WO2016031550A1 - 熱可塑性重合体組成物、及び成形品 - Google Patents

熱可塑性重合体組成物、及び成形品 Download PDF

Info

Publication number
WO2016031550A1
WO2016031550A1 PCT/JP2015/072704 JP2015072704W WO2016031550A1 WO 2016031550 A1 WO2016031550 A1 WO 2016031550A1 JP 2015072704 W JP2015072704 W JP 2015072704W WO 2016031550 A1 WO2016031550 A1 WO 2016031550A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polymer composition
thermoplastic polymer
mass
hydrogenated block
Prior art date
Application number
PCT/JP2015/072704
Other languages
English (en)
French (fr)
Inventor
麻子 南出
未起男 増田
洋祐 城後
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020177005442A priority Critical patent/KR102213963B1/ko
Priority to CA2959366A priority patent/CA2959366C/en
Priority to EP15836800.1A priority patent/EP3196250B1/en
Priority to ES15836800T priority patent/ES2724567T3/es
Priority to US15/506,597 priority patent/US20180223140A1/en
Priority to CN201580045726.XA priority patent/CN106574098B/zh
Priority to JP2015562615A priority patent/JP5942055B1/ja
Publication of WO2016031550A1 publication Critical patent/WO2016031550A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides

Definitions

  • the present invention relates to a thermoplastic polymer composition and a molded article using the same.
  • a hydrogenated (hydrogenated) block copolymer consisting of a conjugated diene compound and an aromatic vinyl compound is an elastomer that is plasticized by heating, a so-called thermoplastic elastomer, and has excellent weather and heat resistance. Shows elasticity.
  • the hydrogenated product is highly flexible and exhibits the same strength and elastic characteristics as vulcanized rubber without vulcanization. Used in industrial supplies.
  • thermoplastic elastomers adhesion to polar resins, resins containing inorganic fillers (especially glass fibers), ceramics, glass or metals, and flexibility, strength and elastic properties at low temperatures.
  • Patent Documents 1 and 2 disclose thermoplastic polymer compositions containing a styrenic thermoplastic elastomer and a polar group-containing polypropylene resin, which have excellent adhesion to ceramics, metals and synthetic resins. This thermoplastic polymer composition can be bonded to ceramics, metal and synthetic resin only by heat treatment without applying an adhesive or applying a primer.
  • Patent Document 3 discloses a pressure-sensitive adhesive composition using an aromatic vinyl-conjugated transmer and an aromatic vinyl-conjugated diene diblock copolymer.
  • thermoplastic polymer compositions described in Patent Documents 1 and 2 can adhere to polar resins and have sufficient heat-resistant creep properties, but become brittle at low temperatures (about ⁇ 40 to ⁇ 30 ° C.).
  • the bonded body bonded using the composition has a problem that it is broken by a slight impact.
  • the pressure-sensitive adhesive composition described in Patent Document 3 has poor adhesion to polar resins such as polyamide, and it is necessary to add a tackifying resin in order to obtain tackiness. Furthermore, since it is an adhesive, it has a strong tackiness and is difficult to handle as a molded product. Moreover, there is no description about the polar group-containing polypropylene resin.
  • the object of the present invention is that it can be handled as a molded product, has good adhesion and flexibility to ceramics, metals, olefinic resins and polar resins in a wide temperature range from low temperature to normal temperature, and also has heat-resistant creep resistance.
  • An object of the present invention is to provide a high thermoplastic polymer composition, and a molded article using the thermoplastic polymer composition.
  • the above object is [1] 100 mass of hydrogenated block copolymer (A) obtained by hydrogenating a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit A thermoplastic polymer composition containing 10 to 100 parts by mass of a polar group-containing polypropylene resin (B) with respect to parts,
  • the hydrogenated block copolymer (A) is A hydrogenated block copolymer (A1) having a maximum value of at least one tan ⁇ at ⁇ 60 to ⁇ 40 ° C.
  • the polymer block (D) containing the conjugated diene compound unit contained in the hydrogenated block copolymer (A1) has a total amount of 1,2-bond and 3,4-bond in the form of all bonds of conjugated diene.
  • the hydrogenated block copolymer (A1) has the following formula SD (wherein S and D are as defined above):
  • [6] The thermoplastic polymer composition according to any one of [1] to [5], wherein the conjugated diene compound unit (D) is an isoprene unit or a mixed unit of isoprene and butadiene.
  • thermoplastic polymer composition according to any one of [1] to [7], wherein the thermoplastic polymer composition further contains 10 to 100 parts by mass of the polyvinyl acetal resin (C).
  • thermoplastic polymer composition is bonded to at least one selected from ceramics, metals, and synthetic resins.
  • thermoplastic polymer composition is formed by bonding at least two selected from ceramics, metals, and synthetic resins. Is achieved by providing
  • thermoplastic polymer composition having excellent adhesion to a synthetic resin, ceramics or metal, and the thermoplastic polymer composition are used.
  • the molded product can be provided.
  • thermoplastic polymer composition that can be handled as a molded article and has excellent adhesion, flexibility, and heat-resistant creep resistance in a wide temperature range from low temperature to normal temperature, and the thermoplastic polymer composition are used.
  • a molded article can be provided. Needless to say, the thermoplastic polymer composition and molded product according to the present invention can be applied to a synthetic resin, ceramics, metal, or the like subjected to primer treatment.
  • thermoplastic polymer composition of the present invention is obtained by hydrogenating a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit.
  • the hydrogenated block copolymer (A) is A hydrogenated block copolymer (A1) having a maximum value of at least one tan ⁇ at ⁇ 60 to ⁇ 40 ° C. and obtained by hydrogenating a block copolymer represented by the following formula (i) or (ii): (I) (SD) n (Ii) (DS) n -D (In the formula, S is a polymer block containing an aromatic vinyl compound unit, D is a polymer block containing a conjugated diene compound unit, and n is an integer of 1 to 5) Hydrogenated block copolymer (A2) obtained by hydrogenating a block copolymer represented by the following formula (iii) (Iii) (SD) m -S (Wherein S is a polymer block containing an aromatic vinyl compound unit, D is a polymer block containing a conjugated diene compound unit, and m is an integer of 1 to 5) The mass ratio of the hydrogenated block copolymer (A1) to
  • thermoplastic polymer composition The thermoplastic polymer composition of the present invention is obtained by hydrogenating a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit.
  • a thermoplastic polymer composition containing 10 to 100 parts by mass of the polar group-containing polypropylene resin (B) with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the thermoplastic polymer composition may further contain a polyvinyl acetal resin (C), a tackifier resin, a softening agent, and the like.
  • thermoplastic polymer composition Water obtained by hydrogenating a block copolymer containing a polymer block (S) containing an aromatic vinyl compound unit and a polymer block (D) containing a conjugated diene compound unit to be contained in the thermoplastic polymer composition
  • the additive block copolymer (A) imparts flexibility, good mechanical properties, molding processability, and the like to the thermoplastic polymer composition, and serves as a matrix in the composition.
  • aromatic vinyl compound constituting the polymer block (S) containing the aromatic vinyl compound unit examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4- Examples thereof include propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene, 1-vinylnaphthalene, 2-vinylnaphthalene and the like.
  • the polymer block (S) containing an aromatic vinyl compound unit may consist of a structural unit derived from only one of these aromatic vinyl compounds, or a structural unit derived from two or more types. May be. Of these, styrene, ⁇ -methylstyrene, and 4-methylstyrene are preferable.
  • the “polymer block (S) containing an aromatic vinyl compound unit” is preferably a polymer block containing 80% by mass or more of an aromatic vinyl compound unit, more preferably an aromatic vinyl.
  • the polymer block (S) containing the aromatic vinyl compound unit may have only the aromatic vinyl compound unit. However, as long as the effect of the present invention is not impaired, the polymer block (S) is combined with the aromatic vinyl compound unit and other copolymers. It may have a polymerizable monomer unit.
  • Examples of other copolymerizable monomers include 1-butene, pentene, hexene, butadiene, isoprene, methyl vinyl ether, and the like.
  • the proportion thereof is preferably 20% by mass or less, more preferably 10%, based on the total amount of the aromatic vinyl compound unit and other copolymerizable monomer units. It is at most 5% by mass, more preferably at most 5% by mass.
  • a hydrogenated block copolymer (A) having a polar group such as a hydroxyl group bonded to the terminal can also be used.
  • conjugated diene compound constituting the polymer block (D) containing the conjugated diene compound unit examples include butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3- Examples include hexadiene. Of these, butadiene and isoprene are preferable.
  • the polymer block (D) containing a conjugated diene compound unit may consist of a structural unit derived from only one of these conjugated diene compounds, or may consist of a structural unit derived from two or more types.
  • the conjugated diene compound unit includes, for example, an isoprene unit, a butadiene unit, a mixed unit of isoprene and butadiene, and is preferably an isoprene unit or a mixed unit of isoprene and butadiene.
  • the bonding form of the conjugated diene constituting the polymer block (D) is not particularly limited.
  • 1,2-bond and 1,4-bond can be formed, and in the case of isoprene, 1,2-bond, 3,4-bond and 1,4-bond can be formed.
  • the 1,2-bond amount and 3,4-bond amount can be calculated by 1 H-NMR measurement. Specifically, the integrated value of the peak present at 4.2 to 5.0 ppm derived from 1,2-bond units and 3,4-bond units and 5.0 to 5 derived from 1,4-bond units. It can be calculated from the ratio with the integrated value of the peak existing at .45 ppm.
  • the “polymer block (D) containing a conjugated diene compound unit” is preferably a polymer block containing 80% by mass or more of a conjugated diene compound unit, more preferably 90% by mass or more of a conjugated diene compound unit.
  • the polymer block contains a polymer block, more preferably a polymer block containing 95% by mass or more of conjugated diene compound units (both are values in terms of raw material charge amount).
  • the polymer block containing the conjugated diene compound unit may have only the conjugated diene compound unit. However, as long as the effect of the present invention is not impaired, other copolymerizable monomer units together with the conjugated diene compound unit. You may have.
  • Examples of other copolymerizable monomers include styrene, ⁇ -methylstyrene, 4-methylstyrene, and the like.
  • the proportion thereof is preferably 20% by mass or less, more preferably 10% by mass with respect to the total amount of the conjugated diene compound unit and the other copolymerizable monomer units. % Or less, more preferably 5% by mass or less.
  • the hydrogenated block copolymer (A1) has at least one maximum value of tan ⁇ at ⁇ 60 to ⁇ 40 ° C., and a block copolymer represented by the following formula (i) or (ii) is hydrogenated Is. (I) (SD) n (Ii) (DS) n -D (In the formula, S is a polymer block containing an aromatic vinyl compound unit, D is a polymer block containing a conjugated diene compound unit, and n is an integer of 1 to 5) n is preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the hydrogenated block copolymer (A1) has at least one maximum value of tan ⁇ at ⁇ 60 to ⁇ 40 ° C., a thermoplastic polymer composition excellent in flexibility at low temperature and a molded product can be obtained. .
  • the hydrogenated block copolymer (A1) is more preferably one having a maximum value of at least one tan ⁇ at ⁇ 55 to ⁇ 40 ° C.
  • the bonding form of the polymer block (S) containing an aromatic vinyl compound unit and the polymer block (D) containing a conjugated diene compound unit in the block copolymer represented by the formula (i) or (ii) is
  • a diblock copolymer represented by SD a triblock copolymer represented by DSD
  • a tetrablock copolymer represented by SDSD D- Examples thereof include a pentablock copolymer represented by SDSD, and mixtures thereof.
  • the hydrogenated block copolymer (A1) is preferably a hydrogenated di- or triblock copolymer represented by SD or DSD, represented by SD.
  • a hydrogenated diblock copolymer is more preferred.
  • the content of the polymer block (S) containing the aromatic vinyl compound unit in the block copolymer represented by the formula (i) or (ii) is determined from the viewpoint of its flexibility and mechanical properties.
  • the amount is preferably 5 to 75% by mass, more preferably 8 to 60% by mass, and still more preferably 10 to 40% by mass with respect to the entire copolymer.
  • the polymer block (D) containing the conjugated diene compound unit has a total amount of 1,2-bonds and 3,4-bonds of less than 40 mol% with respect to the total amount of all conjugated diene bonds. Preferably there is. More preferably, it is a polymer block containing a conjugated diene compound unit that is less than 20 mol%, more preferably less than 10 mol%. If the total amount of 1,2-bond and 3,4-bond is less than 40 mol% with respect to the total amount of all bonds, the thermoplastic polymer composition and the flexibility of the molded product at low temperature Is sufficiently obtained.
  • the weight average molecular weight of the hydrogenated block copolymer (A1) is preferably 30,000 to 300,000, more preferably 35,000 to 200,000, and still more preferably, from the viewpoints of mechanical properties and molding processability. 40,000 to 180,000.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography (GPC) measurement.
  • the hydrogenated block copolymer (A2) is obtained by hydrogenating a block copolymer represented by the following formula (iii). (Iii) (SD) m -S
  • m is preferably an integer of 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the bonding form of the polymer block (S) containing an aromatic vinyl compound unit and the polymer block (D) containing a conjugated diene compound unit in the block copolymer represented by the formula (iii) is, for example, S And a triblock copolymer represented by -DS, a pentablock copolymer represented by SDSSS, and the like, and a mixture thereof. Among them, a triblock copolymer represented by SDS is preferable. *
  • the content of the polymer block (S) containing an aromatic vinyl compound unit in the block copolymer represented by the formula (iii) is the whole of the block copolymer from the viewpoint of flexibility and mechanical properties. Is preferably 5 to 75% by mass, more preferably 8 to 60% by mass, still more preferably 10 to 40% by mass, and most preferably 10 to 35% by mass.
  • the weight average molecular weight of the hydrogenated block copolymer (A2) is preferably 30,000 to 300,000, more preferably 40,000 to 250,000, and still more preferably, from the viewpoint of its mechanical properties and molding processability. 50,000 to 200,000, most preferably 70,000 to 200,000.
  • the weight average molecular weight is a standard polystyrene equivalent weight average molecular weight determined by gel permeation chromatography (GPC) measurement.
  • the hydrogenated block copolymer (A) in the present invention contains a hydrogenated block copolymer (A1) obtained by hydrogenating a diblock copolymer represented by SD as a hydrogenated block copolymer (A1).
  • the mixture (A2) is preferably a mixture containing a hydrogenated triblock copolymer represented by SDS.
  • At least a part is preferably a hydrogenated block copolymer (A2 ′) obtained by hydrogenating a block copolymer represented by the following formula (iv). (Iv) (S ⁇ D2) m ⁇ S
  • S is a polymer block containing an aromatic vinyl compound unit
  • D2 is 40 mol of the total amount of 1,2-bond and 3,4-bond relative to the total amount of all bonds.
  • % Is a polymer block containing a conjugated diene compound unit of at least%, and m is an integer of 1 to 5)
  • thermoplastic polymer composition comprising a conjugated diene compound unit in which the total amount of 1,2-bonds and 3,4-bonds is 40 mol% or more based on the total amount of all conjugated diene bonds; And the adhesive force with respect to the metal of a molded article improves more. More preferably, the total amount of 1,2-bond and 3,4-bond is 50 mol% or more.
  • the content of the hydrogenated block copolymer (A2 ′) in the hydrogenated block copolymer (A2) is not particularly limited, but is preferably 20 to 100% by mass, and preferably 40 to 100% by mass. More preferred is 60 to 100% by mass.
  • the hydrogenated block copolymer (A) used in the present invention comprises at least one tan ⁇ maximum value at ⁇ 60 to ⁇ 40 ° C. and the hydrogenated block copolymer (A1).
  • (A1) gives flexibility at low temperatures, and the combination of (A1) and (A2) gives excellent adhesiveness in a wide temperature range. it can.
  • the mass ratio of the hydrogenated block copolymer (A1) to the hydrogenated block copolymer (A2) is 20:80 to 99: 1, preferably 20:80 to 70:30, more preferably. Is 20:80 to 60:40, more preferably 20:80 to 55:45.
  • the hydrogenated block copolymer (A) is a hydrogenated product in which part or all of unsaturated double bonds of the polymer block (D) containing a conjugated diene compound unit are hydrogenated. Heat resistance and weather resistance can be improved by hydrogenating a part or all of the unsaturated double bonds of the polymer block (D).
  • the hydrogenation rate (hydrogenation rate) of the polymer block (D) containing a conjugated diene compound unit is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more.
  • the hydrogenation rate is a value obtained by measuring the iodine value of the block copolymer before and after the hydrogenation reaction.
  • the method for producing the hydrogenated block copolymer (A) is not particularly limited.
  • an unhydrogenated block copolymer is produced by an anionic polymerization method, and then the resulting unhydrogenated block copolymer is obtained. Is subjected to a hydrogenation reaction to produce a hydrogenated block copolymer (A).
  • a production method of an unhydrogenated block copolymer specifically, (i) using an alkyl lithium compound as an initiator, the aromatic vinyl compound, the conjugated diene compound, and then the aromatic vinyl compound are sequentially polymerized.
  • Examples of the alkyl lithium compound in the above (i) and (ii) include methyl lithium, ethyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, pentyl lithium and the like.
  • Examples of the coupling agent in (ii) include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene and the like.
  • Examples of the dilithium compound in (iii) include naphthalenedilithium and dilithiohexylbenzene.
  • the amount of initiator or coupling agent used for these alkyllithium compounds and dilithium compounds is determined by the weight average molecular weight of the target hydrogenated block copolymer (A). In general, 0.01 to 0.2 parts by mass of an initiator such as an alkyllithium compound or a dilithium compound is usually used for 100 parts by mass of the vinyl compound and the conjugated diene compound. In (ii), the coupling agent is usually used in an amount of 0.001 to 0.8 parts by mass with respect to 100 parts by mass in total of the aromatic vinyl compound and the conjugated diene compound used in the anionic polymerization method.
  • the anionic polymerization is preferably performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it is inert to the initiator and does not adversely affect the polymerization.
  • saturated aliphatic hydrocarbons such as hexane, heptane, octane, decane; cyclopentane, cyclohexane, cyclohexane
  • alicyclic saturated hydrocarbons such as heptane
  • aromatic hydrocarbons such as toluene, benzene, and xylene.
  • the polymerization is preferably carried out at 0 to 80 ° C. for 0.5 to 50 hours in any of the above methods.
  • the amount of 1,2-bond and 3,4-bond of the unhydrogenated block copolymer can be increased. Can control the amount of 1,2-bond and the amount of 3,4-bond.
  • organic Lewis base examples include esters such as ethyl acetate; amines such as triethylamine, N, N, N ′, N′-tetramethylethylenediamine (TMEDA) and N-methylmorpholine; nitrogen-containing heterocyclic groups such as pyridine.
  • Aromatic compounds Amides such as dimethylacetamide; Ethers such as dimethyl ether, diethyl ether, tetrahydrofuran (THF) and dioxane; Glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; Sulphoxides such as dimethyl sulfoxide; Ketones such as acetone and methyl ethyl ketone Can be mentioned.
  • the block copolymer contained in the reaction solution is solidified by pouring it into a poor solvent of the block copolymer such as methanol, or the reaction solution is poured into hot water together with steam. By removing the solvent by azeotropic distillation (steam stripping) and then drying, the unhydrogenated block copolymer can be isolated.
  • the unhydrogenated block copolymer obtained above is dissolved in a solvent inert to the reaction and the hydrogenation catalyst, or the unhydrogenated block copolymer is dissolved in the reaction described above. It can be carried out by reacting with hydrogen in the presence of a hydrogenation catalyst without being isolated from the liquid.
  • the hydrogenation catalyst examples include Raney nickel; heterogeneous catalyst in which a metal such as Pt, Pd, Ru, Rh, Ni is supported on a carrier such as carbon, alumina, diatomaceous earth; transition metal compound, alkylaluminum compound, alkyllithium compound Ziegler catalysts composed of a combination with the above; metallocene catalysts and the like.
  • the hydrogenation reaction can usually be carried out under conditions of a hydrogen pressure of 0.1 to 20 MPa, a reaction temperature of 20 to 250 ° C., and a reaction time of 0.1 to 100 hours.
  • the hydrogenation reaction liquid is poured into a poor solvent such as methanol to solidify, or the hydrogenation reaction liquid is poured into hot water together with steam and the solvent is removed azeotropically (steam stripping).
  • steam stripping By drying, the hydrogenated block copolymer, that is, the hydrogenated block copolymer (A) can be isolated.
  • thermoplastic polymer composition contains 10 to 100 parts by mass of the polar group-containing polypropylene resin (B) with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • Examples of the polar group of the polar group-containing polypropylene resin (B) include (meth) acryloyloxy group; hydroxyl group; amide group; halogen atom such as chlorine atom; carboxyl group; There is no particular limitation on the method for producing the polar group-containing polypropylene resin (B), but propylene (an ⁇ -olefin as necessary) and a polar group-containing copolymerizable monomer are randomly copolymerized by a known method. It can be obtained by polymerization, block copolymerization or graft copolymerization.
  • a random copolymer and a graft copolymer are preferable, and a graft copolymer is more preferable.
  • it can also be obtained by subjecting a polypropylene resin to a modification reaction such as oxidation or chlorination by a known method.
  • ⁇ -olefin examples include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and cyclohexene.
  • the proportion of units derived from ⁇ -olefins other than propylene to the total structural units of the polar group-containing polypropylene resin (B) is preferably 0 to 45 mol%, more preferably 0 to 35 mol%, Preferably, it is 0 to 25 mol%.
  • Examples of the polar group-containing copolymerizable monomer include vinyl acetate, vinyl chloride, ethylene oxide, propylene oxide, acrylamide, unsaturated carboxylic acid, ester or anhydride thereof. Among these, unsaturated carboxylic acid or its ester or anhydride is preferable.
  • Examples of the unsaturated carboxylic acid or ester or anhydride thereof include (meth) acrylic acid, (meth) acrylic acid ester, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, highmic acid, and hymic anhydride. An acid etc. are mentioned. Among these, maleic anhydride is more preferable.
  • These polar group-containing copolymerizable monomers may be used alone or in combination of two or more.
  • the polar group-containing polypropylene resin (B) is preferably a polypropylene containing a carboxyl group as a polar group, that is, a carboxylic acid-modified polypropylene resin, from the viewpoint of compatibility with the later-described polyvinyl acetal resin (C).
  • a modified polypropylene resin and a maleic anhydride-modified polypropylene resin are more preferable.
  • (meth) acrylic acid ester exemplified as the polar group-containing copolymerizable monomer
  • Alkyl acrylates such as isobutyl acrylate, n-hexyl acrylate, isohexyl acrylate, n-octyl acrylate, isooctyl acrylate and 2-ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate
  • methyl methacrylate, ethyl methacrylate, n-propyl methacrylate Such as isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, n-octyl methacrylate, isooctyl methacrylate, 2-ethylhexyl methacrylate, etc.
  • Acid alkyl esters These (meth) acrylic acid esters may be used alone or in combination of two or
  • the polar group of the polar group-containing polypropylene resin (B) may be post-treated after polymerization. For example, it may be neutralized with a metal ion of a (meth) acrylic acid group or a carboxyl group to form an ionomer, or may be esterified with methanol or ethanol. Further, hydrolysis of vinyl acetate or the like may be performed.
  • the melt flow rate (MFR) of the polar group-containing polypropylene resin (B) at 230 ° C. under a load of 2.16 kg (21.18 N) is preferably 0.1 to 100 g / 10 min, more preferably 1 to The amount is 100 g / 10 minutes, more preferably 1 to 50 g / 10 minutes, still more preferably 1 to 30 g / 10 minutes, particularly preferably 1 to 20 g / 10 minutes, and most preferably 1 to 15 g / minute. If the MFR of the polar group-containing polypropylene resin (B) is 0.1 g / 10 min or more under the above conditions, good adhesive strength can be obtained at a heating temperature of 190 ° C. or less for metals and ceramics. On the other hand, when the MFR is 100 g / 10 min or less, it is easy to obtain and mechanical characteristics are easily developed.
  • the melting point of the polar group-containing polypropylene resin (B) is preferably 100 ° C. or higher, more preferably 110 to 170 ° C., further preferably 120 to 150 ° C., and most preferably 130 to 150 ° C. from the viewpoints of heat-resistant creep resistance and adhesiveness. 140 ° C.
  • the ratio of the polar group-containing structural unit of the polar group-containing polypropylene resin (B) to the total structural unit of the polar group-containing polypropylene resin (B) is preferably 0.01 to 10% by mass, more preferably 0. 0.1 to 10% by weight, more preferably 0.1 to 3% by weight, and particularly preferably 0.1 to 2% by weight.
  • the proportion of the polar group-containing structural unit is within this range, the affinity and compatibility with the hydrogenated block copolymer (A) is good, the mechanical properties of the thermoplastic polymer composition are good, the metal and Good adhesive strength can be obtained for ceramics at a heating temperature of 190 ° C. or lower.
  • the polypropylene resin having a polar group-containing structural unit at a high concentration may be diluted with a polypropylene resin having no polar group-containing structural unit so that the ratio of the polar group-containing structural unit is optimized.
  • the thermoplastic polymer composition contains 10 to 100 parts by mass of the polar group-containing polypropylene resin (B) with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the polar group-containing polypropylene-based resin (B) is less than 10 parts by mass, it is difficult for the molded body made of the thermoplastic polymer composition to adhere to metal and ceramics at 190 ° C. or lower, and the obtained adhesive body is When exposed to a temperature environment of 60 ° C. or higher, the adhesive strength is practically insufficient and the film is easily peeled off.
  • the amount of the polar group-containing polypropylene resin (B) is more than 100 parts by mass, sufficient adhesiveness can be obtained, but the thermoplastic polymer composition becomes hard and flexibility and mechanical properties are hardly exhibited.
  • the content of the polar group-containing polypropylene resin (B) is preferably 15 parts by mass or more, more preferably 20 parts by mass or more, preferably 70 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A). It is not more than part by mass, more preferably not more than 60 parts by mass, particularly preferably not more than 30 parts by mass.
  • the content of the polar group-containing polypropylene resin (B) is preferably 15 to 70 parts by mass, more preferably 15 to 60 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A). More preferred is 20 to 60 parts by mass, and particularly preferred is 20 to 30 parts by mass.
  • the thermoplastic polymer composition preferably further contains 10 to 100 parts by mass of the polyvinyl acetal resin (C). The amount is more preferably 10 to 50 parts by mass, still more preferably 15 to 30 parts by mass.
  • the polyvinyl acetal resin (C) is dispersed as a dispersed phase (in the form of islands) in the continuous phase (sea) of the hydrogenated block copolymer (A) in the thermoplastic polymer composition.
  • adhesion strength to ceramics, particularly glass can be obtained immediately after adhesion.
  • flexibility and mechanical characteristic can be acquired as it is 100 mass parts or less.
  • the polyvinyl acetal resin (C) usually has a repeating unit represented by the following formula (I).
  • n represents the number of types of aldehyde used in the acetalization reaction.
  • R 1, R 2, ⁇ , R n represents an alkyl residue or a hydrogen atom of aldehyde used for the acetalization reaction
  • k (1), k ( 2), ⁇ , k (n) is ,
  • Each represents a ratio (molar ratio) of structural units represented by [].
  • L represents the proportion (molar ratio) of vinyl alcohol units
  • m represents the proportion (molar ratio) of vinyl acetate units.
  • Each repeating unit is not particularly limited by the above-described arrangement order, and may be arranged at random, may be arranged in a block shape, or may be arranged in a taper shape.
  • the polyvinyl acetal resin (C) is preferably a polyvinyl butyral resin.
  • the polyvinyl acetal resin (C) can be obtained, for example, by reacting polyvinyl alcohol and an aldehyde.
  • the average degree of polymerization of the polyvinyl alcohol used for the production of the polyvinyl acetal resin (C) is usually preferably 100 to 4,000, more preferably 100 to 3,000, still more preferably 150 to 2,000, particularly preferably. Is 200 to 1,500.
  • the average degree of polymerization of the polyvinyl alcohol is 100 or more, the production of the polyvinyl acetal resin (C) becomes easy and the handleability is good.
  • the average degree of polymerization of polyvinyl alcohol is 4,000 or less, the melt viscosity at the time of melt kneading does not become too high, and the production of the thermoplastic polymer composition is easy.
  • the average degree of polymerization of polyvinyl alcohol is measured according to JIS K 6726. Specifically, it is a value determined from the intrinsic viscosity measured in 30 ° C. water after re-saponifying and purifying polyvinyl alcohol.
  • the method for producing polyvinyl alcohol is not particularly limited, and for example, a product produced by saponifying polyvinyl acetate or the like with alkali, acid, aqueous ammonia, or the like can be used. Moreover, you may use a commercial item. Examples of commercially available products include “Kuraray Poval” series manufactured by Kuraray Co., Ltd. Polyvinyl alcohol may be completely saponified or partially saponified. The saponification degree is preferably 80 mol% or more, more preferably 90 mol% or more, and further preferably 95 mol% or more.
  • polyvinyl alcohol a copolymer of a vinyl alcohol such as an ethylene-vinyl alcohol copolymer or a partially saponified ethylene-vinyl alcohol copolymer and a monomer copolymerizable with vinyl alcohol should be used. Can do. Furthermore, modified polyvinyl alcohol in which carboxylic acid or the like is partially introduced can be used. These polyvinyl alcohols may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the aldehyde used for the production of the polyvinyl acetal resin (C) is not particularly limited.
  • formaldehyde including paraformaldehyde
  • acetaldehyde including paraacetaldehyde
  • propionaldehyde n-butyraldehyde
  • isobutyraldehyde pentanal, hexanal, heptanal, n-octanal, 2-ethylhexylaldehyde, cyclohexanecarbaldehyde, furfural
  • Examples include glyoxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde and the like.
  • aldehydes may be used individually by 1 type, and may be used in combination of 2 or more type. Of these aldehydes, butyraldehyde is preferable and n-butyraldehyde is more preferable from the viewpoint of ease of production.
  • the polyvinyl acetal resin (C) obtained by acetalization using n-butyraldehyde is particularly referred to as polyvinyl butyral (PVB).
  • the ratio of butyral units is preferably 0.8 or more, more preferably 0.9 or more, and still more preferably 0.8. 95 or more, particularly preferably substantially 1.
  • the degree of acetalization of the polyvinyl acetal resin (C) used in the present invention is preferably 55 to 88 mol%.
  • Polyvinyl acetal resin (C) having an acetalization degree of 55 mol% or more is low in production cost, easily available, and has good melt processability.
  • the polyvinyl acetal resin (C) having a degree of acetalization of 88 mol% or less is very easy to produce, and is economical because it does not require a long time for the acetalization reaction.
  • the degree of acetalization of the polyvinyl acetal resin (C) is more preferably 60 to 88 mol%, further preferably 70 to 88 mol%, and particularly preferably 75 to 85 mol%.
  • the affinity and compatibility with the hydrogenated block copolymer (A) are improved, the mechanical properties of the thermoplastic polymer composition are excellent, and the adhesive strength with ceramics, metals and synthetic resins is high. Become.
  • the degree of acetalization (mol%) of the polyvinyl acetal resin (C) is defined by the following formula.
  • Acetalization degree (mol%) ⁇ k (1) + k (2) +... + K (n) ⁇ ⁇ 2 / ⁇ k (1) + k (2) +... + K (n) ⁇ ⁇ 2 + l + m ⁇ ⁇ 100 (in the above formula, n, k (1) , k (2) ,..., K (n) , l and m are as defined above.)
  • ⁇ k (1) + k (2) +... + K (n) ⁇ ⁇ 2 / ⁇ k (1) + k (2) +... + K (n) ⁇ ⁇ 2 + l + m ⁇ ⁇ 100 Can determine the degree of acetalization (mol%).
  • the degree of acetalization of the polyvinyl acetal resin (C) was determined by dissolving the polyvinyl acetal resin (C) in a suitable deuterated solvent such as deuterated dimethyl sulfoxide, and measuring 1 H-NMR or 13 C-NMR. May be calculated.
  • vinyl alcohol units are preferably 12 to 45 mol% (0.12 ⁇ l ⁇ 0.45), more preferably 12 to 40 mol% (0.12 ⁇ l ⁇ 0). 40), and preferably contains 0 to 5 mol% (0 ⁇ m ⁇ 0.05), more preferably 0 to 3 mol% (0 ⁇ m ⁇ 0.03) of vinyl acetate units.
  • the reaction (acetalization reaction) between polyvinyl alcohol and aldehyde can be performed by a known method.
  • aqueous solution method in which an aqueous solution of polyvinyl alcohol and an aldehyde are acetalized in the presence of an acid catalyst to precipitate particles of the polyvinyl acetal resin (C); polyvinyl alcohol is dispersed in an organic solvent, and an acid catalyst Solvent method for precipitating polyvinyl acetal resin (C) by acetalization reaction with aldehyde in the presence, and mixing the obtained reaction mixture with water, which is a poor solvent for polyvinyl acetal resin (C). Etc.
  • the acid catalyst is not particularly limited.
  • organic acids such as acetic acid and p-toluenesulfonic acid
  • inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid
  • gases which show acidity when made into an aqueous solution such as carbon dioxide
  • cation exchange examples thereof include solid acid catalysts such as resins and metal oxides.
  • the slurry produced in the aqueous medium method or the solvent method is usually acidic by an acid catalyst.
  • the slurry is repeatedly washed with water, and the pH is preferably adjusted to 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8; a neutralizing agent is added to the slurry.
  • Examples of the compound used for adjusting the pH include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal acetates such as sodium acetate; alkali metal such as sodium carbonate and potassium carbonate; Examples thereof include carbonates; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; ammonia and aqueous ammonia solutions.
  • alkylene oxides include ethylene oxide, propylene oxide; glycidyl ethers such as ethylene glycol diglycidyl ether.
  • the removal method is not particularly limited, and methods such as repeated dehydration and water washing are usually used.
  • the water-containing polyvinyl acetal resin (C) from which residues and the like have been removed is dried as necessary and processed into powder, granules, or pellets as necessary.
  • polyvinyl acetal resin (C) used in the present invention a resin obtained by reducing the aldehyde reaction residue or moisture by degassing under reduced pressure when processed into a powder, granule or pellet is preferable. .
  • thermoplastic polymer composition may further contain a tackifier resin as necessary. By including the tackifying resin, the moldability is further improved while maintaining the adhesive properties.
  • tackifying resins include aliphatic unsaturated hydrocarbon resins, aliphatic saturated hydrocarbon resins, alicyclic unsaturated hydrocarbon resins, alicyclic saturated hydrocarbon resins, aromatic hydrocarbon resins, hydrogenated aromatics. Hydrocarbon resin, rosin ester resin, hydrogenated rosin ester resin, terpene phenol resin, hydrogenated terpene phenol resin, terpene resin, hydrogenated terpene resin, aromatic hydrocarbon modified terpene resin, coumarone / indene resin, phenol resin, xylene resin Etc.
  • One type of tackifier resin may be used alone, or two or more types may be used in combination.
  • an aliphatic saturated hydrocarbon resin, an alicyclic saturated hydrocarbon resin, a hydrogenated aromatic hydrocarbon resin, or a hydrogenated terpene resin is preferable, and a hydrogenated aromatic hydrocarbon resin or a hydrogenated terpene resin is more preferable. preferable.
  • the softening point of the tackifying resin is preferably 50 to 200 ° C, more preferably 65 to 180 ° C, and still more preferably 80 to 160 ° C. If the softening point is 50 ° C. or higher, the adhesive property with respect to the environmental temperature can be maintained. On the other hand, if the softening point is 200 ° C. or lower, the adhesive properties with respect to the heat treatment temperature can be maintained.
  • the softening point is a value measured according to ASTM 28-67.
  • the content thereof is preferably 1 to 100 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of the hydrogenated block copolymer (A).
  • the amount is 5 to 70 parts by mass, more preferably 5 to 50 parts by mass, and particularly preferably 10 to 45 parts by mass.
  • the thermoplastic polymer composition does not become hard, and flexibility and mechanical properties are easily exhibited. .
  • thermoplastic polymer composition used for this invention may contain a softening agent as needed.
  • softener include softeners generally used for rubber and plastics.
  • paraffinic, naphthenic and aromatic process oils For example, paraffinic, naphthenic and aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil, mineral oil, ethylene and ⁇ -olefin oligomers, paraffin wax, liquid paraffin, polybutene, low molecular weight polybutadiene And low molecular weight polyisoprene.
  • process oil is preferable, and paraffinic process oil is more preferable.
  • softeners generally used in combination with the polyvinyl acetal resin (C), for example, organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters; organic phosphate esters, Phosphoric plasticizers such as organic phosphites can also be used.
  • organic acid ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters
  • organic phosphate esters organic phosphate esters
  • Phosphoric plasticizers such as organic phosphites
  • Examples of monobasic organic acid esters include triethylene glycol dicaproate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-n-octylate, triethylene glycol di-2- Glycols such as triethylene glycol, tetraethylene glycol, and tripropylene glycol represented by ethylhexyl acid ester, butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, Examples thereof include glycol esters obtained by reaction with monobasic organic acids such as pelargonic acid (n-nonyl acid) and decyl acid.
  • monobasic organic acids such as pelargonic acid (n-nonyl acid) and decyl acid.
  • polybasic acid organic esters examples include polybasic organic acids such as adipic acid, sebacic acid, azelaic acid, and the like, such as sebacic acid dibutyl ester, azelaic acid dioctyl ester, adipic acid dibutyl carbitol ester, and the like.
  • examples include esters.
  • examples of the organic phosphate ester include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like. These softeners may be used alone or in combination of two or more.
  • the content thereof is from 100 parts by mass of the hydrogenated block copolymer (A) from the viewpoints of flexibility, moldability and adhesiveness. And preferably 0.1 to 300 parts by mass, more preferably 1 to 200 parts by mass, still more preferably 10 to 200 parts by mass, still more preferably 50 to 200 parts by mass, and particularly preferably 50 to 150 parts by mass. May be.
  • the thermoplastic polymer composition of the present invention is an olefin polymer, a styrene polymer, a polyphenylene ether resin, polyethylene glycol, etc. that do not have a polar group as necessary, as long as the effects of the present invention are not significantly impaired. It may contain other thermoplastic polymers such as other thermoplastic polymers, olefin-based thermoplastic elastomers, urethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, acrylic-based thermoplastic elastomers, and the like.
  • the olefin polymer include polyethylene, polypropylene, polybutene, block copolymers of propylene and other ⁇ -olefins such as ethylene and 1-butene, and random copolymers.
  • the content thereof is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 100 parts by mass of the hydrogenated block copolymer (A). It is 20 mass parts or less, More preferably, it is 10 mass parts or less, Most preferably, it is 5 mass parts or less.
  • the thermoplastic polymer composition of the present invention may contain an inorganic filler as necessary.
  • the inorganic filler is useful for improving the physical properties such as heat resistance and weather resistance of the thermoplastic polymer composition, adjusting the hardness, and improving the economical efficiency as an extender.
  • Such inorganic filler is not particularly limited, and examples thereof include calcium carbonate, talc, magnesium hydroxide, aluminum hydroxide, mica, clay, natural silicic acid, synthetic silicic acid, titanium oxide, carbon black, barium sulfate, glass balloon, and glass. Examples include fibers.
  • An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content thereof is preferably in a range in which the flexibility of the thermoplastic polymer composition is not impaired, and generally 100 parts by mass of the hydrogenated block copolymer (A), Preferably it is 100 mass parts or less, More preferably, it is 70 mass parts or less, More preferably, it is 30 mass parts or less, Most preferably, it is 10 mass parts or less.
  • thermoplastic polymer composition of the present invention is an antioxidant, a lubricant, a light stabilizer, a processing aid, a colorant such as a pigment or a dye, a flame retardant, a charge as long as the effects of the invention are not impaired. It may contain an inhibitor, a matting agent, an antiblocking agent, an ultraviolet absorber, a release agent, a foaming agent, an antibacterial agent, an antifungal agent, a fragrance and the like.
  • antioxidants examples include hindered phenol-based, phosphorus-based, lactone-based, and hydroxyl-based antioxidants. Among these, hindered phenol antioxidants are preferable.
  • the content thereof is preferably in a range not colored when the obtained thermoplastic polymer composition is melt-kneaded, with respect to 100 parts by mass of the hydrogenated block copolymer (A). The amount is preferably 0.1 to 5 parts by mass.
  • the method for preparing the thermoplastic polymer composition of the present invention is not particularly limited, and any method can be used as long as the above components can be uniformly mixed.
  • a melt-kneading method is used.
  • the melt kneading can be performed using a melt kneading apparatus such as a single screw extruder, a twin screw extruder, a kneader, a batch mixer, a roller, a Banbury mixer, and the melt kneading is usually performed preferably at 170 to 270 ° C.
  • a thermoplastic polymer composition can be obtained.
  • thermoplastic polymer composition thus obtained has a hardness according to the JIS-A method of JIS K 6253 (hereinafter sometimes referred to as “A hardness”), preferably 90 or less, more preferably 30 to 90. More preferably, it is 35 to 85. If the A hardness is within this range, when a thermoplastic polymer composition is formed into a molded product, flexibility, elasticity, and mechanical properties are easily exhibited, and a synthetic resin, particularly an inorganic filler (such as glass fiber) is contained. Resins, ceramics and metals that are excellent in adhesion can be obtained, and can be suitably used as a thermoplastic polymer composition.
  • the melt flow rate (MFR) of the thermoplastic polymer composition measured by a method according to JIS K 7210 under the conditions of 230 ° C. and a load of 2.16 kg (21.18 N) is preferably 0.00. It is in the range of 1 to 100 g / 10 minutes, more preferably 0.1 to 20 g / 10 minutes, still more preferably 0.5 to 10 g / minute. When the MFR is within this range, it becomes easy to produce a molded product.
  • thermoplastic polymer composition of the present invention can be subjected to hot melt molding and heat processing, and can be molded and processed by any molding method such as injection molding, extrusion molding, blow molding, calender molding, and cast molding. is there.
  • the molded article using the thermoplastic polymer composition of the present invention thus obtained includes an article having an arbitrary shape such as a film shape, a sheet shape, a tube shape, or a three-dimensional shape.
  • a molded product excellent in various properties such as various impact resistances such as surface impact resistance at low temperature and falling ball impact resistance and flexibility can be obtained.
  • thermoplastic polymer composition of the present invention can be combined with other materials.
  • other materials include various thermoplastic resins other than the thermoplastic polymer composition of the present invention or a composition thereof (synthetic resin), thermosetting resin, paper, fabric, metal, wood, ceramics and the like. it can.
  • thermoplastic polymer composition of the present invention can be easily and firmly adhered to ceramics, metals, synthetic resins, etc. without applying a primer treatment, so that the thermoplastic polymer composition of the present invention can be bonded to these. It can be suitably used as a molded article formed by adhering to a polymer composition.
  • Such a molded article may be obtained by adhering two or more types of adherends, that is, ceramics, metals, synthetic resins, or any of these different materials.
  • the molded product bonded using the thermoplastic polymer composition of the present invention can absorb various impacts due to the flexibility of the composition. Absorbs the generated strain stress. Therefore, it can be used under severe conditions such as low temperature, high temperature, and an environment where the temperature changes rapidly.
  • the ceramic that can be used in the molded article of the present invention means a nonmetallic inorganic material, and examples thereof include metal oxides, metal carbides, and metal nitrides. Examples thereof include glass, cements, alumina, zirconia, zinc oxide ceramics, barium titanate, lead zirconate titanate, silicon carbide, silicon nitride, and ferrites. Examples of the metal that can be used in the molded article of the present invention include iron, copper, aluminum, magnesium, nickel, chromium, zinc, and alloys containing them as components.
  • molded product having a metal surface formed by plating such as copper plating, nickel plating, chrome plating, tin plating, galvanization, platinum plating, gold plating, or silver plating.
  • Synthetic resins that can be used in the molded article of the present invention include, for example, polyamide resin, polyester resin, polycarbonate resin, polyphenylene sulfide resin, (meth) acrylonitrile-butadiene-styrene resin, (meth) acrylonitrile-styrene resin, (meth).
  • Acrylate ester-butadiene-styrene resin (meth) acrylate ester-styrene resin, butadiene-styrene resin, epoxy resin, phenol resin, diallyl phthalate resin, polyimide resin, melamine resin, polyacetal resin, polysulfone resin, polyethersulfone resin , Polyetherimide resin, polyphenylene ether resin, polyarylate resin, polyetheretherketone resin, polystyrene resin, syndiotactic polystyrene resin, poly Such as olefin resin, and the like. These resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the synthetic resin may contain an inorganic filler.
  • the inorganic filler include calcium carbonate, talc, magnesium hydroxide, aluminum hydroxide, mica, clay, natural silicic acid, synthetic silicic acid, titanium oxide, carbon black, barium sulfate, glass fiber, and glass balloon. It is done.
  • An inorganic filler may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, glass fiber is preferable.
  • the blending amount of the inorganic filler is preferably within a range in which the molding processability and mechanical strength of the resin containing the inorganic filler are not impaired, and is generally 0.1% with respect to 100 parts by mass of the synthetic resin.
  • the molded article may be a molded article formed by bonding the thermoplastic polymer composition to at least one selected from ceramics, metals and synthetic resins, and the thermoplastic polymer composition may be ceramics, metals, And a molded product formed by adhering at least two selected from synthetic resins.
  • thermoplastic polymer composition and molded article of the present invention are used in a wide variety of applications such as automobile parts, home appliance parts, computer parts, machine parts, packings, gaskets, hoses, etc., taking advantage of the above properties. be able to.
  • thermoplastic polymer composition and molded article of the present invention can be used in various fields such as clothing, daily necessities, packaging materials, industrial goods, foodstuffs, etc., taking advantage of the characteristics.
  • it can be used for bonding electronic / electrical equipment, OA equipment, household electrical appliances, and automobile members.
  • it is useful for forming a bonded body at a joint between a glass and an aluminum sash or a metal opening in a window of an automobile or a building, a connection between a glass and a metal frame in a solar cell module, or the like.
  • Each hydrogenated block copolymer is molded into a 1 mm thick sheet, set with Leo Vibron (Orientec) to have a width of 1 cm and a length of 2 cm, and 3 deg while applying tensile strain at a frequency of 11 Hz. . -150 to 200 deg. At C / min. The temperature was raised to C, tan ⁇ was measured, and the maximum temperature derived from the conjugated diene block (D) was determined.
  • Leo Vibron Orientec
  • the obtained hydrogenated block copolymer (A1-1) has a weight average molecular weight of 133,000, a styrene content of 37.5% by mass, a hydrogenation rate of 99%, a molecular weight distribution of 1.04, and is contained in the polyisoprene block.
  • the total amount of 1,2-bond and 3,4-bond was 5 mol%, and the tan ⁇ maximum value was ⁇ 44 ° C.
  • the resulting hydrogenated block copolymer (A1-2) has a weight average molecular weight of 43,000, a styrene content of 13% by mass, a hydrogenation rate of 98%, a molecular weight distribution of 1.04, and 1 contained in the polyisoprene block. , 2-bond amount and 3,4-bond amount were 5 mol%, and the tan ⁇ maximum value was ⁇ 51 ° C.
  • the resulting hydrogenated block copolymer (A1-3) has a weight average molecular weight of 70,500, a styrene content of 13% by mass, a hydrogenation rate of 98%, a molecular weight distribution of 1.05, The total of the 2-bond amount and the 3,4-bond amount was 40 mol%, and the tan ⁇ maximum value was ⁇ 43 ° C.
  • a pressure-resistant container purged with nitrogen and dried was charged with 80 L of cyclohexane as a solvent and 1.1 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator. After raising the temperature to 50 ° C., 7.5 L of styrene was added for polymerization for 3 hours, and subsequently a mixed solution of isoprene 13 L and butadiene 15 L was added for polymerization for 4 hours. The obtained reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a diblock copolymer composed of polystyrene-poly (isoprene / butadiene).
  • a hydrogenated diblock copolymer (hereinafter referred to as water) from polystyrene-poly (isoprene / butadiene).
  • a block copolymer (referred to as A1-4)) was obtained.
  • the resulting hydrogenated block copolymer (A1-4) has a weight average molecular weight of 46000, a styrene content of 28% by mass, a hydrogenation rate of 98%, a molecular weight distribution of 1.05, and a poly (isoprene / butadiene) block.
  • the total amount of 1,2-bonds and 3,4-bonds contained in was 5 mol%, and the tan ⁇ maximum value was ⁇ 44 ° C.
  • the resulting hydrogenated block copolymer (A1′-1) has a weight average molecular weight of 100,000, a styrene content of 20% by mass, a hydrogenation rate of 90%, a molecular weight distribution of 1.04, and is contained in the polyisoprene block.
  • the total of the 1,2-bond amount and the 3,4-bond amount was 60 mol%, and the tan ⁇ maximum value was 1.5 ° C.
  • a pressure-resistant container purged with nitrogen and dried was charged with 80 L of cyclohexane as a solvent and 0.13 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator. After the temperature was raised to 50 ° C., 1.5 L of styrene was added for polymerization for 3 hours, then 27 L of isoprene was added for polymerization for 4 hours, and 1.5 L of styrene was further added for polymerization for 3 hours. The obtained reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polyisoprene-polystyrene.
  • a copolymer (referred to as A2-1) was obtained.
  • the obtained hydrogenated block copolymer (A2-1) has a weight average molecular weight of 183,000, a styrene content of 13% by mass, a hydrogenation rate of 98%, a molecular weight distribution of 1.01, and 1 contained in the polyisoprene block. , 4-bond amount was 5 mol%, and the tan ⁇ maximum value was ⁇ 51 ° C.
  • a pressure-resistant vessel purged with nitrogen and dried was charged with 80 L of cyclohexane as a solvent, 0.23 L of sec-butyllithium (10% by mass cyclohexane solution) as an initiator, and 0.13 L of tetrahydrofuran as an organic Lewis base (lithium in the initiator). 5.4 times the stoichiometric ratio of atoms).
  • reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polybutadiene-polystyrene.
  • the resulting hydrogenated block copolymer (A2-2) had a weight average molecular weight of 141,000, a styrene content of 13% by mass, a hydrogenation rate of 98%, a molecular weight distribution of 1.05, The total of the 2-bond amount and the 3,4-bond amount was 40 mol%, and the tan ⁇ maximum value was ⁇ 43 ° C.
  • a pressure-resistant container purged with nitrogen and dried was charged with 80 L of cyclohexane as a solvent and 0.29 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator. After the temperature was raised to 50 ° C., 2.3 L of styrene was added for polymerization for 3 hours, 28 L of isoprene was subsequently added for polymerization for 4 hours, and 2.3 L of styrene was further added for 3 hours of polymerization. The obtained reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polyisoprene-polystyrene.
  • a copolymer (referred to as A2-3) was obtained.
  • the resulting hydrogenated block copolymer (A2-3) had a weight average molecular weight of 96,000, a styrene content of 18%, a hydrogenation rate of 99%, a molecular weight distribution of 1.03, The amount of 4-bond was 5 mol%, and the tan ⁇ maximum value was ⁇ 47 ° C.
  • -Hydrogenated block copolymer (A2-4)- A pressure-resistant vessel purged with nitrogen and dried was charged with 80 L of cyclohexane as a solvent and 0.55 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator. After raising the temperature to 50 ° C., 3.8 L of styrene is added for polymerization for 3 hours, followed by addition of a mixed solution of 13 L of isoprene and 15 L of butadiene for 4 hours of polymerization, and further 3.8 L of styrene is added for 3 hours of polymerization. I did it.
  • reaction solution was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-poly (isoprene / butadiene) -polystyrene.
  • a hydrogenated triblock copolymer hereinafter referred to as polystyrene
  • polystyrene polystyrene
  • polystyrene poly (isoprene / butadiene)
  • Hydrogenated block copolymer (referred to as A2-4)) was obtained.
  • the resulting hydrogenated block copolymer (A2-4) has a weight average molecular weight of 92,000, a styrene content of 28% by mass, a hydrogenation rate of 99%, a molecular weight distribution of 1.03, and a poly (isoprene / butadiene) block.
  • the total amount of 1,2-bonds and 3,4-bonds contained in was 5 mol%, and the tan ⁇ maximum value was ⁇ 44 ° C.
  • a pressure-resistant container purged with nitrogen and dried was charged with 64 L of cyclohexane as a solvent and 0.15 L of sec-butyllithium (10 mass% cyclohexane solution) as an initiator, and 0.3 L of tetrahydrofuran (lithium in the initiator) as an organic Lewis base. (Equivalent to 15 times the stoichiometric ratio to atoms).
  • reaction liquid was poured into 80 L of methanol, and the precipitated solid was separated by filtration and dried at 50 ° C. for 20 hours to obtain a triblock copolymer composed of polystyrene-polyisoprene-polystyrene.
  • a copolymer (referred to as A2-5) was obtained.
  • the resulting hydrogenated block copolymer (A2-5) has a weight average molecular weight of 107,000, a styrene content of 21% by mass, a hydrogenation rate of 85%, a molecular weight distribution of 1.04, and 1 contained in the polyisoprene block.
  • 2-bond amount and 3,4-bond amount were 60 mol%, and the tan ⁇ maximum value was 4.2 ° C.
  • the polar group-containing polypropylene resin (B-1) obtained had an MFR [230 ° C., load 2.16 kg (21.18 N)] of 6 g / 10 min, a maleic anhydride concentration of 0.3%, and a melting point of It was 138 ° C.
  • the maleic anhydride concentration is a value obtained by titrating the obtained polar group-containing polypropylene resin (B-1) with a methanol solution of potassium hydroxide, and so on.
  • fusing point is the value read from the endothermic peak of the differential scanning calorimetry curve at the time of heating up at 10 degrees C / min.
  • Polyvinyl acetal resin (C)] -(C-1)- 7 parts by weight of n-butyraldehyde and 8.5 parts by weight of 35% aqueous hydrochloric acid are added to an aqueous solution in which 10 parts by weight of polyvinyl alcohol having an average polymerization degree of 500 and a saponification degree of 99 mol% are dissolved, and acetalization reaction is carried out by stirring. The resin was precipitated.
  • Tackifying resin Regalite 1100 (Eastman)
  • thermoplastic polymer compositions prepared in the following examples and comparative examples were stacked to a thickness of 6 mm, and the A hardness was measured with a type A durometer according to JIS K 6253.
  • PET / thermoplastic polymer composition / laminated glass laminate and PET / thermoplastic polymer composition / aluminum laminate, PET / thermoplastic polymer produced by the following method.
  • For the laminate of composition / 6-nylon peeling between the thermoplastic polymer composition layer and the glass plate, between the thermoplastic polymer composition layer and the aluminum plate, and between the thermoplastic polymer composition and 6-nylon, respectively.
  • the strength was measured in accordance with JIS K 6854-2 under a peeling angle of 180 °, a tensile speed of 50 mm / min, and the environmental temperature conditions described in Table 2, and the adhesive strength was measured.
  • thermoplastic polymer composition was molded into a sheet having a thickness of 1 mm and cut into a size of 10 mm ⁇ 10 mm.
  • the sheet was sandwiched between two steel plates having a width of 10 mm and a length of 50 mm, and was laminated so that the adhesion area was 10 mm ⁇ 10 mm, and adhered at 180 ° C., 0.01 MPa for 2 seconds.
  • One end of the obtained bonded body was grasped with a clip, suspended in the length direction, and allowed to stand at 150 ° C. for 60 minutes. The deviation of the steel sheet after removal was measured, and used as an index of heat resistant creep resistance.
  • thermoplastic polymer composition is formed into a sheet having a thickness of 1 mm, and is set so as to have a width of 1 cm and a length of 2 cm with Leo Vibron (Orientec), and tensile strain at a frequency of 11 Hz.
  • the temperature was raised to ⁇ 150 to 200 ° C. at a rate of 2 ° C./min while applying, and the storage elastic modulus at ⁇ 40 ° C. was measured as an index of flexibility at low temperatures.
  • the storage elastic modulus is less than 1.5 GPa, flexibility is recognized, and when it is less than 0.5 GPa, the flexibility is more excellent.
  • ⁇ Preparation of laminate with glass plate> The surfaces of both surfaces of a glass plate having a length of 75 mm, a width of 25 mm, and a thickness of 1 mm were washed using a surfactant aqueous solution, methanol, acetone, and distilled water in this order as a washing solution and dried.
  • the glass plate, the sheet of the thermoplastic polymer composition prepared according to the following examples and comparative examples, and a polyethylene terephthalate (PET) sheet having a thickness of 50 ⁇ m are stacked in this order, and the outer dimensions are 200 mm ⁇ 200 mm, the inner dimensions are 150 mm ⁇ 150 mm.
  • the metal spacer having a thickness of 2 mm was disposed at the center.
  • the overlapped sheet and a metal spacer are sandwiched between polytetrafluoroethylene sheets, further sandwiched between metal plates from the outside, and 3 minutes at 160 ° C. under a load of 20 kgf / cm 2 (2 N / mm 2 ) using a compression molding machine.
  • a laminate composed of PET / thermoplastic polymer composition / glass plate was obtained by compression molding.
  • 6-nylon 1013B Ube Industries
  • 6-nylon 1013B Ube Industries
  • a laminate comprising PET / thermoplastic polymer composition / 6-nylon by compression molding for 3 minutes at 230 ° C. and a load of 20 kgf / cm 2 (2 N / mm 2 ) using a compression molding machine.
  • Examples 1 to 8 Comparative Examples 1 to 7>
  • the raw materials listed in Table 1 were melt kneaded at a ratio (mass ratio) shown in Table 2 using a twin screw extruder at 230 ° C. and screw rotation of 200 rpm, then extruded into strands, cut and thermoplastic.
  • a pellet of the polymer composition was obtained.
  • the obtained pellets were compression-molded for 3 minutes under the conditions of 230 ° C. and a load of 100 kgf / cm 2 (9.8 N / mm 2 ) using a compression molding machine, so that the thickness of the thermoplastic polymer composition was 1 mm. Got the sheet.
  • the MFR, hardness, tensile breaking strength, and tensile breaking elongation of the obtained thermoplastic polymer composition sheet were measured. Further, the adhesive strength between the obtained thermoplastic polymer composition, glass plate, aluminum plate and 6-nylon was measured according to the above method. Further, the obtained thermoplastic polymer composition was measured for heat-resistant creep resistance and low temperature flexibility (storage modulus) according to the above-described methods. The results are shown in Table 2.
  • Examples 1 to 8 all have excellent flexibility over a wide temperature range, have good adhesion to any of glass, aluminum, and 6-nylon, and have excellent moldability, mechanical properties, and heat-resistant creep resistance. Are better.
  • Examples 1, 2, and 4 to 8 in which the isoprene monomer and the isoprene / butadiene monomer were used for the conjugated diene block (D) of the hydrogenated block copolymer (A1), the deviation in the creep test was slight. In particular, it can be seen that the heat-resistant creep resistance is excellent.
  • Examples 5 and 8 using (A2 ′) as the hydrogenated block copolymer (A2) are particularly balanced in adhesion to various adherends and heat-resistant creep resistance.
  • the comparative example 1 which does not contain a polar group containing polypropylene resin (B) does not have adhesiveness.
  • the adhesive force is not sufficient, and particularly the adhesion to 6-nylon is poor.
  • the heat-resistant creep resistance was poor, and the steel plate dropped during the creep test.
  • it since it is tacky, it was not suitable for use as a molded product.
  • Comparative Example 3 using (A1′-1) instead of (A1), and Comparative Example 4 in which the component (A) is composed only of the component (A2), although adhesion performance is obtained, the embrittlement at low temperature is severe, In the adhesion test at 40 ° C., the thermoplastic polymer composition caused brittle fracture. Similar to Comparative Example 4, the (A1) component was not used, and Comparative Examples 5 and 6 using only the (A2) component had insufficient adhesive force, and the heat resistance creep resistance was poor, and the steel sheet dropped during the creep test. have done. In Comparative Example 7 containing no component (A2), the tensile strength at break was remarkably low. Since the test piece was very brittle, it was impossible to measure the adhesive force because the test piece was broken when it was peeled off.
  • thermoplastic polymer composition of the present invention is excellent in flexibility in a wide temperature range and excellent in adhesive strength
  • the joined body bonded using the composition is flexible in the adhesive layer.
  • the strain stress caused by the difference between the respective linear expansion coefficients is absorbed. Therefore, the joined body can be used under severe conditions such as a low temperature, a high temperature, and an environment where the temperature changes rapidly.
  • the composition itself can be processed into an arbitrary molded product such as a film, a sheet, or a three-dimensional shape. Since such a molded article is easy to handle unlike an adhesive material or a liquid adhesive, it is useful for improving the productivity of the joined body.
  • thermoplastic polymer composition of the present invention and molded articles thereof are used in a wide variety of applications such as automobile parts, household appliances, computer parts, machine parts, packings, gaskets, hoses and the like. I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

 プライマー処理などを施すことなく合成樹脂、セラミックスまたは金属等と接着することができ、成形品として取扱い可能で、低温~常温の広い温度範囲において優れた接着性、及び柔軟性を有し、更に耐熱クリープ性の高い熱可塑性重合体組成物、及び該熱可塑性重合体組成物を用いた成形品を提供すること。 芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する熱可塑性重合体組成物であって、 前記水添ブロック共重合体(A)が、 -60~-40℃に少なくとも一つのtanδの極大値を有し、下記式(i)又は(ii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A1)と、 (i) (S-D) (ii) (D-S)-D (前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、nは1~5の整数である) 下記式(iii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2) (iii) (S-D)-S (前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である) とを含有する混合物であり、水添ブロック共重合体(A1)と水添ブロック共重合体(A2)との質量比が20:80~99:1である熱可塑性重合体組成物。

Description

熱可塑性重合体組成物、及び成形品
 本発明は、熱可塑性重合体組成物、及びそれを用いた成形品に関する。
 共役ジエン化合物と芳香族ビニル化合物とからなるブロック共重合体の水素添加物(水添物)は加熱することにより可塑化するエラストマー、いわゆる熱可塑性エラストマーであり、耐候・耐熱性が良く優れたゴム弾性を示す。また、当該水添物は柔軟性に富み、加硫することなく加硫ゴムと同等の強度および弾性特性を示すことから、従来の加硫ゴムに代わり日用雑貨品、自動車用部品などの各種工業用品に使用されている。
 しかし、このような熱可塑性エラストマーであっても、極性樹脂、無機充填材(特にガラス繊維)を含有する樹脂、セラミックス、ガラスまたは金属等への接着性や、低温における柔軟性、強度及び弾性特性においてはまだ改良すべき点がある。
 一方、特許文献1及び2ではセラミックス、金属および合成樹脂に対して優れた接着性を有する、スチレン系熱可塑性エラストマーと極性基含有ポリプロピレン樹脂を含む熱可塑性重合体組成物が開示されている。この熱可塑性重合体組成物は、接着剤の塗布や、プライマー処理をすることなく、加熱処理のみによってセラミックス、金属および合成樹脂に接着させることが可能である。また、特許文献3では芳香族ビニル-共役ジエントリブロック共重合体と、芳香族ビニル-共役ジエンジブロック共重合体とを用いた粘着剤組成物が開示されている。
国際公開第2013/105392号パンフレット 国際公開第2012/026501号パンフレット 日本国特許第2710812号明細書
 特許文献1,2に記載の熱可塑性重合体組成物は、極性樹脂に対する接着が可能で十分な耐熱クリープ性も有しているが、低温(約-40~-30℃)時に脆化してしまい、当該組成物を用いて接着した接合体は、わずかな衝撃で破壊してしまうという問題があった。
 特許文献3に記載の粘着剤組成物は、ポリアミドなどの極性樹脂に対する接着性に乏しい上、粘着性を得るために粘着付与樹脂を添加する必要があるため、耐熱クリープ性も十分ではない。さらに、粘着剤であるため強いタック性を有し、成形品として取り扱うことは困難である。また、極性基含有ポリプロピレン樹脂についてはなんら記載されていない。
 本発明の目的は、成形品として取扱い可能で、低温~常温の広い温度範囲においてセラミックス、金属、オレフィン系樹脂、極性樹脂に対し良好な接着性、及び柔軟性を有し、更に耐熱クリープ性の高い熱可塑性重合体組成物、及び該熱可塑性重合体組成物を用いた成形品を提供することにある。
 本発明によれば、上記の目的は、
[1]
 芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する熱可塑性重合体組成物であって、
 前記水添ブロック共重合体(A)が、
-60~-40℃に少なくとも一つのtanδの極大値を有し、下記式(i)又は(ii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A1)と、
 (i) (S-D)
 (ii) (D-S)-D
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、nは1~5の整数である)
下記式(iii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2)
 (iii) (S-D)-S
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
とを含有する混合物であり、水添ブロック共重合体(A1)と水添ブロック共重合体(A2)との質量比が20:80~99:1である熱可塑性重合体組成物。
[2]
 前記水添ブロック共重合体(A2)のうち、少なくとも一部が下記式(iv)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2’)である[1]に記載の熱可塑性重合体組成物。
 (iv) (S-D2)-S
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、D2は1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%以上である共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
[3]
 前記水添ブロック共重合体(A2)のうち、前記水添ブロック共重合体(A2’)の含有割合が20~100質量%である[2]に記載の熱可塑性重合体組成物。
[4]
 前記水添ブロック共重合体(A1)が有する共役ジエン化合物単位を含む重合体ブロック(D)が、1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%未満である共役ジエン化合物単位を含む重合体ブロックである、[1]~[3]のいずれか一項に記載の熱可塑性重合体組成物。
[5]
 前記水添ブロック共重合体(A1)が、下記式
 S-D (式中、S及びDは前記と同義である)
で表されるジブロック共重合体を水素添加した水添ブロック共重合体である[1]~[4]のいずれか一項に記載の熱可塑性重合体組成物。
[6]
 前記共役ジエン化合物単位(D)が、イソプレン単位又はイソプレンとブタジエンの混合単位である、[1]~[5]のいずれか一項に記載の熱可塑性重合体組成物。
[7]
 前記極性基含有ポリプロピレン系樹脂(B)がカルボン酸変性ポリプロピレン系樹脂である、[1]~[6]のいずれか一項に記載の熱可塑性重合体組成物。
[8]
 前記熱可塑性重合体組成物がさらに、ポリビニルアセタール樹脂(C)を10~100質量部含有する、[1]~[7]のいずれか一項に記載の熱可塑性重合体組成物。
[9]
 前記ポリビニルアセタール樹脂(C)が、ポリビニルブチラール樹脂である[8]に記載の熱可塑性重合体組成物。
[10]
 [1]~[9]のいずれか一項に記載の熱可塑性重合体組成物を用いた成形品。
[11]
 前記熱可塑性重合体組成物が、セラミックス、金属、及び合成樹脂から選択される少なくとも1種に接着してなる、[10]に記載の成形品。
[12]
 前記熱可塑性重合体組成物が、セラミックス、金属、及び合成樹脂から選択される少なくとも2種を接着してなる、[11]に記載の成形品。
を提供することにより達成される。
 本発明によれば、プライマー処理等が不要で、簡便、かつ強固に、合成樹脂、セラミックスまたは金属等への接着性が優れた熱可塑性重合体組成物、及び該熱可塑性重合体組成物を用いた成形品を提供することができる。また、成形品として取扱い可能で、低温~常温の広い温度範囲において優れた接着性、柔軟性、及び耐熱クリープ性に優れた熱可塑性重合体組成物、及び該熱可塑性重合体組成物を用いた成形品を提供することができる。
 なお、本発明に係る熱可塑性重合体組成物、及び成形品を、プライマー処理などを施した合成樹脂、セラミックスまたは金属等へ適用できることは言うまでもない。
 本発明の熱可塑性重合体組成物は、芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する熱可塑性重合体組成物であって、
 前記水添ブロック共重合体(A)が、
-60~-40℃に少なくとも一つのtanδの極大値を有し、下記式(i)又は(ii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A1)と、
 (i) (S-D)
 (ii) (D-S)-D
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、nは1~5の整数である)
下記式(iii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2)
 (iii) (S-D)-S
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
とを含有する混合物であり、水添ブロック共重合体(A1)と水添ブロック共重合体(A2)との質量比が20:80~99:1である。
 まず、熱可塑性重合体組成物について説明し、次に、成形品について説明する。
[熱可塑性重合体組成物]
 本発明の熱可塑性重合体組成物は、芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する熱可塑性重合体組成物である。
 また、熱可塑性重合体組成物は、ポリビニルアセタール樹脂(C)や粘着付与樹脂、軟化剤などをさらに含んでいてもよい。
(水添ブロック共重合体(A))
 熱可塑性重合体組成物に含有させる、芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)は、熱可塑性重合体組成物に柔軟性や、良好な力学特性および成形加工性などを付与するものであり、該組成物中でマトリックスの役割を果たす。
-芳香族ビニル化合物単位を含有する重合体ブロック(S)-
 芳香族ビニル化合物単位を含有する重合体ブロック(S)を構成する芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン、1-ビニルナフタレン、2-ビニルナフタレンなどが挙げられる。芳香族ビニル化合物単位を含有する重合体ブロック(S)は、これらの芳香族ビニル化合物の1種のみに由来する構造単位からなっていてもよいし、2種以上に由来する構造単位からなっていてもよい。中でも、スチレン、α-メチルスチレン、4-メチルスチレンが好ましい。
 ここで、本発明において、「芳香族ビニル化合物単位を含有する重合体ブロック(S)」とは、好ましくは芳香族ビニル化合物単位80質量%以上を含有する重合体ブロック、より好ましくは芳香族ビニル化合物単位90質量%以上を含有する重合体ブロック、さらに好ましくは芳香族ビニル化合物単位95質量%以上(いずれも、原料の仕込み量換算の値である)を含有する重合体ブロックである。芳香族ビニル化合物単位を含有する重合体ブロック(S)は、芳香族ビニル化合物単位のみを有していてもよいが、本発明の効果を損なわない限り、芳香族ビニル化合物単位と共に、他の共重合性単量体単位を有していてもよい。
 他の共重合性単量体としては、例えば、1-ブテン、ペンテン、ヘキセン、ブタジエン、イソプレン、メチルビニルエーテルなどが挙げられる。他の共重合性単量体単位を有する場合、その割合は、芳香族ビニル化合物単位および他の共重合性単量体単位の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
 なお、本発明では水添ブロック共重合体(A)の末端に水酸基のような極性基が結合したものも使用し得る。
-共役ジエン化合物単位を含有する重合体ブロック(D)-
 共役ジエン化合物単位を含有する重合体ブロック(D)を構成する共役ジエン化合物としては、例えば、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられる。中でも、ブタジエン、イソプレンが好ましい。
 共役ジエン化合物単位を含有する重合体ブロック(D)は、これらの共役ジエン化合物の1種のみに由来する構造単位からなっていてもよいし、2種以上に由来する構造単位からなっていてもよい。共役ジエン化合物単位は、例えばイソプレン単位、ブタジエン単位、イソプレンとブタジエンの混合単位などが挙げられるが、特にイソプレン単位又はイソプレンとブタジエンの混合単位であることが好ましい。共役ジエン化合物単位を、イソプレン単位又はイソプレンとブタジエンの混合単位とすることにより、接着力がより向上する利点がある。
 重合体ブロック(D)を構成する共役ジエンの結合形態は特に制限されない。例えば、ブタジエンの場合には、1,2-結合、1,4-結合を、イソプレンの場合には、1,2-結合、3,4-結合、1,4-結合をとることができる。
 なお、1,2-結合量および3,4-結合量は、H-NMR測定によって算出できる。具体的には、1,2-結合単位および3,4-結合単位に由来する4.2~5.0ppmに存在するピークの積分値および1,4-結合単位に由来する5.0~5.45ppmに存在するピークの積分値との比から算出できる。
 本発明において「共役ジエン化合物単位を含有する重合体ブロック(D)」とは、好ましくは共役ジエン化合物単位80質量%以上を含有する重合体ブロック、より好ましくは共役ジエン化合物単位90質量%以上を含有する重合体ブロック、さらに好ましくは共役ジエン化合物単位95質量%以上(いずれも、原料の仕込み量換算の値である)を含有する重合体ブロックである。共役ジエン化合物単位を含有する重合体ブロックは、共役ジエン化合物単位のみを有していてもよいが、本発明の効果を損なわない限り、共役ジエン化合物単位と共に、他の共重合性単量体単位を有していてもよい。
 他の共重合性単量体としては、例えば、スチレン、α-メチルスチレン、4-メチルスチレンなどが挙げられる。他の共重合性単量体単位を有する場合、その割合は、共役ジエン化合物単位および他の共重合性単量体単位の合計量に対して、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
-水添ブロック共重合体(A1)-
 水添ブロック共重合体(A1)は、-60~-40℃に少なくとも一つのtanδの極大値を有し、下記式(i)又は(ii)で表されるブロック共重合体を水素添加したものである。
 (i) (S-D)
 (ii) (D-S)-D
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、nは1~5の整数である)
 nは1~3の整数であることが好ましく、1又は2がより好ましく、1であることが更に好ましい。
 水添ブロック共重合体(A1)が-60~-40℃に少なくとも一つのtanδの極大値を有することにより、低温での柔軟性が優れた熱可塑性重合体組成物、及び成形品が得られる。水添ブロック共重合体(A1)は、-55~-40℃に少なくとも一つのtanδの極大値を有するものがより好ましい。
 式(i)又は(ii)で表されるブロック共重合体における芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)との結合形態は、例えば、S-Dで表されるジブロック共重合体、D-S-Dで表されるトリブロック共重合体、S-D-S-Dで表されるテトラブロック共重合体、D-S-D-S-Dで表されるペンタブロック共重合体等、およびこれらの混合物が挙げられる。
 生産性の観点から、水添ブロック共重合体(A1)は、S-DまたはD-S-Dで表されるジ又はトリブロック共重合体を水素添加したものが好ましく、S-Dで表されるジブロック共重合体を水素添加したものがより好ましい。
 なお、式(i)又は(ii)で表されるブロック共重合体における芳香族ビニル化合物単位を含有する重合体ブロック(S)の含有量は、その柔軟性、力学特性の観点から、該ブロック共重合体全体に対して、好ましくは5~75質量%、より好ましくは8~60質量%、さらに好ましくは10~40質量%である。
 そして、共役ジエン化合物単位を含む重合体ブロック(D)は、1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%未満であることが好ましい。より好ましくは20モル%未満、さらに好ましくは10モル%未満である共役ジエン化合物単位を含む重合体ブロックであることが好ましい。1,2-結合量及び3,4-結合量の合計量が全結合形態の合計量に対して40モル%未満であれば、熱可塑性重合体組成物、及び成形品の低温時における柔軟性が十分に得られる。
 水添ブロック共重合体(A1)の重量平均分子量は、その力学特性、成形加工性の観点から、好ましくは30,000~300,000、より好ましくは35,000~200,000、さらに好ましくは40,000~180,000である。ここで、重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量である。
-水添ブロック共重合体(A2)-
 水添ブロック共重合体(A2)は、下記式(iii)で表されるブロック共重合体を水素添加したものである。
 (iii) (S-D)-S
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
 mは1~3の整数であることが好ましく、1又は2がより好ましく、1であることが更に好ましい。
 式(iii)で表されるブロック共重合体における芳香族ビニル化合物単位を含有する重合体ブロック(S)と共役ジエン化合物単位を含有する重合体ブロック(D)との結合形態は、例えば、S-D-Sで表されるトリブロック共重合体、S-D-S-D-Sで表されるペンタブロック共重合体等、およびこれらの混合物が挙げられる。中でもS-D-Sで表されるトリブロック共重合体が好ましい。 
 また、式(iii)で表されるブロック共重合体における芳香族ビニル化合物単位を含有する重合体ブロック(S)の含有量は、その柔軟性、力学特性の観点から、該ブロック共重合体全体に対して、好ましくは5~75質量%、より好ましくは8~60質量%、さらに好ましくは10~40質量%、最も好ましくは10~35質量%である。
 水添ブロック共重合体(A2)の重量平均分子量は、その力学特性、成形加工性の観点から、好ましくは30,000~300,000、より好ましくは40,000~250,000、さらに好ましくは50,000~200,000、最も好ましくは70,000~200,000である。ここで、重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量である。
 本発明における水添ブロック共重合体(A)は、水添ブロック共重合体(A1)としてS-Dで表されるジブロック共重合体を水素添加したものを含有し、水添ブロック共重合体(A2)としてS-D-Sで表されるトリブロック共重合体を水素添加したものを含有する混合物であることが好ましい。
 水添ブロック共重合体(A2)のうち、少なくとも一部は下記式(iv)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2’)であることが好ましい。
 (iv) (S-D2)-S
(前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、D2は1,2-結合量及び3,4-結合量の合計量が全結合形態の合計量に対して40モル%以上である共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
 1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%以上である共役ジエン化合物単位を含むことにより熱可塑性重合体組成物、及び成形品の金属に対する接着力がより向上する。1,2-結合量及び3,4-結合量の合計量が50モル%以上であることがより好ましい。
 水添ブロック共重合体(A2)のうち、水添ブロック共重合体(A2’)の含有割合に特に制限はないが、20~100質量%であることが好ましく、40~100質量%であることがより好ましく、60~100質量%であることが更に好ましい。
 本発明に用いられる水添ブロック共重合体(A)が、-60~-40℃に少なくとも一つのtanδの極大値を有する前記水添ブロック共重合体(A1)と、前記水添ブロック共重合体(A2)との混合物であることにより、(A1)が低温下の柔軟性を付与し、(A1)及び(A2)の組合せによって、広い温度域での優れた接着性を付与することができる。
 水添ブロック共重合体(A1)と、水添ブロック共重合体(A2)との質量比は20:80~99:1であり、好ましくは、20:80~70:30であり、より好ましくは20:80~60:40であり、更に好ましくは20:80~55:45である。
 水添ブロック共重合体(A)は、共役ジエン化合物単位を含有する重合体ブロック(D)の不飽和二重結合の一部または全部が水素添加されている水素添加物である。重合体ブロック(D)の不飽和二重結合の一部または全部が水素添加されていることにより、耐熱性および耐候性を向上させることができる。共役ジエン化合物単位を含有する重合体ブロック(D)の水素添加率(水添率)は、好ましくは70%以上、より好ましくは80%以上、更に好ましくは85%以上である。ここで、本明細書において水添率は、水素添加反応前後のブロック共重合体のヨウ素価を測定して得られる値である。
(水添ブロック共重合体(A)の製造方法)
 水添ブロック共重合体(A)の製造方法としては、特に限定されないが、例えばアニオン重合法により未水添のブロック共重合体を製造し、次いで、得られた未水添のブロック共重合体を水素添加反応に付すことによって、水添ブロック共重合体(A)を製造することができる。
 未水添のブロック共重合体を製造方法として、具体的には、(i)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル化合物、前記共役ジエン化合物、次いで前記芳香族ビニル化合物を逐次重合させる方法;(ii)アルキルリチウム化合物を開始剤として用い、前記芳香族ビニル化合物、前記共役ジエン化合物を逐次重合させ、次いでカップリング剤を加えてカップリングする方法;(iii)ジリチウム化合物を開始剤として用い、前記共役ジエン化合物、次いで前記芳香族ビニル化合物を逐次重合させる方法などが挙げられる。
 前記(i)および(ii)におけるのアルキルリチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウムなどが挙げられる。前記(ii)におけるのカップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼンなどが挙げられる。また、前記(iii)におけるのジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼンなどが挙げられる。
 これらのアルキルリチウム化合物、ジリチウム化合物などの開始剤やカップリング剤の使用量は、目標とする水添ブロック共重合体(A)の重量平均分子量により決定されるが、アニオン重合法に用いる芳香族ビニル化合物および共役ジエン化合物の合計100質量部に対して、通常、アルキルリチウム化合物、ジリチウム化合物などの開始剤は、いずれも0.01~0.2質量部用いられる。また、(ii)においては、アニオン重合法に用いる芳香族ビニル化合物および共役ジエン化合物の合計100質量部に対して、通常、カップリング剤は、0.001~0.8質量部用いられる。
 なお、上記のアニオン重合は、溶媒の存在下で行なうのが好ましい。溶媒としては、開始剤に対して不活性で、重合に悪影響を及ぼさないものであれば特に制限はなく、例えばヘキサン、ヘプタン、オクタン、デカンなどの飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタンなどの脂環式飽和炭化水素;トルエン、ベンゼン、キシレンなどの芳香族炭化水素などが挙げられる。また、重合は、上記したいずれの方法による場合も、0~80℃で0.5~50時間行なうのが好ましい。
 上記アニオン重合の際、有機ルイス塩基を添加することによって、未水添のブロック共重合体の1,2-結合量および3,4-結合量を増やすことができ、該有機ルイス塩基の添加量によって、1,2-結合量および3,4-結合量を制御することができる。
 該有機ルイス塩基としては、例えば、酢酸エチルなどのエステル;トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリンなどのアミン;ピリジンなどの含窒素複素環式芳香族化合物;ジメチルアセトアミドなどのアミド;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサンなどのエーテル;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル;ジメチルスルホキシドなどのスルホキシド;アセトン、メチルエチルケトンなどのケトンなどが挙げられる。
 上記方法により重合を行なった後、反応液に含まれるブロック共重合体を、メタノールなどの該ブロック共重合体の貧溶媒に注いで凝固させるか、または反応液をスチームと共に熱水中に注いで溶媒を共沸によって除去(スチームストリッピング)した後、乾燥させることにより、未水添のブロック共重合体を単離することができる。
 水素添加反応は、反応および水素添加触媒に対して不活性な溶媒に上記で得られた未水添のブロック共重合体を溶解させるか、または、未水添のブロック共重合体を前記の反応液から単離せずにそのまま用い、水素添加触媒の存在下、水素と反応させることにより行うことができる。
 水素添加触媒としては、例えばラネーニッケル;Pt、Pd、Ru、Rh、Niなどの金属をカーボン、アルミナ、珪藻土などの担体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物などとの組み合わせからなるチーグラー系触媒;メタロセン系触媒などが挙げられる。
 水素添加反応は、通常、水素圧力0.1~20MPa、反応温度20~250℃、反応時間0.1~100時間の条件で行なうことができる。この方法による場合、水素添加反応液をメタノールなどの貧溶媒に注いで凝固させるか、または水素添加反応液をスチームと共に熱水中に注いで溶媒を共沸によって除去(スチームストリッピング)した後、乾燥させることにより、水添されたブロック共重合体、すなわち水添ブロック共重合体(A)を単離することができる。
(極性基含有ポリプロピレン系樹脂(B))
 熱可塑性重合体組成物は、水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する。
 極性基含有ポリプロピレン系樹脂(B)の極性基としては、例えば、(メタ)アクリロイルオキシ基;水酸基;アミド基;塩素原子などのハロゲン原子;カルボキシル基;酸無水物基などが挙げられる。該極性基含有ポリプロピレン系樹脂(B)の製造方法に特に制限はないが、プロピレン(必要に応じてさらにα-オレフィン)および極性基含有共重合性単量体とを、公知の方法でランダム共重合・ブロック共重合またはグラフト共重合することによって得られる。これらの中でも、ランダム共重合体、グラフト共重合体が好ましく、グラフト共重合体がより好ましい。このほかにも、ポリプロピレン系樹脂を公知の方法で酸化または塩素化など変性反応に付することによっても得られる。
 上記α-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン、シクロヘキセンなどが挙げられる。これらプロピレン以外のα-オレフィンを由来とする単位の、極性基含有ポリプロピレン系樹脂(B)が有する全構造単位に対する割合は、好ましくは0~45モル%、より好ましくは0~35モル%、さらに好ましくは0~25モル%である。
 極性基含有共重合性単量体としては、例えば、酢酸ビニル、塩化ビニル、酸化エチレン、酸化プロピレン、アクリルアミド、不飽和カルボン酸またはそのエステルもしくは無水物が挙げられる。これらの中でも、不飽和カルボン酸またはそのエステルもしくは無水物が好ましい。不飽和カルボン酸またはそのエステルもしくは無水物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、ハイミック酸、無水ハイミック酸などが挙げられる。これらの中でも、無水マレイン酸がより好ましい。これらの極性基含有共重合性単量体は、1種を単独で用いてもよいし、2種以上を組み合わせてもよい。
 極性基含有ポリプロピレン系樹脂(B)としては、後述するポリビニルアセタール樹脂(C)との相溶性の観点から、極性基としてカルボキシル基を含有するポリプロピレン、つまりカルボン酸変性ポリプロピレン系樹脂が好ましく、マレイン酸変性ポリプロピレン系樹脂、無水マレイン酸変性ポリプロピレン系樹脂がより好ましい。
 前記極性基含有共重合性単量体として例示した(メタ)アクリル酸エステルとしては、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ヘキシル、アクリル酸イソヘキシル、アクリル酸n-オクチル、アクリル酸イソオクチル、アクリル酸2-エチルヘキシルなどのアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸イソヘキシル、メタクリル酸n-オクチル、メタクリル酸イソオクチル、メタクリル酸2-エチルヘキシルなどのメタクリル酸アルキルエステルが挙げられる。これらの(メタ)アクリル酸エステルは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 極性基含有ポリプロピレン系樹脂(B)が有する極性基は、重合後に後処理されていてもよい。例えば、(メタ)アクリル酸基やカルボキシル基の金属イオンによる中和を行ってアイオノマーとしていてもよいし、メタノールやエタノールなどによってエステル化していてもよい。また、酢酸ビニルの加水分解などを行っていてもよい。
 極性基含有ポリプロピレン系樹脂(B)の230℃、荷重2.16kg(21.18N)の条件下におけるメルトフローレート(MFR)は、好ましくは0.1~100g/10分、より好ましくは1~100g/10分、更に好ましくは1~50g/10分、より更に好ましくは1~30g/10分、特に好ましくは1~20g/10分、最も好ましくは1~15g/分である。極性基含有ポリプロピレン系樹脂(B)の上記条件下におけるMFRが0.1g/10分以上であれば、金属およびセラミックスに対し、加熱温度190℃以下で良好な接着強度が得られる。一方、該MFRが100g/10分以下であれば、入手が容易であるうえ、力学特性が発現し易い。
 極性基含有ポリプロピレン系樹脂(B)の融点は、耐熱クリープ性と接着性の観点から、好ましくは100℃以上、より好ましくは110~170℃、さらに好ましくは120~150℃、最も好ましくは130~140℃である。
 極性基含有ポリプロピレン系樹脂(B)が有する極性基含有構造単位の、極性基含有ポリプロピレン系樹脂(B)が有する全構造単位に対する割合は、好ましくは0.01~10質量%、より好ましくは0.1~10質量%、さらに好ましくは0.1~3質量%、特に好ましくは0.1~2重量%である。極性基含有構造単位の割合がこの範囲であれば、水添ブロック共重合体(A)との親和性や相溶性が良好であり、熱可塑性重合体組成物の力学特性が良好となり、金属およびセラミックスに対し、加熱温度190℃以下で良好な接着強度が得られる。極性基含有構造単位の割合が最適になるよう、高濃度で極性基含有構造単位を有するポリプロピレン系樹脂を、極性基含有構造単位を有しないポリプロピレン系樹脂で希釈してもよい。
 熱可塑性重合体組成物は、水添ブロック共重合体(A)100質量部に対して、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する。極性基含有ポリプロピレン系樹脂(B)が10質量部より少ないと、熱可塑性重合体組成物からなる成形体が、金属およびセラミックスに対し190℃以下で接着することが難しく、得られた接着体が60℃以上の温度環境下にさらされた場合に、接着力が実用的に不十分となり、剥離し易くなる。一方、極性基含有ポリプロピレン系樹脂(B)が100質量部より多くなると、十分な接着性は得られるが、熱可塑性重合体組成物が硬くなり、柔軟性および力学特性が発現しにくくなる。
 極性基含有ポリプロピレン系樹脂(B)の含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは15質量部以上、更に好ましくは20質量部以上であり、好ましくは70質量部以下、さらに好ましくは60質量部以下、特に好ましくは30質量部以下である。
 これらより、極性基含有ポリプロピレン系樹脂(B)の含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは15~70質量部、より好ましくは15~60質量部、更に好ましくは20~60質量部、特に好ましくは20~30質量部である。
(ポリビニルアセタール樹脂(C))
 熱可塑性重合体組成物はさらに、ポリビニルアセタール樹脂(C)を10~100質量部含有することが好ましい。より好ましくは10~50質量部であり、更に好ましくは15~30質量部である。
 ポリビニルアセタール樹脂(C)は、熱可塑性重合体組成物中にて水添ブロック共重合体(A)による連続相(海)中に、分散相として(島状に)分散する。該ポリビニルアセタール樹脂(C)を10質量部以上含有すると、セラミックス、特にガラスに対する接着強度を、接着直後から得ることができる。また、100質量部以下であると良好な柔軟性、力学特性を得ることができる。
 ポリビニルアセタール樹脂(C)は、通常、下記式(I)に表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000001
 上記式(I)中、nは、アセタール化反応に用いたアルデヒドの種類の数を表す。R、R、・・・、Rは、アセタール化反応に用いたアルデヒドのアルキル残基または水素原子を表し、k(1)、k(2)、・・・、k(n)は、それぞれ[ ]で表す構成単位の割合(モル比)を表す。また、lは、ビニルアルコール単位の割合(モル比)、mは、ビニルアセテート単位の割合(モル比)を表す。
 ただし、k(1)+k(2)+・・・+k(n)+l+m=1であり、k(1)、k(2)、・・・、k(n)、lおよびmは、いずれかがゼロであってもよい。
 各繰返し単位は、特に上記配列順序によって制限されず、ランダムに配列されていてもよいし、ブロック状に配列されていてもよいし、テーパー状に配列されていてもよい。
 ポリビニルアセタール樹脂(C)はポリビニルブチラール樹脂であることが好ましい。
(ポリビニルアセタール樹脂(C)の製造方法)
 ポリビニルアセタール樹脂(C)は、例えば、ポリビニルアルコールとアルデヒドとを反応させることによって得ることができる。
 ポリビニルアセタール樹脂(C)の製造に用いられるポリビニルアルコールは、平均重合度が、通常、好ましくは100~4,000、より好ましくは100~3,000、さらに好ましくは150~2,000、特に好ましくは200~1,500である。ポリビニルアルコールの平均重合度が100以上であれば、ポリビニルアセタール樹脂(C)の製造が容易となり、また取り扱い性が良好である。また、ポリビニルアルコールの平均重合度が4,000以下であると、溶融混練する際の溶融粘度が高くなり過ぎることがなく、熱可塑性重合体組成物の製造が容易である。
 ここでポリビニルアルコールの平均重合度は、JIS K 6726に準じて測定したものである。具体的には、ポリビニルアルコールを再けん化し、精製した後、30℃の水中で測定した極限粘度から求めた値である。
 ポリビニルアルコールの製法は特に限定されず、例えば、ポリ酢酸ビニルなどをアルカリ、酸、アンモニア水などによりけん化して製造されたものを用いることができる。また、市販品を用いてもよい。市販品としては、株式会社クラレ製の「クラレポバール」シリーズなどが挙げられる。ポリビニルアルコールは、完全にけん化されたものであってもよいが、部分的にけん化されたものであってもよい。けん化度は、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。
 また、上記ポリビニルアルコールとしては、エチレン-ビニルアルコール共重合体や部分的にけん化したエチレン-ビニルアルコール共重合体などのビニルアルコールと、ビニルアルコールと共重合可能なモノマーとの共重合体を用いることができる。さらに、一部にカルボン酸などが導入された変性ポリビニルアルコールを用いることができる。これらポリビニルアルコールは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリビニルアセタール樹脂(C)の製造に用いられるアルデヒドは特に制限されない。例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、ペンタナール、ヘキサナール、ヘプタナール、n-オクタナール、2-エチルヘキシルアルデヒド、シクロヘキサンカルバルデヒド、フルフラール、グリオキサール、グルタルアルデヒド、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒドなどが挙げられる。これらのアルデヒドは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらアルデヒドのうち、製造容易性の観点から、ブチルアルデヒドが好ましく、n-ブチルアルデヒドがより好ましい。
 n-ブチルアルデヒドを用いたアセタール化によって得られるポリビニルアセタール樹脂(C)を、特に、ポリビニルブチラール(PVB)と称する。
 本発明では、ポリビニルアセタール樹脂(C)中に存在するアセタール単位のうち、ブチラール単位の割合(下式参照)が、好ましくは0.8以上、より好ましくは0.9以上、さらに好ましくは0.95以上、特に好ましくは、実質的に1である。
 すなわち、前記式(I)に示されるポリビニルアセタール樹脂(C)の構造式において、Rのみがn-Cであるとき、0.8≦k(1)/(k(1)+k(2)+・・・+k(n))であるものが好ましい。
 本発明に用いられるポリビニルアセタール樹脂(C)のアセタール化度は、好ましくは55~88モル%である。アセタール化度が55モル%以上のポリビニルアセタール樹脂(C)は、製造コストが低く、入手が容易であり、また溶融加工性が良好である。一方、アセタール化度が88モル%以下のポリビニルアセタール樹脂(C)は、製造が非常に容易であり、製造に際し、アセタール化反応に長い時間を要しないので経済的である。
 ポリビニルアセタール樹脂(C)のアセタール化度は、より好ましくは60~88モル%であり、さらに好ましくは70~88モル%であり、特に好ましくは75~85モル%である。ポリビニルアセタール樹脂(C)のアセタール化度が低いほど、ポリビニルアセタール樹脂(C)が有する水酸基の割合が大きくなり、セラミックス、金属および合成樹脂に対する接着性において有利となるが、上記範囲のアセタール化度とすることで、水添ブロック共重合体(A)との親和性や相溶性が良好となり、熱可塑性重合体組成物の力学特性に優れるとともに、セラミックス、金属および合成樹脂との接着強度が高くなる。
 ポリビニルアセタール樹脂(C)のアセタール化度(モル%)は、以下の式で定義される。
 アセタール化度(モル%)={k(1)+k(2)+・・・+k(n)}×2/{{k(1)+k(2)+・・・+k(n)}×2+l+m}×100(上記式中、n、k(1)、k(2)、・・・、k(n)、lおよびmは、前記定義の通りである。)
 なお、ポリビニルアセタール樹脂(C)のアセタール化度は、JIS K 6728(1977年)に記載の方法に則って求めることができる。すなわち、ビニルアルコール単位の質量割合(l)およびビニルアセテート単位の質量割合(m)を滴定によって求め、ビニルアセタール単位の質量割合(k)をk=1-l-mによって求める。これからビニルアルコール単位のモル割合l[l=(l/44.1)/(l/44.1+m/86.1+2k/Mw(アセタール))]およびビニルアセテート単位のモル割合m[m=(m/86.1)/(l/44.1+m/86.1+k/Mw(アセタール))]を計算し、k=1-l-mの計算式によりビニルアセタール単位のモル割合(k=k(1)+k(2)+・・・+k(n))を得る。ここで、Mw(アセタール)は、ビニルアセタール単位ひとつあたりの分子量であり、例えば、ポリビニルブチラールのとき、Mw(アセタール)=Mw(ブチラール)=142.2である。そして、{k(1)+k(2)+・・・+k(n)}×2/{{k(1)+k(2)+・・・+k(n)}×2+l+m}×100の計算式によって、アセタール化度(モル%)を求めることができる。
 また、ポリビニルアセタール樹脂(C)のアセタール化度は、ポリビニルアセタール樹脂(C)を重水素化ジメチルスルホキシドなどの適切な重水素化溶媒に溶解し、H-NMRや13C-NMRを測定して算出してもよい。
 また、ポリビニルアセタール樹脂(C)としては、ビニルアルコール単位を好ましくは12~45モル%(0.12≦l≦0.45)、より好ましくは12~40モル%(0.12≦l≦0.40)含み、ビニルアセテート単位を好ましくは0~5モル%(0≦m≦0.05)、より好ましくは0~3モル%(0≦m≦0.03)含む。
 ポリビニルアルコールとアルデヒドとの反応(アセタール化反応)は、公知の方法で行うことができる。例えば、ポリビニルアルコールの水溶液とアルデヒドとを酸触媒の存在下でアセタール化反応させて、ポリビニルアセタール樹脂(C)の粒子を析出させる水媒法;ポリビニルアルコールを有機溶媒中に分散させ、酸触媒の存在下、アルデヒドとアセタール化反応させ、得られた反応混合液に、ポリビニルアセタール樹脂(C)に対して貧溶媒である水などを混合することにより、ポリビニルアセタール樹脂(C)を析出させる溶媒法などが挙げられる。
 上記酸触媒は特に限定されず、例えば、酢酸、p-トルエンスルホン酸などの有機酸;硝酸、硫酸、塩酸などの無機酸;二酸化炭素などの水溶液にした際に酸性を示す気体;陽イオン交換樹脂や金属酸化物などの固体酸触媒などが挙げられる。
 前記水媒法や溶媒法などにおいて生成したスラリーは、通常、酸触媒によって酸性を呈している。酸触媒を除去する方法として、前記スラリーの水洗を繰り返し、pHを好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8に調整する方法;前記スラリーに中和剤を添加して、pHを好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8に調整する方法;前記スラリーにアルキレンオキサイド類などを添加する方法などが挙げられる。
 pHを調整するために用いられる化合物としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;酢酸ナトリウムなどのアルカリ金属の酢酸塩;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア、アンモニア水溶液などが挙げられる。また、前記アルキレンオキサイド類としては、例えば、エチレンオキサイド、プロピレンオキサイド;エチレングリコールジグリシジルエーテルなどのグリシジルエーテル類が挙げられる。
 次に中和により生成した塩、アルデヒドの反応残渣などを除去する。
 除去方法は特に制限されず、脱水と水洗を繰り返すなどの方法が通常用いられる。残渣などが除去された含水状態のポリビニルアセタール樹脂(C)は、必要に応じて乾燥され、必要に応じてパウダー状、顆粒状あるいはペレット状に加工される。
 本発明で用いるポリビニルアセタール樹脂(C)としては、パウダー状、顆粒状あるいはペレット状に加工される際に、減圧状態で脱気することにより、アルデヒドの反応残渣や水分などを低減したものが好ましい。
(粘着付与樹脂)
 熱可塑性重合体組成物は、必要に応じて粘着付与樹脂をさらに含有させることができる。粘着付与樹脂を含有させることによって、接着特性を維持しつつ、成形加工性がさらに向上する。
 かかる粘着付与樹脂としては、例えば脂肪族不飽和炭化水素樹脂、脂肪族飽和炭化水素樹脂、脂環式不飽和炭化水素樹脂、脂環式飽和炭化水素樹脂、芳香族炭化水素樹脂、水添芳香族炭化水素樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、テルペンフェノール樹脂、水添テルペンフェノール樹脂、テルペン樹脂、水添テルペン樹脂、芳香族炭化水素変性テルペン樹脂、クマロン・インデン樹脂、フェノール樹脂、キシレン樹脂などが挙げられる。粘着付与樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、脂肪族飽和炭化水素樹脂、脂環式飽和炭化水素樹脂、水添芳香族炭化水素樹脂、又は水添テルペン樹脂が好ましく、水添芳香族炭化水素樹脂、又は水添テルペン樹脂がより好ましい。
 粘着付与樹脂の軟化点は、好ましくは50~200℃、より好ましくは65~180℃、さらに好ましくは80~160℃である。軟化点が50℃以上であれば、環境温度に対する接着特性を維持することができる。一方、軟化点が200℃以下であれば、加熱処理温度に対する接着特性を維持することができる。
 ここで、軟化点はASTM28-67に準拠して測定した値である。
 本発明の熱可塑性重合体組成物に粘着付与樹脂を含有させる場合、その含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは1~100質量部、より好ましくは5~70質量部、さらに好ましくは5~50質量部、特に好ましくは10~45質量部である。粘着付与樹脂の含有量が水添ブロック共重合体(A)100質量部に対して100質量部以下であれば、熱可塑性重合体組成物が硬くならず、柔軟性および力学特性が発現し易い。
(軟化剤)
 本発明に用いられる熱可塑性重合体組成物には、必要に応じて軟化剤を含有させてもよい。軟化剤としては、例えば、一般にゴム、プラスチックスに用いられる軟化剤が挙げられる。
 例えばパラフィン系、ナフテン系、芳香族系のプロセスオイル;ジオクチルフタレート、ジブチルフタレートなどのフタル酸誘導体;ホワイトオイル、ミネラルオイル、エチレンとα-オレフィンのオリゴマー、パラフィンワックス、流動パラフィン、ポリブテン、低分子量ポリブタジエン、低分子量ポリイソプレンなどが挙げられる。これらの中でもプロセスオイルが好ましく、パラフィン系プロセスオイルがより好ましい。
 また、一般的にポリビニルアセタール樹脂(C)と併せて使用される公知の軟化剤、例えば一塩基性有機酸エステル、多塩基性有機酸エステルなどの有機酸エステル系可塑剤;有機リン酸エステル、有機亜リン酸エステルなどのリン酸系可塑剤なども使用できる。
 一塩基性有機酸エステルとしては、例えばトリエチレングリコール-ジカプロン酸エステル、トリエチレングリコール-ジ-2-エチル酪酸エステル、トリエチレングリコール-ジ-n-オクチル酸エステル、トリエチレングリコール-ジ-2-エチルヘキシル酸エステルなどに代表されるトリエチレングリコール、テトラエチレングリコール、トリプロピレングリコールなどのグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸などの一塩基性有機酸との反応によって得られるグリコール系エステルが挙げられる。
 多塩基酸有機エステルとしては、例えばセバシン酸ジブチルエステル、アゼライン酸ジオクチルエステル、アジピン酸ジブチルカルビトールエステルなどに代表される、アジピン酸、セバシン酸、アゼライン酸などの多塩基性有機酸と、アルコールのエステルなどが挙げられる。
 有機リン酸エステルとしては、例えばトリブトキシエチルホスフェート、イソデシルフェニルホスフェート、トリイソプロピルホスフェートなどが挙げられる。
 これらの軟化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の熱可塑性重合体組成物に軟化剤を含有させる場合、その含有量は、柔軟性、成形加工性および接着性の観点から、水添ブロック共重合体(A)100質量部に対して、好ましくは0.1~300質量部、より好ましくは1~200質量部、さらに好ましくは10~200質量部、よりさらに好ましくは50~200質量部、特に好ましくは50~150質量部含有していてもよい。
(その他の任意成分)
 本発明の熱可塑性重合体組成物は、本発明の効果を著しく損なわない範囲で、必要に応じて極性基を有さないオレフィン系重合体、スチレン系重合体、ポリフェニレンエーテル系樹脂、ポリエチレングリコールなどの他の熱可塑性重合体や、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、アクリル系熱可塑性エラストマーなどの他の熱可塑性エラストマーを含有していてもよい。オレフィン系重合体としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、プロピレンとエチレンや1-ブテンなどの他のα-オレフィンとのブロック共重合体やランダム共重合体などが挙げられる。
 他の熱可塑性重合体を含有させる場合、その含有量は、水添ブロック共重合体(A)100質量部に対して、好ましくは100質量部以下、より好ましくは50質量部以下、更に好ましくは20質量部以下、よりさらに好ましくは10質量部以下、特に好ましくは5質量部以下である。
 本発明の熱可塑性重合体組成物は、必要に応じて、無機充填材を含有していてもよい。無機充填材は、熱可塑性重合体組成物の耐熱性、耐候性などの物性の改良、硬度調整、増量剤としての経済性の改善などに有用である。かかる無機充填材は特に制限されず、例えば、炭酸カルシウム、タルク、水酸化マグネシウム、水酸化アルミニウム、マイカ、クレー、天然ケイ酸、合成ケイ酸、酸化チタン、カーボンブラック、硫酸バリウム、ガラスバルーン、ガラス繊維などが挙げられる。無機充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 無機充填材を含有させる場合、その含有量は、熱可塑性重合体組成物の柔軟性が損なわれない範囲であることが好ましく、一般に水添ブロック共重合体(A)100質量部に対して、好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは30質量部以下、特に好ましくは10質量部以下である。
 本発明の熱可塑性重合体組成物は、発明の効果を損なわない範囲で、必要に応じて酸化防止剤、滑剤、光安定剤、加工助剤、顔料や色素などの着色剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料などを含有していてもよい。
 酸化防止剤としては、例えばヒンダードフェノール系、リン系、ラクトン系、ヒドロキシル系の酸化防止剤などが挙げられる。これらの中でも、ヒンダードフェノール系酸化防止剤が好ましい。酸化防止剤を含有させる場合、その含有量は、得られる熱可塑性重合体組成物を溶融混練する際に着色しない範囲であることが好ましく、水添ブロック共重合体(A)100質量部に対して、好ましくは0.1~5質量部である。
 本発明の熱可塑性重合体組成物の調製方法に特に制限はなく、前記成分を均一に混合し得る方法であればいずれの方法で調製してもよく、通常は溶融混練法が用いられる。溶融混練は、例えば、単軸押出機、2軸押出機、ニーダー、バッチミキサー、ローラー、バンバリーミキサーなどの溶融混練装置を用いて行うことができ、通常、好ましくは170~270℃で溶融混練することにより、熱可塑性重合体組成物を得ることができる。
 こうして得られた熱可塑性重合体組成物は、JIS K 6253のJIS-A法による硬度(以下、「A硬度」と称することがある)が、好ましくは90以下であり、より好ましくは30~90、さらに好ましくは35~85である。A硬度がこの範囲であれば、熱可塑性重合体組成物を成形品とした際に、柔軟性、弾性、力学特性が発現しやすくなり、合成樹脂、特に無機充填材(ガラス繊維など)を含有する樹脂、セラミックスおよび金属と優れた接着性が得られ、熱可塑性重合体組成物として好適に使用できる。
 また、JIS K 7210に準じた方法で、230℃、荷重2.16kg(21.18N)の条件下で測定した上記熱可塑性重合体組性物のメルトフローレート(MFR)は、好ましくは0.1~100g/10分、より好ましくは0.1~20g/10分、さらに好ましくは0.5~10g/分の範囲にある。MFRがこの範囲であると、成形品の製造が容易となる。
[成形品]
 本発明の熱可塑性重合体組成物は、熱溶融成形および加熱加工が可能であり、射出成形、押出成形、ブロー成形、カレンダー成形、注型成形などの任意の成形方法により成形・加工が可能である。このようにして得られる本発明の熱可塑性重合体組成物を用いた成形品は、フィルム状、シート状、チューブ状、三次元形状等の任意の形状の物品を包含する。本発明の熱可塑性重合体組成物を使用すると、低温における耐面衝撃性、耐落球衝撃性などの種々の耐衝撃性、柔軟性などの各種の特性に優れた成形品を得ることができる。
 また、本発明の熱可塑性重合体組成物は、他の材料と複合化することも可能である。かかる他の材料としては、本発明の熱可塑性重合体組成物以外の各種熱可塑性樹脂またはその組成物(合成樹脂)、熱硬化性樹脂、紙、布帛、金属、木材、セラミックスなどを挙げることができる。中でも、本発明の熱可塑性重合体組成物は、プライマー処理を施すことなく、簡便、かつ強固に、セラミックス、金属及び合成樹脂等に対して接着することができるため、これらと本発明の熱可塑性重合体組成物とが接着してなる成形品として好適に使用することができる。このような成形品は、被着体を二種以上、すなわち、セラミックス同士、金属同士、合成樹脂同士、これらのいずれかの異種材料同士等を接着したものであってもよい。本発明の熱可塑性重合体組成物を用いて接着した成形体は、その組成物の柔軟性によって様々な衝撃を吸収できる他、異なる材質を接着させている場合はそれぞれの線膨張係数の差により生じる歪応力を吸収する。従って、低温下、高温下、温度変化の激しい環境下など、過酷な条件下で使用することが可能である。
 本発明の成形品に使用し得るセラミックスは、非金属系の無機材料を意味し、金属酸化物、金属炭化物、金属窒化物などが挙げられる。例えば、ガラス、セメント類、アルミナ、ジルコニア、酸化亜鉛系セラミックス、チタン酸バリウム、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、フェライト類などが挙げられる。
 本発明の成形品に使用し得る金属は、例えば、鉄、銅、アルミニウム、マグネシウム、ニッケル、クロム、亜鉛、およびそれらを成分とする合金が挙げられる。また、銅メッキ、ニッケルメッキ、クロムメッキ、錫メッキ、亜鉛メッキ、白金メッキ、金メッキ、銀メッキなどメッキによって形成された金属の表面を持つ成形品であってもよい。
 本発明の成形品に使用し得る合成樹脂としては、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、(メタ)アクリロニトリル-ブタジエン-スチレン樹脂、(メタ)アクリロニトリル-スチレン樹脂、(メタ)アクリル酸エステル-ブタジエン-スチレン樹脂、(メタ)アクリル酸エステル-スチレン樹脂、ブタジエン-スチレン樹脂、エポキシ樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、メラミン樹脂、ポリアセタール樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂、シンジオタクティックポリスチレン樹脂、ポリオレフィン樹脂などが挙げられる。これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記合成樹脂は、無機充填材を含有していてもよい。無機充填材としては、例えば、炭酸カルシウム、タルク、水酸化マグネシウム、水酸化アルミニウム、マイカ、クレー、天然ケイ酸、合成ケイ酸、酸化チタン、カーボンブラック、硫酸バリウム、ガラス繊維およびガラスバルーンなどが挙げられる。無機充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、ガラス繊維が好ましい。
 無機充填材の配合量は、無機充填材を含有する樹脂の成形加工性と機械的強度が損なわれない範囲であることが好ましく、一般に前記合成樹脂100質量部に対して、好ましくは0.1~100質量部、より好ましくは1~50質量部、さらに好ましくは3~40質量部である。
 成形品は、熱可塑性重合体組成物が、セラミックス、金属および合成樹脂から選択される少なくとも1種に接着してなる成形品であってもよく、熱可塑性重合体組成物が、セラミックス、金属、及び合成樹脂から選択される少なくとも2種を接着してなる成形品であってもよい。
 本発明の熱可塑性重合体組成物、及び成形品は、上記の特性を活かして、例えば、自動車部品、家電部品、コンピュータ部品、機械部品、パッキン、ガスケット、ホースなどの広範な各種用途に使用することができる。
 本発明の熱可塑性重合体組成物及び成形品は、その特性を活かして、衣料用途を始め日用品、包装材料、工業用品、食料用品等種々の分野で使用することができる。例えば、電子・電気機器、OA機器、家電機器、自動車用部材の接着に用いることができる。また、自動車や建築物の窓におけるガラスとアルミニウムサッシや金属開口部などとの接合部、太陽電池モジュールなどにおけるガラスと金属製枠体との接続部等における接着体の成形に有用である。
 以下、実施例などにより本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されない。 
 なお、以下の実施例および比較例で用いた各成分は以下の通りである。また、水添ブロック共重合体(A)の重量平均分子量、分子量分布、水素添加率、共役ジエンブロックに含まれる1,2-結合量と3,4-結合量の合計量、tanδは以下のようにして求めた。
・重量平均分子量及び分子量分布
 ゲルパーミテーションクロマトグラフィー(GPC)測定によって標準ポリスチレン換算の重量平均分子量(Mw),数平均分子量(Mn)を求め、分子量分布(Mw/Mn)を算出した。
・水素添加率
 水素添加反応前後のブロック共重合体のヨウ素価を測定して求めた。
・1,2-結合量及び3,4-結合量の合計量
 1,2-結合単位および3,4-結合単位に由来する4.2~5.0ppmに存在するピークの積分値および1,4-結合単位に由来する5.0~5.45ppmに存在するピークの積分値との比から算出した。
・tanδ
 各水添ブロック共重合体を厚さ1mmのシート状に成形し、レオバイブロン(オリエンテック社製)にて幅1cm、長さ2cmとなるようセットし、11Hzの周波数で引張り歪を印加しながら3deg.C/minで-150~200deg.Cに昇温し、tanδを測定し、共役ジエンブロック(D)に由来する極大値の温度を求めた。
〔水添ブロック共重合体(A)〕
―水添ブロック共重合体(A1-1)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.16Lを仕込んだ。50℃に昇温した後、スチレン8.2Lを加えて3時間重合させ、引き続いてイソプレン18Lを加えて4時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレンからなるジブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体の水添物(以下、水添ブロック共重合体(A1-1)と称する)を得た。得られた水添ブロック共重合体(A1-1)の重量平均分子量は133000、スチレン含有量は37.5質量%、水素添加率は99%、分子量分布は1.04、ポリイソプレンブロックに含まれる1,2-結合量と3,4-結合量の合計は5モル%、tanδ極大値は-44℃であった。
―水添ブロック共重合体(A1-2)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)3.0Lを仕込んだ。50℃に昇温した後、スチレン14.6Lを加えて3時間重合させ、引き続いてイソプレン130Lを加えて4時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレンからなるジブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体の水添物(以下、水添ブロック共重合体(A1-2)と称する)を得た。得られた水添ブロック共重合体(A1-2)の重量平均分子量は43000、スチレン含有量は13質量%、水素添加率は98%、分子量分布は1.04、ポリイソプレンブロックに含まれる1,2-結合量と3,4-結合量の合計は5モル%、tanδ極大値は-51℃であった。
―水添ブロック共重合体(A1-3)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.46Lを仕込み、有機ルイス塩基としてテトラヒドロフラン0.25L(開始剤中のリチウム原子に対して、量論比で5.4倍相当)を仕込んだ。50℃に昇温した後、スチレン3.5Lを加えて3時間重合させ、引き続いてブタジエン34Lを加えて4時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリブタジエンからなるジブロック共重合体を得た。
 続いて、ポリスチレン-ポリブタジエンからなるジブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリブタジエンからなるジブロック共重合体の水添物(以下、水添ブロック共重合体(A1-3)と称する)を得た。得られた水添ブロック共重合体(A1-3)の重量平均分子量は70500、スチレン含有量は13質量%、水素添加率は98%、分子量分布は1.05、ポリブタジエンブロックに含まれる1,2-結合量と3,4-結合量の合計は40モル%、tanδ極大値は-43℃であった。
―水添ブロック共重合体(A1-4)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)1.1Lを仕込んだ。50℃に昇温した後、スチレン7.5Lを加えて3時間重合させ、引き続いてイソプレン13L、ブタジエン15Lの混合液加えて4時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリ(イソプレン/ブタジエン)からなるジブロック共重合体を得た。
 続いて、ポリスチレン-ポリ(イソプレン/ブタジエン)からなるジブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリ(イソプレン/ブタジエン)からなるジブロック共重合体の水添物(以下、水添ブロック共重合体(A1-4)と称する)を得た。得られた水添ブロック共重合体(A1-4)の重量平均分子量は46000、スチレン含有量は28質量%、水素添加率は98%、分子量分布は1.05、ポリ(イソプレン/ブタジエン)ブロックに含まれる1,2-結合量と3,4-結合量の合計は5モル%、tanδ極大値は-44℃であった。
―水添ブロック共重合体(A1’-1)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.35Lを仕込み、有機ルイス塩基としてテトラヒドロフラン0.52L(開始剤中のリチウム原子に対して、量論比で15倍相当)を仕込んだ。50℃に昇温した後、スチレン4.2Lを加えて3時間重合させ、引き続いてイソプレン22Lを加えて4時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレンからなるジブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレンからなるジブロック共重合体の水添物(以下、水添ブロック共重合体(A1’-1)と称する)を得た。得られた水添ブロック共重合体(A1’-1)の重量平均分子量は100000、スチレン含有量は20質量%、水素添加率は90%、分子量分布は1.04、ポリイソプレンブロックに含まれる1,2-結合量と3,4-結合量の合計は60モル%、tanδ極大値は1.5℃であった。
―水添ブロック共重合体(A2-1)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.13Lを仕込んだ。50℃に昇温した後、スチレン1.5Lを加えて3時間重合させ、引き続いてイソプレン27Lを加えて4時間重合を行い、さらにスチレン1.5Lを加えて3時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体の水添物(以下、水添ブロック共重合体(A2-1)と称する)を得た。得られた水添ブロック共重合体(A2-1)の重量平均分子量は183000、スチレン含有量は13質量%、水素添加率は98%、分子量分布は1.01、ポリイソプレンブロックに含まれる1,4-結合量は5モル%、tanδ極大値は-51℃であった。
―水添ブロック共重合体(A2-2)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.23Lを仕込み、有機ルイス塩基としてテトラヒドロフラン0.13L(開始剤中のリチウム原子に対して、量論比で5.4倍相当)を仕込んだ。50℃に昇温した後、スチレン1.7Lを加えて3時間重合させ、引き続いてブタジエン34Lを加えて4時間重合を行い、更にスチレン1.7Lを加えて3時間重合を行なった。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリブタジエン-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリブタジエン-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリブタジエン-ポリスチレンからなるトリブロック共重合体の水添物(以下、水添ブロック共重合体(A2-2)と称する)を得た。得られた水添ブロック共重合体(A2-2)の重量平均分子量は141000、スチレン含有量は13質量%、水素添加率は98%、分子量分布は1.05、ポリブタジエンブロックに含まれる1,2-結合量と3,4-結合量の合計は40モル%、tanδ極大値は-43℃であった。
―水添ブロック共重合体(A2-3)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.29Lを仕込んだ。50℃に昇温した後、スチレン2.3Lを加えて3時間重合させ、引き続いてイソプレン28Lを加えて4時間重合を行い、さらにスチレン2.3Lを加えて3時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体の水添物(以下、水添ブロック共重合体(A2-3)と称する)を得た。得られた水添ブロック共重合体(A2-3)の重量平均分子量は96000、スチレン含有量は18%、水素添加率は99%、分子量分布は1.03、ポリイソプレンブロックに含まれる1,4-結合量は5モル%、tanδ極大値は-47℃であった。
―水添ブロック共重合体(A2-4)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン80L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.55Lを仕込んだ。50℃に昇温した後、スチレン3.8Lを加えて3時間重合させ、引き続いてイソプレン13L、ブタジエン15Lの混合液加えて4時間重合を行い、更にスチレン3.8Lを加えて3時間重合を行なった。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンからなるトリブロック共重合体の水添物(以下、水添ブロック共重合体(A2-4)と称する)を得た。得られた水添ブロック共重合体(A2-4)の重量平均分子量は92000、スチレン含有量は28質量%、水素添加率は99%、分子量分布は1.03、ポリ(イソプレン/ブタジエン)ブロックに含まれる1,2-結合量と3,4-結合量の合計は5モル%、tanδ極大値は-44℃であった。 
―水添ブロック共重合体(A2-5)―
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン64L、開始剤としてsec-ブチルリチウム(10質量%シクロヘキサン溶液)0.15Lを仕込み、有機ルイス塩基としてテトラヒドロフラン0.3L(開始剤中のリチウム原子に対して、量論比で15倍相当)を仕込んだ。50℃に昇温した後、スチレン2.3Lを加えて3時間重合させ、引き続いてイソプレン23Lを加えて4時間重合を行い、さらにスチレン2.3Lを加えて3時間重合を行った。得られた反応液をメタノール80Lに注ぎ、析出した固体を濾別して50℃で20時間乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体を得た。
 続いて、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体10kgをシクロヘキサン200Lに溶解し、水素添加触媒としてパラジウムカーボン(パラジウム担持量:5質量%)を該共重合体に対して5質量%添加し、水素圧力2MPa、50℃の条件で10時間反応を行った。放冷、放圧後、濾過によりパラジウムカーボンを除去し、濾液を濃縮し、さらに真空乾燥することにより、ポリスチレン-ポリイソプレン-ポリスチレンからなるトリブロック共重合体の水添物(以下、水添ブロック共重合体(A2-5)と称する)を得た。得られた水添ブロック共重合体(A2-5)の重量平均分子量は107000、スチレン含有量は21質量%、水素添加率は85%、分子量分布は1.04、ポリイソプレンブロックに含まれる1,2-結合量と3,4-結合量の合計は60モル%、tanδ極大値は4.2℃であった。
 〔極性基含有ポリプロピレン系樹脂(B)〕
-(B-1)-
 ポリプロピレン「プライムポリプロF327」(株式会社プライムポリマー製)42g、無水マレイン酸160mgおよび2,5-ジメチル-2,5-ジ(ターシャルブチルパーオキシ)ヘキサン42mgを、バッチミキサーを用いて180℃およびスクリュー回転数40rpmの条件下で溶融混練することで極性基含有ポリプロピレン系樹脂(B-1)を得た。得られた極性基含有ポリプロピレン系樹脂(B-1)のMFR[230℃、荷重2.16kg(21.18N)]は6g/10分、無水マレイン酸濃度は0.3%であり、融点は138℃であった。
 なお、該無水マレイン酸濃度は、得られた極性基含有ポリプロピレン系樹脂(B-1)を水酸化カリウムのメタノール溶液を用いて滴定して得られた値であり、以下同様である。また、融点は10℃/minで昇温した際の示差走査熱量測定曲線の吸熱ピークから読み取った値である。
 〔ポリビニルアセタール樹脂(C)〕
-(C-1)-
 平均重合度500、けん化度99モル%のポリビニルアルコールを10質量部溶解した水溶液に、n-ブチルアルデヒド7質量部ならびに35%塩酸水溶液8.5質量部を添加し攪拌してアセタール化反応を行い、樹脂を析出させた。公知の方法に従ってpH=6になるまで洗浄し、次いでアルカリ性にした水性媒体中に懸濁させて攪拌しながら後処理をし、pH=7になるまで洗浄したのちに、揮発分が0.3%以下になるまで乾燥することにより、アセタール化度が80モル%のポリビニルアセタール樹脂(C-1)を得た。
〔その他成分〕
 粘着付与樹脂:Regalite1100 (Eastman社)
 実施例および比較例中の試験片の作製および各物性の測定または評価は、以下のようにして行った。
(1)メルトフローレート(MFR)の測定
 以下の実施例および比較例により作製した熱可塑性重合体組成物のシートを細かくカットし、JIS K 7210に準じた方法で、230℃、荷重2.16kg(21.18N)の条件下でMFRを測定し、成形加工性の指標とした。MFRの値が大きいほど、成形加工性に優れる。
(2)硬度の測定
 以下の実施例および比較例により作製した熱可塑性重合体組成物のシートを重ねて厚さ6mmとし、JIS K 6253に準じたタイプAデュロメータによりA硬度を測定した。
(3)引張破断強度および引張破断伸度
 以下の実施例および比較例により作製した熱可塑性重合体組成物のシートより、JIS K 6251に準じた方法でダンベル型試験片(ダンベル状5号形)を作製し、23℃、引張速度500mm/分で、引張破断強度および引張破断伸度を測定した。
(4)接着力の測定
 下記方法で作製した、PET/熱可塑性重合体組成物/ガラス板の積層体、およびPET/熱可塑性重合体組成物/アルミニウム板の積層体、PET/熱可塑性重合体組成物/6-ナイロンの積層体について、それぞれ、熱可塑性重合体組成物層とガラス板間、熱可塑性重合体組成物層とアルミニウム板間、熱可塑性重合体組成物と6-ナイロン間の剥離強度をJIS K 6854-2に準じて、剥離角度180°、引張速度50mm/分、表2に記載した環境温度条件で測定し、接着力を測定した。
(5)クリープ試験
 熱可塑性重合体組成物を厚さ1mmのシート状に成形し、10mm×10mmサイズにカットした。シートを幅10mm、長さ50mmの鋼板2枚で挟み、接着面積が10mm×10mmとなるよう重ねあわせ、180℃、0.01MPa、2秒間で接着させた。得られた接着体の片端をクリップで掴み長さ方向に吊り下げて150℃、60分間静置し、取出し後の鋼板のズレを測定し、耐熱クリープ性の指標とした。
(6)貯蔵弾性率
 熱可塑性重合体組成物を厚さ1mmのシート状に成形し、レオバイブロン(オリエンテック社製)にて幅1cm、長さ2cmとなるようセットし、11Hzの周波数で引張り歪を印加しながら2℃/minで-150~200℃に昇温し、-40℃における貯蔵弾性率を測定し、低温での柔軟性の指標とした。貯蔵弾性率が1.5GPaを下回ると柔軟性が認められ、0.5GPaを下回るとより柔軟性に優れている。
<ガラス板との積層体の作製>
 長さ75mm×幅25mm×厚さ1mmのガラス板の両面の表面を、洗浄液として界面活性剤水溶液、メタノール、アセトン、蒸留水をこの順に用いて洗浄し、乾燥させた。該ガラス板、以下の実施例および比較例により作製した熱可塑性重合体組成物のシート、厚さ50μmのポリエチレンテレフタレート(PET)シートをこの順で重ね、外寸200mm×200mm、内寸150mm×150mm、厚さ2mmの金属製スペーサーの中央部に配置した。
 この重ねたシートと金属製スペーサーをポリテトラフルオロエチレン製シートで挟み、さらに外側から金属板で挟み、圧縮成形機を用いて、160℃、荷重20kgf/cm(2N/mm)で3分間圧縮成形することで、PET/熱可塑性重合体組成物/ガラス板からなる積層体を得た。
<アルミニウム板との積層体の作製>
 長さ75mm×幅25mm×厚さ1mmのアルミニウム板の両面の表面を、洗浄液として、界面活性剤水溶液、蒸留水をこの順に用いて洗浄し、乾燥させた以外は、上記したガラス板との積層体の作製と同様の操作を行い、PET/熱可塑性重合体組成物/アルミニウム板からなる積層体を得た。
<6-ナイロンとの積層体の作製>
 6-ナイロン1013B(宇部興産)を厚さ1mmのシート状に射出成形し、長さ75mm×幅25mm×厚さ1mmとなるようカットした以外は、上記したガラス板との積層体の作製と同様の操作を行い、圧縮成形機を用いて230℃、荷重20kgf/cm(2N/mm)で3分間圧縮成形することで、PET/熱可塑性重合体組成物/6-ナイロンからなる積層体を得た。
<実施例1~8、比較例1~7>
 表1に記載の原料を表2に示す割合(質量比)にて、二軸押出機を用いて230℃、スクリュー回転200rpmの条件で溶融混練した後、ストランド状に押し出し、切断して熱可塑性重合体組成物のペレットを得た。得られたペレットを、圧縮成形機を用いて230℃、荷重100kgf/cm(9.8N/mm)の条件下で3分間圧縮成形することで、熱可塑性重合体組成物の厚さ1mmのシートを得た。
 前記測定方法に従って、得られた熱可塑性重合体組成物のシートのMFR、硬度、引張破断強度および引張破断伸度を測定した。また、得られた熱可塑性重合体組成物と、ガラス板、アルミニウム板、及び6-ナイロンとの接着力を、前記方法に従って測定した。さらに、得られた熱可塑性重合体組成物の耐熱クリープ性、低温時の柔軟性(貯蔵弾性率)を前記方法に従って測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003
 
 実施例1~8はいずれも広い温度範囲で柔軟性に優れ、かつガラス、アルミニウム、6-ナイロンのいずれに対しても良好な接着性を有し、且つ成形性、力学物性、耐熱クリープ性に優れている。水添ブロック共重合体(A1)の共役ジエンブロック(D)にイソプレン単量体、及びイソプレン/ブタジエン単量体を用いた実施例1,2,4~8はクリープ試験のズレがわずかであり、特に耐熱クリープ性に優れていることが分かる。また、水添ブロック共重合体(A2)として(A2’)を用いた実施例5,8は各種被着体への接着性、耐熱クリープ性において特にバランスが取れている。また、ポリビニルアセタール樹脂(C-1)を含有する実施例7,8では、ガラスへの接着力が接着後直ちに発現した。
 一方、極性基含有ポリプロピレン系樹脂(B)を含まない比較例1は接着性を有さない。粘着付与樹脂を用いた比較例2でも接着力は十分ではなく、特に6-ナイロンへの接着性は乏しい。また、耐熱クリープ性が悪くクリープ試験では鋼板が途中で落下してしまった。更に、粘着質であるため、成形品として用いるには適さなかった。(A1)の代わりに(A1’-1)を用いた比較例3、(A)成分が(A2)成分のみからなる比較例4では接着性能は得られるものの、低温における脆化が激しく、-40℃における接着試験では熱可塑性重合体組成物が脆性破壊を起こしてしまった。比較例4と同様に(A1)成分を用いず、(A2)成分のみを用いた比較例5及び6では接着力が十分ではなく、また、耐熱クリープ性が悪くクリープ試験では鋼板が途中で落下してしまった。(A2)成分を含まない比較例7では、引張破断強度が著しく低かった。試験片が非常に脆いため、接着力測定では、剥離する際に試験片が破断してしまい測定不能であった。
 本発明の熱可塑性重合体組成物は、広い温度範囲で柔軟性に優れ、かつ、接着力にも優れていることから、当該組成物を用いて接着した接合体は、その接着層の柔軟性によって様々な衝撃を吸収できる他、異なる材質を接着させている場合はそれぞれの線膨張係数の差により生じる歪応力を吸収する。従って、当該接合体は低温下、高温下、温度変化の激しい環境下など、過酷な条件下で使用することが可能である。
 また、当該組成物自体がフィルム状、シート状、三次元形状などの任意の成形品に加工することが可能である。このような成形品は、粘着材料、液状接着剤と異なり取扱いが容易なため、接合体の生産性向上に有用である。
 上記の特性を生かして、本発明の熱可塑性重合体組成物およびその成形品は、例えば、自動車部品、家電用品、コンピュータ部品、機械部品、パッキン、ガスケット、ホースなどの広範囲な各種用途に使用することが出来る。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年8月26日出願の日本特許出願(特願2014-172062)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  芳香族ビニル化合物単位を含む重合体ブロック(S)と、共役ジエン化合物単位を含む重合体ブロック(D)とを含有するブロック共重合体を水素添加した水添ブロック共重合体(A)100質量部に対し、極性基含有ポリプロピレン系樹脂(B)を10~100質量部含有する熱可塑性重合体組成物であって、
     前記水添ブロック共重合体(A)が、
    -60~-40℃に少なくとも一つのtanδの極大値を有し、下記式(i)又は(ii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A1)と、
     (i) (S-D)
     (ii) (D-S)-D
    (前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、nは1~5の整数である)
    下記式(iii)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2)
     (iii) (S-D)-S
    (前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、Dは共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
    とを含有する混合物であり、水添ブロック共重合体(A1)と水添ブロック共重合体(A2)との質量比が20:80~99:1である熱可塑性重合体組成物。
  2.  前記水添ブロック共重合体(A2)のうち、少なくとも一部が下記式(iv)で表されるブロック共重合体を水素添加した水添ブロック共重合体(A2’)である請求項1に記載の熱可塑性重合体組成物。
     (iv) (S-D2)-S
    (前記式中、Sは芳香族ビニル化合物単位を含む重合体ブロックであり、D2は1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%以上である共役ジエン化合物単位を含む重合体ブロックであり、mは1~5の整数である)
  3.  前記水添ブロック共重合体(A2)のうち、前記水添ブロック共重合体(A2’)の含有割合が20~100質量%である請求項2に記載の熱可塑性重合体組成物。
  4.  前記水添ブロック共重合体(A1)が有する共役ジエン化合物単位を含む重合体ブロック(D)が、1,2-結合量及び3,4-結合量の合計量が共役ジエンの全結合形態の合計量に対して40モル%未満である共役ジエン化合物単位を含む重合体ブロックである、請求項1~3のいずれか一項に記載の熱可塑性重合体組成物。
  5.  前記水添ブロック共重合体(A1)が、下記式
     S-D (式中、S及びDは前記と同義である)
    で表されるジブロック共重合体を水素添加した水添ブロック共重合体である請求項1~4のいずれか一項に記載の熱可塑性重合体組成物。
  6.  前記共役ジエン化合物単位(D)が、イソプレン単位又はイソプレンとブタジエンの混合単位である、請求項1~5のいずれか一項に記載の熱可塑性重合体組成物。
  7.  前記極性基含有ポリプロピレン系樹脂(B)がカルボン酸変性ポリプロピレン系樹脂である、請求項1~6のいずれか一項に記載の熱可塑性重合体組成物。
  8.  前記熱可塑性重合体組成物がさらに、ポリビニルアセタール樹脂(C)を10~100質量部含有する、請求項1~7のいずれか一項に記載の熱可塑性重合体組成物。
  9.  前記ポリビニルアセタール樹脂(C)が、ポリビニルブチラール樹脂である請求項8に記載の熱可塑性重合体組成物。
  10.  請求項1~9のいずれか一項に記載の熱可塑性重合体組成物を用いた成形品。
  11.  前記熱可塑性重合体組成物が、セラミックス、金属、及び合成樹脂から選択される少なくとも1種に接着してなる、請求項10に記載の成形品。
  12.  前記熱可塑性重合体組成物が、セラミックス、金属、及び合成樹脂から選択される少なくとも2種を接着してなる、請求項11に記載の成形品。
     
PCT/JP2015/072704 2014-08-26 2015-08-10 熱可塑性重合体組成物、及び成形品 WO2016031550A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177005442A KR102213963B1 (ko) 2014-08-26 2015-08-10 열가소성 중합체 조성물, 및 성형품
CA2959366A CA2959366C (en) 2014-08-26 2015-08-10 Thermoplastic polymer composition and molded article
EP15836800.1A EP3196250B1 (en) 2014-08-26 2015-08-10 Thermoplastic polymer composition and molded article
ES15836800T ES2724567T3 (es) 2014-08-26 2015-08-10 Composición de polímero termoplástico y artículo moldeado
US15/506,597 US20180223140A1 (en) 2014-08-26 2015-08-10 Thermoplastic polymer composition and molded article
CN201580045726.XA CN106574098B (zh) 2014-08-26 2015-08-10 热塑性聚合物组合物以及成型品
JP2015562615A JP5942055B1 (ja) 2014-08-26 2015-08-10 熱可塑性重合体組成物、及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172062 2014-08-26
JP2014-172062 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031550A1 true WO2016031550A1 (ja) 2016-03-03

Family

ID=55399447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072704 WO2016031550A1 (ja) 2014-08-26 2015-08-10 熱可塑性重合体組成物、及び成形品

Country Status (8)

Country Link
US (1) US20180223140A1 (ja)
EP (1) EP3196250B1 (ja)
JP (1) JP5942055B1 (ja)
KR (1) KR102213963B1 (ja)
CN (1) CN106574098B (ja)
CA (1) CA2959366C (ja)
ES (1) ES2724567T3 (ja)
WO (1) WO2016031550A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217381A1 (ja) * 2016-06-13 2017-12-21 株式会社クラレ 熱可塑性重合体組成物、該組成物を用いた多層フィルム及び成形体
WO2019198827A1 (ja) * 2018-04-13 2019-10-17 株式会社クラレ 多層フィルムおよびそれを備える成形体
US20190329207A1 (en) * 2018-04-30 2019-10-31 Kraton Polymers Llc Block copolymers for gel compositions with improved efficiency
WO2021049301A1 (ja) * 2019-09-10 2021-03-18 Dic株式会社 感熱接着シート及び感熱接着シートを貼合した物品の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021014666A (es) * 2019-05-31 2022-01-11 Fuller H B Co Composiciones termofusibles que incluyen copolimero de bloque de estireno y cera.
US11845832B2 (en) * 2019-06-20 2023-12-19 Solvay Specialty Polymers Usa, Llc Method of making a PEEK-PEoEK copolymer and copolymer obtained from the method
TW202241981A (zh) * 2021-04-15 2022-11-01 李長榮化學工業股份有限公司 苯乙烯-異戊二烯/丁二烯二嵌段共聚物、氫化嵌段共聚物、含有所述氫化嵌段共聚物之組成物、以及其用途及製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131052A (ja) * 1985-11-27 1987-06-13 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− 低発煙性の改質ポリプロピレン絶縁組成物
JPH021788A (ja) * 1988-02-22 1990-01-08 Kuraray Co Ltd 粘着剤組成物
JPH11130932A (ja) * 1997-10-31 1999-05-18 Asahi Chem Ind Co Ltd ブロック共重合体を含有する熱可塑性樹脂組成物
JP2010126597A (ja) * 2008-11-26 2010-06-10 Tokai Rubber Ind Ltd 制振ダンパー用高減衰エラストマー組成物およびそれによって得られた制震ダンパー
JP2010235666A (ja) * 2009-03-30 2010-10-21 Asahi Kasei Chemicals Corp 熱収縮性フィルム
WO2012014757A1 (ja) * 2010-07-29 2012-02-02 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2012026501A1 (ja) * 2010-08-27 2012-03-01 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2013105392A1 (ja) * 2012-01-11 2013-07-18 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2014123163A1 (ja) * 2013-02-06 2014-08-14 株式会社クラレ 熱可塑性重合体組成物、シューズおよびアウターソール

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4073737A (en) * 1976-04-19 1978-02-14 Exxon Research & Engineering Co. Hydrogenated copolymers of conjugated dienes and when desired a vinyl aromatic monomer are useful as oil additives
US4985499A (en) * 1988-02-22 1991-01-15 Kuraray Company Ltd. Pressure sensitive adhesive composition
US6632890B1 (en) * 1999-03-19 2003-10-14 Dow Global Technologies Inc. Hydrogenated block copolymer compositions
DE10045006C1 (de) * 2000-09-11 2002-01-24 Chemetall Gmbh Verbundsicherheitsglasscheibe mit Sollbruchstelle, Verfahren zu deren Herstellung und deren Verwendung
BR0116685A (pt) * 2000-12-13 2004-03-02 Dow Global Technologies Inc Copolìmeros em bloco hidrogenados tendo tamanhos variáveis de blocos aromáticos de vinila hidrogenados
KR100830024B1 (ko) * 2004-03-03 2008-05-15 크레이튼 폴리머즈 리서치 비.브이. 흐름성 및 탄성이 높은 블록 공중합체
CN101155845B (zh) * 2005-04-07 2010-11-17 旭化成化学株式会社 嵌段共聚物的氢化产物或其片材或膜
CA2648666C (en) * 2006-04-18 2014-03-25 Kuraray Co., Ltd. Thermoplastic resin composition and floor tile made of the same
EP2223965B1 (en) * 2007-12-20 2013-03-27 Kuraray Co., Ltd. Thermoplastic polymer composition and molded article composed of the same
KR101276012B1 (ko) * 2008-12-15 2013-06-20 밀리켄 앤드 캄파니 폴리프로필렌을 보유한 수소화된 스티렌 블록 공중합체 블렌드
KR101781238B1 (ko) * 2010-03-31 2017-09-22 주식회사 쿠라레 열가소성 중합체 조성물 및 그것으로 이루어지는 성형체
KR101796809B1 (ko) * 2010-07-09 2017-11-10 주식회사 쿠라레 열가소성 중합체 조성물 및 성형품
CN105916935B (zh) * 2014-01-23 2018-06-15 旭化成株式会社 嵌段共聚物和粘着粘结剂组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131052A (ja) * 1985-11-27 1987-06-13 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− 低発煙性の改質ポリプロピレン絶縁組成物
JPH021788A (ja) * 1988-02-22 1990-01-08 Kuraray Co Ltd 粘着剤組成物
JPH11130932A (ja) * 1997-10-31 1999-05-18 Asahi Chem Ind Co Ltd ブロック共重合体を含有する熱可塑性樹脂組成物
JP2010126597A (ja) * 2008-11-26 2010-06-10 Tokai Rubber Ind Ltd 制振ダンパー用高減衰エラストマー組成物およびそれによって得られた制震ダンパー
JP2010235666A (ja) * 2009-03-30 2010-10-21 Asahi Kasei Chemicals Corp 熱収縮性フィルム
WO2012014757A1 (ja) * 2010-07-29 2012-02-02 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2012026501A1 (ja) * 2010-08-27 2012-03-01 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2013105392A1 (ja) * 2012-01-11 2013-07-18 株式会社クラレ 熱可塑性重合体組成物および成形品
WO2014123163A1 (ja) * 2013-02-06 2014-08-14 株式会社クラレ 熱可塑性重合体組成物、シューズおよびアウターソール

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217381A1 (ja) * 2016-06-13 2017-12-21 株式会社クラレ 熱可塑性重合体組成物、該組成物を用いた多層フィルム及び成形体
WO2019198827A1 (ja) * 2018-04-13 2019-10-17 株式会社クラレ 多層フィルムおよびそれを備える成形体
JPWO2019198827A1 (ja) * 2018-04-13 2021-05-13 株式会社クラレ 多層フィルムおよびそれを備える成形体
JP7293199B2 (ja) 2018-04-13 2023-06-19 株式会社クラレ 多層フィルムおよびそれを備える成形体
US20190329207A1 (en) * 2018-04-30 2019-10-31 Kraton Polymers Llc Block copolymers for gel compositions with improved efficiency
US11759758B2 (en) * 2018-04-30 2023-09-19 Kraton Corporation Block copolymers for gel compositions with improved efficiency
WO2021049301A1 (ja) * 2019-09-10 2021-03-18 Dic株式会社 感熱接着シート及び感熱接着シートを貼合した物品の製造方法
JPWO2021049301A1 (ja) * 2019-09-10 2021-03-18
JP7111260B2 (ja) 2019-09-10 2022-08-02 Dic株式会社 感熱接着シート及び感熱接着シートを貼合した物品の製造方法

Also Published As

Publication number Publication date
EP3196250A4 (en) 2018-05-02
CA2959366A1 (en) 2016-03-03
JP5942055B1 (ja) 2016-06-29
CA2959366C (en) 2021-03-16
EP3196250A1 (en) 2017-07-26
CN106574098B (zh) 2019-09-03
CN106574098A (zh) 2017-04-19
US20180223140A1 (en) 2018-08-09
JPWO2016031550A1 (ja) 2017-04-27
ES2724567T3 (es) 2019-09-12
KR102213963B1 (ko) 2021-02-08
KR20170046137A (ko) 2017-04-28
EP3196250B1 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP5809150B2 (ja) 熱可塑性重合体組成物および成形品
JP5942055B1 (ja) 熱可塑性重合体組成物、及び成形品
JP5809138B2 (ja) 熱可塑性重合体組成物および成形品
JP6504461B2 (ja) 熱可塑性エラストマー組成物、成形体及び接着剤
JP5802669B2 (ja) 熱可塑性重合体組成物および成形品
KR101781238B1 (ko) 열가소성 중합체 조성물 및 그것으로 이루어지는 성형체
JPWO2013105392A1 (ja) 熱可塑性重合体組成物および成形品
JP6234684B2 (ja) 接着体の製造方法
JP6335872B2 (ja) 繊維、布及び不織布
JP5785874B2 (ja) 接着体の製造方法
JP5830352B2 (ja) 接着体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562615

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836800

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015836800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005442

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2959366

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15506597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE