WO2016031458A1 - 光ファイバ装置 - Google Patents

光ファイバ装置 Download PDF

Info

Publication number
WO2016031458A1
WO2016031458A1 PCT/JP2015/071115 JP2015071115W WO2016031458A1 WO 2016031458 A1 WO2016031458 A1 WO 2016031458A1 JP 2015071115 W JP2015071115 W JP 2015071115W WO 2016031458 A1 WO2016031458 A1 WO 2016031458A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fluoride
cladding
optical fiber
core
Prior art date
Application number
PCT/JP2015/071115
Other languages
English (en)
French (fr)
Inventor
政直 村上
クリスチャン シェーファー
聡史 服部
尚久 林
政二 清水
茂樹 時田
Original Assignee
三星ダイヤモンド工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社, 国立大学法人大阪大学 filed Critical 三星ダイヤモンド工業株式会社
Priority to US15/506,248 priority Critical patent/US9935419B2/en
Priority to EP15836814.2A priority patent/EP3188327B1/en
Priority to CA2959363A priority patent/CA2959363C/en
Priority to CN201580046005.0A priority patent/CN106663910A/zh
Publication of WO2016031458A1 publication Critical patent/WO2016031458A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/173Solid materials amorphous, e.g. glass fluoride glass, e.g. fluorozirconate or ZBLAN [ ZrF4-BaF2-LaF3-AlF3-NaF]

Definitions

  • the present invention relates to an optical fiber device.
  • a fiber added with a laser active substance is used in a laser oscillator or an optical amplifier.
  • excitation light is introduced from the end face of the fiber in order to cause laser oscillation.
  • the excitation light is guided to the active fiber, the excitation light is absorbed by the core portion to which the laser active substance is added, and thereby output light is emitted.
  • the core generates heat by the excitation light being absorbed by the core.
  • fluoride fibers have poor heat resistance compared to general quartz fibers, so when excitation light is strong, deformation or damage occurs due to heat generation, and laser oscillation and amplification cannot be performed. For this reason, in the configuration in which the excitation light is introduced from the fiber end face, the laser output is limited.
  • Patent Document 1 has a gain fiber and a pumping optical fiber connected to the side surface of the gain fiber.
  • the pumping optical fiber guides pumping light from the pumping light source to the gain fiber.
  • a laser oscillator is configured by connecting a plurality of units each having a pumping optical fiber connected to the side surface of the gain fiber, pumping light can be introduced from a plurality of locations. For this reason, the power of the pumping light that can be introduced can be increased, and the laser output can be increased while suppressing the heat generation of the gain fiber.
  • the fluoride fiber has low heat resistance, so if the temperature near the joint becomes high, the fiber may be damaged.
  • An object of the present invention is to prevent the joining portion from becoming high temperature in an optical fiber device having a configuration in which another optical fiber is joined to the side surface of the optical fiber.
  • An optical fiber device includes a first fiber, a second fiber, and a heat dissipation member.
  • the first fiber guides light.
  • the second fiber light enters or exits from the first end, and the end surface of the second end is obliquely bonded to the side surface of the first fiber.
  • the heat dissipating member is disposed so as to cover the entire circumference of the joint between the first fiber and the second fiber, and has a thermal conductivity equal to or higher than that of the first and second fibers and is conducted by the first fiber and the second fiber. It has optical transparency to the light that is emitted.
  • excitation light from the excitation light source is introduced into the first fiber through the second fiber.
  • excitation light can be introduced from a plurality of locations. Therefore, high output laser light can be obtained while suppressing heat generation due to introduction of excitation light.
  • this device can be used as an optical distributor, in which case the light guided in the first fiber is distributed and emitted from the first end of the second fiber.
  • a heat radiating member is provided at the joint portion of the two fibers so as to cover the entire circumference of the joint portion.
  • This heat radiating member has good thermal conductivity and is light transmissive to excitation light. For this reason, the heat generated in the vicinity of the joint portion of the two fibers can be released, and the heat dissipation member can be prevented from absorbing the excitation light and generating heat.
  • “having optical transparency with respect to excitation light” means that the absorption rate of excitation light is 1% or less, and the heat radiation member transmits excitation light almost without being absorbed. Even if it absorbs, it will not generate enough heat to damage the fiber.
  • excitation light with a wavelength of 0.3 to 4.0 ⁇ m it can be realized by forming a heat radiating member with sapphire.
  • the first fiber has a core. Further, a third fiber having a core connected to at least one end of the first fiber and doped with a laser active material is further provided. Then, excitation light corresponding to the laser active substance is incident on the second fiber.
  • the pumping light can be guided into the third fiber by connecting the third fiber to the first fiber.
  • the pumping light since it is not necessary to dope a laser active substance into the core of the first fiber, heat generation due to absorption of excitation light can be avoided in the first fiber.
  • the heat dissipation member covers the joint between the first fiber and the third fiber together with the joint between the first fiber and the second fiber.
  • heat may be generated at the interface between these joints as well as the interface between the first fiber and the second fiber.
  • the joint portion between the first fiber and the third fiber is also covered with the heat dissipation member that covers the joint portion between the first fiber and the second fiber.
  • the heat radiating member includes a first heat radiating plate and a second heat radiating plate arranged so as to sandwich the joint portion between the first fiber and the second fiber. In this case, the structure of the heat radiating member and the manufacture of the entire optical fiber device are facilitated.
  • the first fiber includes a core, a first cladding covering the outer peripheral surface of the core, and an outer peripheral surface of the first cladding having a refractive index smaller than that of the first cladding. And a second cladding for covering.
  • the first fiber since the first fiber has the second cladding, it is possible to suppress scattering of excitation light from the fiber surface. Therefore, the first fiber can be prevented from being heated and damaged.
  • the second fiber is joined to the side surface of the first fiber by fusion.
  • the second cladding of the first fiber is formed after the second fiber is fused to the first fiber.
  • the second clad is generally formed of a resin. Since the resin clad is poor in heat resistance, it is necessary to remove the resin second clad when the second fiber is bonded to the first fiber by fusion.
  • the second cladding removed during the fusion is formed again.
  • the second clad is formed of an ultraviolet curable resin or a thermosetting resin.
  • the second cladding can be formed by irradiating ultraviolet rays through a heat radiating member that transmits light, or by heating.
  • the first fiber has a core and a first cladding that covers the outer peripheral surface of the core, and excitation light is incident on the second fiber.
  • the heat radiating member covers the outer peripheral surface of the first cladding, has a refractive index smaller than that of the first cladding, and transmits the excitation light.
  • the first fiber is not provided with a reflection layer (second cladding) of excitation light.
  • the outer peripheral surface of the first cladding of the first fiber is covered with the heat dissipation member. Since the heat dissipation member has a smaller refractive index than the first cladding, it functions as a reflection layer for excitation light. Moreover, since the heat radiating member transmits excitation light, absorption of the excitation light by the heat radiating member can be suppressed, and heat generation by the heat radiating member can be suppressed.
  • the first fiber and the second fiber are fluoride fibers.
  • the first fiber and the second fiber are formed of ZBLAN glass.
  • the optical fiber device having a configuration in which another optical fiber is bonded to the side surface of the optical fiber, it is possible to prevent the bonding portion from becoming high temperature.
  • the block diagram of the optical fiber apparatus by one Embodiment of this invention The exploded view which expands and shows the junction part of FIG.
  • the exploded view which shows a thermal radiation member and a fiber junction part.
  • the block diagram of the laser oscillator obtained by connecting the apparatus of FIG.
  • FIG. 1 shows an optical fiber device according to a first embodiment of the present invention.
  • the optical fiber device 1 is one unit constituting a laser oscillator, and includes an excitation light source 2, a first fluoride fiber 3, a second fluoride fiber 4, a third fluoride fiber 5, and a heat dissipation member 6. ,have.
  • a fiber laser oscillator can be configured by adding a reflecting mirror and an output mirror to the optical fiber device 1.
  • the excitation light source 2 oscillates excitation light having a wavelength for exciting the laser active substance, and can be constituted by, for example, a semiconductor laser. Excitation light oscillated by the excitation light source 2 is introduced into the third fluoride fiber 5 through the second fluoride fiber 4 and the first fluoride fiber 3.
  • the first fluoride fiber 3 is a double clad fiber, and has a core 30, a first clad 31, and a second clad 32 as shown in FIG.
  • FIG. 2 is an exploded view of part of the heat dissipation member 6 and the first fluoride fiber 3.
  • the first cladding 31 is formed so as to cover the outer peripheral surface of the core 30.
  • the second cladding 32 is formed so as to cover the outer peripheral surface of the first cladding 31.
  • the core 30 of the first fluoride fiber 3 is made of a fluoride glass that is not doped with a laser active substance, and is preferably made of ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass. Since the core 30 is not doped with a laser active substance, no laser light is generated in the core 30, but heat generation due to absorption of excitation light can be avoided.
  • the first cladding 31 is made of fluoride glass, and is preferably made of ZBLAN glass.
  • the second cladding 32 is made of an ultraviolet curable resin or a thermosetting resin.
  • the first cladding 31 has a lower refractive index than the core 30, and the second cladding 32 has a lower refractive index than the first cladding 31. Further, the first clad 31 and the second clad 32 are not doped with a laser active material.
  • the second fluoride fiber 4 is a multimode fiber, and has a thick core 40 and a reflective cladding layer 41 formed so as to cover the outer peripheral surface of the core 40 as shown in FIG. Yes.
  • the core 40 and the reflective cladding layer 41 are made of fluoride glass, and are preferably made of ZBLAN glass.
  • the reflective cladding layer 41 has a refractive index smaller than that of the core 40. Further, the refractive index of the core 40 is preferably equal to or lower than the refractive index of the first cladding 31 of the first fluoride fiber 3, and more preferably the same as the refractive index of the first cladding of the first fluoride fiber 3.
  • Excitation light from the excitation light source 2 is incident on one end of the second fluoride fiber 4 through the lens 7.
  • the tip of the second fluoride fiber 4 (the end connected to the side surface of the first fluoride fiber 3) is polished obliquely so as to have a predetermined angle.
  • a method for joining the second fluoride fiber 4 to the side surface of the first fluoride fiber 3 will be described later.
  • the third fluoride fiber 5 is fused and connected to one end face of the first fluoride fiber 3.
  • the third fluoride fiber 5 is a double clad fiber, and has a core 50, a first clad 51, and a second clad (not shown), like the first fluoride fiber 3.
  • the third fluoride fiber 5 is different from the first fluoride fiber 3 only in the specific configuration of the core 50. That is, the core 50 of the third fluoride fiber 5 is made of fluoride glass, and this fluoride glass is doped with a rare earth element as a laser active material. Specifically, the core 50 is made of ZBLAN glass doped with erbium.
  • the heat radiating member 6 has a first heat radiating plate 61 and a second heat radiating plate 62 as shown in FIGS.
  • the 1st and 2nd heat sinks 61 and 62 are the same structures. That is, the first and second heat radiating plates 61 and 62 are formed of rectangular sapphire having good thermal conductivity and light transmittance.
  • Each of the heat sinks 61 and 62 is formed with semicircular grooves 61 a and 62 a that can accommodate the first fluoride fiber 3, the second fluoride fiber 4, and a portion including the joint portion.
  • a heat sink is provided in contact with both or one of the first and second radiator plates 61 and 62.
  • the excitation light from the excitation light source 2 is incident on the second fluoride fiber 4 through the lens 7.
  • the second fluoride fiber 4 can guide the excitation light within the core 40 and introduce the excitation light into the first cladding 31 of the first fluoride fiber 3 via the joint.
  • the refractive index of the core 40 is set to be equal to or lower than the refractive index of the first cladding 31 of the first fluoride fiber 3
  • reflection of excitation light at the interface between the core 40 and the first cladding 31 can be suppressed.
  • the first fluoride fiber 3 and the third fluoride fiber 5 guide the excitation light through the first claddings 31 and 51, respectively.
  • the excitation light pumps the laser active material of the core 50 while being guided through the first cladding 51, and the laser light is emitted from the laser active material.
  • laser light having a wavelength of 975 nm is introduced, laser light having a wavelength of about 2.8 ⁇ m can be obtained.
  • Laser light emitted from the laser active material is guided in the core 50 of the third fluoride fiber 5 and the core 30 of the first fluoride fiber 3.
  • the second cladding 32 including the joint portion of the first fluoride fiber 3 is removed. This is because the second clad 32 is made of resin, has poor heat resistance, and is damaged during fusion.
  • the front end surface of the second fluoride fiber 4 is polished obliquely.
  • the protective resin layer is formed on the surface of the second fluoride fiber 4
  • the resin layer at the tip portion joined to the first fluoride fiber 3 is removed.
  • the tip of the second fluoride fiber 4 is pressed against the side surface of the first fluoride fiber 3, and the two are fused by irradiating laser light, for example.
  • the resin-made second clad 32 is again applied to the portion of the first fluoride fiber 3 from which the second clad 32 has been removed. Form.
  • the second clad 32 is formed of an ultraviolet curable resin or a thermosetting resin.
  • the ultraviolet curable resin is applied to the portions covered by the grooves 61a and 62a of the first and second radiator plates 61 and 62 or both the radiator plates 61 and 62 of the first and second fluoride fibers 3 and 4.
  • the first and second fluoride fibers 3 and 4 are sandwiched between the heat radiating plates 61 and 62, and cured by being irradiated with ultraviolet rays from the outside of the transparent sapphire (through the heat radiating member 6). it can.
  • a thermosetting resin the resin can be cured and bonded by heating through the heat dissipating member 6 having good thermal conductivity.
  • the second fluoride fiber 4 When the second fluoride fiber 4 is fused to the first fluoride fiber 3 and the second clad 32 made of resin is formed on the first fluoride fiber 3 as described above, defects or resin in the fused portion are formed. Excitation light scattering occurs due to peeling or the like due to change with time, and heat is generated. However, since the joining portion is covered with the heat radiating member 6, it is possible to suppress the joining portion from becoming high temperature. Further, the joint portion between the first fluoride fiber 3 and the second fluoride fiber 4 is reinforced by the heat dissipation member 6.
  • a plurality of optical fiber devices 1 obtained as described above are connected in series, and a reflecting mirror 10 is arranged on one end side, and a lens 11 and an output mirror 12 are arranged on the other end side.
  • a laser oscillator can be configured.
  • the excitation light can be introduced from a plurality of locations other than the end face of the fiber, a high-power laser oscillator can be obtained within a range in which the ZBLAN fiber is not thermally damaged.
  • the resin-made second clad 32 at the joint portion is removed, and the second clad is formed again after the joining.
  • the second cladding is formed on the portion of the first fluoride fiber 3 covered with the first and second heat sinks. Does not form.
  • the excitation light leaks out from the first fluoride fiber 3, so that the introduction efficiency of the excitation light is deteriorated. Further, when the leaked excitation light is irradiated to surrounding members or dust, heat is generated.
  • the junction part where the second clad is removed and the vicinity thereof are covered with a member having a refractive index smaller than that of the first clad 31, and excited. It is necessary to prevent light from leaking outside.
  • the first and second heat radiating plates are formed of a CaF2 substrate having a refractive index smaller than that of ZBLAN.
  • both heat sinks function as the second cladding of the first fluoride fiber, and the excitation light can be guided in the fiber.
  • both heat radiating plates can absorb the scattered light even if the scattered light of the excitation light is emitted outside the fiber. Therefore, heat generation can be avoided.
  • CaF2 has a wider wavelength range of light that can be transmitted than ZBLAN, it is transparent to light that can be guided by the ZBLAN fiber.
  • the CaF2 substrate has higher thermal conductivity than ZBLAN or resin clad, it can be effectively cooled by mounting a heat sink on the CaF2 substrate.
  • the heat radiation efficiency is further improved by fusing the first fluoride fiber 3 and the heat radiating member and joining them together without any gap.
  • the first hook 31 is heated.
  • the chemical fiber 3, the first heat radiating plate, and the second heat radiating plate can be fused.
  • the first cladding 31 of the first fluoride fiber 3 is heated by a heater, laser irradiation, or the like via a heat dissipation member.
  • the heating temperature at this time is preferably set to be higher than the softening point of the first cladding 31 of the first fluoride fiber 3, and is preferably set to be lower than the crystallization start temperature. Further, when the first fluoride fiber 3 and the heat radiating member are fused, the first heat radiating plate of the second fluoride fiber 4 and the portion covered with the second heat radiating plate may be fused simultaneously with the heat radiating member. Good.
  • the first and second heat radiating plates of the second embodiment are the same as those of the first embodiment except that the materials are different.
  • the heat dissipation member is formed of sapphire, but the material of the heat dissipation member is not limited to this. Any material that has a thermal conductivity equal to or higher than that of a fiber and that is light-transmissive to excitation light can be used as a heat dissipation member.
  • the first and second heat radiating plates are formed of a CaF2 substrate having a low refractive index in order not to leak the excitation light to the outside, but this is a configuration for preventing the excitation light from leaking to the outside. It is not limited to.
  • a reflective layer may be coated on the side surface of the fiber.
  • a ZBLAN fiber not doped with a laser active substance is used as the first fluoride fiber, but a ZBLAN fiber doped with a laser active substance may be used. In this case, the third fluoride fiber becomes unnecessary.
  • both the first fluoride fiber and the third fluoride fiber are fibers doped with a laser active material, it is not necessary to fuse both fibers.
  • the heat dissipating member is not limited to the joint between the first fluoride fiber 3 and the second fluoride fiber 4, but the first fluoride fiber 3 and the third fluoride as in the heat dissipating member 6 'shown in FIG. You may form so that a junction part with the fiber 5 may also be covered. In this case, the heat generated at the two joints can be released by one heat radiating member 6 '.
  • the present invention is used as a laser oscillator.
  • the present invention can be applied to other apparatuses.
  • the second fluoride fiber having the core is used as the second fiber of the present invention, but the second fluoride fiber without the core may be used as the second fiber.
  • the present invention can also be used as a light distributor that distributes the light guided in the first and third fluoride fibers to the second fluoride fiber and emits the light.
  • the laser active substance is described as erbium, but other laser active substances such as thulium and holmium may be used. Depending on the combination of the wavelength of the laser active substance and the excitation light, laser light of various wavelengths can be generated.
  • the first fluoride fiber 3 and the second fluoride fiber 4 are fused and joined, but may be joined using another method such as an adhesive. .
  • optical fiber device of the present invention it is possible to suppress the joining portion from becoming high temperature in the device configured to join another optical fiber to the side surface of the optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 光ファイバの側面に別の光ファイバを接合した構成の光ファイバ装置において、接合部が高温になるのを抑える。この光ファイバ装置は、第1フッ化物ファイバ(3)と、第2フッ化物ファイバ(4)と、放熱部材(6)と、を備えている。第1フッ化物ファイバ(3)は光を導光する。第2フッ化物ファイバ(4)は、第1端から光が入射又は出射されるとともに、第2端の端面が第1フッ化物ファイバ(3)の側面に斜めに接合されている。放熱部材(6)は、第1フッ化物ファイバ(3)と第2フッ化物ファイバ(4)との接合部の全周を覆うように配置され、熱伝導性が第1及び第2ファイバ(3,4)と同等又はより高くかつファイバで導光される光に対して光透過性を有する。

Description

光ファイバ装置
 本発明は、光ファイバ装置に関する。
 レーザ活性物質を添加したファイバ(アクティブファイバ)が、レーザ発振器や光増幅器に用いられている。例えばフッ化物製のアクティブファイバを利用したレーザ発振器や光増幅器では、レーザ発振させるために、励起光がファイバ端面から導入される。励起光がアクティブファイバに導光されると、励起光はレーザ活性物質が添加されたコア部分で吸収され、これにより出力光が発光される。このとき、励起光がコアに吸収されることにより、コアが発熱する。
 特に、フッ化物ファイバは、一般的な石英製ファイバと比較して耐熱性に乏しいため、励起光が強い場合、発熱によって変形あるいは損傷が生じ、レーザ発振や増幅ができなくなる。このため、ファイバ端面から励起光を導入する構成では、レーザ出力が制限される。
 そこで、特許文献1に示されるような光結合器を利用することが考えられる。特許文献1の装置は、利得ファイバと、利得ファイバの側面に接続された励起光ファイバと、を有している。そして、励起光ファイバは、励起光源からの励起光を利得ファイバに導く。このように、利得ファイバの側面に励起光ファイバを接続した複数のユニットを接続してレーザ発振器を構成すれば、複数個所から励起光を導入することができる。このため、導入できる励起光のパワーを増加でき、利得ファイバの発熱を抑えつつ、レーザ出力を高くすることができる。
特開2009-129940号公報
 特許文献1のように、光ファイバの側面に他の光ファイバを接続する場合、接合部の界面において、光が漏れたり、乱反射によって光が散乱したりすることによって、接合部の近辺が高温になる場合がある。
 前述のように、特に、フッ化物ファイバは耐熱性が低いので、接合部近辺が高温になると、ファイバが損傷するおそれがある。
 本発明の課題は、光ファイバの側面に別の光ファイバを接合した構成の光ファイバ装置において、接合部が高温になるのを抑えることにある。
 本発明の一側面に係る光ファイバ装置は、第1ファイバと、第2ファイバと、放熱部材と、を備えている。第1ファイバは光を導光する。第2ファイバは、第1端から光が入射又は出射されるとともに、第2端の端面が第1ファイバの側面に斜めに接合されている。放熱部材は、第1ファイバと第2ファイバとの接合部の全周を覆うように配置され、熱伝導性が第1及び第2ファイバと同等又はより高くかつ第1ファイバ及び第2ファイバで導光される光に対して光透過性を有する。
 この装置を光結合器として使用した場合は、励起光源からの励起光は、第2ファイバを通して第1ファイバに導入される。このような第1ファイバ及び第2ファイバからなるユニットを複数接続することによって、複数個所から励起光を導入することができる。したがって、励起光の導入による発熱を抑えつつ、高出力のレーザ光を得ることができる。
 また、この装置を光分配器として使用することもでき、この場合は、第1ファイバ内で導光される光は分配されて、第2ファイバの第1端から出射される。
 このような構成において、2つのファイバの接合部には、接合部の全周を覆うように放熱部材が設けられている。この放熱部材は、熱伝導性が良好で、しかも励起光に対して光透過性を有する。このため、2つのファイバの接合部近辺で発生した熱を放出することができ、しかも放熱部材が励起光を吸収して発熱するのを抑えることができる。
 なお、ここで「励起光に対して光透過性を有する」とは、励起光の吸収率が1%以下の場合を意味し、励起光がほとんど吸収されずに透過するため放熱部材が励起光を吸収してもファイバを損傷させるほどの発熱が生じない。例えば波長0.3~4.0μmの励起光に対してはサファイアによって放熱部材を構成することによって実現が可能である。
 本発明の別の側面に係る光ファイバ装置では、第1ファイバはコアを有している。また、第1ファイバの少なくとも一端に接続され、レーザ活性物質が添加されたコアを有する第3ファイバをさらに備えている。そして、第2ファイバにはレーザ活性物質に対応する励起光が入射される。
 ここでは、第1ファイバに第3ファイバを接続することにより、第3ファイバ内に励起光を導くことができる。また、この場合は、第1ファイバのコアにはレーザ活性物質をドープする必要がないので、第1ファイバにおいて、励起光の吸収による発熱を避けることができる。
 本発明のさらに別の側面に係る光ファイバ装置では、放熱部材は、第1ファイバと第2ファイバとの接合部とともに、第1ファイバと第3ファイバとの接合部を覆っている。
 第1ファイバの端面に第3ファイバを接合した構成では、これらの接合部の界面においても、第1ファイバと第2ファイバとの接合部界面と同様に発熱するおそれがある。
 そこで、この発明では、第1ファイバと第2ファイバとの接合部を覆う放熱部材によって、第1ファイバと第3ファイバとの接合部をも覆うようにしている。これにより、各接合部で発生した熱を、1つの放熱部材によって放出することができる。
 本発明のさらに別の側面に係る光ファイバ装置では、放熱部材は、第1ファイバと第2ファイバとの接合部を挟むようにして配置された第1放熱板及び第2放熱板を有する。この場合は、放熱部材の構成及び光ファイバ装置全体の製造が容易になる。
 本発明のさらに別の側面に係る光ファイバ装置では、第1ファイバは、コアと、コアの外周面を覆う第1クラッドと、第1クラッドより小さい屈折率を有し第1クラッドの外周面を覆う第2クラッドと、を有する。
 ここでは、第1ファイバが第2クラッドを有しているので、ファイバ表面から励起光が散乱するのを抑えることができる。したがって、第1ファイバが発熱して損傷するのを避けることができる。
 本発明のさらに別の側面に係る光ファイバ装置では、第2ファイバは第1ファイバの側面に融着により接合されている。そして、第1ファイバの第2クラッドは、第2ファイバを第1ファイバに融着した後に形成されるものである。
 第1ファイバが第1クラッド及び第2クラッドを有するダブルクラッド構造の場合、一般的に第2クラッドは樹脂で形成される。樹脂製クラッドは耐熱性に乏しいために、第1ファイバに第2ファイバを融着により接合する際には、樹脂製の第2クラッドを除去する必要がある。
 そこで、この発明では、両ファイバを融着した後に、融着時に除去された第2クラッドを再度形成するようにしている。
 本発明のさらに別の側面に係る光ファイバ装置では、第2クラッドは、紫外線硬化樹脂又は熱硬化性樹脂により形成されている。
 ここでは、両ファイバを接合した後に、光を通す放熱部材を介して紫外線を照射することにより、あるいは加熱することにより第2クラッドを形成することができる。
 本発明のさらに別の側面に係る光ファイバ装置では、第1ファイバは、コアと、コアの外周面を覆う第1クラッドと、を有し、第2ファイバには励起光が入射される。放熱部材は、第1クラッドの外周面を覆うとともに、第1クラッドより屈折率が小さくかつ励起光を透過する。
 ここでは、第1ファイバには励起光の反射層(第2クラッド)が設けられていない。しかし、放熱部材によって第1ファイバの第1クラッドの外周面が覆われている。放熱部材は、第1クラッドより屈折率が小さいので、励起光の反射層として機能する。また、放熱部材は励起光を透過するので、放熱部材での励起光の吸収が抑えられ、放熱部材での発熱を抑えることができる。
 本発明のさらに別の側面に係る光ファイバ装置では、第1ファイバ及び第2ファイバはフッ化物ファイバである。
 本発明のさらに別の側面に係る光ファイバ装置では、第1ファイバ及び第2ファイバは、ZBLANガラスにより形成されている。
 以上のような本発明では、光ファイバの側面に別の光ファイバを接合した構成の光ファイバ装置において、接合部が高温になるのを抑えることができる。
本発明の一実施形態による光ファイバ装置の構成図。 図1の接合部を拡大して示す分解図。 放熱部材及びファイバ接合部を示す分解図。 図1の装置を接続して得られるレーザ発振器の構成図。 他の実施形態による接合部を示す図。
 [第1実施形態]
 図1は本発明の第1実施形態による光ファイバ装置を示している。光ファイバ装置1は、レーザ発振器を構成する1つのユニットであり、励起光源2と、第1フッ化物ファイバ3と、第2フッ化物ファイバ4と、第3フッ化物ファイバ5と、放熱部材6と、を有している。この光ファイバ装置1に、反射鏡及び出力鏡等を追加することによって、ファイバレーザ発振器を構成することができる。
 励起光源2は、レーザ活性物質を励起する波長の励起光を発振するものであり、例えば半導体レーザなどによって構成することができる。励起光源2にて発振された励起光は、第2フッ化物ファイバ4及び第1フッ化物ファイバ3を介して第3フッ化物ファイバ5に導入される。
 第1フッ化物ファイバ3は、ダブルクラッドファイバであり、図2に示すように、コア30と、第1クラッド31と、第2クラッド32と、を有している。図2は、放熱部材6及び第1フッ化物ファイバ3の一部を分解して示したものである。第1クラッド31はコア30の外周面を覆うように形成されている。第2クラッド32は第1クラッド31の外周面を覆うように形成されている。
 第1フッ化物ファイバ3のコア30は、レーザ活性物質がドープされていないフッ化物ガラスから形成されており、好ましくはZBLAN(ZrF4-BaF2-LaF3-AlF3-NaF)ガラスによって形成されている。コア30にレーザ活性物質がドープされていないことにより、このコア30においてレーザ光は生成されないが、励起光吸収による発熱を避けることができる。第1クラッド31は、フッ化物ガラスから形成されており、好ましくはZBLANガラスによって形成されている。第2クラッド32は、紫外線硬化樹脂又は熱硬化樹脂によって形成されている。第1クラッド31はコア30よりも屈折率が小さく、第2クラッド32は第1クラッド31よりも屈折率が小さい。また、第1クラッド31及び第2クラッド32には、レーザ活性物質がドープされていない。
 第2フッ化物ファイバ4は、マルチモードファイバであり、図1に示すように、太い径のコア40と、コア40の外周面を覆うように形成された反射クラッド層41と、を有している。コア40及び反射クラッド層41はフッ化物ガラスから形成されており、好ましくはZBLANガラスによって形成されている。反射クラッド層41はコア40よりも屈折率が小さい。また、コア40の屈折率は、好ましくは第1フッ化物ファイバ3の第1クラッド31の屈折率以下とし、より好ましくは第1フッ化物ファイバ3の第1クラッドの屈折率と同じにする。
 第2フッ化物ファイバ4の一端には、励起光源2からの励起光がレンズ7を介して入射される。また、第2フッ化物ファイバ4の先端(第1フッ化物ファイバ3の側面に接続する側の端部)は、所定の角度を有するように斜めに研磨されている。なお、第2フッ化物ファイバ4を第1フッ化物ファイバ3の側面に接合する方法については後述する。
 第3フッ化物ファイバ5は第1フッ化物ファイバ3の一方の端面に融着されて接続されている。第3フッ化物ファイバ5は、ダブルクラッドファイバであり、第1フッ化物ファイバ3と同様に、コア50と、第1クラッド51と、第2クラッド(図示せず)と、を有する。第3フッ化物ファイバ5の第1フッ化物ファイバ3と異なる点は、コア50の具体的構成のみである。すなわち、第3フッ化物ファイバ5のコア50は、フッ化物ガラスから構成され、このフッ化物ガラスにはレーザ活性物質として希土類元素がドープされている。具体的には、コア50は、エルビウムがドープされたZBLANガラスによって形成されている。
 放熱部材6は、図2及び図3に示すように、第1放熱板61及び第2放熱板62を有している。第1及び第2放熱板61,62は同様の構成である。すなわち、第1及び第2放熱板61,62は、熱導電性が良好で、光透過性を有する矩形状のサファイアで形成されている。各放熱板61,62には、第1フッ化物ファイバ3、第2フッ化物ファイバ4、及びその接合部を含む部分を収納可能な半円形状の溝61a、62aが形成されている。そして、両放熱板61,62によって第1及び第2フッ化物ファイバ3,4の接合部を含む部分を挟み込み、両ファイバ3,4の接合部の全周及びその近傍の部分が、第1及び第2放熱板61,62によって覆われている。
 なお、図示していないが、第1及び第2放熱板61,62の両方又は一方には、ヒートシンクが接触して設けられている。
 以上のような構成の光ファイバ装置1では、励起光源2からの励起光はレンズ7を通して第2フッ化物ファイバ4に入射される。第2フッ化物ファイバ4は、コア40内で励起光を導光し、接合部を介して第1フッ化物ファイバ3の第1クラッド31に励起光を導入することができる。このとき、コア40の屈折率を第1フッ化物ファイバ3の第1クラッド31の屈折率以下にしておくことにより、コア40と第1クラッド31との界面における励起光の反射が抑制できる。
 第1フッ化物ファイバ3及び第3フッ化物ファイバ5は、それぞれ第1クラッド31,51で励起光を導光する。そして、第3フッ化物ファイバ5では、励起光は第1クラッド51を導光されながらコア50のレーザ活性物質を励起し、レーザ活性物質からレーザ光が放出される。レーザ活性物質をエルビウムとし、波長975nmの励起光を導入した場合、波長約2.8μmのレーザ光が得られる。レーザ活性物質から放出されたレーザ光は、第3フッ化物ファイバ5のコア50及び第1フッ化物ファイバ3のコア30内で導光される。
 [接合方法]
 第1フッ化物ファイバ3の側面に第2フッ化物ファイバ4を接合する方法について説明する。
 まず、第1フッ化物ファイバ3の接合部を含む一部の第2クラッド32を除去する。これは、第2クラッド32は樹脂製であって耐熱性に乏しく、融着の際に損傷するからである。一方で、第2フッ化物ファイバ4の先端面を斜めに研磨する。このとき、第2フッ化物ファイバ4の表面に保護用の樹脂層が形成されている場合は、第1フッ化物ファイバ3と接合する先端部の樹脂層を除去する。そして、第2フッ化物ファイバ4の先端を第1フッ化物ファイバ3の側面に押し当て、例えばレーザ光を照射することによって両者を融着する。
 以上のようにして第1フッ化物ファイバ3及び第2フッ化物ファイバ4を融着した後に、第1フッ化物ファイバ3の第2クラッド32を除去した部分に、再度樹脂製の第2クラッド32を形成する。
 この第2クラッド32は、紫外線硬化樹脂又は熱硬化性樹脂で形成されている。紫外線硬化樹脂の場合は、第1及び第2放熱板61,62の溝61a,62a又は第1及び第2フッ化物ファイバ3,4の両放熱板61,62で覆われる部分に紫外線硬化樹脂を塗布した状態で、両放熱板61,62で第1及び第2フッ化物ファイバ3,4を挟み込み、透明のサファイア(放熱部材6を通して)の外部から紫外線を照射して硬化し、接着することができる。また、熱硬化性樹脂の場合は、熱伝導性の良好な放熱部材6を介して加熱することによって樹脂を硬化させ、接着することができる。
 以上のようにして第1フッ化物ファイバ3に第2フッ化物ファイバ4を融着し、また第1フッ化物ファイバ3に樹脂製の第2クラッド32を形成すると、融着部分での欠陥や樹脂の経時変化による剥がれ等によって、励起光散乱が起こり、発熱する。しかし、接合部分は放熱部材6によって覆われているために、接合部が高温になるのを抑えることができる。また、第1フッ化物ファイバ3と第2フッ化物ファイバ4の接合部が放熱部材6によって補強される。
 以上のようにして得られた光ファイバ装置1を、図4に示すように、複数個直列に接続し、一端側に反射鏡10を、他端側にレンズ11及び出力鏡12を配置することによって、レーザ発振器を構成することができる。ここでは、励起光を、ファイバの端面以外の複数個所から導入することができるため、ZBLANファイバが熱損傷しない範囲で、出力の高いレーザ発振器を得ることができる。
 [第2実施形態]
 第1実施形態では、第1フッ化物ファイバ3において、接合部の樹脂製第2クラッド32を除去し、接合後に再度第2クラッドを形成するようにした。しかし、第2実施形態では、第1フッ化物ファイバ3と第2フッ化物ファイバ4とを接合した後に、第1フッ化物ファイバ3の第1及び第2放熱板で覆われた部分に第2クラッドを形成していない。
 第1フッ化物ファイバ3の第2クラッド32を除去すると、励起光が第1フッ化物ファイバ3から外側に漏れ出すために、励起光の導入効率が悪くなる。また、漏れ出した励起光が周囲の部材やホコリ等に照射されると発熱する。
 そこで、両フッ化物ファイバ3,4の接合後に第2クラッドを形成しない場合は、第2クラッドが除去された接合部及びその近傍を、第1クラッド31より屈折率が小さい部材で覆って、励起光を外部に漏らさないようにする必要がある。
 これを実現するために、第2実施形態では、第1及び第2放熱板を、ZBLANよりも屈折率の小さいCaF2基板によって形成している。ここでは、両放熱板が第1フッ化物ファイバの第2クラッドとして機能し、励起光をファイバ内で導光させることができる。また、第1及び第2放熱板を励起光に対して透過性を有する部材で形成することにより、励起光の散乱光がファイバ外に放出されたとしても、両放熱板は散乱光を吸収せず、発熱を避けることができる。CaF2は、透過可能な光の波長の範囲がZBLANよりも広いので、ZBLANファイバで導光可能な光に対して透過性を有する。さらに、CaF2基板は、ZBLANや樹脂クラッドよりも熱伝導率が高いために、CaF2基板にヒートシンクを装着することで、効果的に冷却することができる。
 なお、第2実施形態では、第1フッ化物ファイバ3と放熱部材とを融着し、両者を隙間なく接合することにより、放熱効率がさらに良好になる。この場合、第1フッ化物ファイバ3の第1クラッド31を第1放熱板及び第2放熱板によって挟んだ状態において、第1フッ化物ファイバ3の第1クラッド31を加熱することにより、第1フッ化物ファイバ3と第1放熱板及び第2放熱板とを融着できる。例えば、放熱部材を介して、第1フッ化物ファイバ3の第1クラッド31をヒータやレーザ照射などによって加熱する。このときの加熱温度は、第1フッ化物ファイバ3の第1クラッド31の軟化点以上となる程度とすることが好ましく、結晶化開始温度未満となる程度とするのが好ましい。また、第1フッ化物ファイバ3と放熱部材とを融着する際に、同時に第2フッ化物ファイバ4の第1放熱板及び第2放熱板で覆われる部分を放熱部材と融着することとしてもよい。
 なお、この第2実施形態の第1及び第2放熱板は、材質が異なるだけで、他の構成は第1実施形態と同様である。
 この第2実施形態によっても、第1実施形態と同様の作用効果を得ることができる。
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
 (a)第1実施形態では、放熱部材をサファイアで形成したが、放熱部材の材質はこれに限定されない。熱伝導性がファイバと同等かそれ以上で、励起光に対して光透過性を有する材質であれば、放熱部材として使用することができる。
 (b)第2実施形態において、励起光を外部に漏らさないために、第1及び第2放熱板を屈折率が小さいCaF2基板で形成したが、励起光を外部に漏らさないための構成はこれに限定されない。例えば、ファイバ側面に反射層をコーティングしてもよい。
 (c)前記実施形態では、第1フッ化物ファイバとして、レーザ活性物質がドープされていないZBLANファイバを用いたが、レーザ活性物質がドープされたZBLANファイバを用いてもよい。この場合は、第3フッ化物ファイバが不要になる。
 また、第1フッ化物ファイバ及び第3フッ化物ファイバの両方を、レーザ活性物質がドープされたファイバにする場合は、両ファイバを融着する必要がない。
 (d)放熱部材は、第1フッ化物ファイバ3と第2フッ化物ファイバ4の接合部だけではなく、図5に示す放熱部材6’のように、第1フッ化物ファイバ3と第3フッ化物ファイバ5との接合部をも覆うように形成してもよい。この場合は、1つの放熱部材6’で2つの接合部に発生した熱を放出することができる。
 (e)前記実施形態では、本発明をレーザ発振器として利用したが、他の装置にも適用することができる。
 (f)前記実施形態では、本発明の第2ファイバとして、コアを有する第2フッ化物ファイバを用いたが、第2ファイバとしては、コアのない第2フッ化物ファイバを用いてもよい。
 (g)本発明は、第1及び第3フッ化物ファイバ内で導光される光を第2フッ化物ファイバに分配して出射する光分配器として使用することもできる。
 (h)前記実施形態では、断面が円形のファイバを例にとって説明したが、断面が矩形のファイバを用いてもよい。この場合は、第1ファイバへの第2ファイバの接合が容易になる。
 (i)前記実施形態では、レーザ活性物質をエルビウムとして説明したが、ツリウムやホルミウムなど他のレーザ活性物質を用いることとしてもよい。レーザ活性物質と励起光の波長の組み合わせにより、さまざまな波長のレーザ光を発生させることが出来る。
 (j)前記実施形態では、第1フッ化物ファイバ3と第2フッ化物ファイバ4とを融着して接合することとしたが、接着剤等、他の方法を用いて接合することとしてもよい。
 本発明の光ファイバ装置では、光ファイバの側面に別の光ファイバを接合した構成の装置において、接合部が高温になるのを抑えることができる。
 1 光ファイバ装置
 2 励起光源
 3 第1フッ化物ファイバ
 30 コア
 31 第1クラッド
 32 第2クラッド
 4 第2フッ化物ファイバ
 5 第3フッ化物ファイバ
 6,6’ 放熱部材
 6a 第1放熱板
 6b 第2放熱板

Claims (10)

  1.  光を導光する第1ファイバと、
     第1端から光が入射又は出射されるとともに、第2端の端面が前記第1ファイバの側面に斜めに接合された第2ファイバと、
     前記第1ファイバと前記第2ファイバとの接合部の全周を覆うように配置され、熱伝導性が前記第1及び第2ファイバと同等又はより高くかつ前記第1ファイバ及び前記第2ファイバで導光される前記光に対して光透過性を有する放熱部材と、
    を備えた光ファイバ装置。
  2.  前記第1ファイバはコアを有し、
     前記第1ファイバの少なくとも一端に接続され、レーザ活性物質が添加されたコアを有する第3ファイバをさらに備え、
     前記第2ファイバには前記レーザ活性物質に対応する励起光が入射される、
    請求項1に記載の光ファイバ装置。
  3.  前記放熱部材は、前記第1ファイバと前記第2ファイバとの接合部とともに、前記第1ファイバと前記第3ファイバとの接合部を覆っている、請求項2に記載の光ファイバ装置。
  4.  前記放熱部材は、前記第1ファイバと前記第2ファイバとの接合部を挟むようにして配置された第1放熱板及び第2放熱板を有する、請求項1から3のいずれかに記載の光ファイバ装置。
  5.  前記第1ファイバは、コアと、前記コアの外周面を覆う第1クラッドと、前記第1クラッドより小さい屈折率を有し前記第1クラッドの外周面を覆う第2クラッドと、を有する、
    請求項1に記載の光ファイバ装置。
  6.  前記第2ファイバは前記第1ファイバの側面に融着により接合されており、
     前記第1ファイバの第2クラッドは、前記第2ファイバを前記第1ファイバに融着した後に形成されるものである、
    請求項5に記載の光ファイバ装置。
  7.  前記第2クラッドは、紫外線硬化樹脂又は熱硬化性樹脂により形成されている、請求項6に記載の光ファイバ装置。
  8.  前記第1ファイバは、コアと、前記コアの外周面を覆う第1クラッドと、を有し、
     前記第2ファイバには励起光が入射され、
     前記放熱部材は、前記第1クラッドの外周面を覆うとともに、前記第1クラッドより屈折率が小さくかつ励起光を透過する、
    請求項1に記載の光ファイバ装置。
  9.  前記第1ファイバ及び前記第2ファイバは、フッ化物ファイバである、請求項1から8のいずれかに記載の光ファイバ装置。
  10.  前記第1ファイバ及び前記第2ファイバは、ZBLANガラスにより形成されている、
    請求項9に記載の光ファイバ装置。
PCT/JP2015/071115 2014-08-27 2015-07-24 光ファイバ装置 WO2016031458A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/506,248 US9935419B2 (en) 2014-08-27 2015-07-24 Optical fiber device
EP15836814.2A EP3188327B1 (en) 2014-08-27 2015-07-24 Optical fiber device
CA2959363A CA2959363C (en) 2014-08-27 2015-07-24 Optical fiber device
CN201580046005.0A CN106663910A (zh) 2014-08-27 2015-07-24 光纤装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172809A JP6126562B2 (ja) 2014-08-27 2014-08-27 光ファイバ装置
JP2014-172809 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031458A1 true WO2016031458A1 (ja) 2016-03-03

Family

ID=55399359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071115 WO2016031458A1 (ja) 2014-08-27 2015-07-24 光ファイバ装置

Country Status (7)

Country Link
US (1) US9935419B2 (ja)
EP (1) EP3188327B1 (ja)
JP (1) JP6126562B2 (ja)
CN (1) CN106663910A (ja)
CA (1) CA2959363C (ja)
TW (1) TWI652516B (ja)
WO (1) WO2016031458A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060025A (ja) * 2016-10-04 2018-04-12 株式会社フジクラ 光ファイバ及びファイバレーザ
US10879666B2 (en) 2016-10-04 2020-12-29 Fujikura Ltd. Optical fiber and fiber laser

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201405918XA (en) * 2012-03-20 2014-10-30 Seragon Pharmaceuticals Inc Estrogen receptor modulators and uses thereof
JP2022107076A (ja) * 2019-05-31 2022-07-21 三星ダイヤモンド工業株式会社 光ファイバ装置
FR3139955A1 (fr) * 2022-09-19 2024-03-22 Compagnie Industrielle Des Lasers Cilas Amplificateur laser fibré comprenant un dispositif de pompe latérale.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260405A (ja) * 1987-12-17 1989-10-17 Polaroid Corp 光フアイバ及びそれを用いた光学装置
JPH07297467A (ja) * 1992-08-17 1995-11-10 Hughes Aircraft Co レーザ装置
JP2001119084A (ja) * 1999-10-19 2001-04-27 Hoya Corp 光ファイバレーザ装置及び光増幅装置
JP2002100822A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 光導波路装置
JP2007158013A (ja) * 2005-12-05 2007-06-21 Hamamatsu Photonics Kk 光ファイバ構造体および光学装置
JP2008268747A (ja) * 2007-04-24 2008-11-06 Furukawa Electric Co Ltd:The 光ファイバの漏洩光処理構造および光ファイバレーザ
JP2009212184A (ja) * 2008-03-03 2009-09-17 Mitsubishi Cable Ind Ltd ファイバレーザ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873639B2 (en) * 1993-05-28 2005-03-29 Tong Zhang Multipass geometry and constructions for diode-pumped solid-state lasers and fiber lasers, and for optical amplifier and detector
US6370297B1 (en) * 1999-03-31 2002-04-09 Massachusetts Institute Of Technology Side pumped optical amplifiers and lasers
US7042631B2 (en) * 2001-01-04 2006-05-09 Coherent Technologies, Inc. Power scalable optical systems for generating, transporting, and delivering high power, high quality, laser beams
US6766075B1 (en) * 2001-05-11 2004-07-20 Pc Photonics Corporation Side pumping of optical fiber systems via multiple delivery fibers
CN101034186A (zh) * 2007-04-17 2007-09-12 浙江大学 一种三维多层垂直耦合光互连结构及其软光刻的制作方法
JP2009129940A (ja) 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc 光ファイバ装置及びその製造方法並びに光ファイバレーザ装置
CN100576661C (zh) * 2008-07-25 2009-12-30 华中科技大学 用于高功率双包层光纤激光器及放大器的光纤冷却装置
US7978943B2 (en) * 2009-01-22 2011-07-12 Raytheon Company Monolithic pump coupler for high-aspect ratio solid-state gain media
CN102495453A (zh) * 2011-12-14 2012-06-13 南京烽火藤仓光通信有限公司 抗酒精光纤带
JP2014048447A (ja) * 2012-08-31 2014-03-17 Mitsuboshi Diamond Industrial Co Ltd 光ファイバ、光ファイバ装置、及びレーザ加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260405A (ja) * 1987-12-17 1989-10-17 Polaroid Corp 光フアイバ及びそれを用いた光学装置
JPH07297467A (ja) * 1992-08-17 1995-11-10 Hughes Aircraft Co レーザ装置
JP2001119084A (ja) * 1999-10-19 2001-04-27 Hoya Corp 光ファイバレーザ装置及び光増幅装置
JP2002100822A (ja) * 2000-09-25 2002-04-05 Toshiba Corp 光導波路装置
JP2007158013A (ja) * 2005-12-05 2007-06-21 Hamamatsu Photonics Kk 光ファイバ構造体および光学装置
JP2008268747A (ja) * 2007-04-24 2008-11-06 Furukawa Electric Co Ltd:The 光ファイバの漏洩光処理構造および光ファイバレーザ
JP2009212184A (ja) * 2008-03-03 2009-09-17 Mitsubishi Cable Ind Ltd ファイバレーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060025A (ja) * 2016-10-04 2018-04-12 株式会社フジクラ 光ファイバ及びファイバレーザ
WO2018066470A1 (ja) * 2016-10-04 2018-04-12 株式会社フジクラ 光ファイバ及びファイバレーザ
US10833470B2 (en) 2016-10-04 2020-11-10 Fujikura Ltd. Optical fiber and fiber laser
US10879666B2 (en) 2016-10-04 2020-12-29 Fujikura Ltd. Optical fiber and fiber laser

Also Published As

Publication number Publication date
TW201608294A (zh) 2016-03-01
CN106663910A (zh) 2017-05-10
JP2016048717A (ja) 2016-04-07
CA2959363A1 (en) 2016-03-03
EP3188327A1 (en) 2017-07-05
TWI652516B (zh) 2019-03-01
CA2959363C (en) 2020-09-15
US9935419B2 (en) 2018-04-03
JP6126562B2 (ja) 2017-05-10
EP3188327A4 (en) 2018-05-23
US20170256903A1 (en) 2017-09-07
EP3188327B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP4954737B2 (ja) 光増幅システム、これを用いた光ファイバレーザ及び光ファイバ増幅器
JP5294114B2 (ja) 光学モジュール
WO2016031458A1 (ja) 光ファイバ装置
JP5621930B2 (ja) ファイバレーザ
JP6010566B2 (ja) 漏れ光除去構造及びファイバレーザ
EP3104201B1 (en) Structure for eliminating excess light, and fiber laser
JP2007293298A (ja) 光学部品の光入出力端
JP2007171676A (ja) 光ファイバケーブル
JP6550494B1 (ja) 光デバイスおよびファイバレーザ装置
KR102129918B1 (ko) 광섬유 지지 장치 및 이를 포함하는 레이저 장치
WO2015025808A1 (ja) ファイバの固定方法、ファイバ保持部材に固定されたファイバ固定構造体、該ファイバ固定構造体を備えたレーザ装置、露光装置及び検査装置
JP2016212427A (ja) 光ファイバ装置
WO2006098313A1 (ja) 光増幅器およびレーザ装置
WO2020241363A1 (ja) 光ファイバ装置
JP5641496B2 (ja) レーザ装置
JP5856016B2 (ja) 光モジュール
JP2016012660A (ja) 光ファイバ装置
JP2005345517A (ja) 光ファイバアレイとその製造方法及びその利用
JP2015043011A (ja) 光アイソレータ、及び、それを用いた光増幅器並びにレーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2959363

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15506248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836814

Country of ref document: EP