WO2016031134A1 - 圧電体膜とその製造方法、圧電素子、及び液体吐出装置 - Google Patents

圧電体膜とその製造方法、圧電素子、及び液体吐出装置 Download PDF

Info

Publication number
WO2016031134A1
WO2016031134A1 PCT/JP2015/003738 JP2015003738W WO2016031134A1 WO 2016031134 A1 WO2016031134 A1 WO 2016031134A1 JP 2015003738 W JP2015003738 W JP 2015003738W WO 2016031134 A1 WO2016031134 A1 WO 2016031134A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric film
film
crystal
rhombohedral
Prior art date
Application number
PCT/JP2015/003738
Other languages
English (en)
French (fr)
Inventor
直樹 村上
高見 新川
藤井 隆満
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016544923A priority Critical patent/JP6392360B2/ja
Publication of WO2016031134A1 publication Critical patent/WO2016031134A1/ja
Priority to US15/439,564 priority patent/US10011111B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14209Structure of print heads with piezoelectric elements of finger type, chamber walls consisting integrally of piezoelectric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/164Manufacturing processes thin film formation
    • B41J2/1646Manufacturing processes thin film formation thin film formation by sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices

Definitions

  • the present invention relates to a lead zirconate titanate-based piezoelectric film, a manufacturing method thereof, a piezoelectric element using the piezoelectric film, and a liquid discharge device.
  • An actuator such as an ink jet recording head includes a piezoelectric element including a piezoelectric body having piezoelectricity that expands and contracts as the electric field application intensity increases and decreases, and an electrode that applies an electric field to the piezoelectric body. Yes.
  • actuators have been miniaturized in combination with semiconductor process technology such as MEMS (Micro Electro-Mechanical Systems) technology in order to meet the demand for miniaturization of devices.
  • MEMS Micro Electro-Mechanical Systems
  • high-precision processing using film formation, photolithography, or the like is possible, and therefore, studies are being conducted on actuators to reduce the thickness of piezoelectric materials.
  • PZT lead zirconate titanate
  • MPB morphotropic phase boundary
  • Patent Document 1 in a piezoelectric element including a piezoelectric thin film in which a lead titanate layer having a columnar structure and a lead zirconate layer are stacked, the composition of lead titanate and lead zirconate in the piezoelectric thin film is expressed as MPB. It is described that the piezoelectric characteristics are improved by using the composition.
  • a PZT piezoelectric film is doped with various donor ions having a valence higher than that of the ion to be substituted. Since the ion valence of Zr and Ti at the B site is tetravalent, the ion valences of V, Nb, Ta, Sb, Mo, W, etc. are 5 or more as the donor ions for substituting the B site element. B site element is used.
  • Patent Document 2 discloses a composition for a PZT actuator having a rhombohedral composition with respect to the MPB composition, in which Sr, Ba, and / or La is doped at the A site of PZT and Sb or Nb is doped at the B site. Is disclosed. Patent Document 2 describes that a multilayer actuator using a rhombohedral PZT-based composition has excellent characteristics and has little deterioration in displacement characteristics when it is used for durability.
  • Patent Document 3 describes that in a PZT-based ferroelectric film, at least one of Si, Ge, and Sn is added as an A site ion in order to dope Nb as a B site ion at a high concentration.
  • the compensation ion added to the A site in Patent Document 3 is a sintering aid for promoting the sintering and obtaining the thermal equilibrium state in the thermal equilibrium process by the sol-gel method, and increasing the crystallization temperature by Nb doping. It is essential to suppress. However, when such a sintering aid is added, the piezoelectric characteristics are lowered, so that the effect of adding donor ions cannot be sufficiently obtained.
  • Patent Document 4 describes an Nb-doped PZT film in which the effect of adding donor ions is sufficiently obtained by controlling film formation conditions in a non-thermal equilibrium process. In Patent Document 4, an Nb-doped PZT film having an MPB composition has also been successfully produced.
  • the present invention has been made in view of the above circumstances, and uses an Nb-doped PZT-based piezoelectric film having high piezoelectric characteristics and small deterioration in piezoelectric characteristics during long-term driving, a manufacturing method thereof, and the piezoelectric film.
  • An object of the present invention is to provide a piezoelectric element and a liquid ejection device.
  • the piezoelectric film of the present invention is a piezoelectric film containing a perovskite oxide represented by the following formula (P),
  • the crystal phase of the perovskite oxide contains tetragonal crystals and rhombohedral crystals at a ratio satisfying the following formula (1).
  • A is an A site element containing Pb as a main component
  • Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • the value indicated by rhombohedral / (rhombohedral + tetragonal) in the formula (1) indicates the ratio of rhombohedral in the crystal phase (rombohedral + tetragonal) of the perovskite oxide. Is.
  • the amount of each crystal phase in PZT is evaluated based on the peak area of each crystal phase obtained by high resolution X-ray diffraction (high resolution XRD) of the piezoelectric film.
  • the amount of rhombohedral crystal is the peak area of the diffraction peak of the rhombohedral crystal
  • the tetragonal amount is the sum of the peak areas of the diffraction peaks of the a-axis oriented tetragonal crystal and the c-axis oriented tetragonal crystal.
  • FIG. 6 shows an XRD spectrum obtained by peak-separating the obtained perovskite type (200) orientation peak by high resolution XRD. It is assumed that peak separation is performed by performing peak detection by fitting using a pseudo-Voigt function.
  • A is an A-site element containing Pb as a main component
  • x representing the ratio of Zr when the sum of Zr and Ti is 1 is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), Preferably it is greater than 0.5.
  • the excluded value of x 0.51 ⁇ x ⁇ 0.53 is the MPB composition. That is, in the piezoelectric film of the present invention, rhombohedral crystals and tetragonal crystals are mixed in a composition region other than the MPB composition.
  • the piezoelectric film of the present invention is preferably a columnar crystal film composed of a number of columnar crystals.
  • the piezoelectric film of the present invention can be manufactured by the following method for manufacturing a piezoelectric film of the present invention.
  • the method for producing a piezoelectric film of the present invention is a method for producing a piezoelectric film containing a perovskite oxide represented by the following formula (Q) on a substrate by a sputtering method using plasma.
  • a sputtering method a single target is used, and the film temperature Ts during film formation satisfies the following formula (2), and the power density D on the target satisfies the following formula (4).
  • the second manufacturing method uses two targets in the sputtering method, the substrate temperature Ts during film formation satisfies the following formula (2), and the power density D on the target satisfies the following formula (5).
  • the film is formed as a range that satisfies the conditions.
  • A is an A site element containing Pb as a main component, and Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • the substrate temperature Ts is preferably 450 ⁇ Ts (° C.) ⁇ 650.
  • film formation temperature Ts (° C.) means the temperature of the central portion of the substrate surface on which film formation is performed.
  • power density D on target means the power density on the sputtering surface of the target.
  • the power density is a value obtained by dividing the deposition power during sputtering by the surface area of the target.
  • the piezoelectric element of the present invention comprises the above-described piezoelectric film of the present invention and an electrode for applying an electric field to the piezoelectric film.
  • a liquid ejection apparatus according to the present invention includes the piezoelectric element according to the present invention, and a liquid ejection member provided integrally or as a separate body with the piezoelectric element.
  • the liquid ejection member includes a liquid storage chamber in which liquid is stored. And a liquid discharge port through which liquid is discharged from the liquid storage chamber to the outside.
  • the piezoelectric film of the present invention is an Nb-doped PZT-based piezoelectric film, and in a composition region other than the MPB composition, rhombohedral crystals and tetragonal crystals have a ratio of 0.70 ⁇ rhombohedral crystals / (rhombohedral crystals + tetragonal). Crystal)) ⁇ 0.95.
  • a diagram schematically showing the state during sputtering film formation A diagram schematically showing the crystal phase of a piezoelectric film manufactured by a conventional method
  • Sectional drawing which shows the structure of the piezoelectric element of embodiment which concerns on this invention, and an inkjet recording head (liquid discharge apparatus)
  • Partial top view of the ink jet recording apparatus of FIG. Diagram showing peak separation by high resolution X-ray diffraction (XRD) for Nb-doped PZT film XRD spectrum of the Nb-doped PZT film obtained in Example 1
  • XRD X-ray diffraction
  • a morphotropic phase boundary (MPB :) where Zr: Ti is near 52:48 (0.51 ⁇ Zr / (Zr + Ti) ⁇ 0.53).
  • a piezoelectric film having a Morphotropic Phase Boundary composition has the highest piezoelectric constant and electromechanical coupling coefficient, and is known to be suitable for actuator applications.
  • Patent Document 4 describes that in an Nb-doped PZT film having such a composition, a high-performance piezoelectric film having a piezoelectric constant d 31 measured by a cantilever beam of 250 pm / V was obtained.
  • the present inventors diligently examined the manufacturing conditions in the sputtering method for further enhancement of the characteristics and to obtain a piezoelectric film having a small deterioration in piezoelectric characteristics during long-term driving.
  • the present inventors pay attention to the high piezoelectric characteristics in the MPB composition and the excellent characteristics and long-term driving stability in the rhombohedral PZT actuator, and the Nb-doped PZT is rich in rhombohedral and mixed with tetragonal crystals.
  • PZT is a mixed crystal of lead titanate (PbTiO 3 (PT)) whose tetragonal crystal is the most stable crystal phase and lead zirconate (PbZrO 3 (PZ)) whose rhombohedral crystal is the most stable crystal phase.
  • PT lead titanate
  • PZ lead zirconate
  • the composition rich in lead titanate is tetragonal and the composition rich in lead zirconate is rhombohedral with the MPB composition as a boundary.
  • tetragonal crystals and rhombohedral crystals usually coexist only in the vicinity of the MPB composition, and it is difficult to control the ratio of tetragonal crystals and rhombohedral crystals in the MPB composition.
  • the inventors pay attention to the fact that the higher the power density on the target is, the easier it is to mix Zr and Ti in the film formation by sputtering, and the Zr and Ti are less likely to mix the power density on the target.
  • Nb-doped PZT under such conditions, it was considered that PT and PZ are unevenly distributed in the film, and tetragonal crystals and rhombohedral crystals can be mixed even in compositions other than the MPB composition.
  • rhombohedral and tetragonal crystals obtained by such a production method are mixed in a range of a ratio of 0.70 ⁇ rhombohedral / (rhombohedral + tetragonal) ⁇ 0.95. It has been found that a doped PZT film is a piezoelectric film that has high piezoelectric characteristics and little deterioration in piezoelectric characteristics during long-term driving, even with compositions other than the MPB composition.
  • the piezoelectric film of the present invention is a piezoelectric film containing a perovskite oxide represented by the following formula (P), and the crystal phase of the perovskite oxide satisfies the following formula (1). It contains tetragonal crystals and rhombohedral crystals.
  • A is an A site element containing Pb as a main component
  • Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • the method for producing a piezoelectric film of the present invention is a method for producing a piezoelectric film made of a perovskite oxide represented by the following formula (Q) on a substrate by sputtering using plasma.
  • a single target is used, and film formation is performed under conditions where the substrate temperature Ts during film formation satisfies the following formula (2) and the power density D on the target satisfies the following formula (4).
  • the second manufacturing method uses two targets, the film temperature Ts during film formation satisfies the following formula (2), and the power density D on the target satisfies the following formula (5). To do.
  • A is an A site element containing Pb as a main component, and Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • the method for manufacturing a piezoelectric film of the present invention is a method of forming an Nb-doped PZT thin film in which rhombohedral crystals and tetragonal crystals are mixed regardless of the composition ratio of Zr and Ti by sputtering.
  • Zr and Ti are used when the target used is one target (target composition is Nb-doped PZT) and when two targets are used (target composition is PZ and PT, and Nb is doped at least one of them).
  • Ease of mixing with is different. Since Zr and Ti are more easily mixed in one target, the range of power density D of the first manufacturing method of one target is higher than the range of power density D of the second manufacturing method of two targets. The upper limit on the density side is low. When the power density D increases, Zr and Ti tend to be mixed easily.
  • FIG. 1A is a diagram schematically showing a state during film formation in a sputtering method.
  • the film formation gas is turned into plasma by the discharge of the plasma electrode of the sputtering apparatus to generate a plasma space P.
  • positive ions Ip of the film forming gas are generated, and these positive ions Ip sputter the target T.
  • the constituent element Tp of the target T sputtered by the positive ions Ip is formed on the substrate B in a neutral or ionized state released from the target T.
  • a sputtered film having a predetermined thickness is formed.
  • FIG. 1B is a diagram schematically showing the state of the crystal phase of the manufactured piezoelectric film.
  • the conventional method since the power density on the surface of the target T is higher than that of the method for manufacturing a piezoelectric film of the present invention, the deposited particles are likely to be mixed together. Therefore, lead titanate (PT) and zirconate A PZT film (Nb-doped PZT film) in which lead (PZ) is sufficiently dissolved can be obtained.
  • FIG. 1C is a diagram schematically showing the crystal phase of the piezoelectric film manufactured by the method for manufacturing a piezoelectric film of the present invention.
  • Nb-doped PZT is formed under the condition that the power density on the target is difficult to mix Zr and Ti. Therefore, the formed film is a tetragonal and rhombohedral structure in which PT and PZ, which are not sufficiently dissolved, are stable in a film in which lead titanate and lead zirconate are dissolved to form PZT.
  • the present inventors infer that it exists as a crystal.
  • a target having a low target ratio and a high target density As a PZT target, a target having a high target density of 95 to 99% is usually used for both one target and two targets.
  • a target having a normal target density can be used as the target.
  • Zr and Ti are more difficult to atomize and fly in clusters.
  • Zr and Ti are hardly mixed in the substrate, and regions having different Zr / Ti ratios are formed. Therefore, in the first manufacturing method, it is preferable to use a target having a higher target density.
  • the temperature Ts of the substrate during film formation is not particularly limited because it becomes a perovskite oxide having no high-temperature pyrochlore phase within the range of the above formula (2).
  • the substrate temperature Ts is 400 ° C. or lower, perovskite-type crystal growth is difficult, and when it is 750 ° C. or higher, a high-temperature pyrochlore phase is likely to be mixed.
  • Ts is preferably 450 ⁇ Ts (° C.) ⁇ 650.
  • FIG. 2 is a graph showing the relationship between the B-site element composition ratio and the rhombohedral ratio for the Nb-doped PZT film obtained in the example and the Nb-doped PZT film obtained by the conventional method.
  • the conventional method an Nb-doped PZT film having a tetragonal crystal structure in the lead titanate rich composition and a rhombohedral crystal in the lead zirconate rich composition than the MPB composition is obtained.
  • the crystal phase is dislocated.
  • an Nb-doped PZT piezoelectric film represented by the following general formula (Q) can be manufactured.
  • A is an A site element containing Pb as a main component
  • Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • the doping rate a of Nb into the B site is 0.08 or more from the viewpoint of obtaining an effect on the piezoelectric properties of the donor dope. Since the effect of improving the piezoelectric characteristics is obtained as the value of a increases, it is preferably 0.20 or more, and is preferably as large as possible within the perovskite structure.
  • is normally 0, but Pb is an element that is easily reverse sputtered. If Pb is removed from the formed piezoelectric film, it adversely affects crystal growth. In many cases, the film is formed with an amount larger than the stoichiometric composition of PZT. In that case, depending on the reverse sputtering rate of Pb, the formed film may also become Pb rich. Pb deficiency may be present as long as the characteristics are not hindered. However, by setting the range of 0 ⁇ ⁇ ⁇ 0.2, a high-quality perovskite oxide film without Pb deficiency can be obtained.
  • the Nb-doped PZT film obtained in Examples described later was subjected to compositional analysis by X-ray fluorescence (XRF), and it was confirmed that the range was 0 ⁇ ⁇ ⁇ 0.2. ing.
  • the substrate temperature Ts and x representing the ratio of Zr when the total of Zr and Ti is 1, range from 0.4 to less than 1 (however, (Except 0.51 ⁇ x ⁇ 0.53), rhombohedral crystals and tetragonal crystals in the piezoelectric film can be in a range satisfying the following formula (1).
  • the piezoelectric film of the present invention is a piezoelectric film containing a perovskite oxide represented by the following formula (P), and the crystal phase of the perovskite oxide is square at a ratio satisfying the following formula (1).
  • Crystal and rhombohedral crystal A 1 + ⁇ [(Zr x Ti 1-x ) 1-a Nb a ] O y (P), 0.70 ⁇ rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) ⁇ 0.95 (1),
  • A is an A site element containing Pb as a main component
  • Zr, Ti, and Nb are B site elements.
  • x is 0.4 or more and less than 1 (except 0.51 ⁇ x ⁇ 0.53), and a is 0.08 or more.
  • 0.51 ⁇ x ⁇ 0.53 is a so-called PZT MPB composition and a composition in the vicinity thereof. Even in the case of 0.51 ⁇ x ⁇ 0.53, the effect of the present invention can be obtained as long as the above formula (1) is satisfied.
  • the composition in the range of x is a tetragonal crystal even by a conventional method. A mixture of rhombohedral crystals can be produced.
  • the rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) values in the obtained piezoelectric film are not necessarily the same between the conventional method and the present invention. They are thinking.
  • the piezoelectric film of the present invention preferably has a columnar crystal film structure composed of a number of columnar crystals extending non-parallel to the substrate surface.
  • the growth direction of the columnar crystals may be non-parallel to the substrate surface, and may be substantially vertical or oblique.
  • the alignment film since the alignment film has a uniform crystal orientation, higher piezoelectric performance can be obtained.
  • the average column diameter of many columnar crystals forming the piezoelectric film is not particularly limited, and is preferably 30 nm or more and 1 ⁇ m or less. By setting the average column diameter of the columnar crystals within this range, it is possible to achieve good crystal growth and to obtain a piezoelectric film that can be patterned with high accuracy.
  • the average column diameter of a columnar crystal here means the average value of the column diameters of all the columnar crystals in the horizontal direction at a certain position in the film thickness direction.
  • the piezoelectric film of the present invention is manufactured, and the piezoelectric characteristics and the deterioration rate of the piezoelectric characteristics are evaluated.
  • the piezoelectric film of the present invention has a piezoelectric constant d 31 of 200 pm / V or higher, and a high piezoelectric property exceeding 250 pm / V can be obtained in a system doped with 20% Nb. ing.
  • the deterioration rate of the piezoelectric characteristics when the value of rhombohedral / (rhombohedral + tetragonal) exceeds 0.95, the deterioration rate increases. It has been shown that deterioration of piezoelectric characteristics at the time can be suppressed.
  • the piezoelectric film of the present invention is an Nb-doped PZT-based piezoelectric film, and in a composition other than the MPB composition, rhombohedral crystals and tetragonal crystals have 0.70 ⁇ rhombohedral crystals / ( Rhombohedral crystals + tetragonal crystals) ⁇ 0.95.
  • rhombohedral crystals and tetragonal crystals have 0.70 ⁇ rhombohedral crystals / ( Rhombohedral crystals + tetragonal crystals) ⁇ 0.95.
  • FIG. 3 is a cross-sectional view of the main part of the ink jet recording head. In order to facilitate visual recognition, the scale of the constituent elements is appropriately changed from the actual one.
  • the piezoelectric element (ferroelectric element) 1 of the present embodiment is an element in which a lower electrode 30, a piezoelectric film 40, and an upper electrode 50 are sequentially stacked on a substrate 20, and with respect to the piezoelectric film 40, An electric field is applied in the thickness direction by the lower electrode 30 and the upper electrode 50.
  • the piezoelectric film 40 is the piezoelectric film of the present invention.
  • the lower electrode 30 is formed on substantially the entire surface of the substrate 20, and a piezoelectric film 40 having a pattern in which line-shaped convex portions 41 extending from the front side to the rear side in the drawing are arranged in a stripe shape is formed thereon.
  • An upper electrode 50 is formed on the portion 41.
  • the pattern of the piezoelectric film 40 is not limited to that shown in the figure, and is appropriately designed.
  • the piezoelectric film 40 may be a continuous film.
  • the piezoelectric film 40 is not a continuous film, but is formed by a pattern made up of a plurality of protrusions 41 separated from each other, so that the expansion and contraction of the individual protrusions 41 occurs smoothly, so that a larger displacement amount can be obtained. ,preferable.
  • the substrate 20 is not particularly limited, and examples thereof include silicon, glass, stainless steel (SUS), yttrium-stabilized zirconia (YSZ), alumina, sapphire, silicon carbide and the like.
  • a laminated substrate such as an SOI substrate in which a SiO 2 oxide film is formed on the surface of a silicon substrate may be used.
  • the main component of the lower electrode 30 is not particularly limited, and examples thereof include metals or metal oxides such as Au, Pt, Ir, IrO 2 , RuO 2 , LaNiO 3 , and SrRuO 3 , and combinations thereof.
  • the main component of the upper electrode 50 is not particularly limited, and examples thereof include materials exemplified for the lower electrode 30, electrode materials generally used in semiconductor processes such as Al, Ta, Cr, and Cu, and combinations thereof. .
  • the thickness of the lower electrode 30 and the upper electrode 50 is not particularly limited, and is, for example, about 200 nm.
  • the film thickness of the piezoelectric film 40 is not particularly limited and is usually 1 ⁇ m or more, for example, 1 to 5 ⁇ m.
  • the film thickness of the piezoelectric film 40 is preferably 3 ⁇ m or more.
  • the ink jet recording head (liquid ejecting apparatus) 2 generally includes an ink chamber (liquid storage chamber) 71 in which ink is stored and an ink chamber on the lower surface of the substrate 20 of the piezoelectric element 1 having the above configuration via a vibration plate 60.
  • a plurality of ink chambers 71 are provided corresponding to the number and pattern of the convex portions 41 of the piezoelectric film 40.
  • the electric field strength applied to the convex portion 41 of the piezoelectric element 1 is increased / decreased for each convex portion 41 to expand / contract, thereby controlling the ejection of ink from the ink chamber 71 and the ejection amount. Is called.
  • a part of the substrate 20 may be processed into the vibration plate 60 and the ink nozzle 70.
  • the substrate 20 is made of a laminated substrate such as an SOI substrate
  • the substrate 20 is etched from the back side to form the ink chamber 71, and the vibration plate 60 and the ink nozzle 70 are formed by processing the substrate itself.
  • the piezoelectric element 1 and the ink jet recording head 2 of the present embodiment are configured as described above.
  • FIG. 4 is an overall view of the apparatus
  • FIG. 5 is a partial top view.
  • the illustrated ink jet recording apparatus 100 includes a printing unit 102 having a plurality of ink jet recording heads (hereinafter simply referred to as “heads”) 2K, 2C, 2M, and 2Y provided for each ink color, and each head 2K, An ink storage / loading unit 114 that stores ink to be supplied to 2C, 2M, and 2Y, a paper feeding unit 118 that supplies recording paper 116, a decurling unit 120 that removes curling of the recording paper 116, and a printing unit An adsorption belt conveyance unit 122 that conveys the recording paper 116 while maintaining the flatness of the recording paper 116, and a print detection unit that reads a printing result by the printing unit 102. 124 and a paper discharge unit 126 that discharges printed recording paper (printed matter) to the outside.
  • heads ink jet recording heads
  • An ink storage / loading unit 114 that stores ink to be supplied to 2C, 2M, and 2Y
  • a paper feeding unit 118 that supplies recording
  • the heads 2K, 2C, 2M, and 2Y that form the printing unit 102 are the ink jet recording heads 2 of the above-described embodiment.
  • a cutter 128 is provided at the subsequent stage of the decurling unit 120, and the roll paper is cut into a desired size by this cutter.
  • the cutter 128 includes a fixed blade 128A having a length equal to or larger than the conveyance path width of the recording paper 116, and a round blade 128B that moves along the fixed blade 128A.
  • the fixed blade 128A is provided on the back side of the print.
  • the round blade 128B is arranged on the print surface side with the conveyance path interposed therebetween. In an apparatus using cut paper, the cutter 128 is unnecessary.
  • the decurled and cut recording paper 116 is sent to the suction belt conveyance unit 122.
  • the suction belt conveyance unit 122 has a structure in which an endless belt 133 is wound between rollers 131 and 132, and at least portions facing the nozzle surface of the printing unit 102 and the sensor surface of the printing detection unit 124 are horizontal ( Flat surface).
  • the belt 133 has a width that is wider than the width of the recording paper 116, and a plurality of suction holes (not shown) are formed on the belt surface.
  • An adsorption chamber 134 is provided at a position facing the nozzle surface of the printing unit 102 and the sensor surface of the print detection unit 124 inside the belt 133 that is stretched between the rollers 131 and 132.
  • the recording paper 116 on the belt 133 is sucked and held by suctioning at 135 to make a negative pressure.
  • the belt 133 When the power of a motor (not shown) is transmitted to at least one of the rollers 131 and 132 around which the belt 133 is wound, the belt 133 is driven in the clockwise direction in FIG. 4 and is held on the belt 133.
  • the recording paper 116 is conveyed from left to right in FIG.
  • the belt cleaning unit 136 is provided at a predetermined position (an appropriate position other than the printing region) outside the belt 133.
  • a heating fan 140 is provided on the upstream side of the printing unit 102 on the paper conveyance path formed by the suction belt conveyance unit 122.
  • the heating fan 140 heats the recording paper 116 by blowing heated air onto the recording paper 116 before printing. Heating the recording paper 116 immediately before printing makes it easier for the ink to dry after landing.
  • the printing unit 102 is a so-called full line type head in which line type heads having a length corresponding to the maximum paper width are arranged in a direction orthogonal to the paper feed direction (main scanning direction) (see FIG. 5).
  • Each of the print heads 2K, 2C, 2M, and 2Y is a line-type head in which a plurality of ink discharge ports (nozzles) are arranged over a length that exceeds at least one side of the maximum size recording paper 116 targeted by the ink jet recording apparatus 100. It is configured.
  • Heads 2K, 2C, 2M, and 2Y corresponding to the respective color inks are arranged in the order of black (K), cyan (C), magenta (M), and yellow (Y) from the upstream side along the feeding direction of the recording paper 116. ing.
  • a color image is recorded on the recording paper 116 by ejecting the color inks from the heads 2K, 2C, 2M, and 2Y while conveying the recording paper 116, respectively.
  • the print detection unit 124 includes a line sensor that images the droplet ejection result of the print unit 102 and detects ejection defects such as nozzle clogging from the droplet ejection image read by the line sensor.
  • a post-drying unit 142 composed of a heating fan or the like for drying the printed image surface is provided at the subsequent stage of the print detection unit 124. Since it is preferable to avoid contact with the printing surface until the ink after printing is dried, a method of blowing hot air is preferred.
  • a heating / pressurizing unit 144 is provided to control the glossiness of the image surface.
  • the heating / pressurizing unit 144 presses the image surface with a pressure roller 145 having a predetermined surface irregularity shape while heating the image surface, and transfers the irregular shape to the image surface.
  • the printed matter obtained in this manner is outputted from the paper output unit 126. It is preferable that the original image to be printed (printed target image) and the test print are discharged separately.
  • sorting means (not shown) for switching the paper discharge path in order to select the print product of the main image and the print product of the test print and send them to the discharge units 126A and 126B. It has been.
  • the cutter 148 may be provided to separate the test print portion.
  • the ink jet recording apparatus 100 is configured as described above.
  • Example 1 As a film formation substrate, a substrate with an electrode was prepared in which a 10 nm thick Ti adhesion layer and a 300 nm thick Ir lower electrode were sequentially laminated on a 25 mm square SOI (Silicon on Insulator) substrate. An area that can be evaluated with a cantilever was previously provided in the substrate for piezoelectric constant evaluation.
  • SOI Silicon on Insulator
  • Each Nb-doped PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the Nb-doped PZT film was calculated. The results are shown in Table 1.
  • FIG. 7 shows XRD of three Nb-doped PZT films among the obtained piezoelectric films.
  • Example 2 A plurality of types of Nb-doped PZT piezoelectric films having different Zr / (Zr + Ti) values were formed in the same manner as in Example 1 except that the Nb doping amount to the B site was 20%.
  • the Nb doping amount to the B site was 20%.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Each Nb-doped PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the Nb-doped PZT film was calculated.
  • Example 1 A plurality of types of PZT piezoelectric films having different Zr / (Zr + Ti) values were formed in the same manner as in Example 1 except that Nb was not doped. When XRD measurement was performed on each formed PZT film, it was confirmed that all of them were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Each PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the PZT film was calculated. As a result, almost the same result as in Example 1 could be obtained.
  • Example 3 Plural types having different Zr / (Zr + Ti) values in the same manner as in Example 1 except that the power density D on the target is in the range of 5.0 ⁇ D (W / cm 2 ) ⁇ 6.0.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Example 4 A plurality of types having different Zr / (Zr + Ti) values in the same manner as in Example 2 except that the power density D on the target falls within the range of 5.0 ⁇ D (W / cm 2 ) ⁇ 6.0.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • a Pt upper electrode having a thickness of 100 nm was formed on an Nb-doped PZT film to obtain a piezoelectric element.
  • cantilevers were fabricated by processing into strips each having a width of about 2 mm and a length of about 24 mm.
  • the longitudinal direction of the cantilever corresponds to the (110) direction of the Si crystal, and the thickness direction corresponds to the (100) direction.
  • a sin wave drive voltage with a frequency of 1 kHz, 10 Vpp, and an offset voltage of -5 V is applied between the upper electrode and the lower electrode, and a sin wave drive voltage is applied.
  • the tip displacement was measured with a laser Doppler vibrometer to determine the displacement.
  • Vpp is the potential difference between the highest value and the lowest value of the AC voltage waveform.
  • the resonance frequency was calculated by changing the length of the cantilever, and the effective length L 0 was determined by combining with the actually measured value.
  • the length L 0 was set, the tip displacement was calculated, and the piezoelectric constant d 31 when it matched with the measured value was obtained, and this was set as the piezoelectric constant of the PZT thin film.
  • the structure used in the finite element method is Pt (0.3 ⁇ m) / PZT / Ir (0.3 ⁇ m) / Si, and the following parameter values were used. Since Si is an anisotropic material, the Young's modulus and Poisson's ratio used in the simulation calculation must correspond to the direction of the cantilever longitudinal direction.
  • FIG. 8A shows the relationship between the value of Zr / (Zr + Ti) and the piezoelectric constant d 31 in each example
  • FIG. 8B shows the value of rhombohedral crystal / (tetragonal crystal + rhombohedral) and the piezoelectric constant in each example. It shows the relationship between the d 31. 8A and 8B, in Examples 1 and 2, it is confirmed that the largest piezoelectric constant is shown in the region of 0.70 ⁇ rhombohedral crystal / (tetragonal crystal + rhombohedral crystal). .
  • Example 3 Examples except that the substrate temperature was 500 ° C. and Zr / (Zr + Ti) in the target was 0.25, 0.30, 0.35, 0.40, 0.45, 0.5, or 0.55
  • Zr / (Zr + Ti) in the target was 0.25, 0.30, 0.35, 0.40, 0.45, 0.5, or 0.55
  • a plurality of types of Nb-doped PZT piezoelectric films having different Zr / (Zr + Ti) values were formed.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Each Nb-doped PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the Nb-doped PZT film was calculated. The results are shown in Table 2.
  • Example 4 A plurality of types of Nb-doped PZT piezoelectric films having different Zr / (Zr + Ti) values were formed in the same manner as in Example 3 except that the Nb doping amount to the B site was 20%.
  • the Nb doping amount to the B site was 20%.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Each Nb-doped PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the Nb-doped PZT film was calculated.
  • Example 5 A plurality of types of PZT piezoelectric films having different Zr / (Zr + Ti) values were formed in the same manner as in Example 3 except that Nb was not doped. When XRD measurement was performed on each formed PZT film, it was confirmed that all of them were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Each PZT film was subjected to peak separation by high-resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the PZT film was calculated.
  • Example 7 A plurality of types having different Zr / (Zr + Ti) values in the same manner as in Example 3 except that the power density D on the target is in the range of 5.0 ⁇ D (W / cm 2 ) ⁇ 6.0.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • Example 8 A plurality of types having different Zr / (Zr + Ti) values in the same manner as in Example 4 except that the power density D on the target falls within the range of 5.0 ⁇ D (W / cm 2 ) ⁇ 6.0.
  • XRD measurement was performed on each of the formed Nb-doped PZT films, it was confirmed that all were high-quality (100) -oriented perovskite oxides without a pyrochlore phase.
  • each PZT film or Nb-doped PZT film was subjected to peak separation by high resolution XRD to obtain peak areas of rhombohedral and tetragonal peaks. From the obtained peak area, the value of rhombohedral crystal / (rhombohedral crystal + tetragonal crystal) of the PZT film was calculated.
  • Example 3 the upper electrode is formed in the same manner as in Example 1, and a sine wave drive with a frequency of 1 kHz, 10 Vpp, and an offset voltage of -5 V is provided at each cantilever formation portion of the piezoelectric film. applying a voltage to measure the piezoelectric constant d 31 to evaluate the displacement.
  • FIG. 9A shows the relationship between the value of Zr / (Zr + Ti) and the piezoelectric constant d 31 in each example
  • FIG. 9B shows the value of rhombohedral crystal / (tetragonal crystal + rhombohedral crystal) and the piezoelectric constant in each example. It shows the relationship between the d 31. 9A and 9B, in Examples 3 and 4, it is confirmed that the piezoelectric constant shows the largest value in the region of 0.70 ⁇ rhombohedral crystal / (tetragonal crystal + rhombohedral crystal). .
  • the piezoelectric film of the present invention includes a piezoelectric actuator mounted on an inkjet recording head, a magnetic recording / reproducing head, a MEMS (Micro Electro-Mechanical Systems) device, a micro pump, an ultrasonic probe, and a ferroelectric memory. It can be preferably used for the ferroelectric element.
  • MEMS Micro Electro-Mechanical Systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】圧電特性が高く長期駆動時の圧電特性の劣化の小さい圧電体膜とその製造方法、その圧電体膜を備えた圧電素子及び液体吐出装置を提供する。 【解決手段】本発明の圧電体膜(40)は、下記式(P)で表されるペロブスカイト型酸化物を含む圧電体膜であって、ペロブスカイト型酸化物の結晶相が、下記式(1)を満足する割合で正方晶と菱面体晶を含む。 A1+δ[(ZrTi1-x1-aNb]O・・・(P)、 0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)、 但し、式(P)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満、但し0.51以上0.53以下を除く。aは0.08以上である。

Description

圧電体膜とその製造方法、圧電素子、及び液体吐出装置
 本発明は、チタン酸ジルコン酸鉛系圧電体膜とその製造方法、及びこの圧電体膜を用いた圧電素子及び液体吐出装置に関する。
 インクジェット式記録ヘッドをはじめとするアクチュエータには、電界印加強度の増減に伴って伸縮する圧電性を有する圧電体と、圧電体に対して電界を印加する電極とを備えた圧電素子が備えられている。
 近年、アクチュエータは、装置の小型化の要求に応えるために、MEMS(メムス、Micro Electro-Mechanical Systems)技術等の半導体プロセス技術と組み合わせた微細化が進められている。半導体プロセス技術では、成膜やフォトリソグラフィー等を用いた高精度な加工が可能となることから、アクチュエータにおいて、圧電体の薄膜化に向けた研究がさかんに行われている。
 高い圧電特性を有する圧電材料としては、チタン酸ジルコン酸鉛(PZT)系のペロブスカイト型酸化物が、実績があり広く用いられている。PZT系ペロブスカイト型酸化物圧電体膜において、Zr:Tiが52:48近傍であるモルフォトロピック相境界(MPB:Morphotropic Phase Boundary)組成を有するとき、圧電定数及び電気機械結合係数が最も高く、アクチュエータ用途に好適であることが知られている。
 特許文献1には、柱状構造を有するチタン酸鉛層とジルコン酸鉛層とが積層されてなる圧電体薄膜を備えた圧電素子において、圧電体薄膜におけるチタン酸鉛とジルコン酸鉛の組成をMPB組成とすることで、圧電特性が向上することが記載されている。
 一方、MPB組成とする以外の方法で圧電特性を向上させる手法として、PZT系圧電体膜において、被置換イオンの価数よりも高い価数を有する各種ドナイオンをドープすることが知られている。BサイトのZr及びTiのイオン価数は4価であることから、Bサイト元素を置換するドナイオンとしては、V,Nb,Ta,Sb,Mo,及びW等のイオン価数が5価以上のBサイト元素が用いられている。
 例えば、特許文献2には、PZTのAサイトにSr,Ba,及び/又はLaを、BサイトにSb又はNbをドープした、MPB組成よりも菱面体側の組成を有するPZT系アクチュエータ用組成物が開示されている。特許文献2には、菱面体晶系のPZT系組成物を用いた積層型アクチュエータが、優れた特性を有し、かつ、耐久使用した際の変位特性劣化が少ないことが記載されている。
 薄膜においてもドナイオンドープの試みが検討されている。特許文献3には、PZT系強誘電体膜において、BサイトイオンとしてNbを高濃度ドープするために、Aサイトイオンとして,Si,Ge,Snのうち少なくとも1種を添加することが記載されている。特許文献3においてAサイトに添加されている補償イオンは、ゾルゲル法による熱平衡プロセスにおいて、焼結を促進して熱平衡状態を得るための焼結助剤であり、Nbドープによる結晶化温度の上昇を抑制するために必須となっている。しかしながら、かかる焼結助剤を添加すると圧電特性が低下するため、ドナイオン添加の効果を充分に引き出すことができない。
 焼結助剤を用いずに、PZTにNbを高濃度ドープする試みが本発明者らによって報告されている。特許文献4には、非熱平衡プロセスにおける成膜条件を制御することにより、ドナイオン添加の効果を充分に引き出されたNbドープPZT膜が記載されている。特許文献4では、MPB組成を有するNbドープPZT膜の作製にも成功している。
特開2012-99636号公報 特開平7-48172号公報 特開2005-209722号公報 特開2008-270704号公報
 しかしながら、更なる薄膜化に向け、圧電体膜において、圧電特性の更なる向上、及び、圧電特性の長期信頼性の向上が求められている。
 本発明は上記事情に鑑みてなされたものであり、圧電特性が高く、長期駆動時の圧電特性の劣化の小さい、NbドープPZT系圧電体膜とその製造方法、及びこの圧電体膜を用いた圧電素子及び液体吐出装置を提供することを目的とするものである。
 本発明の圧電体膜は、下記式(P)で表されるペロブスカイト型酸化物を含む圧電体膜であって、
 ペロブスカイト型酸化物の結晶相が、下記式(1)を満足する割合で正方晶と菱面体晶を含む。
 A1+δ[(ZrTi1-x1-aNb]O・・・(P)、
 0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)、
 但し、式(P)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 また、式(1)の、菱面体晶/(菱面体晶+正方晶)の示す値は、ペロブスカイト型酸化物の結晶相(菱面体晶+正方晶)における、菱面体晶の割合を示したものである。PZTにおいて各結晶相の量は、圧電体膜の高分解能X線回折(高分解能XRD)により得られた各結晶相のピーク面積で評価したものである。菱面体晶の量は、菱面体晶の回折ピークのピーク面積、正方晶量はa軸配向正方晶とc軸配向正方晶の回折ピークのピーク面積を合計した値とする。図6には、高分解能XRDにより、得られたペロブスカイト型の(200)配向ピークをピーク分離したXRDスペクトルを示してある。ピーク分離は、pseudo-Voigt関数を用いたフィッティングによりピーク検出を行うことにより実施したものとする。
 本明細書において、「AはPbを主成分とするAサイト元素である」とは、Aサイト元素A中、90モル%以上の成分がPbであることを意味する。
 上記一般式(P)において、ZrとTiの合計を1とした時のZrの比率を表すxは、0.4以上1未満であり(但し0.51≦x≦0.53を除く)、0.5超であることが好ましい。一般式(P)において、除外しているxの値0.51≦x≦0.53はMPB組成である。すなわち、本発明の圧電体膜は、MPB組成以外の組成領域において、菱面体晶と正方晶とが混在している。
 本発明の圧電体膜は、多数の柱状結晶からなる柱状結晶膜であることが好ましい。
 上記本発明の圧電体膜は、以下に示す本発明の圧電体膜の製造方法により製造することができる。本発明の圧電体膜の製造方法は、基板上に、プラズマを用いるスパッタリング法により、下記式(Q)で表されるペロブスカイト型酸化物を含む圧電体膜の製造方法であり、第1の製造方法は、スパッタリング法において、ターゲットを1つ用い、成膜時の基板の温度Tsが下記式(2)を満足し、ターゲット上のパワー密度Dが下記式(4)を満足する条件で成膜するものであり、
 第2の製造方法は、スパッタリング法において、ターゲットを2つ用い、成膜時の基板の温度Tsが下記式(2)を満足し、ターゲット上のパワー密度Dが下記式(5)を満足する条件で満足する範囲として成膜するものである。
 A1+δ[(ZrTi1-x1-aNb]O・・・(Q)、
 400<Ts(℃)<750・・・(2)、
 3.0≦D(W/cm)≦4.0・・・(4)、
 3.0≦D(W/cm)≦6.0・・・(5)、
 但し、式(Q)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 第1及び第2の製造方法において、基板温度Tsは、450≦Ts(℃)≦650であることが好ましい。
 本明細書において、「成膜温度Ts(℃)」は、成膜を行う基板表面における中心部分の温度を意味するものとする。
 本明細書において、「ターゲット上のパワー密度D」とは、ターゲットのスパッタリング面におけるパワー密度を意味するものとする。パワー密度とは、スパッタ時の成膜パワーをターゲットの表面積で割った値である。
 本発明の圧電素子は、上記本発明の圧電体膜と、圧電体膜に対して電界を印加する電極とを備えたものである。
 本発明の液体吐出装置は、上記本発明の圧電素子と、圧電素子に一体的にまたは別体として設けられた液体吐出部材とを備え、液体吐出部材は、液体が貯留される液体貯留室と、液体貯留室から外部に液体が吐出される液体吐出口とを有するものである。
 本発明の圧電体膜は、NbドープPZT系圧電体膜であって、MPB組成以外の組成領域において、菱面体晶と正方晶とが、0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95の範囲内で混在している。かかる構成では、圧電特性が高く、且つ、長期駆動時の圧電特性の劣化の小さい、NbドープPZT系圧電体膜とすることができる。
スパッタリング成膜中の様子を模式的に示す図 従来法により製造された圧電体膜の結晶相の様子を模式的に示した図 本発明の圧電体膜の製造方法により製造された圧電体膜の結晶相の様子を模式的に示した図 実施例で得られたNbドープPZT膜と、従来法により得られたNbドープPZT膜について、Bサイト元素の組成比と菱面体晶の割合との関係を示した図 本発明に係る実施形態の圧電素子及びインクジェット式記録ヘッド(液体吐出装置)の構造を示す断面図 図3のインクジェット式記録ヘッドを備えたインクジェット式記録装置の構成例を示す図 図4のインクジェット式記録装置の部分上面図 NbドープPZT膜について高分解能X線回折(XRD)によるピーク分離を示した図 実施例1で得られたNbドープPZT膜のXRDスペクトル 基板温度を450℃とした場合の実施例及び比較例の圧電特性とZr/(Zr+Ti)との関係を示す図 基板温度を450℃とした場合の実施例及び比較例の圧電特性と結晶相の割合との関係を示す図 基板温度を500℃とした場合の実施例及び比較例の圧電特性とZr/(Zr+Ti)との関係を示す図 基板温度を500℃とした場合の実施例及び比較例の圧電特性と結晶相の割合との関係を示す図
 「背景技術」において述べたように、PZT系ペロブスカイト型酸化物において、Zr:Tiが52:48近傍(0.51≦Zr/(Zr+Ti)≦0.53)であるモルフォトロピック相境界(MPB:Morphotropic Phase Boundary)組成を有する圧電体膜は、圧電定数及び電気機械結合係数が最も高く、アクチュエータ用途に好適であることが知られている。特許文献4には、かかる組成のNbドープPZT膜において、片持ち梁により測定した圧電定数d31が250pm/Vである高特性な圧電体膜が得られたことが記載されている。
 本発明者らは、更なる高特性化に向けて、そして長期駆動時の圧電特性の劣化の小さい圧電体膜を得るべく、スパッタリング法における製造条件について鋭意検討を行った。本発明者らは、MPB組成における高い圧電特性、そして、菱面体晶系PZTアクチュエータにおける優れた特性及び長期駆動安定性に着目し、菱面体晶リッチであり、且つ正方晶が混在するNbドープPZTの可能性について検討した。
 PZTは、最も安定な結晶相が正方晶であるチタン酸鉛(PbTiO(PT))と、最も安定な結晶相が菱面体晶であるジルコン酸鉛(PbZrO(PZ))との混晶であり、通常、MPB組成を境に、チタン酸鉛リッチな組成では正方晶、ジルコン酸鉛リッチな組成では菱面体晶となることが知られている。すなわち、PZTにおいて、正方晶と菱面体晶とが混在するのは、通常、MPB組成近傍においてのみであり、MPB組成において、正方晶と菱面体晶との割合をコントロールすることは難しい。
 本発明者らは、スパッタリング法による成膜において、ターゲット上のパワー密度が高くなればなるほどZrとTiとが混ざりやすくなることに着目し、ターゲット上のパワー密度をZrとTiとが混ざりにくくなるような条件としてNbドープPZTを成膜することにより、膜中においてPTとPZとを偏在させ、MPB組成以外の組成においても、正方晶と菱面体晶とを混在させられると考えた。
 その結果、空隙率の少ないターゲットを用い、ターゲット上のパワー密度D(W/cm)を通常より低い特定の条件とすることにより、MPB組成近傍でなくても、ZrとTiの組成比と対応するように菱面体晶と正方晶が混在した圧電体膜を得ることに成功した。
 更に、かかる製造方法により得られた、菱面体晶と正方晶とが、0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95の割合の範囲内で混在しているNbドープPZT膜では、MPB組成以外の組成であっても、圧電特性が高く、且つ、長期駆動時の圧電特性の劣化の小さい圧電体膜となることを見出した。
 すなわち、本発明の圧電体膜は、下記式(P)で表されるペロブスカイト型酸化物を含む圧電体膜であって、ペロブスカイト型酸化物の結晶相が、下記式(1)を満足する割合で正方晶と菱面体晶を含んでいる。
 A1+δ[(ZrTi1-x1-aNb]O・・・(P)、
 0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)、
 但し、式(P)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 また、本発明の圧電体膜の製造方法は、基板上に、プラズマを用いるスパッタリング法により、下記式(Q)で表されるペロブスカイト型酸化物からなる圧電体膜の製造方法であり、第1の製造方法は、ターゲットを1つ用い、成膜時の基板の温度Tsが下記式(2)を満足し、ターゲット上のパワー密度Dが下記式(4)を満足する条件で成膜するものであり、
 第2の製造方法は、ターゲットを2つ用い、成膜時の基板の温度Tsが下記式(2)を満足し、ターゲット上のパワー密度Dが下記式(5)を満足する条件で成膜するものである。
 A1+δ[(ZrTi1-x1-aNb]O・・・(Q)、
 400<Ts(℃)<750・・・(2)、
 3.0≦D(W/cm)≦4.0・・・(4)、
 3.0≦D(W/cm)≦6.0・・・(5)、
 但し、式(Q)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 まず、本発明の圧電体膜の製造方法について説明する。
 上記本発明の圧電体膜の製造方法は、スパッタリング法により、ZrとTiの組成比に関わらず、菱面体晶と正方晶とが混在したNbドープPZT薄膜を成膜する方法である。スパッタリング法において、用いるターゲットを1ターゲット(ターゲット組成はNbドープPZT)とした場合と、2ターゲット(ターゲット組成はPZとPTで、Nbは少なくとも一方にドープする)とした場合とで、ZrとTiとの混ざりやすさが異なる。1ターゲットでは、よりZrとTiが混ざりやすいことから、1ターゲットの第1の製造方法のパワー密度Dの範囲は、2ターゲットの第2の製造方法のパワー密度Dの範囲に比して、高密度側の上限値が低くなっている。パワー密度Dが高くなると、ZrとTiが混ざりやすくなる傾向がある。
 図1Aは、スパッタリング法における成膜中の様子を模式的に示す図である。図1Aに示すように、スパッタリング装置のプラズマ電極の放電により、成膜ガスがプラズマ化されてプラズマ空間Pが生成する。プラズマ空間Pには成膜ガスのプラスイオンIpが生成されており、このプラスイオンIpがターゲットTをスパッタする。プラスイオンIpにスパッタされたターゲットTの構成元素Tpは、ターゲットTから放出され中性あるいはイオン化された状態で基板Bに成膜される。この成膜を所定時間実施することで、所定厚のスパッタ膜が成膜される。
 図1Bは、製造された圧電体膜の結晶相の様子を模式的に示した図である。従来法によれば、ターゲットT表面のパワー密度が本発明の圧電体膜の製造方法に比して高いため、蒸着された粒子同士が混ざりあいやすいことから、チタン酸鉛(PT)とジルコン酸鉛(PZ)が充分に固溶したPZT膜(NbドープPZT膜)を得ることができる。
 一方、図1Cは、本発明の圧電体膜の製造方法により製造された圧電体膜の結晶相の様子を模式的に示した図である。本発明の圧電体膜の製造方法では、ターゲット上のパワー密度をZrとTiとが混ざりにくくなるような条件としてNbドープPZTを成膜する。従って、成膜された膜は、チタン酸鉛とジルコン酸鉛が固溶してPZTを形成している膜中に、充分に固溶していないPTとPZがそれぞれ安定な正方晶と菱面体晶のまま存在していると本発明者は推察している。
 本発明の圧電体膜の製造方法において、用いるターゲットは、空隙率が少ないターゲット密度の高いものを用いることが好ましい。PZTのターゲットとしては、1ターゲットの場合も2ターゲットの場合も、95~99%の高いターゲット密度のものが通常用いられている。第1の製造方法と第2の製造方法において、ターゲットとしては、通常のターゲット密度のターゲットを用いることができる。ターゲット密度が高いほど、ZrとTiが原子化しにくく、クラスターで飛ぶ。その結果、ZrとTiが基板内で混ざりにくくなり、Zr/Ti比の異なる領域が形成される。従って、第1の製造方法では、よりターゲット密度が高いターゲットを用いることが好ましい。
 本発明の圧電体膜の製造方法において、成膜時の基板の温度Tsは、上記式(2)の範囲であれば高温パイロクロア相のないペロブスカイト酸化物となるため特に制限されない。基板温度Tsが400℃以下では、ペロブスカイト型の結晶成長が難しく、750℃以上では、高温パイロクロア相が混入しやすくなる。良質な柱状結晶膜構造を得るためには、Tsは、450≦Ts(℃)≦650であることが好ましい。
 図2は、実施例で得られたNbドープPZT膜と、従来法により得られたNbドープPZT膜について、Bサイト元素の組成比と菱面体晶の割合との関係を示した図である。図2に示されるように、従来の方法では、MPB組成よりもチタン酸鉛リッチな組成では正方晶、ジルコン酸鉛リッチな組成では菱面体晶のNbドープPZT膜が得られており、MPB組成でその結晶相が転位する。一方、実施例1,2、及び実施例3,4の結果のプロットでは、Zr/(Zr+Ti)が0から1の範囲において、なだらかなカーブを描いて菱面体晶と正方晶とが混在することが示されている。
 上記本発明の第1及び第2の圧電体膜の製造方法によれば、下記一般式(Q)で表されるNbドープPZT圧電体膜を製造することができる。
 A1+δ[(ZrTi1-x1-aNb]O・・・(Q)、
 但し、式(Q)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 式(Q)及び後記する式(P)において、Bサイト中へのNbのドープ率aは、ドナードープの圧電特性への効果を得る観点から0.08以上である。aは大きい値であるほど圧電特性の向上効果が得られることから、0.20以上であることが好ましく、ペロブスカイト構造をとりうる範囲内で大きいことが好ましい。
 また、δは、上記のとおり、通常0であるが、Pbは逆スパッタされやすい元素であり、成膜された圧電体膜からPbが抜けると、結晶成長に悪影響を及ぼすことから、ターゲットのPb量を、PZTの化学量論組成より多くして成膜を実施することが多い。その場合、Pbの逆スパッタ率によっては、成膜された膜もPbリッチとなることがある。特性に支障のない限り、Pb欠損があっても構わないが、0≦δ≦0.2の範囲とすることにより、Pb欠損のない良質なペロブスカイト型酸化物膜とすることができる。後記実施例で得られたNbドープPZT膜について蛍光X線分析(XRF:X‐ray Fluorescence)により、組成分析を行ったところ、0≦δ≦0.2の範囲となっていることが確認されている。
 本発明の第1及び第2の圧電体膜の製造方法において、基板温度Tsと、ZrとTiの合計を1とした時のZrの比率を表すxを0.4以上1未満の範囲(但し0.51≦x≦0.53を除く)で制御することにより、圧電体膜中の菱面体晶と正方晶が、下記式(1)を満足する範囲とすることができる。
0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)
 圧電体膜中の菱面体晶と正方晶との割合を、式(1)を満足する範囲内とすることにより、圧電特性が高く、長期駆動時の圧電特性の劣化の小さい、本発明のNbドープPZT系圧電体膜を得ることができる。
 以下に、本発明の圧電体膜について説明する。
 本発明の圧電体膜は、下記式(P)で表されるペロブスカイト型酸化物を含む圧電体膜であって、ペロブスカイト型酸化物の結晶相が、下記式(1)を満足する割合で正方晶と菱面体晶を含んでいる。
 A1+δ[(ZrTi1-x1-aNb]O・・・(P)、
 0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)、
 但し、式(P)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満(但し0.51≦x≦0.53を除く),aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 上記一般式(P)において、0.51≦x≦0.53は、いわゆるPZTのMPB組成とその近傍の組成である。0.51≦x≦0.53においても、上記式(1)を満足していれば、本発明の効果を得ることができるが、かかるxの範囲の組成は、従来法によっても正方晶と菱面体晶が混在したものを製造することができる。しかしながら、かかるxの範囲の組成であっても、従来法と本発明とで、得られる圧電体膜における、菱面体晶/(菱面体晶+正方晶)の値は必ずしも同じではないと本発明者らは考えている。
 上記一般式(P)において、xを0.5以上とすることにより、上記本発明の圧電体膜の製造方法における成膜温度の範囲内において、式(1)を満足する圧電膜とすることができる。
 本発明の圧電体膜は、基板面に対して非平行に延びる多数の柱状結晶からなる柱状結晶膜構造を有することが好ましい。柱状結晶の成長方向は基板面に対して非平行であればよく、略垂直方向でも斜め方向でも構わない。かかる膜構造では、結晶方位の揃った配向膜となるため、より高い圧電性能を得ることができる。
 圧電体膜をなす多数の柱状結晶の平均柱径は特に制限なく、30nm以上1μm以下が好ましい。柱状結晶の平均柱径をこの範囲とすることにより、良好な結晶成長が可能となり、精度の高いパターニングが可能な圧電体膜とすることができる。ここでいう柱状結晶の平均柱径は、ある膜厚方向の位置について、水平方向の全ての柱状結晶の柱径の平均値を意味する。
 後記実施例では、本発明の圧電体膜を作製し、その圧電特性及び圧電特性の劣化率について評価している。後記実施例には、本発明の圧電体膜は、圧電定数d31が200pm/V以上であり、Nbを20%ドープした系では、250pm/Vを超える高い圧電特性が得られることが示されている。また、圧電特性の劣化率についても、菱面体晶/(菱面体晶+正方晶)の値が0.95を超えると、劣化率が大きくなるが、0.95以下とすることにより、長期駆動時の圧電特性の劣化を抑制できることが示されている。
 以上述べたように、本発明の圧電体膜は、NbドープPZT系圧電体膜であって、MPB組成以外の組成において、菱面体晶と正方晶とが、0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95の割合の範囲内で混在している。かかる構成では、圧電特性が高く、且つ、長期駆動時の圧電特性の劣化の小さい、NbドープPZT系圧電体膜とすることができる。
「圧電素子、インクジェット式記録ヘッド」
 図3を参照して、本発明に係る実施形態の圧電素子、及びこれを備えたインクジェット式記録ヘッド(液体吐出装置)の構造について説明する。図3はインクジェット式記録ヘッドの要部断面図である。視認しやすくするため、構成要素の縮尺は実際のものとは適宜異ならせてある。
 本実施形態の圧電素子(強誘電体素子)1は、基板20上に、下部電極30と圧電体膜40と上部電極50とが順次積層された素子であり、圧電体膜40に対して、下部電極30と上部電極50とにより厚み方向に電界が印加されるようになっている。圧電体膜40は上記本発明の圧電体膜である。
 下部電極30は基板20の略全面に形成されており、この上に図示手前側から奥側に延びるライン状の凸部41がストライプ状に配列したパターンの圧電体膜40が形成され、各凸部41の上に上部電極50が形成されている。
 圧電体膜40のパターンは図示するものに限定されず、適宜設計される。また、圧電体膜40は連続膜でも構わない。但し、圧電体膜40は、連続膜ではなく、互いに分離した複数の凸部41からなるパターンで形成することで、個々の凸部41の伸縮がスムーズに起こるので、より大きな変位量が得られ、好ましい。
 基板20としては特に制限なく、シリコン、ガラス、ステンレス(SUS)、イットリウム安定化ジルコニア(YSZ)、アルミナ、サファイヤ、シリコンカーバイド等の基板が挙げられる。基板20としては、シリコン基板の表面にSiO酸化膜が形成されたSOI基板等の積層基板を用いてもよい。
 下部電極30の主成分としては特に制限なく、Au,Pt,Ir,IrO,RuO,LaNiO,及びSrRuO等の金属又は金属酸化物、及びこれらの組合せが挙げられる。
 上部電極50の主成分としては特に制限なく、下部電極30で例示した材料、Al,Ta,Cr,及びCu等の一般的に半導体プロセスで用いられている電極材料、及びこれらの組合せが挙げられる。
 下部電極30と上部電極50の厚みは特に制限なく、例えば200nm程度である。圧電体膜40の膜厚は特に制限なく、通常1μm以上であり、例えば1~5μmである。圧電体膜40の膜厚は3μm以上が好ましい。
 インクジェット式記録ヘッド(液体吐出装置)2は、概略、上記構成の圧電素子1の基板20の下面に、振動板60を介して、インクが貯留されるインク室(液体貯留室)71及びインク室71から外部にインクが吐出されるインク吐出口(液体吐出口)72を有するインクノズル(液体貯留吐出部材)70が取り付けられたものである。インク室71は、圧電体膜40の凸部41の数及びパターンに対応して、複数設けられている。
 インクジェット式記録ヘッド2では、圧電素子1の凸部41に印加する電界強度を凸部41ごとに増減させてこれを伸縮させ、これによってインク室71からのインクの吐出や吐出量の制御が行われる。
 基板20とは独立した部材の振動板60及びインクノズル70を取り付ける代わりに、基板20の一部を振動板60及びインクノズル70に加工してもよい。例えば、基板20がSOI基板等の積層基板からなる場合には、基板20を裏面側からエッチングしてインク室71を形成し、基板自体の加工により振動板60及びインクノズル70とを形成することができる。
 本実施形態の圧電素子1及びインクジェット式記録ヘッド2は、以上のように構成されている。
「インクジェット式記録装置」
 図4及び図5を参照して、上記実施形態のインクジェット式記録ヘッド2を備えたインクジェット式記録装置の構成例について説明する。図4は装置全体図であり、図5は部分上面図である。
 図示するインクジェット式記録装置100は、インクの色ごとに設けられた複数のインクジェット式記録ヘッド(以下、単に「ヘッド」という)2K,2C,2M,2Yを有する印字部102と、各ヘッド2K,2C,2M,2Yに供給するインクを貯蔵しておくインク貯蔵/装填部114と、記録紙116を供給する給紙部118と、記録紙116のカールを除去するデカール処理部120と、印字部102のノズル面(インク吐出面)に対向して配置され、記録紙116の平面性を保持しながら記録紙116を搬送する吸着ベルト搬送部122と、印字部102による印字結果を読み取る印字検出部124と、印画済みの記録紙(プリント物)を外部に排紙する排紙部126とから概略構成されている。
 印字部102をなすヘッド2K,2C,2M,2Yが、各々上記実施形態のインクジェット式記録ヘッド2である。
 デカール処理部120では、巻き癖方向と逆方向に加熱ドラム130により記録紙116に熱が与えられて、デカール処理が実施される。
 ロール紙を使用する装置では、図4のように、デカール処理部120の後段に裁断用のカッター128が設けられ、このカッターによってロール紙は所望のサイズにカットされる。カッター128は、記録紙116の搬送路幅以上の長さを有する固定刃128Aと、該固定刃128Aに沿って移動する丸刃128Bとから構成されており、印字裏面側に固定刃128Aが設けられ、搬送路を挟んで印字面側に丸刃128Bが配置される。カット紙を使用する装置では、カッター128は不要である。
 デカール処理され、カットされた記録紙116は、吸着ベルト搬送部122へと送られる。吸着ベルト搬送部122は、ローラ131、132間に無端状のベルト133が巻き掛けられた構造を有し、少なくとも印字部102のノズル面及び印字検出部124のセンサ面に対向する部分が水平面(フラット面)となるよう構成されている。
 ベルト133は、記録紙116の幅よりも広い幅寸法を有しており、ベルト面には多数の吸引孔(図示略)が形成されている。ローラ131、132間に掛け渡されたベルト133の内側において印字部102のノズル面及び印字検出部124のセンサ面に対向する位置には吸着チャンバ134が設けられており、この吸着チャンバ134をファン135で吸引して負圧にすることによってベルト133上の記録紙116が吸着保持される。
 ベルト133が巻かれているローラ131、132の少なくとも一方にモータ(図示略)の動力が伝達されることにより、ベルト133は図4上の時計回り方向に駆動され、ベルト133上に保持された記録紙116は図4の左から右へと搬送される。
 縁無しプリント等を印字するとベルト133上にもインクが付着するので、ベルト133の外側の所定位置(印字領域以外の適当な位置)にベルト清掃部136が設けられている。
 吸着ベルト搬送部122により形成される用紙搬送路上において印字部102の上流側に、加熱ファン140が設けられている。加熱ファン140は、印字前の記録紙116に加熱空気を吹き付け、記録紙116を加熱する。印字直前に記録紙116を加熱しておくことにより、インクが着弾後に乾きやすくなる。
 印字部102は、最大紙幅に対応する長さを有するライン型ヘッドを紙送り方向と直交方向(主走査方向)に配置した、いわゆるフルライン型のヘッドとなっている(図5を参照)。各印字ヘッド2K,2C,2M,2Yは、インクジェット式記録装置100が対象とする最大サイズの記録紙116の少なくとも一辺を超える長さにわたってインク吐出口(ノズル)が複数配列されたライン型ヘッドで構成されている。
 記録紙116の送り方向に沿って上流側から、黒(K)、シアン(C)、マゼンタ(M)、イエロー(Y)の順に各色インクに対応したヘッド2K,2C,2M,2Yが配置されている。記録紙116を搬送しつつ各ヘッド2K,2C,2M,2Yからそれぞれ色インクを吐出することにより、記録紙116上にカラー画像が記録される。
 印字検出部124は、印字部102の打滴結果を撮像するラインセンサ等からなり、ラインセンサによって読み取った打滴画像からノズルの目詰まり等の吐出不良を検出する。
 印字検出部124の後段には、印字された画像面を乾燥させる加熱ファン等からなる後乾燥部142が設けられている。印字後のインクが乾燥するまでは印字面と接触することは避けた方が好ましいので、熱風を吹き付ける方式が好ましい。
 後乾燥部142の後段には、画像表面の光沢度を制御するために、加熱・加圧部144が設けられている。加熱・加圧部144では、画像面を加熱しながら、所定の表面凹凸形状を有する加圧ローラ145で画像面を加圧し、画像面に凹凸形状を転写する。
 こうして得られたプリント物は、排紙部126から排出される。本来プリントすべき本画像(目的の画像を印刷したもの)とテスト印字とは分けて排出することが好ましい。このインクジェット式記録装置100では、本画像のプリント物と、テスト印字のプリント物とを選別してそれぞれの排出部126A、126Bへと送るために排紙経路を切り替える選別手段(図示略)が設けられている。
 大きめの用紙に本画像とテスト印字とを同時に並列にプリントする場合には、カッター148を設けて、テスト印字の部分を切り離す構成とすればよい。
 インクジェット記録装置100は、以上のように構成されている。
 (設計変更)
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、適宜設計変更可能である。
 本発明に係る実施例について説明する。
 (実施例1)
 成膜基板として、25mm角のSOI(Silicon on Insulater)基板上に、10nm厚のTi密着層と300nm厚のIr下部電極とが順次積層された電極付き基板を用意した。基板には、圧電定数評価のために、カンチレバーで評価できる領域を予め設けておいた。
 RFスパッタリング装置内に上記電極付き基板を載置し、真空度0.3Pa、Ar/O混合雰囲気(O体積分率2.0%)の条件下で、ターゲット中のZr/(Zr+Ti)=0.3,0.4,0.45,0.5,0.55,0.58,または0.6とし,BサイトへのNbドープ量を8%、基板温度450℃とし、ターゲット上のパワー密度Dが3.0≦D(W/cm)≦4.0の範囲内となるようにして、厚み3.0μmの、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。ターゲットは1ターゲットとした。
 成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各NbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、NbドープPZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。その結果を表1に示す。また、図7に得られた圧電体膜のうち3例のNbドープPZT膜のXRDを示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 BサイトへのNbドープ量を20%とした以外は実施例1と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各NbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、NbドープPZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。
 (比較例1)
 Nbをドープしなかった以外は実施例1と同様にして、Zr/(Zr+Ti)値が異なる複数種のPZT圧電体膜の成膜を実施した。成膜された各PZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各PZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、PZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。その結果、実施例1とほぼ同様の結果を得ることができた。
(比較例2)
 Nbをドープせず、且つ、ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例1と同様にして、Zr/(Zr+Ti)値が異なる複数種のPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のPZT圧電体膜についても同様に成膜した。成膜された各PZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 (比較例3)
 ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例1と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のNbドープPZT圧電体膜についても同様に成膜した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 (比較例4)
 ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例2と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のNbドープPZT圧電体膜についても同様に成膜した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 比較例2~4について、各PZT膜又はNbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、PZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。その結果、MPB組成であるZr/(Zr+Ti)=0.52のPZT圧電体膜においてのみ、菱面体晶と正方晶とが混在しており、その組成において、菱面体晶/(正方晶+菱面体晶)が0.56となった。また、Zr/(Zr+Ti)=0.51,0.53とした場合においても、菱面体晶と正方晶とが混在しており、各組成において、菱面体晶/(正方晶+菱面体晶)がそれぞれ、0.44、0.70となることが確認された。その結果、Zr/(Zr+Ti)<0.51の組成では、正方晶のみ、0.51≦Zr/(Zr+Ti)≦0.53では、0<菱面体晶/(菱面体晶+正方晶)<1、0.53<Zr/(Zr+Ti)の組成では、菱面体晶のみとなることが確認された。
 <変位量評価>
 実施例1,2、比較例1~4について、NbドープPZT膜上に100nm厚のPt上部電極を成膜し、圧電素子とした。各例のカンチレバー形成領域において、各々幅=2mm、長さ=24mm程の短冊状に加工してカンチレバーを作製した。なお、カンチレバーの長手方向がSi結晶の(110)方向に対応し、厚み方向は(100)方向に対応するようにした。
 カンチレバーの変位可能な長さが18mm程度になるように固定した上で、上部電極、下部電極間に周波数1kHz、10Vpp、オフセット電圧-5Vのsin波駆動電圧を印加し、sin波駆動電圧を印加した際の先端変位量をレーザードップラー振動計で、測定することで変位量を求めた。Vppとは交流電圧波形の最高値と最低値の電位差である。
 まず、有限要素法を用いて、カンチレバーの長さを変化させて共振周波数を計算し、実測値と合わせこむことで有効長さL0を決定した。次に、長さL0に設定して、先端変位量を計算し、実測値と合うときの圧電定数d31を求め、これをPZT系薄膜の圧電定数とした。有限要素法で用いた構造はPt(0.3μm) /PZT/Ir(0.3μm)/Siであり、パラメータ値は以下の値を用いた。なお、Siは異方性材料のため、シミュレーション計算で用いるヤング率・ポアソン比はカンチレバー長手方向の方位に対応させる必要がある。
Si(110)方位:ヤング率YSi=169GPa、ポアソン比nSi=0.064
PZT:   ヤング率YPZT=50GPa、ポアソン比nPZT=0.34
Ir(下部電極):ヤング率YIr=530GPa、ポアソン比nIr=0.26
Pt(上部電極):ヤング率YPt=168GPa、ポアソン比nPT=0.39
 図8Aに、各例のZr/(Zr+Ti)の値と圧電定数d31との関係を、また、図8Bに、各例の菱面体晶/(正方晶+菱面体晶)の値と圧電定数d31との関係を示す。
 図8A,Bには、実施例1,2において、0.70≦菱面体晶/(正方晶+菱面体晶)の領域にで、最も圧電定数が大きい値を示していることが確認される。これに対して、従来法により成膜した比較例ではMPB組成であるZr/(Zr+Ti)=0.52においてのみ、菱面体晶と正方晶とが混在しており、その組成において、菱面体晶/(正方晶+菱面体晶)が0.56となり、最も圧電定数が高いことが示されている。
 (実施例3)
 基板温度を500℃とし、ターゲット中のZr/(Zr+Ti)=0.25,0.30,0.35,0.40,0.45,0.5,または0.55とした以外は実施例1と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各NbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、NbドープPZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (実施例4)
 BサイトへのNbドープ量を20%とした以外は実施例3と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各NbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、NbドープPZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。
 (比較例5)
 Nbをドープしなかった以外は実施例3と同様にして、Zr/(Zr+Ti)値が異なる複数種のPZT圧電体膜の成膜を実施した。成膜された各PZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 各PZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、PZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。
(比較例6)
 Nbをドープせず、且つ、ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例3と同様にして、Zr/(Zr+Ti)値が異なる複数種のPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のPZT圧電体膜についても同様に成膜した。成膜された各PZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 (比較例7)
 ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例3と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のNbドープPZT圧電体膜についても同様に成膜した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 (比較例8)
 ターゲット上のパワー密度Dが5.0≦D(W/cm)≦6.0の範囲内となるようにした以外は実施例4と同様にして、Zr/(Zr+Ti)値が異なる複数種のNbドープPZT圧電体膜の成膜を実施した。更に、Zr/(Zr+Ti)=0.52のNbドープPZT圧電体膜についても同様に成膜した。成膜された各NbドープPZT膜についてXRD測定を行ったところ、いずれもパイロクロア相のない良質な(100)配向のペロブスカイト酸化物であることが確認された。
 比較例6~8について、各PZT膜又はNbドープPZT膜について高分解能XRDによりピーク分離を行い、菱面体晶及び正方晶の各ピークのピーク面積を得た。得られたピーク面積から、PZT膜の菱面体晶/(菱面体晶+正方晶)の値を算出した。その結果、MPB組成であるZr/(Zr+Ti)=0.52のPZT圧電体膜において、菱面体晶と正方晶とが混在しており、その組成において、菱面体晶/(正方晶+菱面体晶)が0.60となった。また、Zr/(Zr+Ti)=0.51,0.53とした場合においても、菱面体晶と正方晶とが混在しており、各組成において、菱面体晶/(正方晶+菱面体晶)がそれぞれ、0.45、0.80となることが確認された。その結果、Zr/(Zr+Ti)<0.51の組成では、正方晶のみ、0.51≦Zr/(Zr+Ti)≦0.53では、0<菱面体晶/(菱面体晶+正方晶)<1、0.53<Zr/(Zr+Ti)の組成では、菱面体晶のみとなることが確認された。
 <変位量評価>
 実施例3,4、比較例5~8について、実施例1と同様に上部電極を形成し、各例圧電体膜のカンチレバー形成箇所において、周波数1kHz、10Vpp、オフセット電圧-5 Vのsin波駆動電圧を印加し、変位を評価して圧電定数d31を測定した。
 図9Aに、各例のZr/(Zr+Ti)の値と圧電定数d31との関係を、また、図9Bに、各例の菱面体晶/(正方晶+菱面体晶)の値と圧電定数d31との関係を示す。
 図9A,Bには、実施例3,4において、0.70≦菱面体晶/(正方晶+菱面体晶)の領域にて、最も圧電定数が大きい値を示していることが確認される。これに対して、従来法により成膜した比較例ではMPB組成であるZr/(Zr+Ti)=0.52において、菱面体晶と正方晶とが混在しており、その組成において、菱面体晶/(正方晶+菱面体晶)が0.60となり、最も圧電定数が高いことが示されている。
 表1と表2の結果から、基板温度が高い方が、Zrの量が少ない組成において菱面体晶の割合が高くなっていることが確認された。この理由は定かではないが、基板温度が高くなるにつれ結晶軸が傾き、その結果、菱面体晶が安定して形成されるためであると考えられる。
 また、図8と図9を比較すると、基板温度の低い図8の方が高い圧電定数が得られていることが確認された。この理由についても定かではないが、実施例3,4において、パイロクロア相のピークは認められなかったが、基板温度が高くなると、パイロクロア相ができやすいことに起因するものではないかと推察される。
 <連続駆動による劣化率>
 実施例1~実施例4のNbドープPZT膜について、連続100時間駆動後の圧電定数の劣化率を測定した。その結果を表3、表4に示す。表中の劣化率は、連続駆動開始直前の圧電定数を基準として計算した値である。いずれの表にも、菱面体晶/(正方晶+菱面体晶)が0.95を超えると劣化率が大きくなることが示されている。これは、連続駆動時の膜劣化の観点では、菱面体晶のみの構成よりも他の構造が含まれていたほうが膜劣化を抑えることができるためであると考えられる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の圧電体膜は、インクジェット式記録ヘッド,磁気記録再生ヘッド,MEMS(Micro Electro-Mechanical Systems)デバイス,マイクロポンプ,超音波探触子等に搭載される圧電アクチュエータ、及び強誘電体メモリ等の強誘電体素子に好ましく利用できる。

Claims (8)

  1.  下記式(P)で表されるペロブスカイト型酸化物を含む圧電体膜であって、
    前記ペロブスカイト型酸化物の結晶相が、下記式(1)を満足する割合で正方晶と菱面体晶を含む圧電体膜。
     A1+δ[(ZrTi1-x1-aNb]O・・・(P)、
     0.70≦菱面体晶/(菱面体晶+正方晶)≦0.95 ・・・(1)、
     但し、式(P)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満、但し0.51以上0.53以下を除く。aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
  2.  前記xが0.5超である請求項1記載の圧電体膜。
  3.  多数の柱状結晶からなる柱状結晶膜である請求項1又は2記載の圧電体膜。
  4.  請求項1~3いずれか1項記載の圧電体膜と、該圧電体膜に対して電界を印加する電極とを備えた圧電素子。
  5.  請求項4に記載の圧電素子と、該圧電素子に一体的にまたは別体として設けられた液体吐出部材とを備え、
    該液体吐出部材は、液体が貯留される液体貯留室と、該液体貯留室から外部に前記液体が吐出される液体吐出口とを有するものである液体吐出装置。
  6.  基板上に、プラズマを用いるスパッタリング法により、下記式(Q)で表されるペロブスカイト型酸化物を含む圧電体膜を製造する方法であって、
     前記スパッタリング法において、ターゲットを1つ用い、成膜時の前記基板の温度Tsが下記式(2)を満足し、前記ターゲット上のパワー密度Dが下記式(4)を満足する条件で成膜する圧電体膜の製造方法。
     A1+δ[(ZrTi1-x1-aNb]O・・・(Q)、
     400<Ts(℃)<750・・・(2)、
     3.0≦D(W/cm)≦4.0・・・(4)、
     但し、式(Q)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満、但し0.51以上0.53以下を除く。aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
  7.  基板上に、プラズマを用いるスパッタリング法により、下記式(Q)で表されるペロブスカイト型酸化物を含む圧電体膜を製造する方法であって、
     前記スパッタリング法において、ターゲットを2つ用い、成膜時の前記基板の温度Tsが下記式(2)を満足し、前記ターゲット上のパワー密度Dが下記式(5)を満足する条件で成膜する圧電体膜の製造方法。
     A1+δ[(ZrTi1-x1-aNb]O・・・(Q)、
     400<Ts(℃)<750・・・(2)、
     3.0≦D(W/cm)≦6.0・・・(5)、
     但し、式(Q)中、AはPbを主成分とするAサイト元素であり、Zr,Ti,及びNbはBサイト元素である。xは0.4以上1未満、但し0.51以上0.53以下を除く。aは0.08以上である。δ=0及びy=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
  8.  前記基板の温度Tsが下記式(3)を満足する請求項6又は7記載の圧電体膜の製造方法。
      450≦Ts(℃)≦650 ・・・(3)
PCT/JP2015/003738 2014-08-29 2015-07-27 圧電体膜とその製造方法、圧電素子、及び液体吐出装置 WO2016031134A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016544923A JP6392360B2 (ja) 2014-08-29 2015-07-27 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
US15/439,564 US10011111B2 (en) 2014-08-29 2017-02-22 Piezoelectric film, production method thereof, piezoelectric element, and liquid discharge apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174867 2014-08-29
JP2014-174867 2014-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/439,564 Continuation US10011111B2 (en) 2014-08-29 2017-02-22 Piezoelectric film, production method thereof, piezoelectric element, and liquid discharge apparatus

Publications (1)

Publication Number Publication Date
WO2016031134A1 true WO2016031134A1 (ja) 2016-03-03

Family

ID=55399055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003738 WO2016031134A1 (ja) 2014-08-29 2015-07-27 圧電体膜とその製造方法、圧電素子、及び液体吐出装置

Country Status (3)

Country Link
US (1) US10011111B2 (ja)
JP (1) JP6392360B2 (ja)
WO (1) WO2016031134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175568A (ja) * 2019-04-17 2020-10-29 株式会社アルバック 多層構造体並びにその製造方法及びその製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092535A (ja) * 2015-11-02 2017-05-25 セイコーエプソン株式会社 圧電素子、超音波プローブ、超音波測定装置及び圧電素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101512A (ja) * 2002-10-24 2005-04-14 Seiko Epson Corp 強誘電体膜、強誘電体メモリ、圧電素子、半導体素子、液体噴射ヘッド、プリンタ及び強誘電体膜の製造方法
JP2012009677A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜および圧電素子
JP2012009678A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜、圧電素子および液体吐出装置
WO2012165110A1 (ja) * 2011-05-31 2012-12-06 コニカミノルタホールディングス株式会社 強誘電体膜およびそれを備えた圧電素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820000B2 (ja) 1993-08-05 1998-11-05 トヨタ自動車株式会社 アクチュエータ用圧電材料組成物
US6091183A (en) * 1995-06-06 2000-07-18 Kasei Optonix, Ltd. Piezoelectric element and method for driving the same
JP3791614B2 (ja) 2002-10-24 2006-06-28 セイコーエプソン株式会社 強誘電体膜、強誘電体メモリ装置、圧電素子、半導体素子、圧電アクチュエータ、液体噴射ヘッド及びプリンタ
JP4171908B2 (ja) 2004-01-20 2008-10-29 セイコーエプソン株式会社 強誘電体膜、強誘電体メモリ、及び圧電素子
JP5367242B2 (ja) 2007-03-22 2013-12-11 富士フイルム株式会社 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP5728890B2 (ja) 2010-11-02 2015-06-03 コニカミノルタ株式会社 圧電素子およびその製造方法
JP5943870B2 (ja) * 2013-04-01 2016-07-05 富士フイルム株式会社 圧電体膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101512A (ja) * 2002-10-24 2005-04-14 Seiko Epson Corp 強誘電体膜、強誘電体メモリ、圧電素子、半導体素子、液体噴射ヘッド、プリンタ及び強誘電体膜の製造方法
JP2012009677A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜および圧電素子
JP2012009678A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜、圧電素子および液体吐出装置
WO2012165110A1 (ja) * 2011-05-31 2012-12-06 コニカミノルタホールディングス株式会社 強誘電体膜およびそれを備えた圧電素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175568A (ja) * 2019-04-17 2020-10-29 株式会社アルバック 多層構造体並びにその製造方法及びその製造装置
JP7329354B2 (ja) 2019-04-17 2023-08-18 株式会社アルバック 多層構造体の製造方法及びその製造装置

Also Published As

Publication number Publication date
JP6392360B2 (ja) 2018-09-19
US10011111B2 (en) 2018-07-03
US20170157931A1 (en) 2017-06-08
JPWO2016031134A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5307986B2 (ja) 圧電素子とその製造方法、及び液体吐出装置
JP5546105B2 (ja) ペロブスカイト型酸化物とその製造方法、圧電体膜、圧電素子、液体吐出装置
US7768178B2 (en) Piezoelectric device, piezoelectric actuator, and liquid discharge device having piezoelectric films
US10217929B2 (en) Piezoelectric film, piezoelectric element, and liquid discharge apparatus
US10103316B2 (en) Piezoelectric film, piezoelectric element including the same, and liquid discharge apparatus
JP4931148B2 (ja) ペロブスカイト型酸化物積層体及び圧電素子、液体吐出装置
JP2008266770A (ja) 強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
US8215753B2 (en) Piezoelectric material, method for producing piezoelectric material, piezoelectric device and liquid discharge device
JP2008192868A (ja) 圧電体膜及びそれを用いた圧電素子、液体吐出装置
JP2008252071A (ja) 圧電素子とその製造方法、及び液体吐出装置
JP5394765B2 (ja) ペロブスカイト型酸化物膜、強誘電体、圧電素子、液体吐出装置
US8210658B2 (en) Piezoelectric material, method for producing piezoelectric material, piezoelectric device and liquid discharge device
JP5095315B2 (ja) ペロブスカイト型酸化物、強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP2010080813A (ja) 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
JP2009062564A (ja) ペロブスカイト型酸化物、強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP2008004781A (ja) 圧電膜、圧電素子、インクジェット式記録ヘッド、及びインクジェット式記録装置
JP5265973B2 (ja) 圧電素子及び液体吐出装置
JP2009064859A (ja) ペロブスカイト型酸化物、強誘電体膜とその製造方法、強誘電体素子、及び液体吐出装置
JP2007314368A (ja) ペロブスカイト型酸化物、強誘電素子、圧電アクチュエータ、及び液体吐出装置
JP6392360B2 (ja) 圧電体膜とその製造方法、圧電素子、及び液体吐出装置
JP6219535B2 (ja) 圧電素子の製造方法、及びアクチュエータの製造方法
JP2007088445A (ja) 圧電体、圧電素子、液体吐出ヘッド、液体吐出装置及び圧電体の製造方法
JP2007281049A (ja) 積層素子、圧電素子、及びインクジェット式記録ヘッド
JP2010219493A (ja) 圧電体膜とその成膜方法、圧電素子、及び液体吐出装置
JP4564580B2 (ja) 圧電体膜の製造方法およびそれにより製造された圧電体膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836865

Country of ref document: EP

Kind code of ref document: A1