring pattern.
  • the conductive substrate film having a metal absorption layer with a thickness of 20 nm formed under the film formation conditions A, B, C, and D was visually observed from the metal absorption layer side.
  • the surface on the opposite side to the viewing side of the conductive substrate film was placed in contact with the liquid crystal display panel.
  • the conductive substrate film in which the metal absorption layer having a thickness of 20 nm is formed under the above film formation conditions C and D is more suitable than the conductive substrate film in which the metal absorption layer having a thickness of 20 nm is formed in the above film formation condition B. Visual recognition of the circuit pattern was more difficult.
  • the metal absorption layer according to the example is formed using a Ni—W target, even if another Ni alloy or Cu alloy target is used, the target film is within the above optical constant range. It was also confirmed that the material is not limited.
  • the electrode substrate film according to the present invention is industrially used for a “touch panel” installed on the surface of an FPD (flat panel display) because a circuit pattern such as an electrode provided on a transparent substrate is hardly visible even under high luminance illumination. It has the possibility of

Abstract

【課題】高輝度照明下においても金属製細線から成る回路パターンが視認され難い電極基板フィルムとこれに用いる積層体フィルムを提供する。 【解決手段】透明基板52と金属製の積層細線を有する電極基板フィルムは、積層細線が、線幅20μm以下で透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層51と第2層目の金属層50を有し、可視波長領域(400~780nm)における金属吸収層の光学定数が、波長400nmの屈折率が2.0~2.2、消衰係数が1.8~2.1、波長500nmの屈折率が2.4~2.7、消衰係数が1.9~2.3、波長600nmの屈折率が2.8~3.2、消衰係数が1.9~2.5、波長700nmの屈折率が3.2~3.6、消衰係数が1.7~2.5、波長780nmの屈折率が3.5~3.8、消衰係数が1.5~2.4で、透明基板と金属吸収層の界面反射による可視波長領域の平均反射率が20%以下、可視波長領域の最高透過率と最低透過率の差が10%以下であることを特徴とする。

Description

積層体フィルムと電極基板フィルムおよびこれ等の製造方法
 本発明は、樹脂フィルムから成る透明基板と該基板に設けられた積層膜を有する積層体フィルムと、該積層体フィルムを用いて製造されかつタッチパネル等に利用される電極基板フィルムに係り、特に、高輝度照明下においても電極等の回路パターンが視認され難い電極基板フィルムと積層体フィルムおよびこれ等の製造方法に関するものである。
 近年、携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等のフラットパネルディスプレイ(FPD)の表面に設置する「タッチパネル」が普及し始めている。
 上記「タッチパネル」には、大きく分けて抵抗型と静電容量型が存在する。「抵抗型のタッチパネル」は、樹脂フィルムから成る透明基板と、基板上に設けられたX座標(またはY座標)検知電極シート並びにY座標(またはX座標)検知電極シートと、これ等シートの間に設けられた絶縁体スペーサーとで主要部が構成されている。そして、上記X座標検知電極シートとY座標検知電極シートは空間的に隔たっているが、ペン等で押さえられたときに両座標検知電極シートは電気的に接触してペンの触った位置(X座標、Y座標)が判るようになっており、ペンを移動させればその都度座標を認識して、最終的に文字の入力が行なえる仕組みとなっている。他方、「静電容量型のタッチパネル」は、絶縁シートを介してX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートが積層され、これ等の上にガラス等の絶縁体が配置された構造を有している。そして、ガラス等の上記絶縁体に指を近づけたとき、その近傍のX座標検知電極、Y座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。
 そして、電極等の回路パターンを構成する導電性材料として、従来、ITO(酸化インジウム-酸化錫)等の透明導電膜が広く用いられていた(特許文献1参照)。また、タッチパネルの大型化に伴い、特許文献2や特許文献3等に開示されたメッシュ構造の金属製細線も使用され始めている。
 ところで、上記透明導電膜と金属製細線を較べた場合、透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンが殆ど視認されない利点を有するが、金属製細線より電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。他方、金属製細線は、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に向いているが、可視波長領域における反射率が高いため、例え微細なメッシュ構造に加工されたとしても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。
 上記金属製細線の可視波長領域における反射率を低減させるには金属膜と誘電体多層膜を組み合わせて反射防止膜を構成する方法が考えられる。しかし、電極等の回路パターンを構成する金属製細線はエッチングによって形成するため、金属膜と誘電体多層膜とを組み合わせる方法は好ましくない。
 このような技術的背景の下、樹脂フィルムと金属膜との間に電解めっき法等により黒化層を形成し(特許文献4参照)、あるいは、樹脂フィルムと金属膜との間に金属酸化物から成る光吸収層(金属吸収層)を設ける(特許文献5参照)等して樹脂フィルム側から観測される金属膜の反射を低減させる方法が提案されている。
特開2003-151358号公報(請求項2参照) 特開2011-018194号公報(請求項1参照) 特開2013-069261号公報(段落0004参照) 特開2014-142462号公報(請求項5、段落0038参照) 特開2013-225276号公報(請求項1、段落0041参照)
 しかし、特許文献4~5で提案されている黒化層や金属吸収層の分光光学特性によっては、黒化層や金属吸収層を設けることでかえって反射を増加させてしまうことがあり、構成材料や成膜条件の選定に困難が伴う問題が存在した。
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、高輝度照明下においても上記金属製細線から成る回路パターンが視認され難い電極基板フィルムを提供し、この電極基板フィルムの製造に用いられる積層体フィルムを提供すると共に、これ等積層体フィルムと電極基板フィルムの製造方法を提供することにある。
 そこで、上記課題を解決するため本発明者が金属吸収層の成膜実験と光学薄膜シミュレーションを繰り返し行ったところ、可視波長領域(400~780nm)における分光反射率が均一でかつ分光反射率が低くなる最適な金属吸収層の光学定数(屈折率、消衰係数)と膜厚条件が存在することを見出すに至り、更に、可視波長領域の反射率を低減できることにより電極等回路パターンを構成する金属製細線の線幅を大きくできることも確認された。本発明はこのような技術的発見により完成されたものである。
 すなわち、本発明に係る第1の発明は、
 樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜とで構成される積層体フィルムにおいて、
 上記積層膜が、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、かつ、
 可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、
 透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とし、
 第2の発明は、
 第1の発明に記載された積層体フィルムにおいて、
 上記積層膜が、透明基板側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
 可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であることを特徴とし、
 また、第3の発明は、
 第1の発明または第2の発明に記載された積層体フィルムにおいて、
 上記金属吸収層および第2の金属吸収層が、Ni単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、または、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金を成膜材料とし、かつ、成膜装置内に反応性ガスを導入した真空成膜法により形成されていることを特徴とし、
 第4の発明は、
 第1の発明に記載された積層体フィルムにおいて、
 上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とするものである。
 次に、本発明に係る第5の発明は、
 樹脂フィルムから成る透明基板と、該透明基板に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
 上記金属製の積層細線が、線幅20μm以下で、かつ、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、
 可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、
 透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とし、
 第6の発明は、
 第5の発明に記載された電極基板フィルムにおいて、
 上記金属製の積層細線が、透明基板側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
 可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であることを特徴とし、
 また、第7の発明は、
 第5の発明または第6の発明に記載された電極基板フィルムにおいて、
 上記金属吸収層および第2の金属吸収層が、Ni単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、または、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金を成膜材料とし、かつ、成膜装置内に反応性ガスを導入した真空成膜法により形成されていることを特徴とし、
 第8の発明は、
 第5の発明に記載された電極基板フィルムにおいて、
 上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とするものである。
 次に、本発明に係る第9の発明は、
 樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜とで構成される積層体フィルムの製造方法において、
 上記積層膜の透明基板側から数えて第1層目として、
 膜厚が20nm以上30nm以下で、かつ、可視波長領域(400~780nm)における光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
である金属吸収層を真空成膜法により形成する第1工程と、
 上記積層膜の透明基板側から数えて第2層目として、
 金属層を真空成膜法により形成する第2工程を具備し、
 透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とする。
 更に、第10の発明は、
 第9の発明に記載された積層体フィルムの製造方法において、
 上記積層膜の透明基板側から数えて第3層目として、
 膜厚が20nm以上30nm以下で、かつ、可視波長領域(400~780nm)における光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
である第2の金属吸収層を真空成膜法により形成する第3工程を具備することを特徴とし、
 第11の発明は、
 第9の発明または第10の発明に記載された積層体フィルムの製造方法において、
 真空成膜法を実施する成膜装置内に第3の発明に記載された成膜材料と反応性ガスを導入し、かつ、成膜装置内における成膜条件を制御して屈折率と消衰係数の光学定数が調整された上記金属吸収層および第2の金属吸収層を形成することを特徴とし、
 第12の発明は、
 第11の発明に記載された積層体フィルムの製造方法において、
 酸素と窒素の単体ガス若しくはこれ等の混合ガス、または、酸素と窒素を主成分とする混合ガスにより上記反応性ガスが構成されていることを特徴とし、
 また、本発明に係る第13の発明は、
 樹脂フィルムから成る透明基板と、該透明基板に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
 第1の発明~第4の発明のいずれかに記載された積層体フィルムの積層膜をエッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とするものである。
 樹脂フィルムから成る透明基板と、該透明基板に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する本発明の電極基板フィルムは、
 上記金属製の積層細線が、線幅20μm以下で、かつ、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、
 可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴としている。
 そして、透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下と低く、かつ、可視波長領域における最高透過率と最低透過率の差も10%以下と均一になっているため、高輝度照明下においても透明基板に設けられた電極等の回路パターンが視認され難い電極基板フィルムを提供でき、更に、従来と比較して線幅が大きい金属製の積層細線を適用できるため電気抵抗値の低い電極基板フィルムを提供できる効果を有する。
 更に、樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜とで構成される本発明の積層体フィルムは、
 上記積層膜が、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、かつ、
 可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴としている。
 そして、本発明に係る積層体フィルムの上記積層膜をエッチング処理して、線幅が20μm以下である金属製の積層細線を配線加工することにより本発明の電極基板フィルムを簡便かつ確実に製造することができる効果を有す。
図1(A)は本発明に係る積層体フィルムの構成を示す断面図、図1(B)は図1(A)の部分拡大図、図1(C)は本発明に係る電極基板フィルムの構成を示す断面図。 成膜条件A~Eでそれぞれ形成された各金属吸収層における波長(nm)と屈折率(n)との関係を示すグラフ図。 成膜条件A~Eでそれぞれ形成された各金属吸収層における波長(nm)と消衰係数(k)との関係を示すグラフ図。 成膜条件A(酸素濃度0%)で形成された膜厚0nm、5nm、10nm、15nm、20nm、25nmおよび30nmの各金属吸収層における波長(nm)と反射率(%)との関係を示すグラフ図。 成膜条件B(酸素濃度11%)で形成された膜厚0nm、5nm、10nm、15nm、20nm、25nmおよび30nmの各金属吸収層における波長(nm)と反射率(%)との関係を示すグラフ図。 成膜条件C(酸素濃度23%)で形成された膜厚0nm、5nm、10nm、15nm、20nm、25nmおよび30nmの各金属吸収層における波長(nm)と反射率(%)との関係を示すグラフ図。 成膜条件D(酸素濃度28%)で形成された膜厚0nm、5nm、10nm、15nm、20nm、25nmおよび30nmの各金属吸収層における波長(nm)と反射率(%)との関係を示すグラフ図。 成膜条件E(酸素濃度33%)で形成された膜厚0nm、5nm、10nm、15nm、20nm、25nmおよび30nmの各金属吸収層における波長(nm)と反射率(%)との関係を示すグラフ図。 樹脂フィルムから成る透明基板上に金属吸収層と金属層を形成する真空成膜法を実施する成膜装置(スパッタリングウェブコータ)の説明図。
 以下、本発明の実施の形態について図面を用いて詳細に説明する。
(1)金属吸収層の光学定数(屈折率、消衰係数)と膜厚条件
(1-1)真空成膜法の一例としてスパッタリング法により金属吸収層を形成する場合、スパッタリング法を実施する装置(スパッタリングウェブコータと称され、成膜装置内に成膜材料であるスパッタリングターゲットがカソードに取り付けられている)内に酸素や窒素ガス等の反応性ガスを導入しながら上記金属吸収層が形成される。そして、成膜条件(酸素や窒素ガス等の反応性ガス添加量)については、成膜装置の形状、透明基板である樹脂フィルムの搬送速度、スパッタリングカソードの成膜速度、反応性ガス放出パイプとスパッタリングカソードおよび樹脂フィルムの位置関係等の影響を受けるため一義的に定めることは困難で、導入した反応性ガスの添加量と成膜された金属吸収層の特性結果から、成膜装置毎に上記成膜条件が導かれる。
(1-2)そして、成膜実験と光学薄膜シミュレーションを繰り返し行った結果、本発明者は、上述したように可視波長領域(400~780nm)における分光反射率が均一でかつ分光反射率が低くなる最適な金属吸収層の光学定数(屈折率、消衰係数)と膜厚条件が存在することを発見している。
(1-3)図2のグラフ図は、Ni系合金(Ni-W)ターゲットを用い、以下に述べる成膜条件A~Eで酸素反応性スパッタリング成膜された各金属吸収層における波長(nm)と屈折率(n)との関係を示し、また、図3のグラフ図は、上記成膜条件A~Eで成膜された各金属吸収層における波長(nm)と消衰係数(k)との関係を示している。
 尚、成膜条件A~Eは、成膜条件A(酸素濃度0%)、成膜条件B(酸素濃度11%)、成膜条件C(酸素濃度23%)、成膜条件D(酸素濃度28%)、および、成膜条件E(酸素濃度33%)である。
 そして、図2と図3のグラフ図から、Ni系合金(Ni-W)の酸化の度合いで光学定数(屈折率、消衰係数)が大きく変化していることが確認され、成膜条件A(酸素濃度0%)が最も酸化度が低く、成膜条件E(酸素濃度33%)に向かって酸化度が高くなっている。
 従って、形成される金属吸収層について、成膜材料(Ni系合金等の金属材料)や成膜条件(酸素や窒素ガス等の反応性ガス添加量)で特定することは困難であり、その光学定数で規定することが望ましい。
(1-4)次に、図4~図8のグラフ図は、成膜条件A~Eにより樹脂フィルム(PET:ポリエチレンテレフタレートフィルム)に形成された金属吸収層の上に、一例として膜厚80nmの銅(金属層)がそれぞれ成膜された各積層体フィルムについて、PETフィルムと金属吸収層および金属吸収層と金属層(銅)の各界面での反射による分光反射特性を示している。尚、金属吸収層の膜厚は0nm(金属吸収層が存在しない)~30nmの範囲で5nm毎に変化させている。
 そして、図4のグラフ図から、金属吸収層の酸化度が最も低い成膜条件A(酸素濃度0%)の分光反射特性は、平均反射率が高く、膜厚が大きくなるにつれて反射率の変化量は減少することが確認される。他方、図8のグラフ図から、金属吸収層の酸化度が最も高い成膜条件E(酸素濃度33%)の分光反射特性は、平均反射率は低いが、分光反射特性の平坦性(最高反射率と最低反射率の差)が大きいことが確認される。
(1-5)そこで、可視波長域(400~780nm)における平均反射率が20%以下で、かつ、分光反射特性の平坦性(最高反射率と最低反射率の差)が10%以下である条件を満たす金属吸収層(すなわち、分光反射率が低くかつ可視波長領域における分光反射率が均一である条件を満たす金属吸収層)を図4~図8のグラフ図から求めると、成膜条件C(酸素濃度23%)および成膜条件D(酸素濃度28%)でそれぞれ成膜され、かつ、その膜厚が20nm以上30nm以下の金属吸収層が選定される。
 そして、成膜条件C(酸素濃度23%)および成膜条件D(酸素濃度28%)でそれぞれ成膜された金属吸収層の可視波長域(400~780nm)における光学定数(屈折率、消衰係数)を図2と図3のグラフ図から求めると、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
が導かれる。
(1-6)そして、PETフィルム上に成膜された金属吸収層の膜厚が20nm以上30nm以下で、可視波長域(400~780nm)における上記金属吸収層の光学定数(屈折率、消衰係数)が上記条件、すなわち、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
を具備する場合、その金属吸収層は、PETフィルムと金属吸収層および金属吸収層と金属層(一例として銅)の各界面での反射による可視波長域(400~780nm)における平均反射率が20%以下で、かつ、分光反射特性の平坦性(最高反射率と最低反射率の差)が10%以下である条件を満たすため、樹脂フィルム(PETフィルム)側から観測される金属層の反射は低減される。
 尚、膜厚が20nm以上30nm以下でかつ上記光学定数(屈折率、消衰係数)の条件を具備することで、分光反射率が低くかつ可視波長領域における分光反射率が均一となる特性を有する金属吸収層の材料は、上述したNi系合金(Ni-W)に限定されず、例えば、Ni単体、若しくは、Ti、Al、V、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、および、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金で金属吸収層を構成した場合においても成立することが確認されている。
(2)本発明に係る積層体フィルムと電極基板フィルム
(2-1)本発明に係る積層体フィルム
 図1(A)に示すように樹脂フィルムから成る透明基板42と該透明基板42に設けられた積層膜とで構成される本発明に係る積層体フィルムは、
 上記積層膜が、透明基板42側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層41と第2層目の金属層40を有し、かつ、
 可視波長領域(400~780nm)における上記金属吸収層41の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、
 図1(B)に示すように透明基板42と金属吸収層41および金属吸収層41と金属層40の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とし、
 また、上記積層体フィルムにおいて、
 上記積層膜が、透明基板42側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
 可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であることを特徴とするものである。
(2-2)本発明に係る電極基板フィルム
 図1(C)に示すように樹脂フィルムから成る透明基板52と、該透明基板52に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する本発明に係る電極基板フィルムは、
 上記金属製の積層細線が、線幅20μm以下で、かつ、透明基板52側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層51と第2層目の金属層50を有し、
 可視波長領域(400~780nm)における上記金属吸収層51の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であると共に、
 透明基板52と金属吸収層51および金属吸収層51と金属層50の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とし、
 また、上記電極基板フィルムにおいて、
 金属製の積層細線が、透明基板52側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
 可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であることを特徴とするものである。
(3)本発明に係る積層体フィルムと電極基板フィルムの構成材料
(3-1)透明基板を構成する樹脂フィルム
 本発明に係る積層体フィルムと電極基板フィルムに適用される樹脂フィルムの材質としては特に限定されることはなく、その具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)およびノルボルネンの樹脂材料から選択された樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして、日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。
 尚、本発明に係る電極基板フィルムは「タッチパネル」等に使用するため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。
(3-2)金属吸収層
 本発明に係る金属吸収層の膜材料としては、上述したようにNi単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、および、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金が好ましい。
 また、金属吸収層は、上記Ni単体若しくはNi系合金、Cu単体若しくはCu系合金を成膜材料とし、かつ、成膜装置内に反応性ガスを導入した真空成膜法により形成される。上記真空成膜方法としては、マグネトロンスパッタ、イオンビームスパッタ、真空蒸着、イオンプレーティング、CVD等があり、また、上記反応性ガスとしては、酸素と窒素の単体ガス若しくはこれ等の混合ガス、または、酸素と窒素を主成分としアルゴン等を含む混合ガスが挙げられる。
 そして、金属吸収層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち酸化度あるいは窒化度に大きく影響され、金属吸収層の構成材料だけで決定されるものではない。
(3-3)金属層
 本発明に係る金属層の構成材料としては、電気抵抗値が低い金属であれば特に限定されず、例えば、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、または、Ag単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、特に、Cu単体が、回路パターンの加工性や抵抗値の観点から望ましい。
 また、金属層の膜厚は電気特性に依存するものであり、光学的な要素から決定されるものではないが、通常、透過光が測定不能なレベルの膜厚に設定される。
 そして、金属層の望ましい膜厚は、電気抵抗の観点からは50nm以上が好ましく、60nm以上がより好ましい。一方、金属層を配線パターンに加工する加工性の観点からは5μm(5000nm)以下が好ましく、3μm(3000nm)以下がより好ましい。
(4)真空成膜法を実施する成膜装置
(4-1)スパッタリングウェブコータ
 真空成膜法の一例としてスパッタリング法を挙げ、その成膜装置について説明する。
 尚、この成膜装置はスパッタリングウェブコータと称され、ロールツーロール方式で搬送される長尺樹脂フィルム表面に連続的に効率よく成膜処理を施す場合に用いられる。
 具体的に説明すると、ロールツーロール方式で搬送される長尺樹脂フィルムの成膜装置(スパッタリングウェブコータ)は、図9に示すように真空チャンバー10内に設けられており、巻き出しロール11から巻き出された長尺樹脂フィルム12に対して所定の成膜処理を行った後、巻き取りロール24で巻き取るようになっている。これら巻き出しロール12から巻き取りロール24までの搬送経路の途中に、モータで回転駆動されるキャンロール16が配置されている。このキャンロール16の内部には、真空チャンバー10の外部で温調された冷媒が循環している。
 真空チャンバー10内では、スパッタリング成膜のため、到達圧力10-4Pa程度までの減圧と、その後のスパッタリングガスの導入による0.1~10Pa程度の圧力調整が行われる。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素や窒素等のガスが添加される。真空チャンバー10の形状や材質は、このような減圧状態に耐え得るものであれば特に限定はなく種々のものを使用することができる。また、真空チャンバー10内を減圧してその状態を維持するため、真空チャンバー10にはドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の装置(図示せず)が組み込まれている。
 巻き出しロール11からキャンロール16までの搬送経路には、長尺樹脂フィルム12を案内するフリーロール13と、長尺樹脂フィルム12の張力の測定を行う張力センサロール14とがこの順で配置されている。また、張力センサロール14から送り出されてキャンロール16に向かう長尺樹脂フィルム12は、キャンロール16の近傍に設けられたモータ駆動の前フィードロール15によってキャンロール16の周速度に対する調整が行われ、これによりキャンロール16の外周面に長尺樹脂フィルム12を密着させることができる。
 キャンロール16から巻き取りロール24までの搬送経路も、上記同様に、キャンロール16の周速度に対する調整を行うモータ駆動の後フィードロール21、長尺樹脂フィルム12の張力の測定を行う張力センサロール22および長尺樹脂フィルム12を案内するフリーロール23がこの順に配置されている。
 上記巻き出しロール11および巻き取りロール24では、パウダークラッチ等によるトルク制御によって長尺樹脂フィルム12の張力バランスが保たれている。また、キャンロール16の回転とこれに連動して回転するモータ駆動の前フィードロール15、後フィードロール21により、巻き出しロール11から長尺樹脂フィルム12が巻き出されて巻き取りロール24に巻き取られるようになっている。
 キャンロール16の近傍には、キャンロール16の外周面上に画定される搬送経路(すなわち、キャンロール16外周面の内の長尺樹脂フィルム12が巻き付けられる領域)に対向する位置に、成膜手段としてのマグネトロンスパッタリングカソード17、18、19および20が設けられ、この近傍に反応性ガスを放出する反応性ガス放出パイプ25、26、27、28、29、30、31、32が設置されている。
 上記金属吸収層と金属層のスパッタリング成膜を実施する際、図9に示すように板状のターゲットを使用できるが、板状ターゲットを用いた場合、ターゲット上にノジュール(異物の成長)が発生することがある。これが問題になる場合は、ノジュールの発生がなくかつターゲットの使用効率も高い円筒形のロータリーターゲットを使用することが好ましい。
(4-2)反応性スパッタリング
 上記金属吸収層を形成する目的で酸化物ターゲット若しくは窒化物ターゲットが用いられた場合、成膜速度が遅く量産に適さないため、高速成膜が可能な金属ターゲットを採用し、かつ、成膜中に上記反応性ガスを制御しながら導入する方法が採られる。
 上記反応性ガスの制御として、以下の4つの方法が知られている。
(4-2-1)一定流量の反応性ガスを放出する方法。
(4-2-2)一定圧力を保つように反応性ガスを放出する方法。
(4-2-3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法。
(4-2-4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法。
(5)電極基板フィルムの製造方法
(5-1)本発明に係る積層体フィルムの積層膜をエッチング処理して、線幅が20μm以下である金属製の積層細線に配線加工することにより本発明に係る電極基板フィルムを得ることができる。そして、電極基板フィルムの電極(配線)パターンをタッチパネル用のストライプ状若しくは格子状とすることで、本発明に係る電極基板フィルムをタッチパネルに用いることができる。
 そして、電極(配線)パターンに配線加工された金属製の積層細線は本発明に係る積層体フィルムの積層構造を維持していることから、透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下と低く、かつ、可視波長領域における最高透過率と最低透過率の差も10%以下と均一になっているため、高輝度照明下においても透明基板に設けられた電極等の回路パターンが極めて視認され難い電極基板フィルムとして提供することができる。
(5-2)そして、本発明に係る積層体フィルムから電極基板フィルムに配線加工するには、公知のサブトラクティブ法により加工が可能である。
 サブトラクティブ法は、積層体フィルムの積層膜表面にフォトレジスト膜を形成し、配線パターンを形成したい箇所にフォトレジスト膜が残るように露光、現像し、かつ、上記積層膜表面にフォトレジスト膜が存在しない箇所の積層膜を化学エッチングにより除去して配線パターンを形成する方法である。
 上記化学エッチングのエッチング液としては、過酸化水素系エッチング液、硝酸セリウムアンモニウム水溶液を用いることができ、更に、塩化第二鉄水溶液、塩化第二銅水溶液、塩酸酸性の過マンガン酸塩水溶液や酢酸酸性の過マンガン酸塩水溶液も用いることができる。尚、化学エッチングする金属吸収層によっては、上記塩化第二鉄水溶液、塩化第二銅水溶液、塩酸酸性の過マンガン酸塩水溶液や酢酸酸性の過マンガン酸塩水溶液の濃度を調整する必要がある。
 以下、本発明の実施例について具体的に説明する。
 尚、金属吸収層に係る光学特性(屈折率、消衰係数)の測定にはエリプソメータを用い、分光反射特性の測定には自記分光光度計を用いた。
[実施例1]
 図9に示す成膜装置(スパッタリングウェブコータ)を用い、かつ、反応性ガスには酸素ガスを用いると共に、上記インピーダンス制御により反応性ガス量を制御した。
 尚、キャンロール16は、直径600mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。前フィードロール15と後フィードロール21は直径150mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。また、各カソード17、18、19、20の上流側と下流側に反応性ガス放出パイプ25、26、27、28、29、30、31、32を設置し、かつ、カソード17には金属吸収層用のNi-Wターゲット、カソード18、19と20には金属層用のCuターゲットを取り付けた。
 また、透明基板を構成する樹脂フィルムには幅600mmのPETフィルムを用い、キャンロール16は0℃に冷却制御した。また、真空チャンバー10を複数台のドライポンプにより5Paまで排気した後、更に、複数台のターボ分子ポンプとクライオコイルを用いて3×10-3Paまで排気した。
(1)電極基板フィルムを製造するための積層体フィルムの製造
 そして、樹脂フィルムの搬送速度を4m/分にした後、上記反応性ガス放出パイプ25、26からアルゴンガス(スパッタリングガス)を300sccm導入し、かつ、膜厚0nm、5nm、10nm、15nm、20nm、25nm、30nmの金属吸収層(Ni-Wの酸化膜)が成膜されるようにカソード17を電力制御した。また、反応性ガス(酸素ガス)は反応性ガス放出パイプ25、26へ混合ガスとして導入している。
 反応性ガスには上記酸素ガスを用い、かつ、所定の濃度になるように酸素ガスをピエゾバルブで制御している。そして、導入する酸素ガス濃度の条件として、成膜条件A(酸素濃度0%)、成膜条件B(酸素濃度11%)、成膜条件C(酸素濃度23%)、成膜条件D(酸素濃度28%)、および、成膜条件E(酸素濃度33%)とした。
 尚、酸素ガスの導入量により成膜速度の低下が予測されるので、目標とする金属吸収層の膜厚を得るためにはスパッタ電力の調整が必要になる。
 一方、上記反応性ガス放出パイプ27、28、29、30、31、32からアルゴンガス(スパッタリングガス)を300sccm導入し、かつ、膜厚80nmの金属層(Cu層)が形成されるようにカソード18、19と20を電力制御し、成膜条件A(酸素濃度0%)~成膜条件E(酸素濃度33%)でそれぞれ成膜された膜厚0nm、5nm、10nm、15nm、20nm、25nm、30nmの各金属吸収層上に、膜厚80nmの金属層(Cu層)を成膜して実施例に係る複数種類の積層体フィルムを製造した。
(2)電極基板フィルムの製造
 次に、得られた複数種類の積層体フィルムを用い、公知のサブトラクティブ法により実施例に係る電極基板フィルムを製造した。
 すなわち、上記積層体フィルムの積層膜(金属吸収層と金属層から成る積層膜)表面にフォトレジスト膜を形成し、配線パターンを形成したい箇所にフォトレジスト膜が残るように露光、現像し、かつ、上記積層膜表面にフォトレジスト膜が存在しない箇所の積層膜を化学エッチングにより除去して実施例に係る電極基板フィルムを製造した。
 電極等回路パターンは、配線幅5μm、間隔300μmのストライプとした。
 尚、この実施例においては、化学エッチングのエッチング液として硝酸セリウムアンモニウム水溶液を適用した。また、化学エッチングは、現像後のフォトレジスト膜が付された積層体フィルムをエッチング液に浸漬して行った。
「確 認」
(1)上記成膜条件A~Eで、かつ、その膜厚が0nm、5nm、10nm、15nm、20nm、25nm、30nmとなるようにPETフィルム上に金属吸収層をそれぞれ成膜した後、膜厚80nmの金属層(Cu層)を成膜して得られた実施例に係る複数種類の積層体フィルムについて、PETフィルム側から、自記分光光度計によりPETフィルムと金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における分光反射率を測定した。
 この結果を図4~図8のグラフ図に示す。
(2)一方、成膜条件A~Eで膜厚20nmの金属吸収層をそれぞれ成膜し、これ等金属吸収層上に膜厚80nmの金属層(Cu層)を成膜して得られた実施例に係る5種類の積層体フィルムについて、PETフィルム側から、エリプソメータにより成膜条件A~Eの可視波長域(400~780nm)における光学定数(屈折率、消衰係数)を測定した。
 この結果を図2~図3のグラフ図に示す。
 尚、光学定数は膜厚に依存しない定数なため、上述したように膜厚20nmの金属吸収層が成膜された5種類の積層体フィルムで光学定数を測定している。
(3)そして、可視波長域(400~780nm)における平均反射率が20%以下で、かつ、分光反射特性の平坦性(最高反射率と最低反射率の差)が10%以下である条件を満たす実施例に係る積層体フィルム(すなわち、分光反射率が低くかつ可視波長領域における分光反射率が均一である条件を満たす積層体フィルム)を図4~図8のグラフ図から求めると、成膜条件C(酸素濃度23%)および成膜条件D(酸素濃度28%)でそれぞれ成膜され、かつ、その膜厚が20nm以上30nm以下の金属吸収層を有する積層体フィルムが選定される。
(4)そして、成膜条件C(酸素濃度23%)および成膜条件D(酸素濃度28%)でそれぞれ成膜された積層体フィルムの可視波長域(400~780nm)における光学定数(屈折率、消衰係数)を図2と図3のグラフ図から求めると、
 波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
 波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
 波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
 波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
 波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
であることが確認された。
(5)更に、エッチング液として上記硝酸セリウムアンモニウム水溶液を適用し、複数種類の積層体フィルムにおける「エッチング性」を調べた。「エッチング性」は、膜厚20nmの金属吸収層をエッチングした後、配線パターンの周囲を光学顕微鏡で観察した。
 成膜条件A(酸素濃度0%)、成膜条件B(酸素濃度11%)、成膜条件C(酸素濃度23%)、成膜条件D(酸素濃度28%)で形成された金属吸収層は、配線パターンの周囲にエッチングの残りもなくエッチングできた。尚、成膜条件E(酸素濃度33%)で形成された金属吸収層は、配線パターンの周囲にエッチングの残りが見られ、実用には適さないものであった。
 更に、上記成膜条件A、B、C、Dで形成された膜厚20nmの金属吸収層を有する導電性基板フィルムについてその金属吸収層側から目視で観察した。観察に際し、導電性基板フィルムの目視側と反対側の面を液晶ディスプレイパネルに接するように配した。
 上記成膜条件Aで金属吸収層が形成された導電性基板フィルムは電極等回路パターンが視認された。一方、上記成膜条件B、CおよびDで金属吸収層が形成された導電性基板フィルムの電極等回路パターンは視認するのが困難であった。
 上記成膜条件CおよびDで膜厚20nmの金属吸収層が形成された導電性基板フィルムは、上記成膜条件Bで膜厚20nmの金属吸収層が形成された導電性基板フィルムよりも電極等回路パターンの視認がより困難であった。
 理想的には、成膜条件C、成膜条件Dで金属吸収層を形成しかつその膜厚を20nm以上とすれば電極等回路パターンの目視での視認が極めて困難な導電性基板フィルムを得ることができることが確認された。
(6)尚、実施例に係る金属吸収層はNi-Wターゲットを用いて形成されているが、他のNi合金やCu合金ターゲットを用いても、上記光学定数の範囲であればターゲットの膜材料に限定されないことも確認された。
 本発明に係る電極基板フィルムは、高輝度照明下においても透明基板に設けられた電極等の回路パターンが視認され難いためFPD(フラットパネルディスプレイ)表面に設置する「タッチパネル」に利用される産業上の可能性を有している。
 10 真空チャンバー
 11 巻き出しロール
 12 長尺樹脂フィルム
 13 フリーロール
 14 張力センサロール
 15 前フィードロール
 16 キャンロール
 17 マグネトロンスパッタリングカソード
 18 マグネトロンスパッタリングカソード
 19 マグネトロンスパッタリングカソード
 20 マグネトロンスパッタリングカソード
 21 後フィードロール
 22 張力センサロール
 23 フリーロール
 24 巻き取りロール
 25 反応性ガス放出パイプ
 26 反応性ガス放出パイプ
 27 反応性ガス放出パイプ
 28 反応性ガス放出パイプ
 29 反応性ガス放出パイプ
 30 反応性ガス放出パイプ
 31 反応性ガス放出パイプ
 32 反応性ガス放出パイプ
 40 金属層
 41 金属吸収層
 42 透明基板
 50 金属層
 51 金属吸収層
 52 透明基板

Claims (13)

  1.  樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜とで構成される積層体フィルムにおいて、
     上記積層膜が、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、かつ、
     可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    であると共に、
     透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とする積層体フィルム。
  2.  上記積層膜が、透明基板側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
     可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    であることを特徴とする請求項1に記載の積層体フィルム。
  3.  上記金属吸収層および第2の金属吸収層が、Ni単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、または、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金を成膜材料とし、かつ、成膜装置内に反応性ガスを導入した真空成膜法により形成されていることを特徴とする請求項1または2に記載の積層体フィルム。
  4.  上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項1に記載の積層体フィルム。
  5.  樹脂フィルムから成る透明基板と、該透明基板に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
     上記金属製の積層細線が、線幅20μm以下で、かつ、透明基板側から数えて第1層目の膜厚が20nm以上30nm以下である金属吸収層と第2層目の金属層を有し、
     可視波長領域(400~780nm)における上記金属吸収層の光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    であると共に、
     透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とする電極基板フィルム。
  6.  上記金属製の積層細線が、透明基板側から数えて第3層目の膜厚が20nm以上30nm以下である第2の金属吸収層を有し、かつ、
     可視波長領域(400~780nm)における上記第2の金属吸収層の光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    であることを特徴とする請求項5に記載の電極基板フィルム。
  7.  上記金属吸収層および第2の金属吸収層が、Ni単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金、または、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Niより選ばれる1種以上の元素が添加されたCu系合金を成膜材料とし、かつ、成膜装置内に反応性ガスを導入した真空成膜法により形成されていることを特徴とする請求項5または請求項6に記載の電極基板フィルム。
  8.  上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項5に記載の電極基板フィルム。
  9.  樹脂フィルムから成る透明基板と該透明基板に設けられた積層膜とで構成される積層体フィルムの製造方法において、
     上記積層膜の透明基板側から数えて第1層目として、
     膜厚が20nm以上30nm以下で、かつ、可視波長領域(400~780nm)における光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    である金属吸収層を真空成膜法により形成する第1工程と、
     上記積層膜の透明基板側から数えて第2層目として、
     金属層を真空成膜法により形成する第2工程を具備し、
     透明基板と金属吸収層および金属吸収層と金属層の各界面での反射による可視波長領域(400~780nm)における平均反射率が20%以下で、かつ、可視波長領域(400~780nm)における最高透過率と最低透過率の差が10%以下であることを特徴とする積層体フィルムの製造方法。
  10.  上記積層膜の透明基板側から数えて第3層目として、
     膜厚が20nm以上30nm以下で、かつ、可視波長領域(400~780nm)における光学定数が、
     波長400nmにおける屈折率が2.0~2.2、消衰係数が1.8~2.1、
     波長500nmにおける屈折率が2.4~2.7、消衰係数が1.9~2.3、
     波長600nmにおける屈折率が2.8~3.2、消衰係数が1.9~2.5、
     波長700nmにおける屈折率が3.2~3.6、消衰係数が1.7~2.5、
     波長780nmにおける屈折率が3.5~3.8、消衰係数が1.5~2.4、
    である第2の金属吸収層を真空成膜法により形成する第3工程を具備することを特徴とする請求項9に記載の積層体フィルムの製造方法。
  11.  真空成膜法を実施する成膜装置内に請求項3に記載の成膜材料と反応性ガスを導入し、かつ、成膜装置内における成膜条件を制御して屈折率と消衰係数の光学定数が調整された上記金属吸収層および第2の金属吸収層を形成することを特徴とする請求項9または10に記載の積層体フィルムの製造方法。
  12.  酸素と窒素の単体ガス若しくはこれ等の混合ガス、または、酸素と窒素を主成分とする混合ガスにより上記反応性ガスが構成されていることを特徴とする請求項11に記載の積層体フィルムの製造方法。
  13.  樹脂フィルムから成る透明基板と、該透明基板に設けられかつ金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
     請求項1~4のいずれかに記載の積層体フィルムの積層膜をエッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とする電極基板フィルムの製造方法。
PCT/JP2015/073800 2014-08-27 2015-08-25 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 WO2016031801A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016545536A JP6597621B2 (ja) 2014-08-27 2015-08-25 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
KR1020177005286A KR102467260B1 (ko) 2014-08-27 2015-08-25 적층체 필름과 전극 기판 필름 및 이들의 제조 방법
CN201580045991.8A CN106796464B (zh) 2014-08-27 2015-08-25 层叠体膜、电极基板膜和它们的制造方法
US15/501,305 US10764997B2 (en) 2014-08-27 2015-08-25 Laminate film and electrode substrate film, and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172604 2014-08-27
JP2014172604 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031801A1 true WO2016031801A1 (ja) 2016-03-03

Family

ID=55399688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073800 WO2016031801A1 (ja) 2014-08-27 2015-08-25 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Country Status (6)

Country Link
US (1) US10764997B2 (ja)
JP (1) JP6597621B2 (ja)
KR (1) KR102467260B1 (ja)
CN (1) CN106796464B (ja)
TW (1) TWI665080B (ja)
WO (1) WO2016031801A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211826A (ja) * 2016-05-25 2017-11-30 凸版印刷株式会社 配線基板、タッチパネル、カラーフィルタ基板、及び表示装置
JP2018026130A (ja) * 2016-08-09 2018-02-15 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 透明電極、それを含むタッチセンサーおよびディスプレイ
CN111479685A (zh) * 2017-12-15 2020-07-31 株式会社Lg化学 装饰构件
CN114026054A (zh) * 2019-07-01 2022-02-08 日本电气硝子株式会社 带膜的透明基板和烹调器用顶板
WO2022163546A1 (ja) * 2021-01-27 2022-08-04 Agc株式会社 光学薄膜積層体及びその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513335A (ja) * 2011-03-04 2014-05-29 エルジー・ケム・リミテッド 導電性構造体およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209038A (ja) * 1999-11-17 2001-08-03 Nippon Sheet Glass Co Ltd 液晶表示素子用基板
JP4086132B2 (ja) 2001-11-16 2008-05-14 株式会社ブリヂストン 透明導電性フィルムおよびタッチパネル
EP1369933A3 (en) * 2002-06-07 2008-05-28 FUJIFILM Corporation Film forming method
US20090286015A1 (en) * 2005-07-28 2009-11-19 Akakawa Chemical Industries, Ltd Curable resin composition, cured product thereof, and various articles derived from those
KR101099031B1 (ko) * 2009-06-05 2011-12-26 한화엘앤씨 주식회사 터치 패널용 투명 도전성 필름 및 그 제조방법
JP5361579B2 (ja) 2009-07-09 2013-12-04 信越ポリマー株式会社 大型ディスプレイ用のセンサパネル及びその製造方法
JP2013069261A (ja) 2011-09-08 2013-04-18 Dainippon Printing Co Ltd タッチパネル用電極基材、及びタッチパネル、並びに画像表示装置
US9320140B2 (en) * 2011-12-22 2016-04-19 Nissha Printing Co., Ltd. Touch sensor with ornament, method of manufacturing same, and transparent conductive sensor used in same
KR20130118082A (ko) 2012-04-19 2013-10-29 삼성전기주식회사 터치패널 및 그 제조방법
JP2014142462A (ja) 2013-01-23 2014-08-07 Dainippon Printing Co Ltd 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置
CN104976802A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
WO2016067943A1 (ja) * 2014-10-29 2016-05-06 住友金属鉱山株式会社 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513335A (ja) * 2011-03-04 2014-05-29 エルジー・ケム・リミテッド 導電性構造体およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211826A (ja) * 2016-05-25 2017-11-30 凸版印刷株式会社 配線基板、タッチパネル、カラーフィルタ基板、及び表示装置
JP2018026130A (ja) * 2016-08-09 2018-02-15 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 透明電極、それを含むタッチセンサーおよびディスプレイ
JP7028578B2 (ja) 2016-08-09 2022-03-02 東友ファインケム株式会社 透明電極、それを含むタッチセンサーおよびディスプレイ
CN111479685A (zh) * 2017-12-15 2020-07-31 株式会社Lg化学 装饰构件
CN114026054A (zh) * 2019-07-01 2022-02-08 日本电气硝子株式会社 带膜的透明基板和烹调器用顶板
CN114026054B (zh) * 2019-07-01 2023-09-19 日本电气硝子株式会社 带膜的透明基板和烹调器用顶板
WO2022163546A1 (ja) * 2021-01-27 2022-08-04 Agc株式会社 光学薄膜積層体及びその製造方法

Also Published As

Publication number Publication date
US10764997B2 (en) 2020-09-01
US20170223826A1 (en) 2017-08-03
JP6597621B2 (ja) 2019-10-30
KR102467260B1 (ko) 2022-11-16
TWI665080B (zh) 2019-07-11
TW201613758A (en) 2016-04-16
JPWO2016031801A1 (ja) 2017-06-08
KR20170048362A (ko) 2017-05-08
CN106796464A (zh) 2017-05-31
CN106796464B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6597621B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6233618B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6249101B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6176401B2 (ja) 積層体フィルムと電極基板フィルムの製造方法
JP6617607B2 (ja) 成膜方法及びこれを用いた積層体基板の製造方法
JP6277926B2 (ja) 成膜装置および積層体フィルムと電極基板フィルムの各製造方法
JP6597622B2 (ja) 電極基板フィルムとその製造方法
JP2016040667A (ja) 多層薄膜
JP6330708B2 (ja) 成膜方法および積層体フィルムの製造方法
WO2014185403A1 (ja) 電子部品を作製するために用いられる積層体および積層体製造方法、フィルムセンサおよびフィルムセンサを備えるタッチパネル装置、並びに、濃度勾配型の金属層を成膜する成膜方法
JP6330709B2 (ja) 成膜方法と積層体フィルムおよび電極基板フィルムの各製造方法
JP6891418B2 (ja) 電極基板フィルム及びその製造方法
JP6566208B2 (ja) スパッタリング装置とスパッタリング成膜法および積層体フィルムと電極基板フィルムの各製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545536

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15501305

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177005286

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835394

Country of ref document: EP

Kind code of ref document: A1