WO2016067943A1 - 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 - Google Patents

積層体フィルムと電極基板フィルムおよびこれ等の製造方法 Download PDF

Info

Publication number
WO2016067943A1
WO2016067943A1 PCT/JP2015/079407 JP2015079407W WO2016067943A1 WO 2016067943 A1 WO2016067943 A1 WO 2016067943A1 JP 2015079407 W JP2015079407 W JP 2015079407W WO 2016067943 A1 WO2016067943 A1 WO 2016067943A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
transparent substrate
absorption layer
layer
Prior art date
Application number
PCT/JP2015/079407
Other languages
English (en)
French (fr)
Inventor
大上 秀晴
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2016533730A priority Critical patent/JP6176401B2/ja
Priority to US15/515,370 priority patent/US10752985B2/en
Publication of WO2016067943A1 publication Critical patent/WO2016067943A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0089Reactive sputtering in metallic mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2633Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0373Conductors having a fine structure, e.g. providing a plurality of contact points with a structured tool
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/087Using a reactive gas

Definitions

  • the present invention relates to a laminate film having a transparent substrate made of a resin film and a laminate film, and an electrode substrate film produced by etching the laminate film of the laminate film and used for a touch panel or the like.
  • the present invention relates to a laminate film, an electrode substrate film, and a method of manufacturing the same, which are excellent in the above-mentioned and in which a circuit pattern formed by etching treatment is hardly visible even under high-luminance illumination.
  • the “touch panel” is roughly divided into a resistance type and a capacitance type.
  • a “resistive touch panel” is a transparent substrate made of a resin film, an X coordinate (or Y coordinate) detection electrode sheet provided on the substrate, and a Y coordinate (or X coordinate) detection electrode sheet, and a space between these sheets The main part is comprised with the insulator spacer provided in this.
  • the X-coordinate detection electrode sheet and the Y-coordinate detection electrode sheet are spatially separated from each other.
  • the “capacitance-type touch panel” has an X-coordinate (or Y-coordinate) detection electrode sheet and a Y-coordinate (or X-coordinate) detection electrode sheet laminated via an insulating sheet. It has a structure in which an insulator is disposed. When a finger is brought close to the insulator such as glass, the electric capacity of the X-coordinate detection electrode and the Y-coordinate detection electrode in the vicinity thereof changes so that the position can be detected.
  • a transparent conductive film such as ITO (indium oxide-tin oxide) has been widely used (see Patent Document 1). Further, along with the increase in the size of touch panels, metal fine wires (metal films) having a mesh structure disclosed in Patent Document 2, Patent Document 3, and the like have begun to be used.
  • the transparent conductive film When the transparent conductive film is compared with a thin metal wire (metal film), the transparent conductive film has an advantage that the circuit pattern such as an electrode is hardly visually recognized because of its excellent transparency in the visible wavelength region. Since the electric resistance value is higher than that of the film), there is a disadvantage that is not suitable for increasing the size of the touch panel and increasing the response speed.
  • thin metal wires metal films are suitable for increasing the size of touch panels and increasing the response speed due to their low electrical resistance, but they have high reflectivity in the visible wavelength region, so they are processed into a fine mesh structure. Even if it is done, a circuit pattern may be visually recognized under high-intensity illumination, and it has the fault of reducing a product value.
  • the said metal absorption layer which consists of metal oxides is a long resin film by reactive sputtering etc. which usually used the metal target (metal material) and reactive gas from the viewpoint of aiming at the film-forming efficiency of a metal oxide.
  • the metal layer is continuously formed on the surface, and the metal layer is continuously formed on the formed metal absorption layer by sputtering using a metal target (metal material) such as copper, and used for the production of the electrode substrate film. Laminate films have been manufactured.
  • the electrode substrate film used for a touch panel or the like is a cupric chloride film made of a laminate film having a transparent substrate made of a resin film and a laminated film made of a metal absorption layer and a metal layer provided on the substrate. It is manufactured by etching with an etching solution such as an aqueous solution or an aqueous ferric chloride solution, and processing the laminated film (metal absorption layer and metal layer) of the laminated film into a circuit pattern such as an electrode.
  • an etching solution such as an aqueous solution or an aqueous ferric chloride solution
  • the laminate film used for the production of the electrode substrate film has characteristics that the laminated film (metal absorption layer and metal layer) is easily etched by an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution, and etching.
  • the circuit pattern such as the processed electrode is required to have a characteristic that it is difficult to be visually recognized under high luminance illumination.
  • JP 2003-151358 A (refer to claim 2) JP 2011-018194 A (refer to claim 1) JP 2013-0669261 A (see paragraph 0004) JP 2014-142462 A (see claim 5, paragraph 0038) JP 2013-225276 A (refer to claim 1, paragraph 0041)
  • a metal absorption layer made of a metal oxide is continuously formed on the long resin film surface by reactive sputtering using a metal target (metal material) such as a Ni-based alloy and a reactive gas containing oxygen.
  • a metal target metal material
  • a metal target metal material such as copper
  • a film formation start side laminate film in which the metal absorption layer is formed in the initial stage of film formation Deposition end side laminate film in which the metal absorbing layer is formed at the end of film formation (deposition end side region of the long laminate film) compared to the film formation start end region of the long laminate film) ) Is inferior in etching property, and due to this, there is a problem that the processing accuracy of the circuit pattern in the electrode substrate film is not stable.
  • the present invention has been made paying attention to such problems, and the problem is that the circuit pattern of etched electrodes and the like is not easily visible even under high-intensity illumination. It is providing a body film and an electrode substrate film, and providing each manufacturing method of a laminated body film and an electrode substrate film together.
  • the present inventor investigated the cause of the poor etching property of the film formation end side laminate film as compared with the film formation start end side laminate film, and examined the improvement measures.
  • the metal absorption layer and the metal layer constituting the laminate film of the laminate film were examined, reactive sputtering using a metal target (metal material) such as a Ni-based alloy and a reactive gas containing oxygen, etc.
  • the metal absorption layer formed by the etching solution such as cupric chloride aqueous solution or ferric chloride aqueous solution compared with the metal layer formed by sputtering using a metal target (metal material) such as copper. It was confirmed that etching was difficult. From this, among the metal absorption layer and the metal layer constituting the laminate film of the laminate film, the metal absorption layer made of a metal oxide is related to the quality of etching in the film formation termination side laminate film. Was predicted.
  • Non-Patent Document 1 a Ni film is formed by sputtering using a Ni-based metal target (metal material), and further by reactive sputtering using a Ni-based metal target (metal material).
  • a NiOOH film and a NiO film were formed, and the etching properties with an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution were examined.
  • the films having a fast etching progress were Ni film, NiOOH film, NiO film. The membrane order was confirmed.
  • a NiOOH film in which a part of the deposited metal oxide is easily etched in the laminated film on the film start side (a Ni film having better etching property than the NiOOH film is not a metal oxide but a metal absorbing layer). It is considered that most of the deposited metal oxide is a NiO film (which is harder to be etched than a NiOOH film) in the laminated film on the film formation end side.
  • a change with time of the film formation environment change with time of residual moisture in the vacuum chamber
  • the metal oxide metal absorption layer
  • the time-dependent change in water content in the vacuum chamber was measured using a quadrupole mass spectrometer. As shown in the graph of FIG. 7, a metal oxide (metal absorption layer) was obtained. It was confirmed that the amount of water in the vacuum chamber was significantly reduced in the later stage of film formation compared to the initial stage of film formation.
  • the etching property of the film formation end side laminate film is inferior to the film formation start side laminate film as the moisture content in the vacuum chamber decreases.
  • the present invention has been completed through such investigation and technical analysis, and metal oxides (reactive sputtering using a metal target (metal material) such as a Ni alloy and a reactive gas containing oxygen)
  • a metal target such as a Ni alloy and a reactive gas containing oxygen
  • the reactive gas is hydrogenated to form a metal oxide (metal absorption layer) while compensating for the reduced amount of water in the vacuum chamber.
  • the etching property of the film is improved.
  • the first invention according to the present invention is: In a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate,
  • the laminated film has a first metal absorption layer and a second metal layer counted from the transparent substrate side, and the metal absorption layer is made of Ni alone, or Ni, Ti, Al, V, Formed by a reactive film-forming method using a metal material composed of an alloy containing two or more elements selected from W, Ta, Si, Cr, Ag, Mo, and Cu and a reactive gas containing oxygen, and , Characterized in that the reactive gas contains hydrogen
  • the second invention is In the laminate film according to the first invention,
  • the metal layer has a thickness of 50 nm to 5000 nm
  • the third invention is In the laminate film according to the first invention,
  • the laminated film has a third metal absorption layer as a third layer counted from the transparent substrate side, and the second metal absorption layer is made of Ni alone, or Ni, Ti, Al
  • the fifth invention is: In an electrode substrate film having a transparent substrate made of a resin film, and a mesh-structured circuit pattern made of metal laminated thin wires provided on at least one surface of the transparent substrate,
  • the metal laminated thin wire has a line width of 20 ⁇ m or less and has a first metal absorption layer and a second metal layer counted from the transparent substrate side, and the metal absorption layer is composed of Ni alone, or , Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and a reaction material using a reactive gas containing oxygen and a metal material made of an alloy containing two or more elements selected from Cu It is formed by a membrane method, and the reactive gas contains hydrogen,
  • the sixth invention is: In the electrode substrate film according to the fifth invention, The metal layer has a thickness of 50 nm to 5000 nm,
  • the seventh invention In the electrode substrate film according to the fifth invention,
  • the metal thin multilayer wire has a third metal absorption layer as a third layer as counted
  • a ninth invention includes In the method for producing a laminate film composed of a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate,
  • the first metal absorption layer counted from the transparent substrate side of the laminated film was selected from Ni alone, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu.
  • the tenth invention is In the method for producing a laminate film according to the ninth invention,
  • the third metal absorption layer of the third layer counted from the transparent substrate side of the laminated film is selected from Ni alone, or Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, Cu.
  • the eleventh invention is In the method for producing a laminate film according to the ninth invention or the tenth invention, The alloy is composed of a Ni-based alloy to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu are added,
  • the twelfth invention is In the method for producing a laminate film according to the ninth invention or the tenth invention, Hydrogen contained in the reactive gas is introduced into the deposition chamber so that the hydrogen concentration on the transparent substrate side of the metal absorption layer and the second metal absorption layer formed in the first step and the third step is high.
  • the thirteenth invention is In the method for producing a laminate film according to the ninth invention or the tenth invention, The content of hydrogen contained in the reactive gas is set to an amount that compensates for the decrease in the residual moisture content in the film forming chambers of the first and third steps.
  • a fourteenth aspect of the present invention is: In a method for producing an electrode substrate film having a transparent substrate made of a resin film, and a circuit pattern having a mesh structure made of metal laminated thin wires provided on at least one surface of the transparent substrate, The laminated film of the laminated film according to any one of the first to third inventions is subjected to chemical etching treatment, and wiring processing is performed on the above-mentioned metal laminated thin wire having a line width of 20 ⁇ m or less, The fifteenth invention In a method for producing an electrode substrate film having a transparent substrate made of a resin film, and a circuit pattern having a mesh structure made of metal laminated thin wires provided on at least one surface of the transparent substrate, The laminated film of the laminate film described in the fourth invention is subjected to chemical etching treatment, and the above-mentioned metal laminated thin wire having a line width of 20 ⁇ m or less is subjected to wiring processing.
  • a laminate film according to the present invention comprising a transparent substrate made of a resin film and a laminate film provided on at least one surface of the transparent substrate,
  • the laminated film has a first metal absorption layer and a second metal layer counted from the transparent substrate side, and the metal absorption layer is made of Ni alone, or Ni, Ti, Al, V, Formed by a reactive film-forming method using a metal material composed of an alloy containing two or more elements selected from W, Ta, Si, Cr, Ag, Mo, and Cu and a reactive gas containing oxygen, and The reactive gas contains hydrogen.
  • the metal oxide (metal absorption layer) of the laminate film is formed while hydrogen is included in the reactive gas to compensate for the reduced amount of moisture in the vacuum chamber. Therefore, it is possible to avoid the problem that the etching property of the film formation end side laminate film is inferior to that of the film formation start side laminate film.
  • the schematic cross-section explanatory drawing of the laminated body film which has a 1st metal absorption layer and a 2nd metal layer on both surfaces of the transparent substrate which consists of a resin film from the transparent substrate side.
  • the first metal absorption layer and the second metal layer are counted on both sides of the transparent substrate made of a resin film from the transparent substrate side, and the metal layer is formed by a dry film formation method and a wet film formation method.
  • the first metal absorption layer, the second metal layer and the third metal absorption layer counted from the transparent substrate side on both sides of the transparent substrate made of a resin film, and the metal layer is dry-type Schematic cross-sectional explanatory drawing of the laminated body film which concerns on this invention formed with the film-forming method and the wet film-forming method.
  • BRIEF DESCRIPTION OF THE DRAWINGS Schematic cross-sectional explanatory drawing of the electrode substrate film which concerns on this invention in which the metal lamination
  • the first laminate film according to the present invention is: Consists of a transparent substrate made of a resin film and a laminated film provided on at least one surface of the transparent substrate,
  • the laminated film has a first metal absorption layer and a second metal layer counted from the transparent substrate side, and the metal absorption layer is made of Ni alone, or Ni, Ti, Al, V, Formed by a reactive film-forming method using a metal material composed of an alloy containing two or more elements selected from W, Ta, Si, Cr, Ag, Mo, and Cu and a reactive gas containing oxygen, and , Characterized in that the reactive gas contains hydrogen
  • the second laminate film according to the present invention is Assuming the first laminate film,
  • the laminated film has a third metal absorption layer as a third layer counted from the transparent substrate side, and the second metal absorption layer is made of Ni alone, or Ni, Ti, Al, V, W, Ta, It is formed by a reactive film-forming method using a metal material made of an alloy containing two or more elements
  • the first laminate film includes a transparent substrate 40 made of a resin film as shown in FIG. 1, and a dry film forming method (dry plating method) on both surfaces of the transparent substrate 40. It is comprised by the metal absorption layers 41 and 43 and metal layer 42 and 44 which were formed by.
  • the metal layer may be formed by a combination of a dry film formation method (dry plating method) and a wet film formation method (wet plating method).
  • the metal layers 52 and 54 are formed on the metal absorption layers 51 and 53 by a dry film formation method (dry plating method), and the metal layers 52 and 54 are formed by a wet film formation method (wet plating method).
  • the metal layers 55 and 56 may be used.
  • the metal layers 62 and 64 are formed on the metal absorption layers 61 and 63 by a dry film formation method (dry plating method), and the metal layers 62 and 64 are formed by a wet film formation method (wet plating method).
  • the metal absorbing layer 61 and the second metal absorbing layer 67 are formed on both surfaces of the metal layers denoted by reference numerals 62 and 65, and the metals denoted by reference numerals 64 and 66 are formed.
  • the metal absorption layer 63 and the second metal absorption layer 68 are formed on both sides of the layer because the mesh made of the metal laminated thin wires when the electrode substrate film produced using the laminate film is incorporated in the touch panel. This is to prevent the circuit pattern of the structure from being reflected.
  • the metal absorption layer is made of Ni alone or a metal material made of an alloy containing two or more elements selected from Ni, Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu, and oxygen. It forms by the reactive film-forming method using the reactive gas containing. Further, as the alloy, Ni-based alloys to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu are added are widely used. As the alloy, a Ni—Cu alloy is preferable.
  • the metal absorption layer becomes transparent when the oxidation of the metal oxide constituting the metal absorption layer proceeds excessively, it is necessary to set the oxidation level to such a level that it becomes a blackened film.
  • the reactive film formation method include magnetron sputtering, ion beam sputtering, vacuum deposition, ion plating, and CVD.
  • the optical constant (refractive index, extinction coefficient) at each wavelength of the metal absorption layer is greatly influenced by the degree of reaction, that is, the degree of oxidation, and is not determined only by a metal material made of a Ni-based alloy.
  • the constituent material (metal material) of the metal layer is not particularly limited as long as it is a metal having a low electric resistance value.
  • a metal having a low electric resistance value For example, Cu alone, or Ti, Al, V, W, Ta, Si, Cr, Ag Cu-based alloy to which one or more selected elements are added, Ag alone, or Ag to which one or more elements selected from Ti, Al, V, W, Ta, Si, Cr, and Cu are added
  • Cu alone is desirable from the viewpoint of circuit pattern workability and resistance.
  • the film thickness of the metal layer depends on the electrical characteristics and is not determined by optical elements, but is usually set to a film thickness at which transmitted light cannot be measured.
  • the desirable thickness of the metal layer is preferably 50 nm or more, more preferably 60 nm or more from the viewpoint of electrical resistance. On the other hand, from the viewpoint of workability for processing the metal layer into a wiring pattern, it is preferably 5 ⁇ m (5000 nm) or less, more preferably 3 ⁇ m (3000 nm) or less.
  • Resin film constituting transparent substrate The material of the resin film applied to the laminate film is not particularly limited. Specific examples thereof include polyethylene terephthalate (PET), polyethersulfone (PES). ), Polyarylate (PAR), polycarbonate (PC), polyolefin (PO), triacetylcellulose (TAC) and norbornene resin material alone, or resin film alone selected from the above resin materials And an acrylic organic film covering one side or both sides of the single body.
  • norbornene resin materials representative examples include ZEONOR (trade name) manufactured by ZEON Corporation, Arton (trade name) manufactured by JSR Corporation, and the like.
  • the electrode substrate film produced using the laminate film according to the present invention is used for a “touch panel” or the like, it is desirable that the resin film has excellent transparency in the visible wavelength region.
  • this film-forming apparatus is called a sputtering web coater, and is used when a film-forming process is continuously and efficiently performed on the surface of a long resin film conveyed by a roll-to-roll method.
  • a film forming apparatus for a long resin film conveyed by a roll-to-roll method is provided in a vacuum chamber 10 as shown in FIG.
  • a predetermined film forming process is performed on the unrolled long resin film 12, and then the film is wound by a winding roll 24.
  • a can roll 16 that is rotationally driven by a motor is disposed in the middle of the conveyance path from the unwind roll 12 to the take-up roll 24. Inside the can roll 16, a coolant whose temperature is adjusted outside the vacuum chamber 10 circulates.
  • the pressure is reduced to an ultimate pressure of about 10 ⁇ 4 Pa and the pressure is adjusted to about 0.1 to 10 Pa by introducing a sputtering gas thereafter.
  • a known gas such as argon is used as the sputtering gas, and a gas such as oxygen is further added depending on the purpose.
  • the shape and material of the vacuum chamber 10 are not particularly limited as long as they can withstand such a reduced pressure state, and various types can be used.
  • various devices such as a dry pump, a turbo molecular pump, and a cryocoil are incorporated in the vacuum chamber 10.
  • a free roll 13 for guiding the long resin film 12 and a tension sensor roll 14 for measuring the tension of the long resin film 12 are arranged in this order on the conveyance path from the unwinding roll 11 to the can roll 16. ing.
  • the long resin film 12 fed from the tension sensor roll 14 toward the can roll 16 is adjusted with respect to the peripheral speed of the can roll 16 by a motor-driven front feed roll 15 provided in the vicinity of the can roll 16.
  • the long resin film 12 can be brought into close contact with the outer peripheral surface of the can roll 16.
  • the conveyance path from the can roll 16 to the take-up roll 24 is a motor driven post-feed roll 21 that adjusts the peripheral speed of the can roll 16 and a tension sensor roll that measures the tension of the long resin film 12. 22 and a free roll 23 for guiding the long resin film 12 are arranged in this order.
  • the tension balance of the long resin film 12 is maintained by torque control using a powder clutch or the like.
  • the long resin film 12 is unwound from the unwinding roll 11 and wound around the winding roll 24 by the rotation of the can roll 16 and the motor-driven front feed roll 15 and the rear feed roll 21 that rotate in conjunction with the rotation. It has come to be taken.
  • a film is formed at a position facing a conveyance path defined on the outer peripheral surface of the can roll 16 (that is, a region around which the long resin film 12 is wound on the outer peripheral surface of the can roll 16).
  • Magnetron sputtering cathodes 17, 18, 19, and 20 are provided as means, and gas discharge pipes 25, 26, 27, 28, 29, 30, 31, and 32 for discharging reactive gas are installed in the vicinity thereof.
  • a plate-like target when carrying out the sputtering film formation of the metal absorption layer and the metal layer, a plate-like target can be used as shown in FIG. 5, but when a plate-like target is used, nodules (growth of foreign matter) are formed on the target. May occur. When this becomes a problem, it is preferable to use a cylindrical rotary target that generates no nodules and has high target use efficiency.
  • (2-2-1) A method of releasing reactive gas at a constant flow rate.
  • (2-2-2) A method of releasing reactive gas to maintain a constant pressure.
  • (2-2-3) A method of releasing reactive gas (impedance control) so that the impedance of the sputtering cathode becomes constant.
  • (2-2-4) A method of releasing reactive gas (plasma emission control) so that the plasma intensity of sputtering is constant.
  • the laminated film (metal absorption layer and metal layer) used for the production of the electrode substrate film is etched with an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution.
  • an etching solution such as a cupric chloride aqueous solution or a ferric chloride aqueous solution.
  • the metal absorption layer is formed by, for example, reactive sputtering
  • oxygen is added to the sputtering gas argon as a reactive gas to obtain a metal absorption layer as a black film.
  • the etching property of the laminated film (metal absorption layer and metal layer) in the laminate film is examined, as described above, the etching of the metal layer such as copper is easy, but the metal absorption layer is hardly etched. For this reason, in order to improve the etching property of a laminated body film, it is necessary to improve the etching property of a metal absorption layer.
  • the laminate film obtained by performing continuous sputtering film formation on the long resin film using the film forming apparatus of FIG. 5 has different etching rates with the etching solution in the longitudinal direction of the long resin film, and the film formation start side It is confirmed that the etching rate of the laminate film (deposition start side region of the long laminate film) is faster than the deposition end side laminate film (deposition end region of the long laminate film), This phenomenon was presumed to be due to the difference in the etching rate of the metal absorption layer as described above.
  • Non-Patent Document 1 the chemical composition (chemical state of Ni) of the metal oxide (metal absorption layer) formed by reactive sputtering using the Ni-based target is reactive as described above. It is described that when oxygen is introduced as a gas, a NiO film is formed, and when moisture is introduced, a NiOOH film is formed.
  • the metal oxide (metal absorption layer) has fine crystal grains, and the presence of the NiOOH which is a hydroxide affects the etching property.
  • the Ni-based target an alloy target containing two or more elements selected from Ti, Al, V, W, Ta, Si, Cr, Ag, Mo, and Cu was applied.
  • a metal oxide (metal absorption layer) it was estimated that the presence of hydroxide had an influence on the etching property.
  • the present inventor has solved the phenomenon that the etching rate varies depending on the longitudinal direction of the long resin film by adding hydrogen to the reactive gas in order to compensate for the moisture content in the vacuum chamber that decreases during film formation.
  • the use of hydrogen gas can avoid the problem that the vapor obtained by vaporization returns to the water. Furthermore, as a method for introducing water into the vacuum chamber, there are a bubbling method for passing a carrier gas into water, a direct vaporization method for heating and vaporizing water, etc. It is difficult to handle because it returns. However, since hydrogen is a gas, it is easy to handle.
  • the amount of hydrogen added may be determined so as to compensate for the decrease over time in the amount of water contained in the vacuum chamber.
  • the amount of water contained in the vacuum chamber varies depending on the position of the quadrupole mass spectrometer in the vacuum chamber, the shape of the vacuum chamber, and the like. For this reason, what is necessary is just to set the addition amount of hydrogen suitably for every film-forming apparatus.
  • a method of adding hydrogen to the reactive gas is preferable as a method of supplementing the amount of water in the vacuum chamber, but the same effect can be obtained by adding water instead of hydrogen.
  • water observed by a quadrupole mass spectrometer or the like in the vacuum chamber is water that is adsorbed in the vacuum chamber when the laminated film after film formation is taken out from the vacuum film formation apparatus by opening to the atmosphere. is there.
  • oxygen is added to argon as a reactive gas that becomes a sputtering atmosphere.
  • a NiO film (not completely oxidized) can be formed by reactive sputtering using a Ni-based metal target (metal material).
  • the oxygen content of the reactive gas depends on the type of the film forming apparatus and the metal target (metal material), and may be set as appropriate in consideration of optical characteristics such as reflectivity in the metal absorption layer and etching properties with the etching solution 15 volume% or less is desirable.
  • FIG. 7 shows a change in the amount of residual water in the vacuum chamber after starting sputtering without supplying hydrogen gas or water into the vacuum chamber. It is confirmed that the residual moisture decreases as the sputtering deposition time elapses. The reason why the moisture decrease immediately after the start of sputtering is fast is thought to be because water molecules adsorbed inside the vacuum chamber are easily desorbed by plasma and heat generated during sputtering.
  • the etching progresses fast in the order of the Ni film, the NiOOH film, and the NiO film as described above, depending on the etching solution.
  • the resin film side in the thickness direction of the metal absorption layer be a NiOOH film (not completely oxidized), on the contrary, moisture from the resin film is laminated.
  • importance is attached to the barrier property that does not oxidize the film, it is desirable to make the resin film side in the thickness direction of the metal absorption layer a NiO film (not completely oxidized).
  • reactive gases introduced from the four gas discharge pipes 125, 126, 127, and 128 are selected, and the gas in the vicinity of each gas discharge pipe is selected.
  • the atmospheres 161, 162, 163, and 164 may be obtained.
  • hydrogen is introduced from the gas release pipe 125, a NiOOH film is easily formed on the resin film side in the thickness direction of the metal absorption layer, and if hydrogen is introduced from the gas release pipe 128, the thickness direction of the metal absorption layer is increased. A NiO film is easily formed on the resin film side.
  • Electrode substrate film (5-1) The electrode according to the present invention is obtained by etching the laminated film of the laminate film according to the present invention to form a wiring into a thin metal wire having a line width of 20 ⁇ m or less.
  • a substrate film can be obtained.
  • an electrode substrate film as shown in FIG. 4 can be obtained by etching the laminate film of the laminate film shown in FIG.
  • the electrode substrate film as shown in FIG. 4 has a circuit pattern having a mesh structure composed of a transparent substrate 70 made of a resin film and metal laminated thin wires provided on both surfaces of the transparent substrate 70,
  • the manufactured thin thin wires have a line width of 20 ⁇ m or less and counted from the transparent substrate 70 side, the first metal absorption layers 71, 73, the second metal layers 72, 75, 74, 76, and the third The second metal absorption layers 77 and 78 of the layer are configured.
  • the electrode substrate film which concerns on this invention can be used for a touch panel by making the electrode (wiring) pattern of an electrode substrate film into the stripe form or grid
  • the metal laminated thin wires processed into the electrode (wiring) pattern maintain the laminated structure of the laminated film, circuit patterns such as electrodes provided on the transparent substrate even under high luminance illumination Can be provided as an electrode substrate film that is extremely difficult to be visually recognized.
  • a photoresist film is formed on the laminate film surface of the laminate film, exposed and developed so that the photoresist film remains at a position where a wiring pattern is to be formed, and the photoresist film is formed on the laminate film surface.
  • an aqueous solution of ferric chloride or an aqueous solution of cupric chloride can be used as an etching solution for the above chemical etching.
  • Examples 1 to 5 The film forming apparatus (sputtering web coater) shown in FIG. 5 is used, oxygen gas is used as the reactive gas, and the can roll 16 is made of stainless steel having a diameter of 600 mm and a width of 750 mm, and the surface of the roll body is subjected to hard chromium plating.
  • the front feed roll 15 and the rear feed roll 21 are made of stainless steel having a diameter of 150 mm and a width of 750 mm, and hard chrome plating is applied to the surface of the roll body.
  • gas discharge pipes 25, 26, 27, 28, 29, 30, 31, 32 are installed on the upstream side and downstream side of each magnetron sputtering cathode 17, 18, 19, 20, and the magnetron sputtering cathodes 17, 18 are installed. Is attached with a Ni—Cu target for the metal absorption layer, and magnetron sputtering cathodes 19 and 20 with a Cu target for the metal layer.
  • the magnetron sputtering cathodes 17 and 18 in FIG. 5 correspond to the magnetron sputtering cathodes 117 and 118 in FIG. 6, and the gas discharge pipes 25, 26, 27, and 28 in FIG. It corresponds to the pipes 125, 126, 127, and 128.
  • the resin film constituting the transparent substrate was a PET film having a width of 600 mm and a length of 1200 m, and the can roll 16 was controlled to be cooled to 0 ° C.
  • the vacuum chamber 10 was evacuated to 5 Pa with a plurality of dry pumps, and further evacuated to 3 ⁇ 10 ⁇ 3 Pa using a plurality of turbo molecular pumps and cryocoils.
  • the metal absorption layer is also a mixed gas in which 500 sccm of argon gas and 50 sccm of oxygen gas are mixed from the gas discharge pipes 25, 26, 27, and 28 (in FIG. 6, the gas discharge pipes 125, 126, 127, and 128).
  • 5 and the cathodes 17 and 18 shown in FIG. 5 were formed under power control to obtain a Ni—Cu oxide film thickness of 30 nm.
  • the change of the residual moisture in the vacuum chamber measured in advance by a quadrupole mass spectrometer is shown in FIG.
  • the molar ratio of hydrogen and oxygen is 2: 1 so that the ratio of water and argon is the same as 0.7% (see the graph of FIG. 7) at the start of sputtering. What is necessary is just to increase a flow rate with progress of sputtering time in the ratio which becomes.
  • argon which is a sputtering gas, for each carrier gas.
  • the hydrogen content contained in the reactive gas may be set to a certain amount of offset in consideration of the reflectivity and etching property of the metal absorption layer to be formed.
  • Example 1 hydrogen is introduced only from the gas discharge pipe 125 positioned upstream of the magnetron sputtering first cathode 117, the gas discharge pipe 126 positioned downstream of the magnetron sputtering first cathode 117, and Hydrogen was not introduced from the gas discharge pipes 127 and 128 of the magnetron sputtering second cathode 118.
  • Example 2 hydrogen was introduced from the gas discharge pipes 125 and 126 of the magnetron sputtering first cathode 117, and hydrogen was not introduced from the gas discharge pipes 127 and 128 of the magnetron sputtering second cathode 118.
  • hydrogen is introduced from the gas discharge pipe 125 positioned upstream of the magnetron sputtering first cathode 117 and the gas discharge pipe 127 positioned upstream of the magnetron sputtering second cathode 118, and the magnetron sputtering first cathode. Hydrogen was not introduced from the gas discharge pipe 126 located on the downstream side of 117 and the gas discharge pipe 128 located on the downstream side of the second cathode 118 of the magnetron sputtering.
  • Example 4 hydrogen was introduced from the gas discharge pipes 127 and 128 of the magnetron sputtering second cathode 118, and hydrogen was not introduced from the gas discharge pipes 125 and 126 of the magnetron sputtering first cathode 117.
  • hydrogen is introduced only from the gas discharge pipe 128 located downstream of the magnetron sputtering second cathode 118, and the gas discharge pipes 125 and 126 of the magnetron sputtering first cathode 117 and the magnetron sputtering second Hydrogen was not introduced from the gas discharge pipe 127 located on the upstream side of the cathode 118.
  • the decrease in the deposition rate in the metal absorption layer is predicted by the amount of hydrogen and oxygen introduced from the gas release pipe, it is necessary to adjust the sputtering power in order to obtain the target metal absorption layer thickness.
  • a mixed gas of H 2 and O 2 may flow through one gas discharge pipe.
  • the magnetron sputtering first cathode 117 and the magnetron sputtering second cathode 118 of the film forming apparatus applied in the embodiment etc. are not differentially evacuated, and the gas atmospheres 161, 162, 163, 164 shown in FIG. I do not mean.
  • Examples 1 to 5 each composed of a transparent substrate made of a long PET film and a laminated film made of a metal absorption layer that is a Ni—Cu oxide film and a metal layer that is a Cu film provided on the transparent substrate.
  • the laminated body film which concerns on was manufactured.
  • Laminate films according to Examples 1 to 5 and Comparative Example 1 Laminate film comprising a laminate film composed of a first metal absorption layer and a second copper layer counting from the transparent substrate side) ) was sampled at intervals of 100 m from 0 m to 1100 m, and the spectral reflection characteristics and etching properties of each laminate film were evaluated.
  • the said laminated film (a metal absorption layer and a copper layer) was chemically etched using ferric chloride aqueous solution as an etching liquid.
  • the etching property was evaluated according to the following criteria with a mark of superiority or inferiority ( ⁇ , ⁇ , ⁇ , ⁇ ). “ ⁇ ”: Etching residue cannot be confirmed by visual observation or an optical microscope. “ ⁇ ”: Etching residue cannot be confirmed by visual observation, and is practical. “ ⁇ ”: An etching residue can be confirmed in part by visual observation. "X”: The etching residue can be confirmed over a wide range by visual observation. (4) The evaluation results are shown in Table 2 and Table 3 below.
  • the laminated films according to Examples 1 to 3 include many NiOOH films that are easily etched on the transparent substrate side in the thickness direction of the metal absorption layer.
  • the laminate films according to Examples 1 to 3 in which hydrogen is introduced from the gas discharge pipes 125 and 126 of the magnetron sputtering first cathode 117 are the gas discharge pipes 127 and 128 of the magnetron sputtering second cathode 118. It is also confirmed that the reflectance is slightly higher than that of the laminate films according to Examples 4 to 5 into which hydrogen is introduced.
  • the laminate film according to the present invention is excellent in etching property, and the electrodes of the electrode substrate film according to the present invention produced using the laminate film are difficult to be seen even under high brightness illumination, the FPD (flat panel) Display) Has industrial potential for use as a “touch panel” installed on the surface.

Abstract

【課題】エッチング性に優れ、エッチング加工された回路パターンが高輝度照明下で視認され難い積層体フィルムと電極基板フィルムを提供しこれ等の製造方法を提供する。 【解決手段】樹脂フィルムから成る透明基板60と透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムであって、上記積層膜が、透明基板側から数えて第1層目の金属吸収層61,63と第2層目の金属層(62,65),(64,66)を有すると共に、金属吸収層が、Ni単体またはNi、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属ターゲットと酸素を含む反応性ガスを用いた反応スパッタリング法により形成されかつ反応性ガスに水素が含まれていることを特徴とする。

Description

積層体フィルムと電極基板フィルムおよびこれ等の製造方法
 本発明は、樹脂フィルムから成る透明基板と積層膜を有する積層体フィルムと、該積層体フィルムの積層膜をエッチング処理して製造されかつタッチパネル等に用いられる電極基板フィルムに係り、特に、エッチング性に優れると共にエッチング処理して形成される回路パターンが高輝度照明下においても視認され難い積層体フィルムと電極基板フィルムおよびこれ等の製造方法に関するものである。
 近年、携帯電話、携帯電子文書機器、自動販売機、カーナビゲーション等のフラットパネルディスプレイ(FPD)表面に設置する「タッチパネル」が普及し始めている。
 上記「タッチパネル」には、大きく分けて抵抗型と静電容量型が存在する。「抵抗型のタッチパネル」は、樹脂フィルムから成る透明基板と該基板上に設けられたX座標(またはY座標)検知電極シート並びにY座標(またはX座標)検知電極シートと、これ等シートの間に設けられた絶縁体スペーサーとで主要部が構成されている。そして、上記X座標検知電極シートとY座標検知電極シートは空間的に隔たっているが、ペン等で押さえられたときに両座標検知電極シートは電気的に接触してペンの触った位置(X座標、Y座標)が判るようになっており、ペンを移動させればその都度座標を認識して、最終的に文字の入力が行なえる仕組みとなっている。他方、「静電容量型のタッチパネル」は、絶縁シートを介してX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートが積層され、これ等の上にガラス等の絶縁体が配置された構造を有している。そして、ガラス等の上記絶縁体に指を近づけたとき、その近傍のX座標検知電極、Y座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。
 そして、電極等の回路パターンを構成する導電性材料として、従来、ITO(酸化インジウム-酸化錫)等の透明導電膜が広く用いられていた(特許文献1参照)。また、タッチパネルの大型化に伴い、特許文献2や特許文献3等に開示されたメッシュ構造の金属製細線(金属膜)も使用され始めている。
 上記透明導電膜と金属製細線(金属膜)を較べた場合、透明導電膜は、可視波長領域における透過性に優れるため電極等の回路パターンが殆ど視認されない利点を有するが、金属製細線(金属膜)より電気抵抗値が高いためタッチパネルの大型化や応答速度の高速化には不向きな欠点を有する。他方、金属製細線(金属膜)は、電気抵抗値が低いためタッチパネルの大型化や応答速度の高速化に向いているが、可視波長領域における反射率が高いため、例え微細なメッシュ構造に加工されたとしても高輝度照明下において回路パターンが視認されることがあり、製品価値を低下させてしまう欠点を有する。
 そこで、電気抵抗値が低い上記金属製細線(金属膜)の特性を生かすため、樹脂フィルムから成る透明基板と金属製細線(金属膜)との間に金属酸化物から成る金属吸収層(黒化膜と称される)を介在させて(特許文献4、特許文献5参照)、透明基板側から観測される金属製細線(金属膜)の反射を低減させる方法が提案されている。
 そして、金属酸化物から成る上記金属吸収層は、金属酸化物の成膜効率を図る観点から、通常、金属ターゲット(金属材)と反応性ガスを用いた反応性スパッタリング等により長尺状樹脂フィルム面に連続成膜され、かつ、成膜された金属吸収層上に銅等の金属ターゲット(金属材)を用いたスパッタリング等により金属層が連続成膜されて電極基板フィルムの作製に使用される積層体フィルムが製造されている。
 また、タッチパネル等に用いられる上記電極基板フィルムは、樹脂フィルムから成る透明基板と該基板に設けられた金属吸収層と金属層から成る積層膜を有する積層体フィルムの上記積層膜を塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチング処理し、積層体フィルムの上記積層膜(金属吸収層と金属層)を電極等の回路パターンに加工して製造されている。
 このため、電極基板フィルムの作製に用いられる積層体フィルムは、積層膜(金属吸収層と金属層)が塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチングされ易い特性と、エッチング加工された電極等の回路パターンが高輝度照明下において視認され難い特性が要求される。
特開2003-151358号公報(請求項2参照) 特開2011-018194号公報(請求項1参照) 特開2013-069261号公報(段落0004参照) 特開2014-142462号公報(請求項5、段落0038参照) 特開2013-225276号公報(請求項1、段落0041参照)
J.Vac.Soc.Jpn.Vol.53,No.9,(2010),p515-520
 ところで、Ni系合金等の金属ターゲット(金属材)と酸素を含む反応性ガスを用いた反応性スパッタリング等により長尺状樹脂フィルム面に金属酸化物から成る金属吸収層が連続成膜され、この金属吸収層上に銅等の金属ターゲット(金属材)を用いたスパッタリング等により金属層が連続成膜されて製造された積層体フィルムを用いて電極基板フィルムを作製する場合、以下のような問題が存在した。
 すなわち、上記積層体フィルムの積層膜(金属吸収層と金属層)をエッチング処理して電極基板フィルムを作製する場合、金属吸収層が成膜初期に形成されている成膜始端側積層体フィルム(長尺状積層体フィルムの成膜始端側領域)と比較して、金属吸収層が成膜終期に形成されている成膜終端側積層体フィルム(長尺状積層体フィルムの成膜終端側領域)を適用した場合にそのエッチング性に劣る問題があり、これに起因して電極基板フィルムにおける回路パターンの加工精度が安定しない問題が存在した。
 本発明はこのような問題点に着目してなされたもので、その課題とするところは、エッチング性に優れると共に、エッチング加工された電極等の回路パターンが高輝度照明下においても視認され難い積層体フィルムと電極基板フィルムを提供し、合わせて積層体フィルムと電極基板フィルムの各製造方法を提供することにある。
 そこで、本発明者は、成膜始端側積層体フィルムに較べて成膜終端側積層体フィルムのエッチング性が劣る原因について調査し、その改善策について検討した。
 まず、積層体フィルムの積層膜を構成する金属吸収層と金属層のエッチング性について調べたところ、Ni系合金等の金属ターゲット(金属材)と酸素を含む反応性ガスを用いた反応性スパッタリング等にて形成された金属吸収層は、銅等の金属ターゲット(金属材)を用いたスパッタリング等にて形成された金属層に較べて塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチングされ難いことが確認された。このことから、積層体フィルムの積層膜を構成する金属吸収層と金属層の内、金属酸化物から成る金属吸収層が上記成膜終端側積層体フィルムにおけるエッチング性の良否に関係していることが予測された。そこで、Ni系合金等の金属ターゲット(金属材)を用いた反応性スパッタリング等にて成膜される金属酸化物(金属吸収層)の化学組成に関して文献調査したところ、非特許文献1に、Ni系の金属ターゲット(金属材)を用いた反応性スパッタリングでは真空チャンバー内に反応性ガスとして酸素を導入すると金属酸化物がNiO膜になり、反応性ガスとして水分を導入すると金属酸化物がNiOOH膜になると記載されている。
 そこで、非特許文献1の記載に基づき、Ni系の金属ターゲット(金属材)を用いたスパッタリングによりNi膜を成膜し、更に、Ni系の金属ターゲット(金属材)を用いた反応性スパッタリングによりNiOOH膜とNiO膜を成膜して、塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によるエッチング性をそれぞれ調べたところ、エッチングの進行が速い膜は、Ni膜、NiOOH膜、NiO膜の順番であることが確認された。このことから、成膜始端側積層体フィルムでは成膜された金属酸化物の一部がエッチングされ易いNiOOH膜(該NiOOH膜よりエッチング性が良好なNi膜は金属酸化物でなく金属吸収層に該当しない)になっているのに対し、成膜終端側積層体フィルムでは成膜された金属酸化物の大半がNiO膜(NiOOH膜に較べエッチングされ難い)になっていることが考えられ、この原因として、上記反応性スパッタリング等により金属酸化物(金属吸収層)を形成する場合における成膜環境の経時変化(真空チャンバー内における残留水分の経時変化)が予測された。
 このような技術的考察の下、真空チャンバー内における水分量の経時変化を四重極質量分析計を用いて測定したところ、図7のグラフ図に示すように、金属酸化物(金属吸収層)の成膜初期に較べて成膜後期においては、真空チャンバー内における水分量が著しく減少していることが確認された。
 更に、上述したNi系合金等のNi系ターゲットに代えて、Ti、Cu、Al、V、W、Ta等より選ばれた2種以上の元素を含む他の合金ターゲットが適用された場合でも、成膜始端側積層体フィルムに較べて成膜終端側積層体フィルムのエッチング性が真空チャンバー内における水分量の減少に伴って劣ることも確認されている。
 本発明はこのような調査と技術的分析を経て完成されたもので、Ni系合金等の金属ターゲット(金属材)と酸素を含む反応性ガスを用いた反応性スパッタリング等にて金属酸化物(金属吸収層)を形成する際、上記反応性ガスに水素を含ませて真空チャンバー内における水分量の減少分を補いながら金属酸化物(金属吸収層)を成膜することで積層体フィルムにおける積層膜のエッチング性を改善したものである。
 すなわち、本発明に係る第1の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムにおいて、
 上記積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とし、
 第2の発明は、
 第1の発明に記載の積層体フィルムにおいて、
 上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とし、
 第3の発明は、
 第1の発明に記載の積層体フィルムにおいて、
 上記積層膜が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、該第2金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とし、
 また、第4の発明は、
 第1の発明または第3の発明に記載の積層体フィルムにおいて、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする。
 次に、第5の発明は、
 樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
 上記金属製の積層細線が、線幅20μm以下で、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とし、
 第6の発明は、
 第5の発明に記載の電極基板フィルムにおいて、
 上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とし、
 第7の発明は、
 第5の発明に記載の電極基板フィルムにおいて、
 上記金属製の積層細線が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、該第2金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とし、
 また、第8の発明は、
 第5の発明または第7の発明に記載の電極基板フィルムにおいて、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする。
 次に、本発明に係る第9の発明は、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムの製造方法において、
 上記積層膜の透明基板側から数えて第1層目の金属吸収層を、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成する第1工程と、
 上記積層膜の透明基板側から数えて第2層目の金属層を、金属材を用いた成膜法により形成する第2工程を具備し、
 かつ、上記第1工程における反応性ガスに水素が含まれていることを特徴とし、
 第10の発明は、
 第9の発明に記載の積層体フィルムの製造方法において、
 上記積層膜の透明基板側から数えて第3層目の第2金属吸収層を、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成する第3工程を具備し、かつ、上記第3工程における反応性ガスに水素が含まれていることを特徴とし、
 第11の発明は、
 第9の発明または第10の発明に記載の積層体フィルムの製造方法において、
 上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とし、
 第12の発明は、
 第9の発明または第10の発明に記載の積層体フィルムの製造方法において、
 上記反応性ガスに含まれている水素は、第1工程および第3工程で形成される金属吸収層および第2金属吸収層の透明基板側における水素濃度が高くなるように成膜室内に導入されていることを特徴とし、
 更に、第13の発明は、
 第9の発明または第10の発明に記載の積層体フィルムの製造方法において、
 上記反応性ガスに含まれている水素の含有量は、第1工程および第3工程の成膜室内における残留水分量の減少分を補う量に設定されていることを特徴とする。
 次に、本発明に係る第14の発明は、
 樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
 第1の発明~第3の発明のいずれかに記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とし、
 第15の発明は、
 樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
 第4の発明に記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とするものである。
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される本発明に係る積層体フィルムは、
 上記積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴としている。
 そして、本発明に係る積層体フィルムにおいては、反応性ガスに水素を含ませて真空チャンバー内における水分量の減少分を補いながら積層膜の金属酸化物(金属吸収層)が成膜されているため、成膜始端側積層体フィルムに較べて成膜終端側積層体フィルムのエッチング性が劣ってしまう問題を回避することが可能となる。
 従って、エッチング性に優れかつエッチング処理して形成される回路パターンが高輝度照明下においても視認され難い積層体フィルムと電極基板フィルムを提供できる効果を有する。
樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有する本発明に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有しかつ金属層が乾式成膜法と湿式成膜法で形成された本発明に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に透明基板側から数えて第1層目の金属吸収層と第2層目の金属層と第3層目の第2金属吸収層を有しかつ金属層が乾式成膜法と湿式成膜法で形成された本発明に係る積層体フィルムの概略断面説明図。 樹脂フィルムから成る透明基板の両面に金属製の積層細線がそれぞれ形成された本発明に係る電極基板フィルムの概略断面説明図。 樹脂フィルムから成る透明基板上に金属吸収層と金属層を形成する真空成膜法を実施する成膜装置(スパッタリングウェブコータ)の説明図。 図5に示す成膜装置(スパッタリングウェブコータ)の部分拡大図。 真空チャンバー内における水分量の経時変化を示すグラフ図。
 以下、本発明の実施の形態について図面を用いて詳細に説明する。
(1)積層体フィルム
 本発明に係る第一の積層体フィルムは、
 樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成され、
 上記積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とし、
 また、本発明に係る第二の積層体フィルムは、
 上記第一の積層体フィルムを前提とし、
 上記積層膜が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、該第2金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とする。
(1-1)第一の積層体フィルム
 第一の積層体フィルムは、図1に示すように樹脂フィルムから成る透明基板40と、該透明基板40の両面に乾式成膜法(乾式めっき法)により形成された金属吸収層41、43と金属層42、44とで構成されている。
 尚、上記金属層については、乾式成膜法(乾式めっき法)と湿式成膜法(湿式めっき法)を組み合わせて形成してもよい。
 すなわち、図2に示すように樹脂フィルムから成る透明基板50と、該透明基板50の両面に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの金属吸収層51、53と、該金属吸収層51、53上に乾式成膜法(乾式めっき法)により形成された金属層52、54と、該金属層52、54上に湿式成膜法(湿式めっき法)により形成された金属層55、56とで構成してもよい。
(1-2)第二の積層体フィルム
 次に、第二の積層体フィルムは、図2に示した第一の積層体フィルムを前提とし、該積層体フィルムの金属層上に第2金属吸収層を形成して成るものである。
 すなわち、図3に示すように樹脂フィルムから成る透明基板60と、該透明基板60の両面に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの金属吸収層61、63と、該金属吸収層61、63上に乾式成膜法(乾式めっき法)により形成された金属層62、64と、該金属層62、64上に湿式成膜法(湿式めっき法)により形成された金属層65、66と、該金属層65、66上に乾式成膜法(乾式めっき法)により形成された膜厚15nm~30nmの第2金属吸収層67、68とで構成されている。
 ここで、図3に示す第二の積層体フィルムにおいて、符号62、65で示す金属層の両面に金属吸収層61と第2金属吸収層67を形成し、また、符号64、66で示す金属層の両面に金属吸収層63と第2金属吸収層68を形成しているのは、該積層体フィルムを用いて作製された電極基板フィルムをタッチパネルに組み込んだときに金属製積層細線から成るメッシュ構造の回路パターンが反射して見えないようにするためである。
 尚、樹脂フィルムから成る透明基板の片面に金属吸収層を形成し、該金属吸収層上に金属層が形成された第一の積層体フィルムを用いて電極基板フィルムを作製した場合にも、該透明基板からの上記回路パターンの視認を防止することが可能である。
(1-3)金属吸収層の構成材料(金属材)
 金属吸収層は、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成される。また、上記合金としては、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金が広く利用されており、上記Ni系合金として、Ni-Cu合金が好ましい。また、金属吸収層を構成する金属酸化物の酸化が進み過ぎると金属吸収層が透明になってしまうため、黒化膜になる程度の酸化レベルに設定することを要する。上記反応成膜法としては、マグネトロンスパッタ、イオンビームスパッタ、真空蒸着、イオンプレーティング、CVD等がある。また、金属吸収層の各波長における光学定数(屈折率、消衰係数)は、反応の度合い、すなわち、酸化度に大きく影響され、Ni系合金から成る金属材だけで決定されるものではない。
(1-4)金属層の構成材料(金属材)
 上記金属層の構成材料(金属材)としては、電気抵抗値が低い金属であれば特に限定されず、例えば、Cu単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Agより選ばれる1種以上の元素が添加されたCu系合金、または、Ag単体、若しくは、Ti、Al、V、W、Ta、Si、Cr、Cuより選ばれる1種以上の元素が添加されたAg系合金が挙げられ、特に、Cu単体が、回路パターンの加工性や抵抗値の観点から望ましい。
 また、金属層の膜厚は電気特性に依存するものであり、光学的な要素から決定されるものではないが、通常、透過光が測定不能なレベルの膜厚に設定される。
 そして、金属層の望ましい膜厚は、電気抵抗の観点からは50nm以上が好ましく、60nm以上がより好ましい。一方、金属層を配線パターンに加工する加工性の観点からは5μm(5000nm)以下が好ましく、3μm(3000nm)以下がより好ましい。
(1-5)透明基板を構成する樹脂フィルム
 上記積層体フィルムに適用される樹脂フィルムの材質としては特に限定されることはなく、その具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)、トリアセチルセルロース(TAC)およびノルボルネンの樹脂材料から選択された樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして、日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)等が挙げられる。
 尚、本発明に係る積層体フィルムを用いて作製される電極基板フィルムは「タッチパネル」等に使用するため、上記樹脂フィルムの中でも可視波長領域での透明性に優れるものが望ましい。
(2)反応成膜法を実施する成膜装置
(2-1)スパッタリングウェブコータ
 成膜法の一例としてスパッタリング法を挙げ、その成膜装置について説明する。
 尚、この成膜装置はスパッタリングウェブコータと称され、ロールツーロール方式で搬送される長尺樹脂フィルム表面に連続的に効率よく成膜処理を施す場合に用いられる。
 具体的に説明すると、ロールツーロール方式で搬送される長尺樹脂フィルムの成膜装置(スパッタリングウェブコータ)は、図5に示すように真空チャンバー10内に設けられており、巻き出しロール11から巻き出された長尺樹脂フィルム12に対して所定の成膜処理を行った後、巻き取りロール24で巻き取るようになっている。これら巻き出しロール12から巻き取りロール24までの搬送経路の途中に、モータで回転駆動されるキャンロール16が配置されている。このキャンロール16の内部には、真空チャンバー10の外部で温調された冷媒が循環している。
 真空チャンバー10内では、スパッタリング成膜のため、到達圧力10-4Pa程度までの減圧と、その後のスパッタリングガスの導入による0.1~10Pa程度の圧力調整が行われる。スパッタリングガスにはアルゴン等公知のガスが使用され、目的に応じて更に酸素等のガスが添加される。真空チャンバー10の形状や材質は、このような減圧状態に耐え得るものであれば特に限定はなく種々のものを使用することができる。また、真空チャンバー10内を減圧してその状態を維持するため、真空チャンバー10にはドライポンプ、ターボ分子ポンプ、クライオコイル等の種々の装置(図示せず)が組み込まれている。
 巻き出しロール11からキャンロール16までの搬送経路には、長尺樹脂フィルム12を案内するフリーロール13と、長尺樹脂フィルム12の張力の測定を行う張力センサロール14とがこの順で配置されている。また、張力センサロール14から送り出されてキャンロール16に向かう長尺樹脂フィルム12は、キャンロール16の近傍に設けられたモータ駆動の前フィードロール15によってキャンロール16の周速度に対する調整が行われ、これによりキャンロール16の外周面に長尺樹脂フィルム12を密着させることができる。
 キャンロール16から巻き取りロール24までの搬送経路も、上記同様に、キャンロール16の周速度に対する調整を行うモータ駆動の後フィードロール21、長尺樹脂フィルム12の張力の測定を行う張力センサロール22および長尺樹脂フィルム12を案内するフリーロール23がこの順に配置されている。
 上記巻き出しロール11および巻き取りロール24では、パウダークラッチ等によるトルク制御によって長尺樹脂フィルム12の張力バランスが保たれている。また、キャンロール16の回転とこれに連動して回転するモータ駆動の前フィードロール15、後フィードロール21により、巻き出しロール11から長尺樹脂フィルム12が巻き出されて巻き取りロール24に巻き取られるようになっている。
 キャンロール16の近傍には、キャンロール16の外周面上に画定される搬送経路(すなわち、キャンロール16外周面の内の長尺樹脂フィルム12が巻き付けられる領域)に対向する位置に、成膜手段としてのマグネトロンスパッタリングカソード17、18、19および20が設けられ、この近傍に反応性ガスを放出するガス放出パイプ25、26、27、28、29、30、31、32が設置されている。
 ところで、上記金属吸収層と金属層のスパッタリング成膜を実施する際、図5に示すように板状のターゲットを使用できるが、板状ターゲットを用いた場合、ターゲット上にノジュール(異物の成長)が発生することがある。これが問題になる場合は、ノジュールの発生がなくかつターゲットの使用効率も高い円筒形のロータリーターゲットを使用することが好ましい。
(2-2)反応性スパッタリング
 金属酸化物から成る金属吸収層を成膜する目的で酸化物ターゲットを適用した場合、成膜速度が遅く量産に適さない。このため、高速成膜が可能なNi系合金等の金属ターゲット(金属材)を用い、かつ、酸素を含む反応性ガスを制御しながら導入する反応性スパッタリング等の反応成膜法が採られている。
 そして、反応性ガスを制御する方法として以下の4つの方法が知られている。
(2-2-1)一定流量の反応性ガスを放出する方法。
(2-2-2)一定圧力を保つように反応性ガスを放出する方法。
(2-2-3)スパッタリングカソードのインピーダンスが一定になるように反応性ガスを放出する(インピーダンス制御)方法。
(2-2-4)スパッタリングのプラズマ強度が一定になるように反応性ガスを放出する(プラズマエミッション制御)方法。
(3)金属吸収層の成膜
 電極基板フィルムの作製に用いられる積層体フィルムは、積層膜(金属吸収層と金属層)が塩化第二銅水溶液や塩化第二鉄水溶液等のエッチング液によりエッチングされ易い特性と、エッチング加工された電極等の回路パターンが高輝度照明下において視認され難い特性が要求される。
 上記金属吸収層を、例えば反応性スパッタリングにより成膜する場合、反応性ガスとしてスパッタガスのアルゴンに酸素を添加して黒色膜としての金属吸収層が得られる。
 そして、積層体フィルムにおける積層膜(金属吸収層と金属層)のエッチング性を調べると、上述したように銅等金属層のエッチングは容易であるが、金属吸収層はエッチングされ難い。このため、積層体フィルムのエッチング性を改善するには金属吸収層のエッチング性を改善する必要がある。
 ところで、図5の成膜装置を用い、長尺状樹脂フィルムに連続スパッタリング成膜を行って得られる積層体フィルムは長尺樹脂フィルムの長手方向でエッチング液によるエッチング速度が異なり、成膜始端側積層体フィルム(長尺状積層体フィルムの成膜始端側領域)のエッチング速度が成膜終端側積層体フィルム(長尺状積層体フィルムの成膜終端側領域)より速くなることが確認され、この現象は、上述したように金属吸収層のエッチング速度が相違するためと推定した。
 一方、長尺状樹脂フィルムに連続してスパッタリング成膜を行う真空成膜装置においては、真空チャンバー内に含まれる水分量が経時的に減少することが四重極質量分析計等で確認されている(図7のグラフ図参照)。
 また、上記Ni系ターゲットを用いた反応性スパッタリングにより成膜される金属酸化物(金属吸収層)の化学組成(Niの化学状態)は、非特許文献1によれば、上述したように反応性ガスとして酸素を導入するとNiO膜になり、水分を導入するとNiOOH膜になることが記載されている。
 そして、本発明者が積層体フィルムの試作試験を繰り返す過程で、上記金属酸化物(金属吸収層)は結晶粒が細かく、水酸化物である上記NiOOHの存在がエッチング性に影響を及ぼしていると推定した。更に、上記Ni系のターゲットに代えて、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金ターゲットを適用して形成された金属酸化物(金属吸収層)の場合においても、水酸化物の存在がエッチング性に影響を及ぼしていると推定した。
 そこで、本発明者は、成膜中に減少する真空チャンバー内の水分量を補うため、反応性ガスに水素を含ませることにより長尺樹脂フィルムの長手方向によってエッチング速度が異なる現象を解決した。
 真空チャンバー内において、水分子は、スパッタリングのプラズマにより水素と酸素に分解される。このため、反応性ガスに水素を含ませることで、水の添加と同様な効果が期待できる。反応性ガスに含ませた水素が金属吸収層に取り込まれるからである。
 また、真空チャンバー内に水を導入する場合に較べ、水素ガスを用いると、気化して得られる蒸気が水に戻る不具合を回避することができる。更に、真空チャンバー内に水を導入する方法としては、水中へキャリアガスを通過させるバブリング法、水を加熱して気化させる直接気化法等があるが、複雑な機構でかつ冷えてしまうと水に戻ってしまい取扱が難しい。ところが、水素はガスなので取扱が容易である。
 また、水素は、キャリアガス(例えばアルゴン)に4%未満となるように混合して取扱えば、安全性も高い。
 水素の添加量は、上述したように真空チャンバー内に含まれる水分量の経時的な減少分を補うように定めればよい。真空チャンバー内に含まれる水分量は、真空チャンバー内における四重極質量分析計の配置位置や真空チャンバーの形状等で変動する。このため、水素の添加量は、成膜装置ごとに適宜設定すればよい。
 尚、真空チャンバー内の水分量を補う方法として反応性ガスに水素を含ませる方法が好ましいが、水素の代わりに水を添加しても同様の効果がある。
 ところで、真空チャンバー内において四重極質量分析計等により観測される水は、真空成膜装置から成膜後の積層体フィルムを取り出したりする際の大気開放により真空チャンバー内に吸着される水である。
(4)成膜装置における反応性ガスの導入
 反応性スパッタリング等により金属吸収層を成膜する際、スパッタリング雰囲気となる反応性ガスはアルゴンに酸素を添加する。酸素を添加することで、例えばNi系の金属ターゲット(金属材)を用いた反応性スパッタリング等によりNiO膜(完全に酸化しているのではない)等とすることができる。反応性ガスの酸素含有量は、成膜装置や金属ターゲット(金属材)の種類に依存し、金属吸収層における反射率等の光学特性やエッチング液によるエッチング性を考慮して適宜設定すればよく、15体積%以下が望ましい。
 ところで、真空チャンバー内に水素ガスや水を供給することなく、スパッタリングを開始した後における真空チャンバー内の残留水分量の変化を図7に示す。スパッタリング成膜時間が経過すると共に、残留水分が低下していくことが確認される。スパッタリング開始直後における水分低下が速いのは、スパッタリング時に発生するプラズマおよび熱により真空チャンバー内部に吸着した水分子が脱離し易いためと考えられている。
 次に、図5の成膜装置におけるスパッタリングカソード17、18の周辺を、図6の拡大図に示す。
 透明基板側から数えて第1層目である金属吸収層の成膜に2本のスパッタリングカソードを使用する場合、スパッタリングカソードの近傍に反応性ガスを放出する4本のガス放出パイプ125、126、127、128に反応性ガスを導入することが可能である。
 例えばNi系の金属ターゲット(金属材)を用いた場合、エッチング液にも依存するが、エッチングの進行が速いのは、上述したようにNi膜、NiOOH膜、NiO膜の順番である。そして、エッチング性を重視するならば、金属吸収層における厚み方向の樹脂フィルム側をNiOOH膜(完全に酸化しているわけではない)にすることが望ましく、反対に、樹脂フィルムからの水分が積層膜を酸化させないバリア性を重視するならば、金属吸収層における厚み方向の樹脂フィルム側をNiO膜(完全に酸化しているわけではない)にすることが望ましい。
 そして、金属吸収層の厚み方向に構成成分の分布を持たせるには、4本のガス放出パイプ125、126、127、128から導入する反応性ガスを選択し、それぞれのガス放出パイプ近傍のガス雰囲気161、162、163、164を得ればよい。例えば、水素をガス放出パイプ125から導入すれば、金属吸収層における厚み方向の樹脂フィルム側にNiOOH膜が形成され易くなり、水素をガス放出パイプ128から導入すれば、金属吸収層における厚み方向の樹脂フィルム側にNiO膜が形成され易くなる。
(5)電極基板フィルム
(5-1)本発明に係る積層体フィルムの積層膜をエッチング処理して、線幅が20μm以下である金属製の積層細線に配線加工することにより本発明に係る電極基板フィルムを得ることができる。具体的には、図3に示す積層体フィルムの積層膜をエッチング処理して図4に示すような電極基板フィルムを得ることができる。
 すなわち、図4に示すような電極基板フィルムは、樹脂フィルムから成る透明基板70と、該透明基板70の両面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有し、上記金属製の積層細線が、線幅20μm以下でかつ透明基板70側から数えて第1層目の金属吸収層71、73と、第2層目の金属層72、75、74、76と、第3層目の第2金属吸収層77、78とで構成されている。
 そして、電極基板フィルムの電極(配線)パターンをタッチパネル用のストライプ状若しくは格子状とすることで、本発明に係る電極基板フィルムをタッチパネルに用いることができる。また、電極(配線)パターンに配線加工された金属製の積層細線は、積層体フィルムの積層構造を維持していることから、高輝度照明下においても透明基板に設けられた電極等の回路パターンが極めて視認され難い電極基板フィルムとして提供することができる。
(5-2)そして、本発明に係る積層体フィルムから電極基板フィルムに配線加工するには、公知のサブトラクティブ法により加工が可能である。
 サブトラクティブ法は、積層体フィルムの積層膜表面にフォトレジスト膜を形成し、配線パターンを形成したい箇所にフォトレジスト膜が残るように露光、現像し、かつ、上記積層膜表面にフォトレジスト膜が存在しない箇所の積層膜を化学エッチングにより除去して配線パターンを形成する方法である。
 上記記化学エッチングのエッチング液としては、塩化第二鉄水溶液や塩化第二銅水溶液を用いることができる。
 以下、本発明の実施例について比較例を挙げて具体的に説明するが、本発明は以下の実施例により限定されるものではない。
[実施例1~5]
 図5に示す成膜装置(スパッタリングウェブコータ)を用い、反応性ガスには酸素ガスを用いると共に、キャンロール16は、直径600mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。前フィードロール15と後フィードロール21は直径150mm、幅750mmのステンレス製で、ロール本体表面にハードクロムめっきが施されている。また、各マグネトロンスパッタリングカソード17、18、19、20の上流側と下流側にガス放出パイプ25、26、27、28、29、30、31、32を設置し、かつ、マグネトロンスパッタリングカソード17、18には金属吸収層用のNi-Cuターゲット、マグネトロンスパッタリングカソード19と20には金属層用のCuターゲットを取り付けた。
 尚、図5のマグネトロンスパッタリングカソード17、18は、図6においてはマグネトロンスパッタリングカソード117、118に対応し、また、図5のガス放出パイプ25、26、27、28は、図6においてはガス放出パイプ125、126、127、128に対応している。
 また、透明基板を構成する樹脂フィルムには幅600mmで長さ1200mのPETフィルムを用い、キャンロール16は0℃に冷却制御した。また、真空チャンバー10を複数台のドライポンプにより5Paまで排気した後、更に、複数台のターボ分子ポンプとクライオコイルを用いて3×10-3Paまで排気した。
 そして、樹脂フィルムの搬送速度を2m/分にした後、上記ガス放出パイプ29、30、31、32からアルゴンガスを500sccm導入し、カソード19と20については、Cu膜厚80nmが得られる電力制御で成膜を行った。一方、金属吸収層も図5に示すガス放出パイプ25、26、27、28(図6においてはガス放出パイプ125、126、127、128)からアルゴンガスを500sccmと酸素ガス50sccmを混合した混合ガスを導入し、図5に示すカソード17と18(図6においてはマグネトロンスパッタリングカソード117、118)については、Ni-Cu酸化膜厚30nmが得られる電力制御で成膜を行った。
 ここで、四重極質量分析計(ULVAC社製)により予め測定した真空チャンバー内における残留水分の変化を図7に示す。真空チャンバー内の残留水分量を一定するには、水とアルゴンの比がスパッタ開始時の0.7%(図7のグラフ図参照)と同様になるよう水素と酸素をモル比で2:1となる割合でスパッタ時間の経過と共に流量を増加していけばよい。それぞれのキャリアガスにはスパッタガスであるアルゴンを用いることが望ましい。反応性ガスに含ませる水素の含有量は、成膜される金属吸収層の反射率とエッチング性を考慮して、一定量のオフセットを設定してもよい。
 そして、反応性ガスに含ませる水素の導入は、以下の表1に示すガス放出パイプから行った。
 まず、実施例1においては、マグネトロンスパッタリング第1カソード117の上流側に位置するガス放出パイプ125からのみ水素を導入し、マグネトロンスパッタリング第1カソード117の下流側に位置するガス放出パイプ126、および、マグネトロンスパッタリング第2カソード118の各ガス放出パイプ127、128からの水素の導入は行わなかった。
 実施例2においては、マグネトロンスパッタリング第1カソード117の各ガス放出パイプ125、126から水素を導入し、マグネトロンスパッタリング第2カソード118の各ガス放出パイプ127、128からの水素の導入は行わなかった。
 実施例3においては、マグネトロンスパッタリング第1カソード117の上流側に位置するガス放出パイプ125とマグネトロンスパッタリング第2カソード118の上流側に位置するガス放出パイプ127から水素を導入し、マグネトロンスパッタリング第1カソード117の下流側に位置するガス放出パイプ126とマグネトロンスパッタリング第2カソード118の下流側に位置するガス放出パイプ128からの水素の導入は行わなかった。
 実施例4においては、マグネトロンスパッタリング第2カソード118の各ガス放出パイプ127、128から水素を導入し、マグネトロンスパッタリング第1カソード117の各ガス放出パイプ125、126からの水素の導入は行わなかった。
 実施例5においては、マグネトロンスパッタリング第2カソード118の下流側に位置するガス放出パイプ128からのみ水素を導入し、マグネトロンスパッタリング第1カソード117の各ガス放出パイプ125、126、および、マグネトロンスパッタリング第2カソード118の上流側に位置するガス放出パイプ127からの水素の導入は行わなかった。
 尚、ガス放出パイプからの水素および酸素の導入量により金属吸収層における成膜速度の低下が予測されるので、目標とする金属吸収層の膜厚を得るためにはスパッタ電力の調整が必要になる。また、1本のガス放出パイプにH2とO2の混合ガスを流してもよい。また、実施例等で適用された成膜装置のマグネトロンスパッタリング第1カソード117とマグネトロンスパッタリング第2カソード118は差動排気されておらず、図6に示すガス雰囲気161、162、163、164が独立している訳ではない。
 そして、長尺PETフィルムから成る透明基板と、該透明基板に設けられたNi-Cu酸化膜である金属吸収層とCu膜である金属層から成る積層膜とで構成された実施例1~5に係る積層体フィルムを製造した。
[比較例1]
 反応性ガスに水素が含まれていない点を除き実施例と略同一に行った。
 すなわち、マグネトロンスパッタリング第1カソード117の各ガス放出パイプ125、126、および、マグネトロンスパッタリング第2カソード118の各ガス放出パイプ127、128からの水素の導入を行わなかった点を除き実施例と略同一に行って、長尺状PETフィルムから成る透明基板と、該透明基板に設けられたNi-Cu酸化膜である金属吸収層とCu膜である金属層から成る積層膜とで構成された比較例1に係る積層体フィルムを製造した。
Figure JPOXMLDOC01-appb-T000001
[評価試験]
(1)実施例1~5と比較例1に係る積層体フィルム(透明基板側から数えて第1層目の金属吸収層と第2層目の銅層から成る積層膜を具備する積層体フィルム)の各々について100m間隔毎に0m~1100mサンプリングし、各積層体フィルムの分光反射特性とエッチング性の評価を行った。
(2)積層体フィルムの分光反射特性については、第1層目である金属吸収層の分光反射特性を、透明基板越しに自記分光光度計を用いて行った。
(3)積層体フィルムのエッチング性については、エッチング液として塩化第二鉄水溶液を用い、上記積層膜(金属吸収層と銅層)を化学エッチングした。
 上記エッチング性の評価については、以下の基準に従って優劣マーク(◎、〇、△、×)を付して行った。
「◎」:目視観察や光学顕微鏡でエッチング残が確認できない。
「〇」:目視観察でエッチング残が確認できず、実用可能である。
「△」:目視観察で一部にエッチング残が確認できる。
「×」:目視観察で広範囲に亘りエッチング残が確認できる。
(4)評価結果を以下の表2と表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[確 認]
(1)反応性ガスに水素を含ませて真空チャンバー内における水分量の減少分を補いながら金属吸収層の成膜が行われた実施例1~5に係る積層体フィルムにおいては、表2と表3における「エッチング性」欄の優劣マークから、成膜始端側積層体フィルムに較べて成膜終端側積層体フィルムのエッチング性が劣ってしまう従来の問題が解消されていることが確認される。
(2)成膜領域がマグネトロンスパッタリング第2カソード118より上流側に位置するマグネトロンスパッタリング第1カソード117のガス放出パイプ125、126から水素を導入している実施例1~3に係る積層体フィルムは、マグネトロンスパッタリング第2カソード118のガス放出パイプ127、128から水素を導入している実施例4~5に係る積層体フィルムと比較してエッチング性が良好であることが確認される。
 このような差異が生ずる理由として、実施例1~3に係る積層体フィルムでは、金属吸収層における厚み方向の透明基板側にエッチングされ易いNiOOH膜が多く含まれているためと推察している。
(3)一方、マグネトロンスパッタリング第1カソード117のガス放出パイプ125、126から水素を導入している実施例1~3に係る積層体フィルムは、マグネトロンスパッタリング第2カソード118のガス放出パイプ127、128から水素を導入している実施例4~5に係る積層体フィルムと比較して反射率が若干高くなることも確認される。
(4)また、成膜開始直後(サンプリング位置0m付近)においては真空チャンバーから水分が放出される影響が大きいため、実施例1~5と比較例1に係る積層体フィルムにおいてエッチング性が安定していないことも確認される。
(5)透明基板側から数えて第3層目の第2金属吸収層を上記銅層上に成膜した積層体フィルムを製造し、該第2金属吸収層のエッチング性評価も行ったところ、比較的良好であることが確認された。透明基板側から数えて第2層目の銅層があるためと考えられる。
 本発明に係る積層体フィルムはエッチング性に優れ、かつ、上記積層体フィルムを用いて作製される本発明に係る電極基板フィルムの電極等は高輝度照明下においても視認され難いためFPD(フラットパネルディスプレイ)表面に設置する「タッチパネル」に利用される産業上の可能性を有している。
 10 真空チャンバー
 11 巻き出しロール
 12 長尺樹脂フィルム
 13 フリーロール
 14 張力センサロール
 15 前フィードロール
 16 キャンロール
 17 マグネトロンスパッタリングカソード
 18 マグネトロンスパッタリングカソード
 19 マグネトロンスパッタリングカソード
 20 マグネトロンスパッタリングカソード
 21 後フィードロール
 22 張力センサロール
 23 フリーロール
 24 巻き取りロール
 25 ガス放出パイプ
 26 ガス放出パイプ
 27 ガス放出パイプ
 28 ガス放出パイプ
 29 ガス放出パイプ
 30 ガス放出パイプ
 31 ガス放出パイプ
 32 ガス放出パイプ
 40 樹脂フィルム(透明基板)
 41 金属吸収層
 42 金属層(銅層)
 43 金属吸収層
 44 金属層(銅層)
 50 樹脂フィルム(透明基板)
 51 金属吸収層
 52 乾式成膜法で形成された金属層(銅層)
 53 金属吸収層
 54 乾式成膜法で形成された金属層(銅層)
 55 湿式成膜法で形成された金属層(銅層)
 56 湿式成膜法で形成された金属層(銅層)
 60 樹脂フィルム(透明基板)
 61 金属吸収層
 62 乾式成膜法で形成された金属層(銅層)
 63 金属吸収層
 64 乾式成膜法で形成された金属層(銅層)
 65 湿式成膜法で形成された金属層(銅層)
 66 湿式成膜法で形成された金属層(銅層)
 67 第2金属吸収層
 68 第2金属吸収層
 70 樹脂フィルム(透明基板)
 71 金属吸収層
 72 乾式成膜法で形成された金属層(銅層)
 73 金属吸収層
 74 乾式成膜法で形成された金属層(銅層)
 75 湿式成膜法で形成された金属層(銅層)
 76 湿式成膜法で形成された金属層(銅層)
 77 第2金属吸収層
 78 第2金属吸収層
116 キャンロール
117 マグネトロンスパッタリング第1カソード
118 マグネトロンスパッタリング第2カソード
125 ガス放出パイプ
126 ガス放出パイプ
127 ガス放出パイプ
128 ガス放出パイプ
161 ガス雰囲気
162 ガス雰囲気
163 ガス雰囲気
164 ガス雰囲気

Claims (15)

  1.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムにおいて、
     上記積層膜が、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とする積層体フィルム。
  2.  上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項1に記載の積層体フィルム。
  3.  上記積層膜が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、該第2金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とする請求項1に記載の積層体フィルム。
  4.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項1または3に記載の積層体フィルム。
  5.  樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムにおいて、
     上記金属製の積層細線が、線幅20μm以下で、透明基板側から数えて第1層目の金属吸収層と第2層目の金属層を有すると共に、上記金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とする電極基板フィルム。
  6.  上記金属層の膜厚が、50nm以上5000nm以下であることを特徴とする請求項5に記載の電極基板フィルム。
  7.  上記金属製の積層細線が、透明基板側から数えて第3層目の第2金属吸収層を有すると共に、該第2金属吸収層が、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成されており、かつ、上記反応性ガスに水素が含まれていることを特徴とする請求項5に記載の電極基板フィルム。
  8.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項5または7に記載の電極基板フィルム。
  9.  樹脂フィルムから成る透明基板と該透明基板の少なくとも一方の面に設けられた積層膜とで構成される積層体フィルムの製造方法において、
     上記積層膜の透明基板側から数えて第1層目の金属吸収層を、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成する第1工程と、
     上記積層膜の透明基板側から数えて第2層目の金属層を、金属材を用いた成膜法により形成する第2工程を具備し、
     かつ、上記第1工程における反応性ガスに水素が含まれていることを特徴とする積層体フィルムの製造方法。
  10.  上記積層膜の透明基板側から数えて第3層目の第2金属吸収層を、Ni単体、または、Ni、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれた2種以上の元素を含む合金から成る金属材と酸素を含む反応性ガスを用いた反応成膜法により形成する第3工程を具備し、かつ、上記第3工程における反応性ガスに水素が含まれていることを特徴とする請求項9に記載の積層体フィルムの製造方法。
  11.  上記合金が、Ti、Al、V、W、Ta、Si、Cr、Ag、Mo、Cuより選ばれる1種以上の元素が添加されたNi系合金で構成されていることを特徴とする請求項9または10に記載の積層体フィルムの製造方法。
  12.  上記反応性ガスに含まれている水素は、第1工程および第3工程で形成される金属吸収層および第2金属吸収層の透明基板側における水素濃度が高くなるように成膜室内に導入されていることを特徴とする請求項9または10に記載の積層体フィルムの製造方法。
  13.  上記反応性ガスに含まれている水素の含有量は、第1工程および第3工程の成膜室内における残留水分量の減少分を補う量に設定されていることを特徴とする請求項9または10に記載の積層体フィルムの製造方法。
  14.  樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
     請求項1~3のいずれかに記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とする電極基板フィルムの製造方法。
  15.  樹脂フィルムから成る透明基板と、該透明基板の少なくとも一方の面に設けられた金属製の積層細線から成るメッシュ構造の回路パターンを有する電極基板フィルムの製造方法において、
     請求項4に記載の積層体フィルムの積層膜を化学エッチング処理して、線幅が20μm以下である上記金属製の積層細線を配線加工することを特徴とする電極基板フィルムの製造方法。
PCT/JP2015/079407 2014-10-29 2015-10-19 積層体フィルムと電極基板フィルムおよびこれ等の製造方法 WO2016067943A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016533730A JP6176401B2 (ja) 2014-10-29 2015-10-19 積層体フィルムと電極基板フィルムの製造方法
US15/515,370 US10752985B2 (en) 2014-10-29 2015-10-19 Laminate film and electrode substrate film, and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220331 2014-10-29
JP2014-220331 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016067943A1 true WO2016067943A1 (ja) 2016-05-06

Family

ID=55857284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079407 WO2016067943A1 (ja) 2014-10-29 2015-10-19 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Country Status (4)

Country Link
US (1) US10752985B2 (ja)
JP (1) JP6176401B2 (ja)
TW (1) TWI676549B (ja)
WO (1) WO2016067943A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175130A1 (ja) * 2015-04-28 2016-11-03 住友金属鉱山株式会社 導電性基板
WO2017130867A1 (ja) * 2016-01-29 2017-08-03 住友金属鉱山株式会社 導電性基板
JP2018131673A (ja) * 2017-02-17 2018-08-23 住友金属鉱山株式会社 スパッタリング成膜装置と成膜方法および積層体フィルムの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597621B2 (ja) * 2014-08-27 2019-10-30 住友金属鉱山株式会社 積層体フィルムと電極基板フィルムおよびこれ等の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132737A (ja) * 2001-10-30 2003-05-09 Mitsui Chemicals Inc 保護フィルム付き透明導電性フィルム、及びそれを用いたディスプレイ用光学フィルター、及びその製造方法
JP2007039781A (ja) * 2005-07-06 2007-02-15 Idemitsu Kosan Co Ltd スパッタリングターゲット、その製造方法、反射膜、及び有機エレクトロルミネッセンス素子
JP2013001993A (ja) * 2011-06-21 2013-01-07 Meltex Inc キャリア箔付き極薄銅箔およびその製造方法
WO2013178613A1 (de) * 2012-05-31 2013-12-05 Bayer Materialscience Ag Mit zink-zinn-oxid beschichtete kunststofffolie mit verbesserter optischer absorptionseigenschaft

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086132B2 (ja) 2001-11-16 2008-05-14 株式会社ブリヂストン 透明導電性フィルムおよびタッチパネル
WO2006033268A1 (ja) * 2004-09-24 2006-03-30 Konica Minolta Holdings, Inc. 透明導電膜
JP2006336084A (ja) * 2005-06-03 2006-12-14 Canon Inc スパッタ成膜方法
EP1992716B1 (en) * 2006-03-03 2013-04-24 Shenzhen Commonpraise Solar Co., Ltd Light selectively absorbing layers and method for making the same
WO2008007770A1 (en) * 2006-07-14 2008-01-17 Dai Nippon Printing Co., Ltd. Transparent conducting layer coated film and its use
JP5361579B2 (ja) 2009-07-09 2013-12-04 信越ポリマー株式会社 大型ディスプレイ用のセンサパネル及びその製造方法
US9946377B2 (en) * 2010-10-19 2018-04-17 Lg Chem, Ltd. Structured body with conducting and light absorption layers
JP2013069261A (ja) 2011-09-08 2013-04-18 Dainippon Printing Co Ltd タッチパネル用電極基材、及びタッチパネル、並びに画像表示装置
KR20130118082A (ko) 2012-04-19 2013-10-29 삼성전기주식회사 터치패널 및 그 제조방법
JP2014142462A (ja) 2013-01-23 2014-08-07 Dainippon Printing Co Ltd 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132737A (ja) * 2001-10-30 2003-05-09 Mitsui Chemicals Inc 保護フィルム付き透明導電性フィルム、及びそれを用いたディスプレイ用光学フィルター、及びその製造方法
JP2007039781A (ja) * 2005-07-06 2007-02-15 Idemitsu Kosan Co Ltd スパッタリングターゲット、その製造方法、反射膜、及び有機エレクトロルミネッセンス素子
JP2013001993A (ja) * 2011-06-21 2013-01-07 Meltex Inc キャリア箔付き極薄銅箔およびその製造方法
WO2013178613A1 (de) * 2012-05-31 2013-12-05 Bayer Materialscience Ag Mit zink-zinn-oxid beschichtete kunststofffolie mit verbesserter optischer absorptionseigenschaft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175130A1 (ja) * 2015-04-28 2016-11-03 住友金属鉱山株式会社 導電性基板
WO2017130867A1 (ja) * 2016-01-29 2017-08-03 住友金属鉱山株式会社 導電性基板
JPWO2017130867A1 (ja) * 2016-01-29 2018-11-22 住友金属鉱山株式会社 導電性基板
JP2018131673A (ja) * 2017-02-17 2018-08-23 住友金属鉱山株式会社 スパッタリング成膜装置と成膜方法および積層体フィルムの製造方法

Also Published As

Publication number Publication date
JPWO2016067943A1 (ja) 2017-04-27
US10752985B2 (en) 2020-08-25
TW201622993A (zh) 2016-07-01
TWI676549B (zh) 2019-11-11
US20170226624A1 (en) 2017-08-10
JP6176401B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6176401B2 (ja) 積層体フィルムと電極基板フィルムの製造方法
JP6249101B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6597621B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6418060B2 (ja) 金属吸収層の製造方法と積層体フィルムの製造方法
JP6617607B2 (ja) 成膜方法及びこれを用いた積層体基板の製造方法
JP6233618B2 (ja) 積層体フィルムと電極基板フィルムおよびこれ等の製造方法
JP6277926B2 (ja) 成膜装置および積層体フィルムと電極基板フィルムの各製造方法
JP6597622B2 (ja) 電極基板フィルムとその製造方法
JP6330708B2 (ja) 成膜方法および積層体フィルムの製造方法
JP6330709B2 (ja) 成膜方法と積層体フィルムおよび電極基板フィルムの各製造方法
WO2016194696A1 (ja) スパッタリングターゲット及びこれを用いたスパッタリング成膜方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016533730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855936

Country of ref document: EP

Kind code of ref document: A1