JP6550494B1 - 光デバイスおよびファイバレーザ装置 - Google Patents

光デバイスおよびファイバレーザ装置 Download PDF

Info

Publication number
JP6550494B1
JP6550494B1 JP2018059146A JP2018059146A JP6550494B1 JP 6550494 B1 JP6550494 B1 JP 6550494B1 JP 2018059146 A JP2018059146 A JP 2018059146A JP 2018059146 A JP2018059146 A JP 2018059146A JP 6550494 B1 JP6550494 B1 JP 6550494B1
Authority
JP
Japan
Prior art keywords
cladding
refractive index
core
fbg
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018059146A
Other languages
English (en)
Other versions
JP2019174502A (ja
Inventor
賢一 大森
賢一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2018059146A priority Critical patent/JP6550494B1/ja
Application granted granted Critical
Publication of JP6550494B1 publication Critical patent/JP6550494B1/ja
Publication of JP2019174502A publication Critical patent/JP2019174502A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

【課題】コアにスラント型FBGを形成した場合に、クラッド内を導波するSRS光を除去する。【解決手段】光デバイス10は、コア13aと、コアを覆い、コアよりも低い屈折率を有するクラッド13bと、クラッドを覆い、クラッドよりも低い屈折率を有する低屈折率層13cと、コアに形成されたスラント型FBG12と、スラント型FBGによってコアからクラッドへと結合したSRS光を含むクラッドモード光をクラッド内から除去する、少なくとも1つのクラッドモード除去部P1〜P3と、を備える。【選択図】図2

Description

本発明は、光デバイスおよびファイバレーザ装置に関する。
ファイバレーザの最高出力は、レーザ出力に対して非線形に発生する誘導ラマン散乱(SRS:Stimulated Raman Scattering)による制限を受ける。
下記特許文献1では、ファイバレーザ装置において、コアにスラント型FBG(Fiber Bragg Grating)を形成することが開示されている。この構成により、コア内を伝搬する光からSRS光を選択的に除去し、コア内を伝搬する信号光を安定させたり、励起光源の損傷を防いだりすることができる。
米国特許第9634462号明細書
高出力のファイバレーザ装置において、コアにスラント型FBGを形成した場合、コアから除去された高パワーのSRS光は、クラッド内を導波する。高パワーのSRS光が、例えばクラッドを覆う保護被覆に集中的に照射されると、この保護被覆が強く発熱してしまう場合がある。あるいは、クラッド内を導波するSRS光が励起光源に到達すると、励起光源の損傷が発生する場合がある。
本発明はこのような事情を考慮してなされたもので、コアにスラント型FBGを形成した場合に、クラッド内を導波する光を除去することを目的とする。
上記課題を解決するために、本発明の第1の態様に係る光デバイスは、コアと、前記コアを覆い、前記コアよりも低い屈折率を有するクラッドと、前記クラッドを覆い、前記クラッドよりも低い屈折率を有する低屈折率層と、前記コアに形成されたスラント型FBGと、前記スラント型FBGによって前記コアから前記クラッドへ結合したSRS光を含むクラッドモード光を前記クラッド内から除去する、少なくとも1つのクラッドモード除去部と、を備える。
上記態様に係る光デバイスによれば、スラント型FBGによってコアから逃がされたSRS光を含むクラッドモード光は、低屈折率層によってクラッド内に閉じ込められる。そして、クラッド内を導波したクラッドモード光は、クラッドモード除去部によって除去される。このように、クラッドモード除去部によってSRS光を除去することで、例えば保護被覆などの意図しない部分にSRS光が照射して強く発熱したり、SRS光が励起光源などに到達して励起光源が損傷したりすることが抑えられる。
ここで、上記光デバイスは、前記スラント型FBGが形成された前記コアと、前記クラッドと、前記低屈折率層と、を有する光ファイバを備え、前記クラッドモード除去部が前記光ファイバに設けられていてもよい。
この場合、1つの光ファイバに、スラント型FBGおよびクラッドモード除去部が設けられることになる。これにより、スラント型FBGによってクラッドへと逃がされたSRS光が、クラッドモード除去部によって速やかに除去される。
また、前記クラッドモード除去部は、前記クラッドの外周面に接触し、かつ該クラッドの屈折率よりも高い屈折率を有する高屈折率材によって構成されたクラッドモードストリッパであってもよい。
この場合、クラッドモード光の除去能力が高いクラッドモードストリッパを、クラッドモード除去部として用いることで、SRS光を含むクラッドモード光をより確実に除去することができる。
また、前記クラッドモードストリッパは、前記クラッドの長手方向に沿って前記スラント型FBGから遠ざかるに従って、前記クラッドモード光の除去能力が高まるように構成されていてもよい。
この場合、クラッドモードストリッパ周辺の発熱量が、長手方向でより均等になり、局所的に大きく発熱することが抑えられる。従って、クラッドモードストリッパの耐久性を向上させることができる。
また、前記高屈折率材は、前記長手方向に間隔を空けて配置され、かつ前記クラッドの外周面に接触する複数の接触部と、前記複数の接触部を互いに連結する連結部と、を有し、前記長手方向における前記複数の接触部のそれぞれの幅は、前記スラント型FBGから遠ざかるに従って大きくなっていてもよい。
この場合、クラッドモード光の除去能力がスラント型FBGから遠ざかるに従って高くなるクラッドモードストリッパを、容易に構成することができる。
また、前記クラッドモード除去部は、前記クラッドの長手方向における端面であってもよい。
この場合、クラッドの端面をクラッドモード除去部として用いることで、この端面に接続される他のファイバなどに、SRS光が入射することが抑えられる。
また、前記クラッドの長手方向における両方の端面がそれぞれ前記クラッドモード除去部であってもよい。
この場合、クラッドの両端面がそれぞれクラッドモード除去部として機能することで、SRS光をより確実に除去することができる。
また、前記クラッドのうち、前記コアにおける前記スラント型FBGが形成された領域を覆う部分の外周面が、前記低屈折率層よりも低い屈折率を有する低屈折率材によって覆われ、前記クラッドの長手方向において、前記クラッドモード除去部と前記低屈折率材とが異なる位置に配置されていてもよい。
この場合、スラント型FBGで反射された直後の強いパワーを有するSRS光を、低屈折率材によってクラッド内により確実に閉じ込めて、スラント型FBGの近傍が強く発熱するのを抑えることができる。また、長手方向における任意の位置で、クラッドモード除去部によってSRS光を除去することができる。
本発明の第2態様に係るファイバレーザ装置は、上記光デバイスと、励起光源と、共振器と、を備える。
上記態様のファイバレーザ装置によれば、高パワーのSRS光が発生したとしても、上述した光デバイスの作用により、SRS光を起因とした発熱や励起光源の故障が抑えられる。従って、高出力のファイバレーザ装置を提供することができる。
また、上記態様のファイバレーザ装置において、前記クラッドモード除去部が、前記励起光源が出射した残留励起光が実質的に到達しない領域に配置されていてもよい。
この場合、クラッドモード除去部が、残留励起光が実質的に到達しない領域に配置されることで、励起光が不意に除去されてしまうことが抑えられる。
また、前記ファイバレーザ装置は、前方励起光源および後方励起光源を備える双方向励起型であって、前記共振器と前記前方励起光源との間に設けられた第1コンバイナと、前記共振器と前記後方励起光源との間に設けられた第2コンバイナと、を有し、前記領域は、前記第2コンバイナよりも出力端側に位置する部分であってもよい。
また、前記ファイバレーザ装置は前方励起型であり、前記共振器は、励起状態で光を放出する活性元素がコアに添加された増幅用ファイバと、前記活性元素が放出する光の少なくとも一部を反射する第1FBGと、前記第1FBGが反射する光を前記第1FBGよりも低い反射率で反射する第2FBGと、を有し、前記領域は、前記第2FBGよりも出力端側に位置する部分であってもよい。
本発明の上記態様によれば、コアにスラント型FBGを形成した場合に、クラッド内を導波するSRS光を除去することができる。
第1実施形態に係るファイバレーザ装置の構成を示すブロック図である。 図1の光デバイスの模式図である。 (a)は図2のクラッドモードストリッパの拡大図である。(b)は変形例に係るクラッドモードストリッパの拡大図である。 (a)は、クラッド外径比の説明図である。(b)は、クラッド外径比と接続損失との関係を示すグラフである。 第1実施形態の変形例に係るファイバレーザ装置の構成を示すブロック図である。 第2実施形態に係るファイバレーザ装置の構成を示すブロック図である。 第2実施形態の変形例に係るファイバレーザ装置の構成を示すブロック図である。
(第1実施形態)
以下、第1実施形態の光デバイスおよびファイバレーザ装置について、図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、本発明は以下の実施形態に限定されない。
図1に示すように、ファイバレーザ装置1Aは、前方励起光源2と、第1コンバイナ3と、HR−FBG(High Reflectivity-Fiber Bragg Grating)4と、増幅用ファイバ5と、OC−FBG(Output Coupler-Fiber Bragg Grating)6と、第2コンバイナ7と、後方励起光源8と、光デバイス10と、出力端9と、を備えている。増幅用ファイバ5、HR−FBG4、およびOC−FBG6は、励起光源2、8が出射する励起光によってレーザ光を生成する共振器Rを構成している。
ファイバレーザ装置1Aは、前方励起光源2および後方励起光源8を備えた双方向励起型である。
(方向定義)
図2に示すように、光デバイス10は、光ファイバ13を備えている。以下、光ファイバ13の長手方向を単に長手方向という。また、光ファイバ13から見て、長手方向における出力端9側を+X側といい、共振器R側を−X側という。
また、増幅用ファイバ5から見て、前方励起光源2側を前方、後方励起光源8側を後方という場合がある。
図1に示すように、前方励起光源2および後方励起光源8は、増幅用ファイバ5を挟んで、それぞれ複数配置されている。前方励起光源2は前方励起光を増幅用ファイバ5に向けて出射し、後方励起光源8は後方励起光を増幅用ファイバ5に向けて出射する。これら励起光源2、8としては、例えばレーザダイオードを用いることができる。
第1コンバイナ3および第2コンバイナ7は、増幅用ファイバ5を挟んだ両側に配置されている。
第1コンバイナ3は、各前方励起光源2が出射した励起光を、1本の光ファイバに結合し、増幅用ファイバ5に向かわせる。第2コンバイナ7は、各後方励起光源8が出射した励起光を、1本の光ファイバに結合し、増幅用ファイバ5に向かわせる。
増幅用ファイバ5は、1種類または2種類以上の活性元素が添加されたコアと、コアを覆う第1クラッドと、第1クラッドを覆う第2クラッドと、第2クラッドを覆う保護被覆と、を有している。増幅用ファイバ5は、ダブルクラッドファイバである。コアに添加する活性元素としては、例えばエルビウム(Er)、イッテルビウム(Yb)、あるいはネオジム(Nd)などの希土類元素が使用される。これらの活性元素は、励起状態で光を放出する。コアおよび第1クラッドとしてはシリカガラスなどを用いることができる。第2クラッドとしては、ポリマーなどの樹脂を用いることができる。保護被覆としては、アクリル樹脂やシリコーン樹脂などの樹脂材料を用いることができる。
HR−FBG(第1FBG)4は、増幅用ファイバ5の前方の端部に融着接続された光ファイバのコア内に形成されている。HR−FBG4は、励起状態にされた増幅用ファイバ5の活性元素が放出する光のうち信号光の波長の光をほぼ100%の反射率で反射するように調整されており、HR−FBG4の長手方向に沿って一定の周期で高屈折率の部分が繰り返される構造となっている。
OC−FBG(第2FBG)6は、増幅用ファイバ5の後方の端部に融着された光ファイバのコア内に形成されている。OC−FBG6は、HR−FBG4とほぼ同様の構造を有しているが、HR−FBG4よりも低い反射率で、光を反射するように調整されている。
増幅用ファイバ5内では、HR−FBG4およびOC−FBG6で反射した信号光が、増幅用ファイバ5の長手方向で往復する。信号光は、この往復に伴って増幅されてレーザ光となる。このように、共振器R内では、光が増幅されてレーザ光が生成される。レーザ光の一部は、OC−FBG6を透過し、光デバイス10を介して出力端9に到達する。
(光デバイス)
図2は、光デバイス10の構成を示す模式図である。図2に示すように、光デバイス10は、スラント型FBG12が形成されたコア13aと、クラッド13bと、低屈折率層13cと、保護被覆13dと、を有する光ファイバ13を備えている。コア13aおよびクラッド13bとしては、シリカガラスなどにより形成されたガラスクラッドを用いることができる。クラッド13bは、コア13aを覆い、コア13aよりも低い屈折率を有している。低屈折率層13cは、クラッド13bを覆い、クラッド13bよりも低い屈折率を有している。
このように、光ファイバ13は、クラッド13b(第1のクラッド)および低屈折率層13c(第2のクラッド)を有するダブルクラッドファイバである。低屈折率層13cは、ポリマー材により形成されたポリマークラッドであってもよい。
保護被覆13dは、低屈折率層13cを覆っている。保護被覆13dとしては、アクリル樹脂やシリコーン樹脂などの樹脂材料を用いることができる。保護被覆13dとして用いられるこれらの樹脂材料は、一般的に、光を吸収して発熱する。
光ファイバ13の−X側の端部には共振器側ファイバ(他の光ファイバ)17が融着接続され、光ファイバ13の+X側の端部には出力側ファイバ(他の光ファイバ)18が融着接続されている。以下、光ファイバ13と共振器側ファイバ17との融着接続部を第1接続部A1といい、光ファイバ13と出力側ファイバ18との融着接続部を第2接続部A2という。また、共振器側ファイバ17および出力側ファイバ18のクラッドを、それぞれ共振器側クラッド17bおよび出力側クラッド18bという。
第1接続部A1および第2接続部A2は、第1固定部材15および第2固定部材16によってそれぞれ覆われ、固定されている。第1固定部材15および第2固定部材16としては、クラッド13bよりも高い屈折率を有する材質が好適に用いられる。
光ファイバ13のコア13a、共振器側ファイバ17のコア17a、および出力側ファイバ18のコア18aは、互いに融着接続されて一体となっている。
(スラント型FBG)
スラント型FBG12は、コア13aに、部分的に加工用光線(紫外線レーザ光など)を照射し、屈折率を変調することで形成される。本実施形態では、スラント型FBG12を形成するために、低屈折率層13cおよび保護被覆13dを部分的に除去し、当該除去した部分を通じて加工用光線をコア13aに照射している。また、当該除去部分は、スラント型FBG12が形成された後、低屈折率材(再被覆部)14によって覆われている。このため、クラッド13bのうち、コア13aにおけるスラント型FBG12が形成された領域を覆う部分の外周面は、低屈折率材14によって覆われている。
低屈折率材14としては、クラッド13bよりも低い屈折率を有する樹脂材料を用いることができる。低屈折率材14を構成する樹脂材料の屈折率は、低屈折率層13cの屈折率と同等またはそれより小さくてもよい。低屈折率材14によって、低屈折率層13cが除去された部分から、クラッドモード光が漏れることが抑えられる。
なお、低屈折率層13cおよび保護被覆13dが、前記加工用光線を充分に透過する材質である場合には、低屈折率層13cおよび保護被覆13dを除去しなくてもよい。この場合、光デバイス10は、低屈折率材14を備えていなくてもよい。
また、スラント型FBG12は、光デバイス10内に複数設けられていてもよい。
スラント型FBG12は、レーザ光として用いられる信号光の波長帯(例えば1060nm)の光を透過し、かつ、SRS光の波長帯(例えば1120nm)の光をコア13aからクラッド13bに向けて逃がすように構成されている。
図2に模式的に示すように、本実施形態のスラント型FBG12では、長手方向における屈折率変調部同士の間隔が不均一になっている。これにより、スラント型FBG12でコア13aから取り除かれる光の波長帯が大きくなる。従って、SRS光をクラッド13bに向けてより確実に逃がすことができる。このように、SRS光をコア13aから選択的に除去し、クラッド13bに結合させることで、信号光の品質を安定させたり、励起光源2、8の損傷を防いだりすることができる。
クラッド励起型の共振器Rにおいては、共振器R内にスラント型FBG12を配置すると、SRS光が共振器R内のクラッド中を導波することになり、励起光源2、8を損傷させるおそれがある。このため、スラント型FBG12は共振器Rの外部に配置されることが好ましい。
コア13a内を+X側(出力端9側)に向けて進行したSRS光は、スラント型FBG12によってコア13aから除去され、クラッド13bに向かう。このとき、クラッド13bに逃がされたSRS光は、−X側(共振器R側)に向けて進行する。
クラッド13bに進入したSRS光は、クラッド13bと低屈折率層13cとの界面で反射を繰り返しながら、クラッド13b内を進行する。つまり、SRS光は、低屈折率層13cによって、クラッド13b内に閉じ込められる。なお、クラッド13b内に閉じ込められたSRS光の一部は、低屈折率層13cによって吸収される。このため、低屈折率層13cが発熱するが、クラッド13bの径が大きいほど、クラッド13bと低屈折率層13cとの界面の面積が大きくなる。従って、クラッド13bの径が大きいほど、低屈折率層13cにおいて吸収される光の密度は低下し、低屈折率層13cでの発熱量が低減される。
(クラッドモード除去部)
ところで、ファイバレーザ装置1Aを高出力化するほど、クラッド13b内に閉じ込められるSRS光のパワーも大きくなる。このSRS光が、例えば保護被覆などの光を吸収する部分に照射されると、当該部分が強く発熱してしまう。あるいは、高パワーのSRS光が、クラッド13b内を導波して励起光源2、8に入射すると、これらの励起光源2、8が故障する可能性がある。従って、高パワーのSRS光に起因する発熱や故障などが発生することを防ぐために、SRS光をクラッド13bから安定的に除去することが求められる。
そこで、本実施形態の光デバイス10は、スラント型FBG12によってコア13aからクラッド13bへと逃がされたSRS光を含むクラッドモード光を除去する、クラッドモード除去部P1〜P3を備えている。以下、詳細に説明する。
(クラッドモードストリッパ)
図2に示す第1のクラッドモード除去部P1は、いわゆるクラッドモードストリッパ11である。本実施形態において、クラッドモードストリッパ11とは、クラッド13bの外周面の一部を、クラッド13bよりも高い屈折率を有する高屈折率材11aによって覆った構成をいう。クラッドモードストリッパ11は、光ファイバ13の低屈折率層13cおよび保護被覆13dを長手方向に沿って間欠的に除去し、当該除去した部分を高屈折率材11aで覆うことで形成されている。高屈折率材11aとしては、樹脂などが用いられる。クラッドモードストリッパ11では、SRS光を含むクラッドモード光を、クラッド13b内から高屈折率材11aへと除去することができる。SRS光が照射された高屈折率材11aおよびその周辺は発熱するため、高屈折率材11aに、フィンなどの放熱部または冷却部を接続してもよい。
図3(a)は、図2のクラッドモードストリッパ11の拡大図である。図3(a)に示すように、クラッドモードストリッパ11では、低屈折率層13cおよび保護被覆13dが、クラッド13bの長手方向に沿って間欠的に除去されている。そして、当該除去された部分に高屈折率材11aが進入している。このように、高屈折率材11aは、クラッド13bの外周面に、長手方向に沿って間欠的に接触している。高屈折率材11aのうち、クラッド13bに接触している部分を接触部11a2という。接触部11a2は、クラッド13bの長手方向に間隔を空けて複数設けられている。各接触部11a2は、連結部11a1によって互いに連結されている。
図2に示すように、本実施形態では、クラッドモードストリッパ11は、スラント型FBG12から見た共振器R側に配置されている。これにより、スラント型FBG12でコア13aから除去され、クラッド13b内を共振器R側に向けて進行するSRS光を、効果的に除去することができる。特に、SRS光が第1接続部A1に到達する前に、SRS光の大部分をクラッドモードストリッパ11で除去することで、SRS光が共振器側ファイバ17内に入射することを抑止できる。従って、SRS光が共振器側ファイバ17を通じて励起光源2などに到達することを抑え、励起光源2の故障を防止することができる。なお、高屈折率材11aの屈折率が高ければ、クラッドモードストリッパ11とスラント側FBG12との長手方向における間隔が小さくても、多くのSRS光を除去することができる。
ここで、複数の接触部11a2のうち、スラント型FBG12に近い部分ほど、大きいパワーのクラッドモード光が照射されて、当該接触部11a2の周辺が強く発熱する。一方、接触部11a2とクラッド13bとの接触面積が大きいほど、当該接触部11a2で除去されるクラッドモード光のパワーが大きくなり、周辺の部分の発熱量が大きくなる。
そこで本実施形態では、図3(a)に示すように、各接触部11a2の長手方向における幅W1が不均一になっている。より詳しくは、−X側に位置する接触部11a2ほど、幅W1が大きくなっている。これにより、クラッドモードストリッパ11のクラッド光の除去能力が、スラント型FBG12から遠ざかるに従って大きくなっている。この構成によれば、クラッドモードストリッパ11の発熱量が、長手方向においてより均等になり、光ファイバ13が局所的に大きく発熱することが抑えられる。その結果、光ファイバ13の耐久性が向上し、ファイバレーザ装置1Aをより高出力化することができる。
なお、クラッドモードストリッパ11のうち、長手方向におけるスラント型FBG12側の端部(図2では+X側の端部)における発熱量が許容範囲内である場合には、図3(b)に示すように、各接触部11a2の幅W1は、均一であってもよい。
上述の通り、クラッドモードストリッパ11は、クラッド13b内を伝搬するクラッドモード光を除去するが、高屈折率材11aに高パワーのクラッドモード光が照射されると、高屈折率材11aの周辺が発熱する。このため、クラッド13bの外径を大きくして、クラッド13bと高屈折率材11aとの界面の面積を大きくすることが好ましい。これにより、当該界面に照射するクラッドモード光の密度が小さくなり、単位面積あたりの発熱量を低減することができる。
(クラッドの端面)
図2に示すように、本実施形態では、光デバイス10におけるクラッド13bの外径が、共振器側クラッド17bおよび出力側クラッド18bの外径よりも大きい。つまり、共振器側クラッド17bおよび出力側クラッド18bは、光デバイス10のクラッド13bよりも小径の小径クラッドである。このため、クラッド13bの長手方向における両端部に、第1端面13b1および第2端面13b2が形成されている。第1端面13b1は、第1接続部A1に位置し、−X側を向いている。第2端面13b2は、第2接続部A2に位置し、+X側を向いている。これらの端面13b1、13b2から、SRS光を含むクラッドモード光を、クラッド13bから除去することができる。つまり、クラッド13bの端面13b1、13b2は、クラッドモード除去部P2、P3として機能する。
さらに本実施形態では、端面13b1、13b2が、クラッド13bよりも高い屈折率を有する固定部材15、16により覆われていることで、これらの端面13b1、13b2から、SRS光を含むクラッドモード光をより効果的に除去することができる。なお、固定部材15、16が設けられていなくても、端面13b1、13b2はクラッドモード除去部P2、P3として機能する。
第2のクラッドモード除去部P2は、クラッド13bにおける−X側の端面13b1である。第3のクラッドモード除去部P3は、クラッド13bにおける+X側の端面13b2である。
端面13b1、13b2においてクラッドモード光を除去し、SRS光を含むクラッドモード光がファイバ17、18へ入射するのを抑制することで、これらのファイバ17、18内におけるSRS光の成長を防止することができる。
なお、SRS光を含むクラッドモード光が照射された固定部材15,16は発熱するため、固定部材15、16に、フィンなどの放熱部または冷却部を接続してもよい。
共振器側クラッド17bおよび出力側クラッド18bの外径は、例えば125μm〜250μm程度である。
光ファイバ13のクラッド13bの外径は、例えば250μm〜600μm程度である。
図4(a)は、第1接続部A1または第2接続部A2の近傍におけるクラッドモード光Lcの進行経路を示す模式図である。図4(a)に示すように、クラッドモード光Lcは、クラッド13bの外周面での反射を繰り返しながら、長手方向に進行する。このため、クラッドモード光Lcの一部は、クラッド13bの端面13b1、13b2から漏れる。このように、クラッド13bの端面13b1、13b2から光が漏れることによるクラッドモード光Lcの損失を、本明細書では「接続損失」という。接続損失は、端面13b1または端面13b2の面積に依存する。そして、端面13b1、13b2の面積は、接続部A1、A2で接続されるクラッド同士の外径比に依存する。
つまり、接続損失は、上記外径比に依存する。図4(a)に示すように、光ファイバ13のクラッド13bの直径を寸法aとし、共振器側クラッド17bまたは出力側クラッド18bの直径を寸法bとする。a÷bの値を、クラッド外径比a/bという。図4(b)の横軸はクラッド外径比a/bを示し、縦軸は接続損失(dB)を示している。図4(b)に示すように、クラッド外径比a/bの値が大きくなるほど、接続損失の値も大きくなる。
例えば、光ファイバ13のクラッド13bの直径(寸法a)が180μmであり、共振器側クラッド17bまたは出力側クラッド18bの直径(寸法b)が125μmである場合は、クラッド外径比a/bが180÷125=1.44となる。図4(b)に示すグラフから、クラッド外径比a/bが1.44の場合、接続損失が約3dBとなる。
例えば、光ファイバ13のクラッド13bの直径(寸法a)が300μmであり、共振器側クラッド17bまたは出力側クラッド18bの直径(寸法b)が125μmである場合は、クラッド外径比a/bが300÷125=2.4となる。図(b)に示すグラフから、クラッド外径比a/bが2.4の場合、接続損失が約7.5dBとなる。
このように、光ファイバ13のクラッド13bの直径を大きくするほど、接続損失は大きくなり、第2接続部A2におけるクラッドモード光の除去能力が高まる。さらに、前述の通り、光ファイバ13のクラッド13bの直径を大きくするほど、低屈折率材14またはクラッドモードストリッパ11における単位面積あたりの発熱量が抑えられる。従って、光デバイス10を構成する光ファイバ13のクラッド13bの外径は大きいことが好ましい。例えば、クラッド外径比a/bは1.44以上であることが好ましい。
なお、スラント型FBG12を形成する際、前記加工用光線をコア13aに精度よく照射させるために、光ファイバ13のクラッド13bの外径は例えば500μm以下であることが好ましい。
以上説明したように、本実施形態の光デバイス10によれば、スラント型FBG12によってコア13aから逃がされたSRS光は、低屈折率層13cによってクラッド13b内に閉じ込められる。そして、クラッド13b内を伝搬したSRS光は、クラッドモード除去部P1〜P3によって除去される。このように、クラッドモード除去部P1〜P3によってSRS光を除去することで、例えば保護被覆13dなどの意図しない部分にSRS光が照射されて強く発熱したり、SRS光が励起光源2,8に到達してこれらの励起光源2,8が損傷したりすることが抑えられる。
また、1つの光ファイバ13に、スラント型FBG12およびクラッドモード除去部P1〜P3が設けられている。これにより、スラント型FBG12によってクラッド13bへと逃がされたSRS光が、速やかにクラッドモード除去部P1〜P3によって除去される。また、光デバイス10が、1つの光ファイバ13によって構成されているため、異なる種類のファイバレーザ装置に、当該光デバイス10を適用しやすい。
また、複数のクラッドモード除去部P1〜P3が設けられていることで、SRS光を含むクラッドモード光を、より確実に除去することができる。
また、クラッド13bの端面13b1、13b2をクラッドモード除去部P2、P3として用いることで、端面13b1、13b2に接続される共振器側ファイバ17または出力側ファイバ18に、SRS光が入射されることを抑えることができる。従って、例えば高パワーのSRS光が、励起光源2、8に入射したり、出力側ファイバ18の先に接続される機器に入射したりすることを防止できる。
また、図2に示すように、クラッド13bのうち、コア13aにおけるスラント型FBG12が形成された領域を覆う部分の外周面が、低屈折率材14によって覆われている。低屈折率層13cよりも低い屈折率を有する材質で低屈折率材14を形成した場合には、スラント型FBG12で反射された直後の強いパワーを有するSRS光を、低屈折率材14によってより確実にクラッド13b内に閉じ込めることができる。これにより、スラント型FBG12の近傍が強く発熱するのを抑えることができる。
また、クラッドモード除去部P1〜P3は、低屈折率材14と長手方向において異なる位置に配置されており、この配置は任意に設定することができる。従って、クラッドモード光を、任意の位置でクラッドモード除去部P1〜P3によって除去することができる。
なお、光デバイス10に含まれるクラッドモード除去部P1〜P3は、ファイバレーザ装置1Aのうち、励起光源2、8が出射した残留励起光が実質的に到達しない領域に配置される。本実施形態における「残留励起光が実質的に到達しない領域」とは、例えばファイバレーザ装置1Aのうち、第2コンバイナ7よりも出力端9側に位置する部分である。当該領域では、コアに励起光が充分に吸収されているため、当該領域にクラッドモード除去部P1〜P3を配置することで、励起光が不意に除去されてしまうことが抑えられる。
なお、先述の通り、スラント型FBG12も、共振器Rの外部に配置されることが好ましい。従って、スラント型FBG12およびクラッドモード除去部P1〜P3を有する光デバイス10は、共振器Rの外部に配置されることが好ましい。
ファイバレーザ装置1Aおよび光デバイス10の構成は図1の例に限られず、適宜変更してもよい。例えば、クラッドモードストリッパ11を、スラント型FBG12よりも+X側(出力端9側)に配置してもよい。この場合には、出力端9からの反射光に含まれるSRS光を、有効に除去することができる。
あるいは、図5に示すように、スラント型FBG12の長手方向における両側にクラッドモードストリッパ11を配置してもよい。
(第2実施形態)
次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
本実施形態のファイバレーザ装置1Bは、後方励起光源を有していない片側励起型である。つまり、ファイバレーザ装置1Bは前方励起型のファイバレーザ装置である。
図6に示すように、ファイバレーザ装置1Bは、励起光源2と、第1コンバイナ3と、HR−FBG4と、増幅用ファイバ5と、OC−FBG6と、光デバイス10と、出力端9と、を備えている。HR−FBG4、増幅用ファイバ5、およびOC−FBG6は、共振器Rを構成している。光デバイス10は、OC−FBG6と出力端9との間に配置されている。光デバイス10は、スラント型FBG12と、その長手方向における両側に配置されたクラッドモードストリッパ(第1のクラッドモード除去部)11と、を備えている。図示は省略するが、第1接続部A1および第2接続部A2にはそれぞれ、第2、第3のクラッドモード除去部としての光ファイバの端面が含まれている。
本実施形態でも、励起光が意図せず除去されてしまうことを防ぐため、残留励起光が実質的に到達しない領域にクラッドモード除去部が配置されている。ここで、本実施形態における「残留励起光が実質的に到達しない領域」とは、ファイバレーザ装置1Bのうち、例えばOC−FBG6よりも出力端9側に位置する部分である。当該領域では、励起光が充分にコアに吸収されているため、クラッドモード除去部を設ける位置として好適である。
詳細な説明は省略するが、本実施形態のファイバレーザ装置1Bでも、第1実施形態と同様の作用効果を得ることができる。
なお、ファイバレーザ装置1Bの構成は図7の例に限られず、適宜変更してもよい。例えば図7に示すように、光デバイス10を増幅用ファイバ5とOC−FBG6との間、すなわち共振器R内に配置してもよい。この場合でも、増幅用ファイバ5内で励起光が充分にコアに吸収され、残留励起光が実質的に到達しない領域に光デバイス10を配置することで、第1実施形態と同様の作用効果を得ることができる。
なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記実施形態のファイバレーザ装置1A、1Bは1つの出力端9を有していたが、出力端9の先にさらに光ファイバなどを接続してもよい。また、出力端9の先にビームコンバイナを接続し、複数のファイバレーザ装置からのレーザ光を束ねるように構成されていてもよい。
また、前記実施形態では、図2に示すように一つの光ファイバ13にクラッドモード除去部P1〜P3およびスラント型FBG12が設けられていたが、この光ファイバ13を分割した形態を採用してもよい。つまり、光デバイス10は、クラッドモード除去部P1〜P3の少なくとも1つを有する第1光ファイバと、スラント型FBG12を有する第2光ファイバと、を融着接続した構造を有してもよい。
また、本明細書における光デバイス10を、MOPA(Master Oscillator Power Amplifier)方式のファイバレーザ装置に採用してもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
1A〜1C…ファイバレーザ装置 2…前方励起光源(励起光源) 5…増幅用ファイバ 8…後方励起光源(励起光源) 10…光デバイス 11…クラッドモードストリッパ 11a…高屈折率材 11a1…連結部 11a2…接触部 12…スラント型FBG 13…光ファイバ 13a…コア 13b…クラッド 13c…低屈折率層 13d…保護被覆 13b1…第1端面(端面) 13b2…第2端面(端面) 13d…保護被覆 14…低屈折率材 P1〜P3…クラッドモード除去部 R…共振器

Claims (12)

  1. コアと、
    前記コアを覆い、前記コアよりも低い屈折率を有するクラッドと、
    前記クラッドを覆い、前記クラッドよりも低い屈折率を有する低屈折率層と、
    前記コアに形成されたスラント型FBGと、
    前記スラント型FBGによって前記コアから前記クラッドへ結合したSRS光を含むクラッドモード光を前記クラッド内から除去する、少なくとも1つのクラッドモード除去部と、を備え
    前記コア、前記クラッド、および前記低屈折率層は光ファイバを構成し、前記クラッドモード除去部は前記光ファイバに設けられており、
    前記クラッドのうち、前記コアにおける前記スラント型FBGが形成された領域を覆う部分の外周面が、前記低屈折率層よりも低い屈折率を有する低屈折率材によって覆われ、
    前記クラッドの長手方向において、前記クラッドモード除去部と前記低屈折率材とが異なる位置に配置されており、
    前記クラッドモード除去部と前記低屈折率材との間には、前記長手方向に沿って前記低屈折率層が設けられている、光デバイス。
  2. 前記クラッドモード除去部は、前記クラッドの外周面に接触し、かつ該クラッドの屈折率よりも高い屈折率を有する高屈折率材によって構成されたクラッドモードストリッパである、請求項1に記載の光デバイス。
  3. 前記クラッドモードストリッパは、前記クラッドの長手方向に沿って前記スラント型FBGから遠ざかるに従って、前記クラッドモード光の除去能力が高まるように構成されている、請求項に記載の光デバイス。
  4. 前記高屈折率材は、
    前記長手方向に間隔を空けて配置され、かつ前記クラッドの外周面に接触する複数の接触部と、
    前記複数の接触部を互いに連結する連結部と、を有し、
    前記長手方向における前記複数の接触部のそれぞれの幅は、前記スラント型FBGから遠ざかるに従って大きくなっている、請求項に記載の光デバイス。
  5. 前記クラッドモード除去部は前記クラッドの長手方向における端面である、請求項1に記載の光デバイス。
  6. 前記クラッドの長手方向における両方の端面がそれぞれ前記クラッドモード除去部である、請求項に記載の光デバイス。
  7. 第1の光ファイバおよび前記第1の光ファイバの第1の端部に接続された第2の光ファイバを備え、
    前記第1の光ファイバは、スラント型FBGが形成された第1のコアと、前記第1のコアを覆い、前記第1のコアよりも低い屈折率を有する第1のクラッドと、前記第1のクラッドを覆い、前記第1のクラッドよりも低い屈折率を有する第1の低屈折率層と、を有し、
    前記第2の光ファイバは、第2のコアと、前記第2のコアを覆い、前記第2のコアよりも低い屈折率を有する第2のクラッドと、前記第2のクラッドを覆い、前記第2のクラッドよりも低い屈折率を有する第2の低屈折率層と、を有し、
    前記第1のクラッドの外径は、前記第2のクラッドの外径よりも大きく、
    前記第1の端部における前記第1のクラッドの端面が、前記スラント型FBGによって前記第1のコアから前記第1のクラッドへ結合したSRS光を含むクラッドモード光を前記第1のクラッド内から除去するクラッドモード除去部である、光デバイス。
  8. 前記第1の光ファイバの第2の端部に接続された第3の光ファイバをさらに備え、
    前記第3の光ファイバは、第3のコアと、前記第3のコアを覆い、前記第3のコアよりも低い屈折率を有する第3のクラッドと、前記第3のクラッドを覆い、前記第3のクラッドよりも低い屈折率を有する第3の低屈折率層と、を有し、
    前記第1のクラッドの外径は、前記第3のクラッドの外径よりも大きく、
    前記第2の端部における前記第1のクラッドの端面が、前記クラッドモード光を前記第1のクラッド内から除去するクラッドモード除去部である、請求項7に記載の光デバイス。
  9. 請求項1から8のいずれか1項に記載の光デバイスと、
    励起光源と、
    共振器と、を備える、ファイバレーザ装置。
  10. 前記クラッドモード除去部が、前記励起光源が出射した残留励起光が実質的に到達しない領域に配置されている、請求項9に記載のファイバレーザ装置。
  11. 前記ファイバレーザ装置は、前方励起光源および後方励起光源を備える双方向励起型であって、前記共振器と前記前方励起光源との間に設けられた第1コンバイナと、前記共振器と前記後方励起光源との間に設けられた第2コンバイナと、を有し、
    前記領域は、前記第2コンバイナよりも出力端側に位置する部分である、請求項10に記載のファイバレーザ装置。
  12. 前記ファイバレーザ装置は前方励起型であり、
    前記共振器は、
    励起状態で光を放出する活性元素がコアに添加された増幅用ファイバと、
    前記活性元素が放出する光の少なくとも一部を反射する第1FBGと、
    前記第1FBGが反射する光を前記第1FBGよりも低い反射率で反射する第2FBGと、を有し、
    前記領域は、前記第2FBGよりも出力端側に位置する部分である、請求項10に記載のファイバレーザ装置。
JP2018059146A 2018-03-27 2018-03-27 光デバイスおよびファイバレーザ装置 Active JP6550494B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059146A JP6550494B1 (ja) 2018-03-27 2018-03-27 光デバイスおよびファイバレーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059146A JP6550494B1 (ja) 2018-03-27 2018-03-27 光デバイスおよびファイバレーザ装置

Publications (2)

Publication Number Publication Date
JP6550494B1 true JP6550494B1 (ja) 2019-07-24
JP2019174502A JP2019174502A (ja) 2019-10-10

Family

ID=67390341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059146A Active JP6550494B1 (ja) 2018-03-27 2018-03-27 光デバイスおよびファイバレーザ装置

Country Status (1)

Country Link
JP (1) JP6550494B1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886374A (zh) * 2021-01-22 2021-06-01 苏州创鑫激光科技有限公司 抑制受激拉曼散射效应的光纤激光器及其制造方法
WO2021210267A1 (ja) * 2020-04-15 2021-10-21 株式会社フジクラ 光デバイス及びファイバレーザ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134722A (ja) * 2019-02-20 2020-08-31 株式会社フジクラ 光デバイス及びレーザ装置
JP7473365B2 (ja) 2020-03-11 2024-04-23 株式会社フジクラ 光デバイス及びレーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210267A1 (ja) * 2020-04-15 2021-10-21 株式会社フジクラ 光デバイス及びファイバレーザ装置
JPWO2021210267A1 (ja) * 2020-04-15 2021-10-21
JP7284869B2 (ja) 2020-04-15 2023-05-31 株式会社フジクラ 光デバイス及びファイバレーザ装置
CN112886374A (zh) * 2021-01-22 2021-06-01 苏州创鑫激光科技有限公司 抑制受激拉曼散射效应的光纤激光器及其制造方法

Also Published As

Publication number Publication date
JP2019174502A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6550494B1 (ja) 光デバイスおよびファイバレーザ装置
JP5265211B2 (ja) 迷光を放散させるための光ファイバの構成
JP6007238B2 (ja) ファイバレーザ装置およびレーザ光照射位置の位置決め方法
CN110418992B (zh) 包层模光除去构造和激光装置
JP2005303166A (ja) 光ファイバ端面構造、光ファイバレーザ及びレーザ加工装置
CN111630448A (zh) 滤波元件、激光装置、光纤激光装置、滤波方法、以及激光装置的制造方法
JP5378861B2 (ja) 光ファイバレーザ
WO2011160234A2 (en) Active optical device component with large area bragg grating
JP6785901B2 (ja) フィルタ装置、レーザ装置
JP6744074B2 (ja) 光ファイバグレーティング用光ファイバおよびファイバレーザ装置
JP6740273B2 (ja) ファイバレーザ装置
WO2020171152A1 (ja) 光デバイス及びレーザ装置
JP7300512B2 (ja) 光増幅装置
WO2020203136A1 (ja) ファイバレーザ装置
JP2019070599A (ja) 光検出装置及びレーザ装置
JP5014640B2 (ja) マルチモードファイバ、光増幅器及びファイバレーザ
WO2019189317A1 (ja) 光検出装置及びレーザシステム
JP4873645B2 (ja) 光ファイバラマンレーザ装置
JP7473365B2 (ja) 光デバイス及びレーザ装置
JP6499126B2 (ja) 光コンバイナ、光増幅器、及び、レーザ装置
WO2020241363A1 (ja) 光ファイバ装置
JP2014029548A (ja) 光ファイバの被覆部端部の保護構造、レーザ光源装置、および光ファイバの被覆部端部の保護方法
KR101872438B1 (ko) 광섬유 증폭기 보호용 멀티코어 광섬유
WO2020105553A1 (ja) クラッドモード光除去構造及びレーザ装置
JP2022114272A (ja) 光デバイス及びレーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181029

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190701

R151 Written notification of patent or utility model registration

Ref document number: 6550494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250