WO2016030953A1 - 無線通信システム、基地局、端末および通信方法 - Google Patents

無線通信システム、基地局、端末および通信方法 Download PDF

Info

Publication number
WO2016030953A1
WO2016030953A1 PCT/JP2014/072205 JP2014072205W WO2016030953A1 WO 2016030953 A1 WO2016030953 A1 WO 2016030953A1 JP 2014072205 W JP2014072205 W JP 2014072205W WO 2016030953 A1 WO2016030953 A1 WO 2016030953A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
band
broadcast information
operator
Prior art date
Application number
PCT/JP2014/072205
Other languages
English (en)
French (fr)
Inventor
須田 健二
矢野 哲也
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to KR1020177003107A priority Critical patent/KR101968426B1/ko
Priority to CN202110393065.7A priority patent/CN112911682A/zh
Priority to JP2016545111A priority patent/JP6690094B2/ja
Priority to EP14900513.4A priority patent/EP3188567A4/en
Priority to PCT/JP2014/072205 priority patent/WO2016030953A1/ja
Priority to CN201480081337.8A priority patent/CN106576376A/zh
Publication of WO2016030953A1 publication Critical patent/WO2016030953A1/ja
Priority to US15/412,713 priority patent/US20170135143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Definitions

  • the present invention relates to a wireless communication system, a base station, a terminal, and a communication method.
  • D2D Device to Device communication
  • an object of the present invention is to provide a radio communication system, a base station, a terminal, and a communication method that allow an operator to directly communicate between different terminals.
  • a first base station of a first operator a first terminal wirelessly connected to the first base station, A second base station of a second operator different from the first operator, and a second terminal wirelessly connected to the second base station, the first base station and the second base
  • At least one of the stations is a predetermined band included in a radio frequency band assigned to the first operator, and is a predetermined band that can be used for direct communication between the first terminal and the second terminal.
  • a radio communication system, a base station, and a terminal that transmit broadcast information indicating a band, and wherein the second terminal performs direct communication with the first terminal using the predetermined band based on the broadcast information And a communication method is proposed.
  • FIG. 1 is a diagram of an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a bandwidth allocated to each operator.
  • FIG. 3 is a sequence diagram illustrating an example of operation in the wireless communication system according to the first embodiment.
  • FIG. 4A is a diagram illustrating an example of an eNB.
  • 4B is a diagram illustrating an example of a signal flow in the eNB illustrated in FIG. 4A.
  • FIG. 4C is a diagram illustrating an example of a hardware configuration of the eNB.
  • FIG. 5A is a diagram illustrating an example of a UE on the A company side.
  • FIG. 5B is a diagram illustrating an example of a signal flow in the UE illustrated in FIG. 5A.
  • FIG. 5C is a diagram illustrating an example of a UE on the D company side.
  • FIG. 5D is a diagram illustrating an example of a signal flow in the UE on the D company side illustrated in FIG. 5C.
  • FIG. 5E is a diagram illustrating an example of a hardware configuration of the UE.
  • FIG. 6 is a flowchart illustrating an example of processing by the eNB.
  • FIG. 7 is a flowchart of an example of processing performed by the UE on the A company side according to the first embodiment.
  • FIG. 8 is a flowchart of an example of processing performed by the UE on the D company side according to the first embodiment.
  • FIG. 9 is a sequence diagram illustrating a modification of the operation of the wireless communication system according to the first embodiment.
  • FIG. 9 is a sequence diagram illustrating a modification of the operation of the wireless communication system according to the first embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of operations in the wireless communication system according to the second embodiment.
  • FIG. 11 is a flowchart of an example of processing performed by the UE on the A company side according to the second embodiment.
  • FIG. 12 is a flowchart of an example of processing performed by the UE on the D company side according to the second embodiment.
  • FIG. 13 is a sequence diagram illustrating a modified example of the operation in the wireless communication system according to the second embodiment.
  • FIG. 14 is a sequence diagram illustrating an example of operations in the wireless communication system according to the third embodiment.
  • FIG. 15 is a flowchart of an example of processing performed by the UE on the A company side according to the third embodiment.
  • FIG. 11 is a flowchart of an example of processing performed by the UE on the A company side according to the second embodiment.
  • FIG. 12 is a flowchart of an example of processing performed by the UE on the D company side according to the second embodiment.
  • FIG. 13 is a sequence diagram illustrating
  • FIG. 16 is a flowchart of an example of processing performed by the UE on the D company side according to the third embodiment.
  • FIG. 17 is a sequence diagram illustrating an example of operations in the wireless communication system according to the fourth embodiment.
  • FIG. 18 is a flowchart illustrating an example of processing performed by the UE on the A company side according to the fourth embodiment.
  • FIG. 19 is a flowchart of an example of processing performed by the UE on the D company side according to the fourth embodiment.
  • FIG. 20 is a sequence diagram illustrating an example of operations in the wireless communication system according to the fifth embodiment.
  • FIG. 21 is a flowchart of an example of processing performed by the UE on the A company side according to the fifth embodiment.
  • FIG. 21 is a flowchart of an example of processing performed by the UE on the A company side according to the fifth embodiment.
  • FIG. 22 is a flowchart of an example of processing performed by the UE on the D company side according to the fifth embodiment.
  • FIG. 23 is a sequence diagram illustrating an example of operations in the wireless communication system according to the sixth embodiment.
  • FIG. 24 is a flowchart of an example of processing performed by the UE on the A company side according to the sixth embodiment.
  • FIG. 25 is a flowchart of an example of processing performed by the UE on the D company side according to the sixth embodiment.
  • FIG. 26 is a sequence diagram illustrating an example of operations in the wireless communication system according to the seventh embodiment.
  • FIG. 27 is a sequence diagram illustrating an example of operations in the wireless communication system according to the eighth embodiment.
  • FIG. 1 is a diagram of an example of a wireless communication system according to the first embodiment.
  • the radio communication system 100 according to the first embodiment includes, for example, UEs 101 and 102 (User Equipment: user terminals) and eNBs 111 and 112 (evolved Node B).
  • UEs 101 and 102 User Equipment: user terminals
  • eNBs 111 and 112 evolved Node B
  • the eNB 111 is a base station operated by the company A.
  • eNB 112 is a base station operated by Company D.
  • Company A and Company D are different operators (communication carriers).
  • Each of the eNBs 111 and 112 is connected to the network 120.
  • the network 120 is a wide area network such as the Internet.
  • UE 101 is a terminal of a user who has contracted with company A.
  • the UE 101 is wirelessly connected to the eNB 111 and can communicate with the network 120 (NW) via the eNB 111.
  • UE 102 is a terminal of a user who has contracted with Company D.
  • the UE 102 is wirelessly connected to the eNB 112 and can communicate with the network 120 via the eNB 112.
  • the UEs 101 and 102 are capable of D2D communication that performs direct communication with each other.
  • the base station in the wireless communication system 100 is not limited to the eNB such as the eNBs 111 and 112, and various base stations of the mobile communication network can be used.
  • the terminals in the radio communication system 100 are not limited to (UE) such as the UEs 101 and 102, and various terminals of the mobile communication network can be used.
  • FIG. 2 is a diagram illustrating an example of a bandwidth allocated to each operator.
  • the horizontal axis represents frequency.
  • Band 201 (company A band) is a radio frequency band assigned to company A.
  • the UE 101 performs radio communication using the band 201 with the eNB 111.
  • the band 201 includes a frequency band f1 (predetermined band) that can be used for D2D communication between the UE of company A (for example, UE 101) and the UE (for example, UE 102) of an operator different from company A.
  • f1 predetermined band
  • Band 202 (D company band) is a radio frequency band allocated to D company.
  • the UE 102 performs radio communication using the band 202 with the eNB 112.
  • the band 202 includes a frequency band f2 (predetermined band) that can be used for D2D communication between the UE of company D (for example, UE 102) and the UE (for example, UE 101) of an operator different from company D.
  • f2 predetermined band
  • the frequency bands f1 and f2 can be dedicated frequency bands for D2D communication with another operator's UE, for example. Thereby, D2D communication between UEs with different operators can be performed while suppressing interference with other communication such as communication between base station terminals. Or frequency band f1, f2 can be made into a shared frequency band with D2D communication with UE of another operator, and other communications, such as communication between base station terminals, for example. Thereby, D2D communication with other operator's UE can be performed, suppressing the reduction
  • the frequency bands f1 and f2 can be set to system fixed frequencies set when the eNBs 111 and 112 are installed, for example. Further, the frequency bands f1 and f2 may be determined by the eNBs 111 and 112 communicating with each other via the network 120. Further, the eNBs 111 and 112 may periodically determine the frequency bands f1 and f2 respectively in the own station.
  • the bands 201 and 202 are adjacent to each other, but the bands 201 and 202 may be frequency bands separated from each other.
  • the band 201 is a frequency band on the low frequency side of the band 202, but the band 201 may be a frequency band on the high frequency side of the band 202.
  • Embodiment 1 the case where the frequency band f1 of the own operator (Company A) is used for data transmission of the UE 101 will be described.
  • FIG. 3 is a sequence diagram illustrating an example of operation in the wireless communication system according to the first embodiment.
  • the wireless communication system 100 for example, each step shown in FIG. 3 is executed.
  • the eNB 111 Company A
  • the eNB 112 Company D
  • Step S301 exchange D2D band information
  • the eNB 111 transmits, to the eNB 112, D2D band information indicating the frequency band f1 that can be used for D2D communication with another company in the band 201 of the own station. Also, the eNB 112 transmits D2D band information indicating the frequency band f2 that can be used for D2D communication with another company in the band 202 of the own station to the eNB 111.
  • the X2 interface that connects the eNB 111 and the eNB 112 can be used for exchanging the band information for D2D in step S301.
  • the eNB 111 provides broadcast information including D2D band information indicating the frequency band f1 that can be used for D2D communication with another company in the band 201 of the own station and the frequency band f2 obtained in step S301. It transmits to UE101 (step S302). Thereby, the frequency bands f1 and f2 can be notified to the UE 101.
  • the broadcast information including the D2D band information is transmitted periodically, for example.
  • the frequency band f1 may be notified to the UE 101 at a timing different from that of the frequency band f2.
  • the frequency band f1 may be stored in advance in the memory of the UE 101 so that the frequency band f1 is not notified to the UE 101.
  • SIB System Information Block: system information block
  • MIB Master Information Block: master information block
  • an area of “Inter Operator D2D Frequency” (tentative name) is defined in the SIB, and this area can be used for broadcast information transmitted in step S302.
  • the eNB 112 transmits broadcast information including D2D band information indicating the frequency band f2 that can be used for D2D communication with another company in the band 202 of the own station and the frequency band f1 obtained in step S301 to the UE 102. (Step S303). Thereby, frequency band f1, f2 can be notified to UE102.
  • the frequency band f2 may be notified to the UE 102 at a timing different from that of the frequency band f1. Further, the frequency band f2 may be stored in advance in the memory of the UE 102, and the frequency band f2 may not be notified to the UE 102.
  • SIB SIB or MIB can be used for the broadcast information transmitted in step S303.
  • the UE 101 transmits a discovery signal (radio signal) to the UE 102 using the frequency band f1 that can be used for D2D communication with another company in the band 201 of the company A to which the terminal belongs (step S304).
  • the UE 101 transmits a discovery signal multiple times.
  • the UE 102 can receive the discovery signal of the frequency band f1 from the UE 101 in step S304 by performing reception processing of the frequency band f1 notified in step S303. Then, the UE 102 establishes synchronization with the UE 101 based on the received discovery signal (step S305).
  • the UE 102 transmits to the UE 101 a synchronization establishment signal (radio signal) indicating that synchronization has been established using the frequency band f2 that can be used for D2D communication with another company in the company D band 202 to which the terminal belongs. (Step S306).
  • UE101 can receive the synchronization establishment signal from UE102 in step S306 by performing the reception process of the frequency band f2 notified by step S302.
  • the UE 101 transmits a transmission permission request signal requesting permission of data transmission to the UE 102 by D2D communication to the eNB 111 (step S307).
  • a transmission permission request signal requesting permission of data transmission to the UE 102 by D2D communication to the eNB 111
  • an uplink control channel assigned to the UE 101 by the eNB 111 can be used.
  • the eNB 111 transmits a transmission permission signal that permits data transmission to the UE 102 by D2D communication to the UE 101 (step S308).
  • a downlink control channel assigned to the UE 101 by the eNB 111 can be used for transmission of the transmission permission signal in step S308.
  • the UE 101 performs data transmission (radio signal transmission) to the UE 102 by D2D communication using the frequency band f1 (step S309).
  • the data transmission in step S309 is performed using, for example, a frequency included in the frequency band f1.
  • UE102 can receive the data from UE101 in step S309 by performing the reception process of the frequency band f1 notified by step S303.
  • the UE 101 may perform data transmission using a predesignated frequency in the frequency band f1. Further, UE 101 may transmit data at a frequency corresponding to the discovery signal (for example, the sequence number of the discovery signal) transmitted in step S304 in frequency band f1. Further, the UE 101 may perform data transmission using the frequency notified to the UE 102 by the discovery signal transmitted in step S304. Thereby, UE102 can receive the data from UE101, without performing the receiving process of the whole frequency band f1.
  • the discovery signal for example, the sequence number of the discovery signal
  • the eNB 111 when the eNB 111 receives the transmission permission request signal in step S307, the frequency to be used for data transmission from the UE 101 to the UE 102 in the frequency band f1 may be determined. Then, the eNB 111 stores the determination result in the transmission permission signal in step S308. In this case, in step S309, the UE 101 performs data transmission to the UE 102 by D2D communication using the frequency indicated by the determination result stored in the transmission permission signal.
  • UE101 may determine the frequency used for the data transmission to UE102 of frequency band f1 by an own terminal.
  • the UE 101 performs data transmission to the UE 102 at the frequency determined by the own terminal in step S309.
  • the eNB 111 does not have to determine a frequency to be used for data transmission from the UE 101 to the UE 102.
  • FIG. 4A is a diagram illustrating an example of an eNB.
  • 4B is a diagram illustrating an example of a signal flow in the eNB illustrated in FIG. 4A.
  • Each of the eNBs 111 and 112 can be realized by, for example, the eNB 400 illustrated in FIGS. 4A and 4B.
  • the eNB 400 includes a reception antenna 401, a receiver 402, an L1 reception unit 403, an upper layer processing unit 404, an L1 transmission unit 405, a transmitter 406, a transmission antenna 407, a broadcast information generation unit 408, a transmission A permission determination unit 409.
  • the receiver 402 receives a signal wirelessly transmitted from another communication device (for example, UE) via the reception antenna 401. Then, the receiver 402 outputs the received signal to the L1 receiving unit 403.
  • the L1 receiver 403 performs L1 (physical layer) reception processing of the signal output from the receiver 402. Then, the L1 reception unit 403 outputs the data obtained by the L1 reception process to the upper layer processing unit 404.
  • the upper layer processing unit 404 performs upper layer reception processing of the data output from the L1 receiving unit 403.
  • the reception process by the upper layer processing unit 404 includes, for example, a reception process of L2 (MAC layer: Media Access Control layer).
  • the upper layer processing unit 404 outputs the data obtained by the reception process.
  • the data output from the upper layer processing unit 404 is transmitted to the network 120, for example.
  • the upper layer processing unit 404 performs, for example, upper layer transmission processing of data received from the network 120.
  • the transmission processing by the upper layer processing unit 404 includes, for example, L2 transmission processing.
  • Upper layer processing section 404 outputs the data obtained by the transmission processing to L1 transmission section 405.
  • the upper layer processing unit 404 outputs information stored in the broadcast information from the own station to the broadcast information generation unit 408.
  • the information stored in the broadcast information includes a frequency band that can be used for D2D communication with other companies in the band of the local station.
  • the information stored in the broadcast information includes D2D band information indicating a frequency band that can be used for D2D communication with the own station in another company's band. This D2D band information can be received from another company's eNB using, for example, an X2 interface.
  • the higher layer processing unit 404 transmits D2D band information indicating the frequency band that can be used for D2D communication with the other company in the band of the own station to the eNB of the other company using, for example, the X2 interface. Further, upper layer processing section 404 outputs a transmission permission request signal included in the data output from L1 receiving section 403 to transmission permission determining section 409.
  • the L1 transmission unit 405 performs L1 transmission processing of data and each information output from the upper layer processing unit 404, the broadcast information generation unit 408, and the transmission permission determination unit 409. Then, the L1 transmission unit 405 outputs a signal (transmission signal) corresponding to the transmission processing of L1 to the transmitter 406.
  • the transmitter 406 wirelessly transmits the signal output from the L1 transmission unit 405 to another communication device via the transmission antenna 407.
  • the notification information generation unit 408 generates notification information that stores the information output from the upper layer processing unit 404.
  • the broadcast information generated by the broadcast information generation unit 408 includes, for example, SIB and MIB.
  • the broadcast information generation unit 408 outputs the generated broadcast information to the L1 transmission unit 405.
  • the transmission permission determination unit 409 determines whether to permit data transmission by D2D communication. For example, the transmission permission determination unit 409 can make an inquiry to the upper layer processing unit 404 as to the availability of radio resources and make a determination according to the inquiry result. If the transmission permission determination unit 409 determines that data transmission by D2D communication is permitted, the transmission permission determination unit 409 outputs a transmission permission signal to the L1 transmission unit 405.
  • the transmission unit that transmits the broadcast information including the D2D band information can be realized by the L1 transmission unit 405, the transmitter 406, the transmission antenna 407, and the broadcast information generation unit 408.
  • FIG. 4C is a diagram illustrating an example of a hardware configuration of the eNB.
  • the eNB 400 illustrated in FIGS. 4A and 4B can be realized by the communication device 430 illustrated in FIG. 4C, for example.
  • the communication device 430 includes a CPU 431 (Central Processing Unit), a memory 432, a wireless communication interface 433, and a wired communication interface 434.
  • the CPU 431, the memory 432, the wireless communication interface 433 and the wired communication interface 434 are connected by a bus 439.
  • CPU 431 Central Processing Unit
  • the CPU 431, the memory 432, the wireless communication interface 433 and the wired communication interface 434 are connected by a bus 439.
  • the CPU 431 controls the entire communication device 430.
  • the memory 432 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the CPU 431.
  • the auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the communication device 430 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 431.
  • the wireless communication interface 433 is a communication interface that performs communication with the outside of the communication device 430 (for example, a UE) wirelessly.
  • the wireless communication interface 433 is controlled by the CPU 431.
  • the wired communication interface 434 is a communication interface that performs communication with the outside of the communication device 430 (for example, a host device or another eNB) by wire.
  • the wired communication interface 434 is controlled by the CPU 431.
  • the wired communication interface 434 includes an X2 interface for exchanging information with other eNBs in step S301 shown in FIG.
  • the reception antenna 401, the receiver 402, the transmitter 406, and the transmission antenna 407 shown in FIGS. 4A and 4B can be realized by the wireless communication interface 433, for example.
  • the L1 reception unit 403, the upper layer processing unit 404, the L1 transmission unit 405, the broadcast information generation unit 408, and the transmission permission determination unit 409 illustrated in FIGS. 4A and 4B can be realized by the CPU 431 and the memory 432, for example.
  • FIG. 5A is a diagram illustrating an example of a UE on the A company side.
  • FIG. 5B is a diagram illustrating an example of a signal flow in the UE illustrated in FIG. 5A.
  • the UE 101 shown in FIG. 3 can be realized by the UE 101 shown in FIGS. 5A and 5B, for example.
  • the UE 101 includes a reception antenna 501, a receiver 502, an L1 reception unit 503, an upper layer processing unit 504, an L1 transmission unit 505, a transmitter 506, and a transmission antenna 507. Further, the UE 101 includes a D2D band information acquisition unit 508, a transmission permission setting unit 509, and a D2D signal setting unit 510.
  • the receiver 502 receives a signal wirelessly transmitted from another communication apparatus (for example, eNB) via the reception antenna 501. Then, the receiver 502 outputs the received signal to the L1 receiving unit 503.
  • the L1 receiving unit 503 performs L1 (physical layer) reception processing of the signal output from the receiver 502. Then, the L1 reception unit 503 outputs the data obtained by the L1 reception process to the upper layer processing unit 504 and the D2D band information acquisition unit 508.
  • the upper layer processing unit 504 performs upper layer reception processing of the data output from the L1 receiving unit 503.
  • the reception processing by the higher layer processing unit 504 includes, for example, L2 reception processing. Further, the upper layer processing unit 504 performs transmission processing for the upper layer.
  • the transmission processing by the upper layer processing unit 504 includes, for example, L2 transmission processing.
  • Upper layer processing section 504 outputs the data obtained by the transmission process to L1 transmission section 505.
  • the upper layer processing unit 504 notifies the D2D signal setting unit 510 of the frequency band f1 that can be used for D2D communication with another company in the band 201 of company A to which the terminal belongs. Also, the upper layer processing unit 504 notifies the D2D signal setting unit 510 of the frequency band f2 indicated by the D2D band information output from the D2D band information acquisition unit 508.
  • the upper layer processing unit 504 when an execution request for D2D communication is generated, the upper layer processing unit 504 outputs a D2D communication request to the transmission permission setting unit 509. In addition, upper layer processing section 504 outputs a transmission permission signal included in the data output from L1 receiving section 503 to transmission permission setting section 509.
  • the L1 transmission unit 505 performs L1 transmission processing of data output from the upper layer processing unit 504. Then, the L1 transmission unit 505 outputs a signal (transmission signal) corresponding to the transmission processing of L1 to the transmitter 506.
  • the transmitter 506 wirelessly transmits the signal output from the L1 transmission unit 505 to another communication device via the transmission antenna 507.
  • the D2D band information acquisition unit 508 acquires D2D band information from another company's eNB included in the data output from the L1 reception unit 503. Then, the D2D band information acquisition unit 508 outputs the acquired D2D band information to the upper layer processing unit 504.
  • the transmission permission setting unit 509 outputs a transmission permission request signal to the L1 transmission unit 505 based on the D2D communication request output from the higher layer processing unit 504. Thereby, the transmission permission request signal is transmitted to the eNB 111. In addition, when a transmission permission signal corresponding to the transmission permission request signal is output from the upper layer processing unit 504, the transmission permission setting unit 509 controls the L1 transmission unit 505 to execute D2D communication.
  • the D2D signal setting unit 510 controls the receiver 502 to perform reception processing of the frequency band f2 notified from the higher layer processing unit 504. In addition, the D2D signal setting unit 510 controls the transmitter 506 (or L1 transmission unit 505) to perform transmission of D2D communication using the frequency band f1 notified from the higher layer processing unit 504.
  • the receiving unit that receives the broadcast information including the D2D band information can be realized by the receiving antenna 501, the receiver 502, the L1 receiving unit 503, and the D2D band information acquiring unit 508, for example.
  • the communication unit that performs D2D communication (direct communication) based on the received notification information includes, for example, the reception antenna 501, the receiver 502, the L1 reception unit 503, the L1 transmission unit 505, the transmitter 506, the transmission antenna 507, and D2D. This can be realized by the signal setting unit 510.
  • FIG. 5C is a diagram illustrating an example of a UE on the D company side.
  • FIG. 5D is a diagram illustrating an example of a signal flow in the UE on the D company side illustrated in FIG. 5C.
  • the UE 102 shown in FIG. 3 can be realized by the UE 102 shown in FIGS. 5C and 5D, for example. 5C and 5D, the same parts as those shown in FIGS. 5A and 5B are denoted by the same reference numerals, and description thereof is omitted.
  • the UE 102 includes a receiving antenna 501, a receiver 502, an L1 receiving unit 503, an upper layer processing unit 504, an L1 transmitting unit 505, a transmitter 506, and a transmitting antenna 507.
  • the UE 102 includes a D2D band information acquisition unit 508, a discovery signal detection unit 531, a synchronization establishment signal setting unit 532, and a D2D signal setting unit 533.
  • the L1 reception unit 503 outputs the data obtained by the L1 reception process to the upper layer processing unit 504, the D2D band information acquisition unit 508, and the discovery signal detection unit 531.
  • the higher layer processing unit 504 notifies the D2D signal setting unit 533 of the frequency band f2 that can be used for D2D communication with other companies in the band 202 of company D to which the terminal belongs. Further, the upper layer processing unit 504 notifies the D2D signal setting unit 533 of the frequency band f1 indicated by the D2D band information output from the D2D band information acquisition unit 508. Further, when an execution request for D2D communication is generated, upper layer processing section 504 outputs the D2D communication request to synchronization establishment signal setting section 532.
  • the L1 transmission unit 505 performs L1 transmission processing of data and signals output from the upper layer processing unit 504 and the synchronization establishment signal setting unit 532.
  • Discovery signal detector 531 detects a discovery signal from UE 101 included in the data output from L1 receiver 503. Then, the discovery signal detection unit 531 outputs the detected discovery signal to the upper layer processing unit 504 and the synchronization establishment signal setting unit 532.
  • the synchronization establishment signal setting unit 532 establishes synchronization with the UE 101 based on the discovery signal output from the discovery signal detection unit 531. Then, the synchronization establishment signal setting unit 532 outputs the synchronization establishment signal to the L1 transmission unit 505 when synchronization is established.
  • the D2D signal setting unit 533 controls the receiver 502 to perform reception processing of the frequency band f1 notified from the higher layer processing unit 504. Further, the D2D signal setting unit 533 controls the transmitter 506 (or the L1 transmission unit 505) so as to transmit D2D communication using the frequency band f2 notified from the higher layer processing unit 504.
  • the UE 101 may include the discovery signal detection unit 531, the synchronization establishment signal setting unit 532, and the D2D signal setting unit 533 illustrated in FIGS. 5C and 5D. Further, the UE 102 may include the transmission permission setting unit 509 illustrated in FIGS. 5A and 5B. Thereby, the operation
  • FIG. 5E is a diagram illustrating an example of a hardware configuration of the UE.
  • the UE 101 shown in FIGS. 5A and 5B can be realized by the communication device 550 shown in FIG. 5E, for example.
  • the communication device 550 includes a CPU 551, a memory 552, a user interface 553, and a wireless communication interface 554.
  • the CPU 551, the memory 552, the user interface 553, and the wireless communication interface 554 are connected by a bus 559.
  • the CPU 551 governs overall control of the communication device 550.
  • the memory 552 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the CPU 551.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the communication device 550 are stored in the auxiliary memory.
  • the program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 551.
  • the user interface 553 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by, for example, a key (for example, a keyboard) or a remote controller.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 553 is controlled by the CPU 551.
  • the wireless communication interface 554 is a communication interface that performs communication with the outside of the communication device 550 (for example, an eNB or another UE) wirelessly.
  • the wireless communication interface 554 is controlled by the CPU 551.
  • the wireless communication interface 554 includes an interface that performs D2D communication with another UE.
  • the reception antenna 501, the receiver 502, the transmitter 506, and the transmission antenna 507 shown in FIGS. 5A and 5B can be realized by the wireless communication interface 554, for example.
  • the L1 reception unit 503, the upper layer processing unit 504, the L1 transmission unit 505, the D2D band information acquisition unit 508, the transmission permission setting unit 509, and the D2D signal setting unit 510 illustrated in FIGS. 5A and 5B are, for example, the CPU 551 and the memory 552. Can be realized.
  • the UE 102 shown in FIGS. 5C and 5D can also be realized by the communication device 550 shown in FIG. 5E, for example.
  • the reception antenna 501, the receiver 502, the transmitter 506, and the transmission antenna 507 illustrated in FIGS. 5C and 5D can be realized by the wireless communication interface 554, for example.
  • the L1 reception unit 503, the upper layer processing unit 504, the L1 transmission unit 505, and the D2D band information acquisition unit 508 illustrated in FIGS. 5C and 5D can be realized by the CPU 551 and the memory 552, for example.
  • the discovery signal detection unit 531, the synchronization establishment signal setting unit 532, and the D2D signal setting unit 533 illustrated in FIGS. 5C and 5D can be realized by the CPU 551 and the memory 552, for example.
  • FIG. 6 is a flowchart illustrating an example of processing by the eNB. eNB400 performs each step shown, for example in FIG.
  • the eNB 400 transmits and receives D2D band information to and from other eNBs with different operators (step S601). For example, the eNB 400 transmits D2D band information indicating the D2D frequency of the local station to other eNBs, and receives D2D band information indicating the D2D frequencies of other eNBs with different operators from the other eNBs.
  • the eNB 400 transmits the D2D band information of the local station and other eNBs to the UE connected to the local station (step S602).
  • the broadcast information such as SIB and MIB described above can be used for transmission of the D2D band information in step S602.
  • the eNB 400 determines whether or not a transmission permission request signal for requesting permission for data transmission in D2D communication has been received from the UE connected to the own station (step S603), and transmits a transmission permission request signal. Wait until it is received (step S603: No loop). In step S603, when the transmission permission request signal is received (step S603: Yes), the eNB 400 transmits a transmission permission signal to the transmission source UE of the transmission permission request signal (step S604), and ends a series of processes.
  • the eNB 400 may assign a frequency to the D2D communication of the UE.
  • the eNB 400 stores information indicating the assigned frequency in the transmission permission signal.
  • the eNB 400 may return to step S603 without transmitting the transmission permission signal.
  • step S601 the transmission and reception of the D2D band information may be performed at different timings. Also, in step S603, the eNB 400 may return to step S601 if the transmission permission request signal is not received even after a predetermined time has elapsed from step S602.
  • FIG. 7 is a flowchart of an example of processing performed by the UE on the A company side according to the first embodiment.
  • the UE 101 on the A company side executes, for example, each step shown in FIG. First, the UE 101 receives D2D band information indicating the frequency bands f1 and f2 from the eNB 111 to which the terminal 101 is connected (step S701).
  • the UE 101 determines whether or not to execute D2D communication (step S702), and waits until it is determined to execute D2D communication (step S702: No loop). For example, the UE 101 determines to execute the D2D communication when receiving a D2D communication start instruction from the user of the UE 101 or when a request for the D2D communication is generated in the application being executed by the UE 101. For example, when it is not determined that the D2D communication is to be executed even after a predetermined time has elapsed, the UE 101 may return to step S701.
  • step S702 If it is determined in step S702 that D2D communication is to be performed (step S702: Yes), the UE 101 transmits a discovery signal using the frequency band f1 (step S703). Next, UE101 judges whether the synchronization establishment signal was received from UE102 (step S704).
  • step S704 when the synchronization establishment signal has not been received (step S704: No), the UE 101 determines whether or not a predetermined time has elapsed since the transition from step S702 to step S703 (step S705). When the predetermined time has elapsed (step S705: Yes), the UE 101 ends a series of processes. When the predetermined time has not elapsed (step S705: No), the UE 101 returns to step S703.
  • step S704 when the synchronization establishment signal is received (step S704: Yes), the UE 101 transmits a transmission permission request signal to the eNB 111 to which the own terminal is connected (step S706). Next, UE101 judges whether the transmission permission signal with respect to the transmission permission request signal transmitted by step S706 was received from eNB111 (step S707).
  • step S707 when the transmission permission signal is not received (step S707: No), the UE 101 determines whether or not a predetermined time has elapsed since the transition from step S704 to step S706 (step S708).
  • step S708 when a predetermined time has elapsed (step S708: Yes), the UE 101 ends a series of processes. If the predetermined time has not elapsed (step S708: No), the UE 101 determines whether or not the number of transmissions of the transmission permission request signal in step S706 has exceeded the predetermined number of transmissions (step S709).
  • step S709 when the number of transmissions of the transmission permission request signal exceeds the predetermined number of transmissions (step S709: Yes), the UE 101 ends the series of processes. If the number of transmissions of the transmission permission request signal does not exceed the predetermined number of transmissions (step S709: No), the UE 101 returns to step S706.
  • step S707 when a transmission permission signal is received (step S707: Yes), the UE 101 transmits data to the UE 102 using the frequency band f1 (step S710), and the series of processing ends.
  • FIG. 8 is a flowchart of an example of processing performed by the UE on the D company side according to the first embodiment.
  • the UE 102 on the D company side executes, for example, each step shown in FIG. First, the UE 102 receives D2D band information indicating the frequency bands f1 and f2 from the eNB 112 to which the terminal 102 is connected (step S801).
  • the UE 102 determines whether or not to execute D2D communication (step S802), and waits until it is determined to execute D2D communication (step S802: No loop). For example, the UE 102 determines to execute the D2D communication when receiving a D2D communication start instruction from the user of the UE 102 or when a request for the D2D communication is generated in an application being executed by the UE 102. For example, if it is not determined that the D2D communication is to be performed even after a predetermined time has elapsed, the UE 102 may return to step S801.
  • step S802 If it is determined in step S802 that D2D communication is to be performed (step S802: Yes), the UE 102 starts reception processing of the frequency band f1 (step S803). Next, UE102 judges whether the discovery signal was received by the frequency band f1 (step S804).
  • Step S804 when the discovery signal is not received (Step S804: No), the UE 102 determines whether or not a predetermined time has elapsed since the transition from Step S803 to Step S804 (Step S805). When the predetermined time has elapsed (step S805: Yes), the UE 102 ends the series of processes. When the predetermined time has not elapsed (step S805: No), the UE 102 returns to step S804.
  • step S804 when the discovery signal is received (step S804: Yes), the UE 102 establishes synchronization with the UE 101 based on the received discovery signal (step S806). Next, the UE 102 transmits a synchronization establishment signal to the UE 101 (step S807). Next, UE102 receives data from UE101 by frequency band f1 (step S808), and completes a series of processing.
  • FIG. 9 is a sequence diagram illustrating a modification of the operation of the wireless communication system according to the first embodiment.
  • radio communication system 100 for example, each step shown in FIG. 9 may be executed.
  • Steps S901 to S906 shown in FIG. 9 are the same as steps S301 to S306 shown in FIG.
  • the broadcast information transmitted in step S902 includes a transmission permission flag indicating that data transmission of D2D communication in the frequency band f1 is permitted in addition to information indicating the frequency bands f1 and f2.
  • Step S907 is the same as step S309 shown in FIG.
  • step S902 by including the transmission permission flag in the broadcast information transmitted in step S902, it is possible to omit transmission of a transmission permission request signal from the UE 101 to the eNB 111 and transmission of a transmission permission signal from the eNB 111 to the UE 101. It becomes possible.
  • step S602 shown in FIG. 6 the transmission permission flag is transmitted to the UE together with the D2D band information. Further, steps S603 and S604 can be omitted.
  • step S701 shown in FIG. 7 the transmission permission flag is received together with the D2D band information. Further, steps S706 to S709 can be omitted.
  • the frequency band f1 that can be used for D2D communication (direct communication) with the UE 102 of the company D is set in the band 201 allocated to the company A, and the frequency band f1 is set to the eNB 112. To the UE 102.
  • D2D communication becomes possible between UE101,102 from which an operator differs.
  • the amount of signaling for performing D2D communication can be suppressed as compared with a method of transmitting and receiving information regarding the frequency band f1 every time D2D communication is performed.
  • the radio resource for the data transmission of the D2D communication can be managed in the eNB 111 on the own operator side. This facilitates scheduling and interference control for D2D communication.
  • each eNB (for example, eNB 111, 112) exchanging D2D band information can be determined based on a distance between the eNBs, for example.
  • the distance between the eNBs can be calculated based on position information indicating the position of each eNB, and each eNB whose distance is equal to or less than a predetermined value can be determined as each eNB that exchanges D2D band information.
  • the determination method of each eNB exchanging D2D band information is not limited to this, and various determination methods can be used.
  • FIG. 10 is a sequence diagram illustrating an example of operations in the wireless communication system according to the second embodiment.
  • each step shown in FIG. 10 is executed.
  • Steps S1001 to S1005 shown in FIG. 10 are the same as steps S301 to S305 shown in FIG. Following step S1005, the UE 102 transmits to the eNB 112 a transmission permission request signal requesting permission for data transmission to the UE 101 by D2D communication (step S1006).
  • the uplink control channel assigned to the UE 102 by the eNB 112 can be used for the transmission of the transmission permission request signal in step S1006.
  • the eNB 112 transmits a transmission permission signal that permits data transmission to the UE 102 by D2D communication to the UE 102 (step S1007).
  • the downlink control channel assigned to the UE 102 by the eNB 112 can be used for transmission of the transmission permission signal in step S1007.
  • Step S1008 the UE 102 moves to step S1008.
  • Steps S1008 to S1011 are the same as steps S306 to S309 shown in FIG.
  • the UE 102 performs data transmission to the UE 101 by D2D communication using the frequency band f2 (step S1012).
  • step S1012 may be performed prior to the data transmission in step S1011. Moreover, each data transmission by step S1011 and S1012 may be performed simultaneously.
  • FIG. 11 is a flowchart of an example of processing performed by the UE on the A company side according to the second embodiment.
  • the UE 101 on the A company side according to the second embodiment executes, for example, each step shown in FIG. Steps S1101 to S1110 shown in FIG. 11 are the same as steps S701 to S710 shown in FIG. However, in step S1110, the UE 101 transmits data to the UE 102 through the frequency band f1, and receives data from the UE 102 through the frequency band f2 (step S1110).
  • FIG. 12 is a flowchart of an example of processing performed by the UE on the D company side according to the second embodiment.
  • the UE 102 on the D company side according to the second embodiment executes, for example, each step shown in FIG. Steps S1201 to S1206 shown in FIG. 12 are the same as steps S801 to S806 shown in FIG.
  • step S1206 the UE 102 transmits a transmission permission request signal to the eNB 112 to which the own terminal is connected (step S1207).
  • step S1208 UE102 judges whether the transmission permission signal with respect to the transmission permission request signal transmitted by step S1207 was received from eNB112 (step S1208).
  • step S1208 when the transmission permission signal is not received (step S1208: No), the UE 102 determines whether or not a predetermined time has elapsed since the transition from step S1206 to step S1207 (step S1209).
  • step S1209 when the predetermined time has elapsed (step S1209: Yes), the UE 102 ends the series of processes.
  • step S1209: No when the predetermined time has not elapsed (step S1209: No), the UE 102 determines whether or not the number of transmissions of the transmission permission request signal in step S1207 exceeds the predetermined number of transmissions (step S1210).
  • step S1210 when the number of transmissions of the transmission permission request signal exceeds the predetermined number of transmissions (step S1210: Yes), the UE 102 ends the series of processes. If the number of transmissions of the transmission permission request signal does not exceed the predetermined number of transmissions (step S1210: No), the UE 102 returns to step S1207.
  • step S1208 when a transmission permission signal is received (step S1208: Yes), the UE 102 transmits a synchronization establishment signal to the UE 101 (step S1211).
  • the UE 102 receives data from the UE 101 using the frequency band f1, and transmits data to the UE 101 using the frequency band f2 (step S1212), and ends a series of processes.
  • FIG. 13 is a sequence diagram illustrating a modified example of the operation in the wireless communication system according to the second embodiment.
  • radio communication system 100 for example, each step shown in FIG. 13 may be executed.
  • Steps S1301 to S1307 shown in FIG. 13 are the same as steps S901 to S907 shown in FIG.
  • the broadcast information transmitted in step S1303 includes a transmission permission flag indicating that data transmission of D2D communication in the frequency band f2 is permitted in addition to information indicating the frequency bands f1 and f2.
  • Step S1308 is the same as step S1012 shown in FIG.
  • step S1303 by including a transmission permission flag in the broadcast information transmitted in step S1303, it is possible to omit transmission of a transmission permission request signal from the UE 102 to the eNB 112 and transmission of a transmission permission signal from the eNB 112 to the UE 102. It becomes possible.
  • step S602 shown in FIG. 6 the transmission permission flag is transmitted to the UE together with the D2D band information. Further, steps S603 and S604 can be omitted. In step S1201 shown in FIG. 12, the transmission permission flag is received together with the D2D band information. Further, steps S1207 to S1210 can be omitted.
  • D2D communication is possible between the UEs 101 and 102 with different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • the eNB 111 on the own operator side can manage radio resources for data transmission of D2D communication.
  • the frequency band f2 of the own operator (Company D) for data transmission of the UE 102 it is possible to manage radio resources for data transmission of D2D communication in the eNB 112 on the own operator side. This facilitates scheduling and interference control for D2D communication.
  • Embodiment 3 The third embodiment will be described with respect to differences from the second embodiment.
  • Embodiment 3 a case will be described in which the frequency band f1 of the own operator (Company A) is used for data transmission and data reception of the UE 101.
  • FIG. 14 is a sequence diagram illustrating an example of operations in the wireless communication system according to the third embodiment.
  • each step shown in FIG. 14 is executed.
  • Steps S1401 to S1409 shown in FIG. 14 are the same as steps S301 to S309 shown in FIG.
  • the UE 102 performs data transmission to the UE 101 by D2D communication using the frequency band f1 (step S1410).
  • the UE 102 can perform data transmission to the UE 101 without transmitting a transmission permission request signal to the eNB 112.
  • the UE 102 can determine that the transmission permission in the frequency band f1 has been permitted by data transmission from the UE 101 in step S1409.
  • the UE 101 may notify the UE 102 of the transmission permission in the frequency band f1 by the control signal in the frequency band f1 before the data transmission in step S1409.
  • the data transmission in step S1410 may be performed prior to the data transmission in step S1409.
  • the data transmissions in steps S1409 and S1410 may be performed simultaneously.
  • FIG. 15 is a flowchart of an example of processing performed by the UE on the A company side according to the third embodiment.
  • the UE 101 on the A company side according to the third embodiment executes, for example, each step shown in FIG. Steps S1501 to S1510 shown in FIG. 15 are the same as steps S1101 to S1110 shown in FIG. However, in step S1510, the UE 101 transmits data to the UE 102 through the frequency band f1, and receives data from the UE 102 through the frequency band f1 (step S1510).
  • FIG. 16 is a flowchart of an example of processing performed by the UE on the D company side according to the third embodiment.
  • the UE 102 on the D company side according to the third embodiment executes, for example, each step shown in FIG. Steps S1601 to S1608 shown in FIG. 16 are the same as steps S801 to S808 shown in FIG. However, in step S1608, the UE 102 receives data from the UE 101 through the frequency band f1, and transmits data to the UE 101 through the frequency band f1 (step S1608).
  • D2D communication is possible between the UEs 101 and 102 having different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • the eNB 111 on the own operator side can manage radio resources for data transmission of D2D communication. Further, by using the frequency band f1 of another operator (company A) for data transmission of the UE 102, D2D communication can be performed without managing radio resources in the eNB 112.
  • the fourth embodiment will be described with respect to differences from the first embodiment.
  • a case where the frequency band f2 of another operator (Company D) is used for data transmission of the UE 101 will be described.
  • FIG. 17 is a sequence diagram illustrating an example of operations in the wireless communication system according to the fourth embodiment. In the wireless communication system 100 according to the fourth embodiment, for example, each step shown in FIG. 17 is executed.
  • Steps S1701 to S1705 shown in FIG. 17 are the same as steps S301 to S305 shown in FIG. Following step S1705, the UE 102 transmits to the eNB 112 a transmission permission request signal requesting permission of data transmission from the UE 101 to the UE 102 by D2D communication (step S1706).
  • a transmission permission request signal requesting permission of data transmission from the UE 101 to the UE 102 by D2D communication
  • an uplink control channel assigned to the UE 102 by the eNB 112 can be used for transmission of the transmission permission request signal in step S1706.
  • the eNB 112 transmits a transmission permission signal that permits data transmission to the UE 102 by D2D communication to the UE 102 (step S1707).
  • a transmission permission signal that permits data transmission to the UE 102 by D2D communication to the UE 102 (step S1707).
  • a downlink control channel assigned to the UE 102 by the eNB 112 can be used for transmission of the transmission permission signal in step S1707.
  • the UE 102 transmits a synchronization establishment signal to the UE 101 using the frequency band f2 that can be used for D2D communication with another company in the band 202 of the company D to which the terminal belongs (step S1708).
  • UE101 performs the data transmission to UE102 by D2D communication by the frequency band f2 (step S1709).
  • the UE 101 can perform data transmission to the UE 102 without transmitting a transmission permission request signal to the eNB 111.
  • the UE 101 can determine that the transmission permission in the frequency band f2 has been permitted by the synchronization establishment signal from the UE 102 in step S1708.
  • FIG. 18 is a flowchart illustrating an example of processing performed by the UE on the A company side according to the fourth embodiment.
  • the UE 101 on the A company side according to the fourth embodiment executes, for example, each step shown in FIG. Steps S1801 to S1805 shown in FIG. 18 are the same as steps S701 to S705 shown in FIG.
  • step S1804 when a synchronization establishment signal is received (step S1804: Yes), the UE 101 transmits data to the UE 102 using the frequency band f2 based on the D2D band information received in step S1801 (step S1806).
  • a series of processing ends.
  • FIG. 19 is a flowchart of an example of processing performed by the UE on the D company side according to the fourth embodiment.
  • the UE 102 on the D company side according to the fourth embodiment executes, for example, each step shown in FIG. Steps S1901 to S1912 shown in FIG. 19 are the same as steps S1201 to S1212 shown in FIG. However, in step S1912, the UE 102 receives data from the UE 101 using the frequency band f2 (step S1912).
  • D2D communication is possible between the UEs 101 and 102 with different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • D2D communication is possible without performing radio resource management in the eNB 111.
  • FIG. 20 is a sequence diagram illustrating an example of operations in the wireless communication system according to the fifth embodiment.
  • each step illustrated in FIG. 20 is executed.
  • Steps S2001 to S2012 shown in FIG. 20 are the same as steps S1001 to S1012 shown in FIG.
  • step S2011 the UE 101 performs data transmission to the UE 102 by D2D communication using the frequency band f2 (step S2011).
  • step S2012 the UE 102 performs data transmission to the UE 101 by D2D communication using the frequency band f1 (step S2012).
  • FIG. 21 is a flowchart of an example of processing performed by the UE on the A company side according to the fifth embodiment.
  • the UE 101 on the A company side according to the fifth embodiment executes, for example, each step shown in FIG. Steps S2101 to S2110 shown in FIG. 21 are the same as steps S1101 to S1110 shown in FIG. However, in step S2110, the UE 101 transmits data to the UE 102 through the frequency band f2 and receives data from the UE 102 through the frequency band f1 (step S2110).
  • FIG. 22 is a flowchart of an example of processing performed by the UE on the D company side according to the fifth embodiment.
  • the UE 102 on the D company side according to the fifth embodiment executes, for example, each step shown in FIG. Steps S2201 to S2212 shown in FIG. 22 are the same as steps S1201 to S1212 shown in FIG. However, in step S2212, the UE 102 receives data from the UE 101 through the frequency band f2, and transmits data to the UE 101 through the frequency band f1 (step S2212).
  • D2D communication is possible between the UEs 101 and 102 with different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • FIG. 23 is a sequence diagram illustrating an example of operations in the wireless communication system according to the sixth embodiment.
  • each step illustrated in FIG. 23 is executed.
  • Steps S2301 to S2309 shown in FIG. 23 are the same as steps S1701 to S1709 shown in FIG.
  • the UE 102 performs data transmission to the UE 101 by D2D communication using the frequency band f2 (step S2310).
  • the UE 101 can perform data transmission to the UE 102 without transmitting a transmission permission request signal to the eNB 111.
  • the UE 101 can determine that the transmission permission in the frequency band f2 has been permitted by the synchronization establishment signal from the UE 102 in step S2308.
  • FIG. 24 is a flowchart of an example of processing performed by the UE on the A company side according to the sixth embodiment.
  • the UE 101 on the A company side according to the sixth embodiment executes, for example, each step shown in FIG. Steps S2401 to S2405 shown in FIG. 24 are the same as steps S2101 to S2105 shown in FIG.
  • step S2404 when the synchronization establishment signal is received in step S2404 (step S2404: Yes), the UE 101 transmits data to the UE 102 through the frequency band f2 and receives data from the UE 102 through the frequency band f2 (step S2406). .
  • FIG. 25 is a flowchart of an example of processing performed by the UE on the D company side according to the sixth embodiment.
  • the UE 102 on the D company side according to the sixth embodiment executes, for example, each step shown in FIG. Steps S2501 to S2512 shown in FIG. 25 are the same as steps S2201 to S2212 shown in FIG.
  • step S2512 the UE 102 receives data from the UE 101 through the frequency band f2, and transmits data to the UE 101 through the frequency band f2 (step S2512).
  • D2D communication can be performed between the UEs 101 and 102 having different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • D2D communication is possible without performing radio resource management in the eNB 111.
  • FIG. 26 is a sequence diagram illustrating an example of operations in the wireless communication system according to the seventh embodiment.
  • each step shown in FIG. 26 is executed.
  • Steps S2601 to S2609 shown in FIG. 26 are the same as steps S301 to S309 shown in FIG.
  • the UE 101 transmits a discovery signal to the UE 102 using the frequency band f2 notified in step S2602 (step S2604).
  • the UE 102 transmits, to the UE 101, a synchronization establishment signal indicating that synchronization is established using the frequency band f1 notified in step S2603 (step S2606).
  • the transmission of the discovery signal by the UE 101 is not limited to the frequency band f1, and the frequency band f2 may be used.
  • the transmission of the synchronization establishment signal by the UE 102 is not limited to the frequency band f2, and the frequency band f1 may be used.
  • the frequency band f1 may be used for both the discovery signal transmission and the synchronization establishment signal transmission.
  • the frequency band f2 may be used for both the discovery signal transmission and the synchronization establishment signal transmission.
  • the frequency band f1 may be used for both the discovery signal transmission and the synchronization establishment signal transmission.
  • the frequency band f2 since the frequency band f2 is not used, the frequency band f2 may not be set in the eNB 112.
  • Various notifications regarding the frequency band f2 may also be omitted.
  • D2D communication can be performed between the UEs 101 and 102 having different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • the UE 101 may specify the frequency band f2 by receiving (intercepting) broadcast information transmitted from the eNB 112 using a band search or the like.
  • the UE 102 may specify the frequency band f1 by receiving (intercepting) broadcast information transmitted from the eNB 111 using a band search or the like.
  • FIG. 27 is a sequence diagram illustrating an example of operations in the wireless communication system according to the eighth embodiment.
  • each step shown in FIG. 27 is executed.
  • Steps S2701 to S2708 shown in FIG. 27 are the same as steps S302 to S309 shown in FIG.
  • step S2701 the eNB 111 transmits broadcast information including D2D band information indicating the frequency band f1 that can be used for D2D communication with another company in the band 201 of the local station to the UE 101 (step S2701). Since the above-described broadcast information such as SIB is information that can be received even by UEs of different operators, the UE 102 can intercept the broadcast information transmitted in step S2701 and specify the frequency band f1.
  • step S2702 the eNB 112 transmits broadcast information including D2D band information indicating the frequency band f2 that can be used for D2D communication with another company in the band 202 of the local station to the UE 102 (step S2702). Since the broadcast information such as the SIB described above is information that can be received even by UEs of different operators, the UE 101 can intercept the broadcast information transmitted in step S2702 and specify the frequency band f2.
  • eNB111 Company A
  • eNB112 Company D
  • eNB112 Company D
  • D2D communication is possible between the UEs 101 and 102 having different operators.
  • the amount of signaling for performing D2D communication can be suppressed.
  • UE101,102 intercepts the alerting
  • the base station As described above, according to the wireless communication system, the base station, the terminal, and the communication method, it is possible to enable direct communication between terminals with different operators.
  • D2D communication is studied as one of 3GPP Release 12 WIs, but a link establishment method and a data communication method in a wireless layer between terminals with different operators have not been studied.
  • each UE is connected to a different eNB and therefore communicates via a network. . This increases the load on the network.
  • each UE connected to the eNB needs signaling via the network in order to obtain each other's information. For this reason, the load on the network is large, and the amount of signaling in each UE also increases.
  • a band for D2D that can be used by another company's UE can be prepared and notified in each operator's band.
  • each operator's UE can perform data transmission by transmitting and receiving a discovery signal and establishing synchronization by using this D2D band.
  • the amount of signaling for performing D2D communication can be suppressed as compared with a method of transmitting and receiving information related to the D2D band each time D2D communication is performed.
  • Wireless communication system 101 102 UE 111, 112, 400 eNB 120 Network 201, 202 Band 401, 501 Receiving antenna 402, 502 Receiver 403, 503 L1 receiving unit 404, 504 Upper layer processing unit 405, 505 L1 transmitting unit 406, 506 Transmitter 407, 507 Transmitting antenna 408 Broadcast information generating unit 409 Transmission permission determination unit 430, 550 Communication device 431, 551 CPU 432, 552 Memory 433, 554 Wireless communication interface 434 Wired communication interface 439, 559 Bus 508 D2D band information acquisition unit 509 Transmission permission setting unit 510, 533 D2D signal setting unit 531 Discovery signal detection unit 532 Synchronization establishment signal setting unit 553 User interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 UE(101)は、A社のeNB(111)に無線接続する。UE(102)は、D社のeNB(112)に無線接続する。eNB(111)およびeNB(112)の少なくともいずれかは、A社に割り当てられた無線周波数帯域に含まれる所定帯域であって、UE(101)とUE(102)との間の直接通信に使用可能な所定帯域を示す報知情報を送信する。UE(102)は、送信された報知情報に基づいて所定帯域を使用して、UE(101)との間の直接通信を行う。

Description

無線通信システム、基地局、端末および通信方法
 本発明は、無線通信システム、基地局、端末および通信方法に関する。
 従来、3GPP(3rd Generation Partnership Project)において、デバイス間のデータ通信における各種のパスが検討されている(たとえば、下記非特許文献1参照。)。また、基地局を介さずに端末間で直接通信を行うD2D(Device to Device)通信が知られている。
「Study on enhancements for Infrastructure based data Communication Between Devices」、3GPP TR 22.807、2014年
 しかしながら、上述した従来技術では、オペレータが異なる端末間では、互いの情報を交換することが困難であるため、直接通信を行うことができない場合がある。
 1つの側面では、本発明は、オペレータが異なる端末間の直接通信を可能にすることができる無線通信システム、基地局、端末および通信方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明の一側面によれば、第1のオペレータの第1の基地局と、前記第1の基地局に無線接続する第1の端末と、前記第1のオペレータと異なる第2のオペレータの第2の基地局と、前記第2の基地局に無線接続する第2の端末と、を含み、前記第1の基地局および前記第2の基地局の少なくともいずれかは、前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示す報知情報を送信し、前記第2の端末は、前記報知情報に基づいて前記所定帯域を使用して前記第1の端末との間の直接通信を行う無線通信システム、基地局、端末および通信方法が提案される。
 本発明の一側面によれば、オペレータが異なる端末間の直接通信を可能にすることができるという効果を奏する。
図1は、実施の形態1にかかる無線通信システムの一例を示す図である。 図2は、各オペレータに割り当てられた帯域の一例を示す図である。 図3は、実施の形態1にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図4Aは、eNBの一例を示す図である。 図4Bは、図4Aに示したeNBにおける信号の流れの一例を示す図である。 図4Cは、eNBのハードウェア構成の一例を示す図である。 図5Aは、A社側のUEの一例を示す図である。 図5Bは、図5Aに示したUEにおける信号の流れの一例を示す図である。 図5Cは、D社側のUEの一例を示す図である。 図5Dは、図5Cに示したD社側のUEにおける信号の流れの一例を示す図である。 図5Eは、UEのハードウェア構成の一例を示す図である。 図6は、eNBによる処理の一例を示すフローチャートである。 図7は、実施の形態1にかかるA社側のUEによる処理の一例を示すフローチャートである。 図8は、実施の形態1にかかるD社側のUEによる処理の一例を示すフローチャートである。 図9は、実施の形態1にかかる無線通信システムにおける動作の変形例を示すシーケンス図である。 図10は、実施の形態2にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図11は、実施の形態2にかかるA社側のUEによる処理の一例を示すフローチャートである。 図12は、実施の形態2にかかるD社側のUEによる処理の一例を示すフローチャートである。 図13は、実施の形態2にかかる無線通信システムにおける動作の変形例を示すシーケンス図である。 図14は、実施の形態3にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図15は、実施の形態3にかかるA社側のUEによる処理の一例を示すフローチャートである。 図16は、実施の形態3にかかるD社側のUEによる処理の一例を示すフローチャートである。 図17は、実施の形態4にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図18は、実施の形態4にかかるA社側のUEによる処理の一例を示すフローチャートである。 図19は、実施の形態4にかかるD社側のUEによる処理の一例を示すフローチャートである。 図20は、実施の形態5にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図21は、実施の形態5にかかるA社側のUEによる処理の一例を示すフローチャートである。 図22は、実施の形態5にかかるD社側のUEによる処理の一例を示すフローチャートである。 図23は、実施の形態6にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図24は、実施の形態6にかかるA社側のUEによる処理の一例を示すフローチャートである。 図25は、実施の形態6にかかるD社側のUEによる処理の一例を示すフローチャートである。 図26は、実施の形態7にかかる無線通信システムにおける動作の一例を示すシーケンス図である。 図27は、実施の形態8にかかる無線通信システムにおける動作の一例を示すシーケンス図である。
 以下に図面を参照して、本発明にかかる無線通信システム、基地局、端末および通信方法の実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる無線通信システム)
 図1は、実施の形態1にかかる無線通信システムの一例を示す図である。図1に示すように、実施の形態1にかかる無線通信システム100は、たとえば、UE101,102(User Equipment:ユーザ端末)と、eNB111,112(evolved Node B)と、を含む。
 eNB111は、A社によって運用されている基地局である。eNB112は、D社によって運用されている基地局である。A社およびD社は、互いに異なるオペレータ(通信事業者)である。eNB111,112のそれぞれは、ネットワーク120に接続されている。ネットワーク120は、たとえばインターネットなどの広域ネットワークである。
 UE101は、A社と契約しているユーザの端末である。UE101は、eNB111に無線接続し、eNB111を介してネットワーク120(NW)との間で通信が可能である。UE102は、D社と契約しているユーザの端末である。UE102は、eNB112に無線接続し、eNB112を介してネットワーク120との間で通信が可能である。UE101,102は、互いに直接通信を行うD2D通信が可能である。
 なお、無線通信システム100における基地局には、eNB111,112などのeNBに限らず、移動体通信網の各種の基地局を用いることができる。また、無線通信システム100における端末には、UE101,102などの(UE)に限らず、移動体通信網の各種の端末を用いることができる。
(各オペレータに割り当てられた帯域)
 図2は、各オペレータに割り当てられた帯域の一例を示す図である。図2において、横軸は周波数を示している。帯域201(A社帯域)は、A社に対して割り当てられた無線周波数帯域である。UE101は、eNB111との間で帯域201を用いた無線通信を行う。帯域201には、A社のUE(たとえばUE101)と、A社と異なるオペレータのUE(たとえばUE102)と、の間のD2D通信に使用可能な周波数帯域f1(所定帯域)が含まれている。
 帯域202(D社帯域)は、D社に対して割り当てられた無線周波数帯域である。UE102は、eNB112との間で帯域202を用いた無線通信を行う。帯域202には、D社のUE(たとえばUE102)と、D社と異なるオペレータのUE(たとえばUE101)と、の間のD2D通信に使用可能な周波数帯域f2(所定帯域)が含まれる。
 周波数帯域f1,f2は、たとえば、他オペレータのUEとのD2D通信の専用の周波数帯域とすることができる。これにより、オペレータが異なるUE間のD2D通信を、基地局端末間の通信などの他の通信との間の干渉を抑えつつ行うことができる。または、周波数帯域f1,f2は、たとえば、他オペレータのUEとのD2D通信と、基地局端末間の通信などの他の通信と、の共用の周波数帯域とすることができる。これにより、他の通信に割り当て可能なリソースの減少を抑えつつ、他オペレータのUEとのD2D通信を行うことができる。
 周波数帯域f1,f2は、たとえばeNB111,112の設置時に設定されるシステム固定の周波数とすることができる。また、eNB111,112が互いにネットワーク120を経由して通信を行うことにより周波数帯域f1,f2を決定するようにしてもよい。また、eNB111,112がそれぞれ周波数帯域f1,f2を自局で周期的に決定するようにしてもよい。
 なお、図2に示した例では、帯域201,202が互いに隣接しているが、帯域201,202は互いに離れた周波数帯域であってもよい。また、図2に示した例では、帯域201が帯域202の低周波側の周波数帯域であるが、帯域201が帯域202の高周波側の周波数帯域であってもよい。
 実施の形態1においては、UE101のデータ送信に自オペレータ(A社)の周波数帯域f1を使用する場合について説明する。
(実施の形態1にかかる無線通信システムにおける動作)
 図3は、実施の形態1にかかる無線通信システムにおける動作の一例を示すシーケンス図である。無線通信システム100においては、たとえば図3に示す各ステップが実行される。まず、eNB111(A社)およびeNB112(D社)が、D2D用帯域情報を交換する(ステップS301)。
 たとえば、eNB111は、自局の帯域201のうちの他社とのD2D通信に使用可能な周波数帯域f1を示すD2D用帯域情報をeNB112へ送信する。また、eNB112は、自局の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2を示すD2D用帯域情報をeNB111へ送信する。ステップS301によるD2D用帯域情報の交換には、たとえばeNB111とeNB112とを接続するX2インタフェースを用いることができる。
 つぎに、eNB111が、自局の帯域201のうちの他社とのD2D通信に使用可能な周波数帯域f1と、ステップS301によって得られた周波数帯域f2と、を示すD2D用帯域情報を含む報知情報をUE101へ送信する(ステップS302)。これにより、周波数帯域f1,f2をUE101へ通知することができる。D2D用帯域情報を含む報知情報は、たとえば周期的に送信される。
 なお、周波数帯域f1については、周波数帯域f2と異なるタイミングでUE101へ通知するようにしてもよい。また、周波数帯域f1をUE101のメモリに予め記憶しておき、周波数帯域f1をUE101へ通知しないようにしてもよい。
 ステップS302によって送信される報知情報には、たとえばSIB(System Information Block:システム情報ブロック)やMIB(Master Information Block:マスタ情報ブロック)を用いることができる。一例としては、3GPPのTS36.331には、SIBに“Inter Operator D2D Frequency”(仮称)の領域が定義されており、ステップS302によって送信される報知情報にはこの領域を用いることができる。
 また、eNB112が、自局の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2と、ステップS301によって得られた周波数帯域f1と、を示すD2D用帯域情報を含む報知情報をUE102へ送信する(ステップS303)。これにより、周波数帯域f1,f2をUE102へ通知することができる。
 なお、周波数帯域f2については、周波数帯域f1と異なるタイミングでUE102へ通知するようにしてもよい。また、周波数帯域f2をUE102のメモリに予め記憶しておき、周波数帯域f2をUE102へ通知しないようにしてもよい。ステップS303によって送信される報知情報には、たとえばSIBやMIBを用いることができる。
 つぎに、UE101が、自端末が属するA社の帯域201のうちの他社とのD2D通信に使用可能な周波数帯域f1によってディスカバリ信号(無線信号)をUE102へ送信する(ステップS304)。図3に示す例では、UE101は、ディスカバリ信号を複数回送信している。
 これに対して、UE102は、ステップS303によって通知された周波数帯域f1の受信処理を行うことにより、ステップS304においてUE101からの周波数帯域f1のディスカバリ信号を受信することができる。そして、UE102は、受信したディスカバリ信号に基づいてUE101との間で同期を確立する(ステップS305)。
 つぎに、UE102は、自端末が属するD社の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2によって、同期を確立したことを示す同期確立信号(無線信号)をUE101へ送信する(ステップS306)。これに対して、UE101は、ステップS302によって通知された周波数帯域f2の受信処理を行うことにより、ステップS306においてUE102からの同期確立信号を受信することができる。
 つぎに、UE101は、D2D通信によるUE102へのデータ送信の許可を要求する送信許可要求信号をeNB111へ送信する(ステップS307)。ステップS307による送信許可要求信号の送信には、たとえば、eNB111によってUE101に割り当てられた上りの制御チャネルを用いることができる。
 つぎに、eNB111が、D2D通信によるUE102へのデータ送信を許可する送信許可信号をUE101へ送信する(ステップS308)。ステップS308による送信許可信号の送信には、たとえば、eNB111によってUE101に割り当てられた下りの制御チャネルを用いることができる。
 つぎに、UE101が、周波数帯域f1によって、D2D通信によるUE102へのデータ送信(無線信号の送信)を行う(ステップS309)。ステップS309のデータ送信は、たとえば周波数帯域f1に含まれる周波数によって行われる。これに対して、UE102は、ステップS303によって通知された周波数帯域f1の受信処理を行うことにより、ステップS309においてUE101からのデータを受信することができる。
 たとえば、UE101は、周波数帯域f1のうちの予め指定されている周波数によってデータ送信を行ってもよい。また、UE101は、周波数帯域f1のうちの、ステップS304によって送信したディスカバリ信号(たとえばディスカバリ信号のシーケンス番号)に応じた周波数によってデータ送信を行ってもよい。また、UE101は、ステップS304によって送信したディスカバリ信号によってUE102へ通知した周波数によってデータ送信を行ってもよい。これにより、UE102は、周波数帯域f1の全域の受信処理を行わなくても、UE101からのデータを受信することができる。
 また、eNB111が、ステップS307によって送信許可要求信号を受信すると、周波数帯域f1のうちのUE101からUE102へのデータ送信に使用させる周波数を決定してもよい。そして、eNB111は、決定結果をステップS308の送信許可信号に格納する。この場合は、UE101は、ステップS309において、送信許可信号に格納された決定結果が示す周波数によりD2D通信によるUE102へのデータ送信を行う。
 または、UE101は、周波数帯域f1のうちのUE102へのデータ送信に使用する周波数を自端末で決定してもよい。この場合は、UE101は、ステップS309において、自端末で決定した周波数によってUE102へのデータ送信を行う。この場合は、eNB111は、UE101からUE102へのデータ送信に使用させる周波数の決定を行わなくてもよい。
(eNB)
 図4Aは、eNBの一例を示す図である。図4Bは、図4Aに示したeNBにおける信号の流れの一例を示す図である。eNB111,112のそれぞれは、たとえば図4A,図4Bに示すeNB400により実現することができる。
 eNB400は、受信アンテナ401と、受信機402と、L1受信部403と、上位レイヤ処理部404と、L1送信部405と、送信機406と、送信アンテナ407と、報知情報生成部408と、送信許可判定部409と、を備える。
 受信機402は、受信アンテナ401を介して、他の通信装置(たとえばUE)から無線送信された信号を受信する。そして、受信機402は、受信した信号をL1受信部403へ出力する。L1受信部403は、受信機402から出力された信号のL1(物理層)の受信処理を行う。そして、L1受信部403は、L1の受信処理によって得られたデータを上位レイヤ処理部404へ出力する。
 上位レイヤ処理部404は、L1受信部403から出力されたデータの上位レイヤの受信処理を行う。上位レイヤ処理部404による受信処理には、たとえばL2(MAC層:Media Access Control layer)の受信処理が含まれる。上位レイヤ処理部404は、受信処理によって得られたデータを出力する。上位レイヤ処理部404から出力されたデータは、たとえばネットワーク120へ送信される。
 また、上位レイヤ処理部404は、たとえばネットワーク120から受信したデータの上位レイヤの送信処理を行う。上位レイヤ処理部404による送信処理には、たとえばL2の送信処理が含まれる。上位レイヤ処理部404は、送信処理によって得られたデータをL1送信部405へ出力する。
 また、上位レイヤ処理部404は、自局からの報知情報に格納する情報を報知情報生成部408へ出力する。報知情報に格納する情報には、自局の帯域のうちの他社とのD2D通信に使用可能な周波数帯域が含まれる。また、報知情報に格納する情報には、他社の帯域のうちの自局とのD2D通信に使用可能な周波数帯域を示すD2D用帯域情報が含まれる。このD2D用帯域情報は、たとえばX2インタフェースなどを用いて他社のeNBから受信することができる。
 また、上位レイヤ処理部404は、自局の帯域のうちの他社とのD2D通信に使用可能な周波数帯域を示すD2D用帯域情報を、たとえばX2インタフェースなどを用いて他社のeNBへ送信する。また、上位レイヤ処理部404は、L1受信部403から出力されたデータに含まれる送信許可要求信号を送信許可判定部409へ出力する。
 L1送信部405は、上位レイヤ処理部404、報知情報生成部408および送信許可判定部409から出力されたデータや各情報のL1の送信処理を行う。そして、L1送信部405は、L1の送信処理に応じた信号(送信信号)を送信機406へ出力する。送信機406は、送信アンテナ407を介して、L1送信部405から出力された信号を他の通信装置へ無線送信する。
 報知情報生成部408は、上位レイヤ処理部404から出力された情報を格納した報知情報を生成する。報知情報生成部408によって生成される報知情報には、たとえばSIBやMIBが含まれる。報知情報生成部408は、生成した報知情報をL1送信部405へ出力する。
 送信許可判定部409は、上位レイヤ処理部404から送信許可要求信号が出力されると、D2D通信によるデータ送信を許可するか否かを判定する。たとえば、送信許可判定部409は、上位レイヤ処理部404に対して無線リソースの空き状態を問い合わせ、問い合わせ結果に応じて判定を行うことができる。送信許可判定部409は、D2D通信によるデータ送信を許可すると判定すると、送信許可信号をL1送信部405へ出力する。
 D2D用帯域情報を含む報知情報を送信する送信部は、L1送信部405、送信機406、送信アンテナ407および報知情報生成部408により実現することができる。
 図4Cは、eNBのハードウェア構成の一例を示す図である。図4A,図4Bに示したeNB400は、たとえば図4Cに示す通信装置430により実現することができる。通信装置430は、CPU431(Central Processing Unit)と、メモリ432と、無線通信インタフェース433と、有線通信インタフェース434と、を備える。CPU431、メモリ432、無線通信インタフェース433および有線通信インタフェース434は、バス439によって接続される。
 CPU431は、通信装置430の全体の制御を司る。メモリ432には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、CPU431のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置430を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU431によって実行される。
 無線通信インタフェース433は、無線によって通信装置430の外部(たとえばUE)との間で通信を行う通信インタフェースである。無線通信インタフェース433は、CPU431によって制御される。
 有線通信インタフェース434は、有線によって通信装置430の外部(たとえば上位装置や他のeNB)との間で通信を行う通信インタフェースである。有線通信インタフェース434は、CPU431によって制御される。たとえば、有線通信インタフェース434には、他のeNBとの間で図3に示したステップS301の情報交換を行うためのX2インタフェースが含まれる。
 図4A,図4Bに示した受信アンテナ401、受信機402、送信機406および送信アンテナ407は、たとえば無線通信インタフェース433により実現することができる。図4A,図4Bに示したL1受信部403、上位レイヤ処理部404、L1送信部405、報知情報生成部408および送信許可判定部409は、たとえばCPU431およびメモリ432により実現することができる。
(A社側のUE)
 図5Aは、A社側のUEの一例を示す図である。図5Bは、図5Aに示したUEにおける信号の流れの一例を示す図である。図3に示したUE101は、たとえば図5A,図5Bに示すUE101により実現することができる。
 UE101は、受信アンテナ501と、受信機502と、L1受信部503と、上位レイヤ処理部504と、L1送信部505と、送信機506と、送信アンテナ507と、を備える。また、UE101は、D2D用帯域情報取得部508と、送信許可設定部509と、D2D信号設定部510と、を備える。
 受信機502は、受信アンテナ501を介して、他の通信装置(たとえばeNB)から無線送信された信号を受信する。そして、受信機502は、受信した信号をL1受信部503へ出力する。L1受信部503は、受信機502から出力された信号のL1(物理層)の受信処理を行う。そして、L1受信部503は、L1の受信処理によって得られたデータを上位レイヤ処理部504およびD2D用帯域情報取得部508へ出力する。
 上位レイヤ処理部504は、L1受信部503から出力されたデータの上位レイヤの受信処理を行う。上位レイヤ処理部504による受信処理には、たとえばL2の受信処理が含まれる。また、上位レイヤ処理部504は、上位レイヤの送信処理を行う。上位レイヤ処理部504による送信処理には、たとえばL2の送信処理が含まれる。上位レイヤ処理部504は、送信処理によって得られたデータをL1送信部505へ出力する。
 また、上位レイヤ処理部504は、自端末が属するA社の帯域201のうちの他社とのD2D通信に使用可能な周波数帯域f1をD2D信号設定部510へ通知する。また、上位レイヤ処理部504は、D2D用帯域情報取得部508から出力されたD2D用帯域情報が示す周波数帯域f2をD2D信号設定部510へ通知する。
 また、上位レイヤ処理部504は、D2D通信の実行要求が発生すると、D2D通信要求を送信許可設定部509へ出力する。また、上位レイヤ処理部504は、L1受信部503から出力されたデータに含まれる送信許可信号を送信許可設定部509へ出力する。
 L1送信部505は、上位レイヤ処理部504から出力されたデータのL1の送信処理を行う。そして、L1送信部505は、L1の送信処理に応じた信号(送信信号)を送信機506へ出力する。送信機506は、送信アンテナ507を介して、L1送信部505から出力された信号を他の通信装置へ無線送信する。
 D2D用帯域情報取得部508は、L1受信部503から出力されたデータに含まれる他社のeNBからのD2D用帯域情報を取得する。そして、D2D用帯域情報取得部508は、取得したD2D用帯域情報を上位レイヤ処理部504へ出力する。
 送信許可設定部509は、上位レイヤ処理部504から出力されたD2D通信要求に基づいて、送信許可要求信号をL1送信部505へ出力する。これにより、送信許可要求信号がeNB111へ送信される。また、送信許可設定部509は、送信許可要求信号に対する送信許可信号が上位レイヤ処理部504から出力されると、D2D通信を実行させるようにL1送信部505を制御する。
 D2D信号設定部510は、上位レイヤ処理部504から通知された周波数帯域f2の受信処理を行うように受信機502を制御する。また、D2D信号設定部510は、上位レイヤ処理部504から通知された周波数帯域f1によってD2D通信の送信を行うように送信機506(またはL1送信部505)を制御する。
 D2D用帯域情報を含む報知情報を受信する受信部は、たとえば受信アンテナ501、受信機502、L1受信部503およびD2D用帯域情報取得部508により実現することができる。また、受信された報知情報に基づいてD2D通信(直接通信)を行う通信部は、たとえば受信アンテナ501、受信機502、L1受信部503、L1送信部505、送信機506、送信アンテナ507およびD2D信号設定部510により実現することができる。
(D社側のUE)
 図5Cは、D社側のUEの一例を示す図である。図5Dは、図5Cに示したD社側のUEにおける信号の流れの一例を示す図である。図3に示したUE102は、たとえば図5C,図5Dに示すUE102により実現することができる。図5C,図5Dにおいて、図5A,図5Bに示した部分と同様の部分については同一の符号を付して説明を省略する。
 UE102は、受信アンテナ501と、受信機502と、L1受信部503と、上位レイヤ処理部504と、L1送信部505と、送信機506と、送信アンテナ507と、を備える。また、UE102は、D2D用帯域情報取得部508と、ディスカバリ信号検出部531と、同期確立信号設定部532と、D2D信号設定部533と、を備える。L1受信部503は、L1の受信処理によって得られたデータを上位レイヤ処理部504、D2D用帯域情報取得部508およびディスカバリ信号検出部531へ出力する。
 上位レイヤ処理部504は、自端末が属するD社の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2をD2D信号設定部533へ通知する。また、上位レイヤ処理部504は、D2D用帯域情報取得部508から出力されたD2D用帯域情報が示す周波数帯域f1をD2D信号設定部533へ通知する。また、上位レイヤ処理部504は、D2D通信の実行要求が発生すると、D2D通信要求を同期確立信号設定部532へ出力する。
 L1送信部505は、上位レイヤ処理部504および同期確立信号設定部532から出力されたデータおよび信号のL1の送信処理を行う。
 ディスカバリ信号検出部531は、L1受信部503から出力されたデータに含まれる、UE101からのディスカバリ信号を検出する。そして、ディスカバリ信号検出部531は、検出したディスカバリ信号を上位レイヤ処理部504および同期確立信号設定部532へ出力する。
 同期確立信号設定部532は、上位レイヤ処理部504からD2D通信要求が出力されると、ディスカバリ信号検出部531から出力されたディスカバリ信号に基づいて、UE101との間で同期を確立する。そして、同期確立信号設定部532は、同期が確立すると、同期確立信号をL1送信部505へ出力する。
 D2D信号設定部533は、上位レイヤ処理部504から通知された周波数帯域f1の受信処理を行うように受信機502を制御する。また、D2D信号設定部533は、上位レイヤ処理部504から通知された周波数帯域f2によってD2D通信の送信を行うように送信機506(またはL1送信部505)を制御する。
 また、UE101は、図5C,図5Dに示したディスカバリ信号検出部531、同期確立信号設定部532およびD2D信号設定部533を備えていてもよい。また、UE102は、図5A,図5Bに示した送信許可設定部509を備えていてもよい。これにより、UE101,102の双方向で、図3に示した動作と同様の動作を行うことができる。
 図5Eは、UEのハードウェア構成の一例を示す図である。図5A,図5Bに示したUE101は、たとえば図5Eに示す通信装置550により実現することができる。通信装置550は、CPU551と、メモリ552と、ユーザインタフェース553と、無線通信インタフェース554と、を備える。CPU551、メモリ552、ユーザインタフェース553および無線通信インタフェース554は、バス559により接続される。
 CPU551は、通信装置550の全体の制御を司る。メモリ552には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、CPU551のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、通信装置550を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU551によって実行される。
 ユーザインタフェース553は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどにより実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどにより実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース553は、CPU551によって制御される。
 無線通信インタフェース554は、無線によって通信装置550の外部(たとえばeNBや他のUE)との間で通信を行う通信インタフェースである。無線通信インタフェース554は、CPU551によって制御される。たとえば、無線通信インタフェース554には、他のUEとの間でD2D通信を行うインタフェースが含まれる。
 図5A,図5Bに示した受信アンテナ501、受信機502、送信機506および送信アンテナ507は、たとえば無線通信インタフェース554により実現することができる。図5A,図5Bに示したL1受信部503、上位レイヤ処理部504、L1送信部505、D2D用帯域情報取得部508、送信許可設定部509およびD2D信号設定部510は、たとえばCPU551およびメモリ552により実現することができる。
 また、図5C,図5Dに示したUE102も、たとえば図5Eに示した通信装置550により実現することができる。図5C,図5Dに示した受信アンテナ501、受信機502、送信機506および送信アンテナ507は、たとえば無線通信インタフェース554により実現することができる。図5C,図5Dに示したL1受信部503、上位レイヤ処理部504、L1送信部505およびD2D用帯域情報取得部508は、たとえばCPU551およびメモリ552により実現することができる。図5C,図5Dに示したディスカバリ信号検出部531、同期確立信号設定部532およびD2D信号設定部533は、たとえばCPU551およびメモリ552により実現することができる。
(eNBによる処理)
 図6は、eNBによる処理の一例を示すフローチャートである。eNB400は、たとえば図6に示す各ステップを実行する。
 まず、eNB400は、オペレータが異なる他のeNBとの間でD2D用帯域情報を互いに送受信する(ステップS601)。たとえば、eNB400は、自局のD2D用周波数を示すD2D用帯域情報を他のeNBへ送信するとともに、オペレータが異なる他のeNBのD2D用周波数を示すD2D用帯域情報を他のeNBから受信する。
 つぎに、eNB400は、自局および他のeNBのD2D用帯域情報を、自局に接続しているUEへ送信する(ステップS602)。ステップS602によるD2D用帯域情報の送信には、上述したSIBやMIBなどの報知情報を用いることができる。
 つぎに、eNB400は、自局に接続しているUEから、D2D通信でのデータ送信の許可を要求する送信許可要求信号を受信したか否かを判断し(ステップS603)、送信許可要求信号を受信するまで待つ(ステップS603:Noのループ)。ステップS603において、送信許可要求信号を受信すると(ステップS603:Yes)、eNB400は、送信許可要求信号の送信元のUEへ送信許可信号を送信し(ステップS604)、一連の処理を終了する。
 なお、eNB400は、ステップS604において、UEのD2D通信に対して周波数の割り当てを行ってもよい。この場合に、eNB400は、UEのD2D通信に対して周波数を割り当てられた場合は、割り当てた周波数を示す情報を送信許可信号に格納する。また、eNB400は、UEのD2D通信に対して周波数を割り当てられなかった場合は、送信許可信号を送信せずにステップS603へ戻るようにしてもよい。
 また、ステップS601においてD2D用帯域情報の送受信を行う場合について説明したが、D2D用帯域情報の送信および受信を異なるタイミングで行ってもよい。また、eNB400は、ステップS603において、ステップS602から所定時間経過しても送信許可要求信号を受信しない場合はステップS601へ戻るようにしてもよい。
(実施の形態1にかかるA社側のUEによる処理)
 図7は、実施の形態1にかかるA社側のUEによる処理の一例を示すフローチャートである。A社側のUE101は、たとえば図7に示す各ステップを実行する。まず、UE101は、周波数帯域f1,f2を示すD2D用帯域情報を、自端末が接続しているeNB111から受信する(ステップS701)。
 つぎに、UE101は、D2D通信を実行するか否かを判断し(ステップS702)、D2D通信を実行すると判断するまで待つ(ステップS702:Noのループ)。たとえば、UE101は、UE101のユーザからD2D通信の開始指示を受け付けたり、UE101が実行中のアプリケーションにおいてD2D通信の要求が発生したりした場合にD2D通信を実行すると判断する。なお、たとえば所定時間が経過してもD2D通信を実行すると判断しない場合は、UE101は、ステップS701へ戻ってもよい。
 ステップS702において、D2D通信を実行すると判断すると(ステップS702:Yes)、UE101は、周波数帯域f1によってディスカバリ信号を送信する(ステップS703)。つぎに、UE101は、UE102から同期確立信号を受信したか否かを判断する(ステップS704)。
 ステップS704において、同期確立信号を受信していない場合(ステップS704:No)は、UE101は、ステップS702からステップS703へ移行してから所定時間が経過したか否かを判断する(ステップS705)。所定時間が経過した場合(ステップS705:Yes)は、UE101は、一連の処理を終了する。所定時間が経過していない場合(ステップS705:No)は、UE101は、ステップS703へ戻る。
 ステップS704において、同期確立信号を受信した場合(ステップS704:Yes)は、UE101は、自端末が接続しているeNB111へ送信許可要求信号を送信する(ステップS706)。つぎに、UE101は、ステップS706によって送信した送信許可要求信号に対する送信許可信号をeNB111から受信したか否かを判断する(ステップS707)。
 ステップS707において、送信許可信号を受信していない場合(ステップS707:No)は、UE101は、ステップS704からステップS706へ移行してから所定時間が経過したか否かを判断する(ステップS708)。
 ステップS708において、所定時間が経過した場合(ステップS708:Yes)は、UE101は、一連の処理を終了する。所定時間が経過していない場合(ステップS708:No)は、UE101は、ステップS706による送信許可要求信号の送信回数が所定の送信回数を超えたか否かを判断する(ステップS709)。
 ステップS709において、送信許可要求信号の送信回数が所定の送信回数を超えた場合(ステップS709:Yes)は、UE101は、一連の処理を終了する。送信許可要求信号の送信回数が所定の送信回数を超えていない場合(ステップS709:No)は、UE101は、ステップS706へ戻る。
 ステップS707において、送信許可信号を受信した場合(ステップS707:Yes)は、UE101は、周波数帯域f1によってUE102へデータを送信し(ステップS710)、一連の処理を終了する。
(実施の形態1にかかるD社側のUEによる処理)
 図8は、実施の形態1にかかるD社側のUEによる処理の一例を示すフローチャートである。D社側のUE102は、たとえば図8に示す各ステップを実行する。まず、UE102は、周波数帯域f1,f2を示すD2D用帯域情報を、自端末が接続しているeNB112から受信する(ステップS801)。
 つぎに、UE102は、D2D通信を実行するか否かを判断し(ステップS802)、D2D通信を実行すると判断するまで待つ(ステップS802:Noのループ)。たとえば、UE102は、UE102のユーザからD2D通信の開始指示を受け付けたり、UE102が実行中のアプリケーションにおいてD2D通信の要求が発生したりした場合にD2D通信を実行すると判断する。なお、たとえば所定時間が経過してもD2D通信を実行すると判断しない場合は、UE102は、ステップS801へ戻ってもよい。
 ステップS802において、D2D通信を実行すると判断すると(ステップS802:Yes)、UE102は、周波数帯域f1の受信処理を開始する(ステップS803)。つぎに、UE102は、周波数帯域f1によってディスカバリ信号を受信したか否かを判断する(ステップS804)。
 ステップS804において、ディスカバリ信号を受信していない場合(ステップS804:No)は、UE102は、ステップS803からステップS804へ移行してから所定時間が経過したか否かを判断する(ステップS805)。所定時間が経過した場合(ステップS805:Yes)は、UE102は、一連の処理を終了する。所定時間が経過していない場合(ステップS805:No)は、UE102は、ステップS804へ戻る。
 ステップS804において、ディスカバリ信号を受信した場合(ステップS804:Yes)は、UE102は、受信したディスカバリ信号に基づいてUE101との間で同期を確立する(ステップS806)。つぎに、UE102は、UE101へ同期確立信号を送信する(ステップS807)。つぎに、UE102は、周波数帯域f1によってUE101からデータを受信し(ステップS808)、一連の処理を終了する。
(実施の形態1にかかる無線通信システムにおける動作の変形例)
 図9は、実施の形態1にかかる無線通信システムにおける動作の変形例を示すシーケンス図である。無線通信システム100においては、たとえば図9に示す各ステップが実行されてもよい。
 図9に示すステップS901~S906は、図3に示したステップS301~S306と同様である。ただし、ステップS902において送信される報知情報には、周波数帯域f1,f2を示す情報に加えて、周波数帯域f1によるD2D通信のデータ送信を許可することを示す送信許可フラグが含まれている。ステップS901~S906のつぎに、UE101が、ステップS907へ移行する。ステップS907は、図3に示したステップS309と同様である。
 このように、ステップS902によって送信される報知情報に送信許可フラグを含めることで、UE101からeNB111への送信許可要求信号の送信と、eNB111からUE101への送信許可信号の送信と、を省くことが可能になる。この場合は、図6に示したステップS602において、D2D用帯域情報とともに送信許可フラグがUEへ送信される。また、ステップS603,S604を省くことができる。また、図7に示したステップS701において、D2D用帯域情報とともに送信許可フラグが受信される。また、ステップS706~S709を省くことができる。
 このように、実施の形態1によれば、A社に割り当てられた帯域201に、D社のUE102とのD2D通信(直接通信)に使用可能な周波数帯域f1を設定し、周波数帯域f1をeNB112からUE102へ報知することができる。これにより、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、たとえばD2D通信を実行するごとに周波数帯域f1に関する情報を送受信する方法に比べて、D2D通信を行うためのシグナリングの量を抑えることができる。
 また、UE101のD2D通信のデータ送信に自オペレータ(A社)の周波数帯域f1を使用することで、D2D通信のデータ送信のための無線リソースの管理を自オペレータ側のeNB111において行うことができる。このため、D2D通信のためのスケジューリングや干渉制御が容易になる。
 なお、D2D用帯域情報を交換する各eNB(たとえばeNB111,112)は、たとえば各eNBの間の距離に基づいて決定することができる。たとえば、各eNBの位置を示す位置情報に基づいて各eNBの間の距離を算出し、互いの距離が所定値以下の各eNBを、D2D用帯域情報を交換する各eNBとして決定することができる。ただし、D2D用帯域情報を交換する各eNBの決定方法には、これに限らず各種の決定方法を用いることができる。
(実施の形態2)
 実施の形態2について、実施の形態1と異なる部分について説明する。実施の形態2においては、UE101のデータ送信に自オペレータ(A社)の周波数帯域f1を使用し、UE101のデータ受信に他オペレータ(D社)の周波数帯域f2を使用する場合について説明する。
(実施の形態2にかかる無線通信システムにおける動作)
 図10は、実施の形態2にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態2にかかる無線通信システム100においては、たとえば図10に示す各ステップが実行される。
 図10に示すステップS1001~S1005は、図3に示したステップS301~S305と同様である。ステップS1005のつぎに、UE102が、D2D通信によるUE101へのデータ送信の許可を要求する送信許可要求信号をeNB112へ送信する(ステップS1006)。ステップS1006による送信許可要求信号の送信には、たとえば、eNB112によってUE102に割り当てられた上りの制御チャネルを用いることができる。
 つぎに、eNB112が、D2D通信によるUE102へのデータ送信を許可する送信許可信号をUE102へ送信する(ステップS1007)。ステップS1007による送信許可信号の送信には、たとえば、eNB112によってUE102に割り当てられた下りの制御チャネルを用いることができる。
 つぎに、UE102が、ステップS1008へ移行する。ステップS1008~S1011は、図3に示したステップS306~S309と同様である。ステップS1011のつぎに、UE102が、周波数帯域f2によって、D2D通信によるUE101へのデータ送信を行う(ステップS1012)。
 なお、ステップS1012によるデータ送信は、ステップS1011によるデータ送信より先に行われてもよい。また、ステップS1011,S1012による各データ送信は同時に行われてもよい。
(実施の形態2にかかるA社側のUEによる処理)
 図11は、実施の形態2にかかるA社側のUEによる処理の一例を示すフローチャートである。実施の形態2にかかるA社側のUE101は、たとえば図11に示す各ステップを実行する。図11に示すステップS1101~S1110は、図7に示したステップS701~S710と同様である。ただし、ステップS1110において、UE101は、周波数帯域f1によってUE102へデータを送信するとともに、周波数帯域f2によってUE102からデータを受信する(ステップS1110)。
(実施の形態2にかかるD社側のUEによる処理)
 図12は、実施の形態2にかかるD社側のUEによる処理の一例を示すフローチャートである。実施の形態2にかかるD社側のUE102は、たとえば図12に示す各ステップを実行する。図12に示すステップS1201~S1206は、図8に示したステップS801~S806と同様である。
 ステップS1206のつぎに、UE102は、自端末が接続しているeNB112へ送信許可要求信号を送信する(ステップS1207)。つぎに、UE102は、ステップS1207によって送信した送信許可要求信号に対する送信許可信号をeNB112から受信したか否かを判断する(ステップS1208)。
 ステップS1208において、送信許可信号を受信していない場合(ステップS1208:No)は、UE102は、ステップS1206からステップS1207へ移行してから所定時間が経過したか否かを判断する(ステップS1209)。
 ステップS1209において、所定時間が経過した場合(ステップS1209:Yes)は、UE102は、一連の処理を終了する。所定時間が経過していない場合(ステップS1209:No)は、UE102は、ステップS1207による送信許可要求信号の送信回数が所定の送信回数を超えたか否かを判断する(ステップS1210)。
 ステップS1210において、送信許可要求信号の送信回数が所定の送信回数を超えた場合(ステップS1210:Yes)は、UE102は、一連の処理を終了する。送信許可要求信号の送信回数が所定の送信回数を超えていない場合(ステップS1210:No)は、UE102は、ステップS1207へ戻る。
 ステップS1208において、送信許可信号を受信した場合(ステップS1208:Yes)は、UE102は、UE101へ同期確立信号を送信する(ステップS1211)。つぎに、UE102は、周波数帯域f1によってUE101からデータを受信するとともに、周波数帯域f2によってUE101へデータを送信し(ステップS1212)、一連の処理を終了する。
(実施の形態2にかかる無線通信システムにおける動作の変形例)
 図13は、実施の形態2にかかる無線通信システムにおける動作の変形例を示すシーケンス図である。無線通信システム100においては、たとえば図13に示す各ステップが実行されてもよい。
 図13に示すステップS1301~S1307は、図9に示したステップS901~S907と同様である。ただし、ステップS1303において送信される報知情報には、周波数帯域f1,f2を示す情報に加えて、周波数帯域f2によるD2D通信のデータ送信を許可することを示す送信許可フラグが含まれている。ステップS1301~S1307のつぎに、UE102が、ステップS1308へ移行する。ステップS1308は、図10に示したステップS1012と同様である。
 このように、ステップS1303によって送信される報知情報に送信許可フラグを含めることで、UE102からeNB112への送信許可要求信号の送信と、eNB112からUE102への送信許可信号の送信と、を省くことが可能になる。
 この場合、図6に示したステップS602において、D2D用帯域情報とともに送信許可フラグがUEへ送信される。また、ステップS603,S604を省くことができる。また、図12に示したステップS1201において、D2D用帯域情報とともに送信許可フラグが受信される。また、ステップS1207~S1210を省くことができる。
 このように、実施の形態2によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。
 また、UE101のデータ送信に自オペレータ(A社)の周波数帯域f1を使用することで、D2D通信のデータ送信のための無線リソースの管理を自オペレータ側のeNB111において行うことができる。また、UE102のデータ送信に自オペレータ(D社)の周波数帯域f2を使用することで、D2D通信のデータ送信のための無線リソースの管理を自オペレータ側のeNB112において行うことができる。このため、D2D通信のためのスケジューリングや干渉制御が容易になる。
(実施の形態3)
 実施の形態3について、実施の形態2と異なる部分について説明する。実施の形態3においては、UE101のデータ送信およびデータ受信に自オペレータ(A社)の周波数帯域f1を使用する場合について説明する。
(実施の形態3にかかる無線通信システムにおける動作)
 図14は、実施の形態3にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態3にかかる無線通信システム100においては、たとえば図14に示す各ステップが実行される。図14に示すステップS1401~S1409は、図3に示したステップS301~S309と同様である。ステップS1409のつぎに、UE102が、周波数帯域f1によって、D2D通信によるUE101へのデータ送信を行う(ステップS1410)。
 このように、UE102からUE101へのデータ送信にeNB111の周波数帯域f1を用いることで、UE102はeNB112に送信許可要求信号を送信しなくてもUE101へのデータ送信を行うことができる。この場合に、UE102は、たとえば、ステップS1409によるUE101からのデータ送信によって、周波数帯域f1による送信許可があったと判断することができる。
 また、UE101は、ステップS1409によるデータ送信の前に、周波数帯域f1による送信許可があったことを周波数帯域f1の制御信号によってUE102へ通知してもよい。この場合は、ステップS1410によるデータ送信は、ステップS1409によるデータ送信より先に行われてもよい。また、この場合は、ステップS1409,S1410による各データ送信は同時に行われてもよい。
(実施の形態3にかかるA社側のUEによる処理)
 図15は、実施の形態3にかかるA社側のUEによる処理の一例を示すフローチャートである。実施の形態3にかかるA社側のUE101は、たとえば図15に示す各ステップを実行する。図15に示すステップS1501~S1510は、図11に示したステップS1101~S1110と同様である。ただし、ステップS1510において、UE101は、周波数帯域f1によってUE102へデータを送信するとともに、周波数帯域f1によってUE102からデータを受信する(ステップS1510)。
(実施の形態3にかかるD社側のUEによる処理)
 図16は、実施の形態3にかかるD社側のUEによる処理の一例を示すフローチャートである。実施の形態3にかかるD社側のUE102は、たとえば図16に示す各ステップを実行する。図16に示すステップS1601~S1608は、図8に示したステップS801~S808と同様である。ただし、ステップS1608において、UE102は、周波数帯域f1によってUE101からデータを受信するとともに、周波数帯域f1によってUE101へデータを送信する(ステップS1608)。
 このように、実施の形態3によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。
 また、UE101のデータ送信に自オペレータ(A社)の周波数帯域f1を使用することで、D2D通信のデータ送信のための無線リソースの管理を自オペレータ側のeNB111において行うことができる。また、UE102のデータ送信に他オペレータ(A社)の周波数帯域f1を使用することで、eNB112において無線リソースの管理を行わなくてもD2D通信が可能になる。
(実施の形態4)
 実施の形態4について、実施の形態1と異なる部分について説明する。実施の形態4においては、UE101のデータ送信に他オペレータ(D社)の周波数帯域f2を使用する場合について説明する。
(実施の形態4にかかる無線通信システムにおける動作)
 図17は、実施の形態4にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態4にかかる無線通信システム100においては、たとえば図17に示す各ステップが実行される。
 図17に示すステップS1701~S1705は、図3に示したステップS301~S305と同様である。ステップS1705のつぎに、UE102は、D2D通信によるUE101からUE102へのデータ送信の許可を要求する送信許可要求信号をeNB112へ送信する(ステップS1706)。ステップS1706による送信許可要求信号の送信には、たとえば、eNB112によってUE102に割り当てられた上りの制御チャネルを用いることができる。
 つぎに、eNB112が、D2D通信によるUE102へのデータ送信を許可する送信許可信号をUE102へ送信する(ステップS1707)。ステップS1707による送信許可信号の送信には、たとえば、eNB112によってUE102に割り当てられた下りの制御チャネルを用いることができる。
 つぎに、UE102が、自端末が属するD社の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2によって、同期確立信号をUE101へ送信する(ステップS1708)。つぎに、UE101が、周波数帯域f2によって、D2D通信によるUE102へのデータ送信を行う(ステップS1709)。
 このように、UE101からUE102へのデータ送信にeNB112の周波数帯域f2を用いることで、UE101はeNB111に送信許可要求信号を送信しなくてもUE102へのデータ送信を行うことができる。この場合に、UE101は、ステップS1708によるUE102からの同期確立信号によって、周波数帯域f2による送信許可があったと判断することができる。
(実施の形態4にかかるA社側のUEによる処理)
 図18は、実施の形態4にかかるA社側のUEによる処理の一例を示すフローチャートである。実施の形態4にかかるA社側のUE101は、たとえば図18に示す各ステップを実行する。図18に示すステップS1801~S1805は、図7に示したステップS701~S705と同様である。ステップS1804において、同期確立信号を受信した場合(ステップS1804:Yes)は、UE101は、ステップS1801によって受信したD2D用帯域情報に基づいて、周波数帯域f2によってUE102へデータを送信し(ステップS1806)、一連の処理を終了する。
(実施の形態4にかかるD社側のUEによる処理)
 図19は、実施の形態4にかかるD社側のUEによる処理の一例を示すフローチャートである。実施の形態4にかかるD社側のUE102は、たとえば図19に示す各ステップを実行する。図19に示すステップS1901~S1912は、図12に示したステップS1201~S1212と同様である。ただし、ステップS1912において、UE102は周波数帯域f2によってUE101からデータを受信する(ステップS1912)。
 このように、実施の形態4によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。また、UE101のデータ送信に他オペレータ(D社)の周波数帯域f2を使用することで、eNB111において無線リソースの管理を行わなくてもD2D通信が可能になる。
(実施の形態5)
 実施の形態5について、実施の形態1と異なる部分について説明する。実施の形態5においては、UE101のデータ送信に他オペレータ(D社)の周波数帯域f2を使用し、UE101のデータ受信に自オペレータ(A社)の周波数帯域f1を使用する場合について説明する。
(実施の形態5にかかる無線通信システムにおける動作)
 図20は、実施の形態5にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態5にかかる無線通信システム100においては、たとえば図20に示す各ステップが実行される。
 図20に示すステップS2001~S2012は、図10に示したステップS1001~S1012と同様である。ただし、ステップS2011においては、UE101が、周波数帯域f2によって、D2D通信によるUE102へのデータ送信を行う(ステップS2011)。また、ステップS2012においては、UE102が、周波数帯域f1によって、D2D通信によるUE101へのデータ送信を行う(ステップS2012)。
(実施の形態5にかかるA社側のUEによる処理)
 図21は、実施の形態5にかかるA社側のUEによる処理の一例を示すフローチャートである。実施の形態5にかかるA社側のUE101は、たとえば図21に示す各ステップを実行する。図21に示すステップS2101~S2110は、図11に示したステップS1101~S1110と同様である。ただし、ステップS2110において、UE101は、周波数帯域f2によってUE102へデータを送信するとともに、周波数帯域f1によってUE102からデータを受信する(ステップS2110)。
(実施の形態5にかかるD社側のUEによる処理)
 図22は、実施の形態5にかかるD社側のUEによる処理の一例を示すフローチャートである。実施の形態5にかかるD社側のUE102は、たとえば図22に示す各ステップを実行する。図22に示すステップS2201~S2212は、図12に示したステップS1201~S1212と同様である。ただし、ステップS2212において、UE102は、周波数帯域f2によってUE101からデータを受信するとともに、周波数帯域f1によってUE101へデータを送信する(ステップS2212)。
 このように、実施の形態5によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。
(実施の形態6)
 実施の形態6について、実施の形態4と異なる部分について説明する。実施の形態6においては、UE101のデータ送信およびデータ受信に他オペレータ(D社)の周波数帯域f2を使用する場合について説明する。
(実施の形態6にかかる無線通信システムにおける動作)
 図23は、実施の形態6にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態6にかかる無線通信システム100においては、たとえば図23に示す各ステップが実行される。図23に示すステップS2301~S2309は、図17に示したステップS1701~S1709と同様である。ステップS2309のつぎに、UE102が、周波数帯域f2によって、D2D通信によるUE101へのデータ送信を行う(ステップS2310)。
 このように、UE102からUE101へのデータ送信にeNB112の周波数帯域f2を用いることで、UE101はeNB111に送信許可要求信号を送信しなくてもUE102へのデータ送信を行うことができる。この場合に、UE101は、ステップS2308によるUE102からの同期確立信号によって、周波数帯域f2による送信許可があったと判断することができる。
(実施の形態6にかかるA社側のUEによる処理)
 図24は、実施の形態6にかかるA社側のUEによる処理の一例を示すフローチャートである。実施の形態6にかかるA社側のUE101は、たとえば図24に示す各ステップを実行する。図24に示すステップS2401~S2405は、図21に示したステップS2101~S2105と同様である。ただし、ステップS2404において、同期確立信号を受信した場合(ステップS2404:Yes)は、UE101は、周波数帯域f2によってUE102へデータを送信するとともに、周波数帯域f2によってUE102からデータを受信する(ステップS2406)。
(実施の形態6にかかるD社側のUEによる処理)
 図25は、実施の形態6にかかるD社側のUEによる処理の一例を示すフローチャートである。実施の形態6にかかるD社側のUE102は、たとえば図25に示す各ステップを実行する。図25に示すステップS2501~S2512は、図22に示したステップS2201~S2212と同様である。ステップS2512において、UE102は、周波数帯域f2によってUE101からデータを受信するとともに、周波数帯域f2によってUE101へデータを送信する(ステップS2512)。
 このように、実施の形態6によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。また、UE101のデータ送信に他オペレータ(D社)の周波数帯域f2を使用することで、eNB111において無線リソースの管理を行わなくてもD2D通信が可能になる。
(実施の形態7)
 実施の形態7について、上述した各実施の形態と異なる部分について説明する。上述した各実施の形態において、UE101,102による各データ送信における周波数帯域の使用例について説明したが、これらの周波数帯域の使用例はUE101,102によるディスカバリ信号や同期確立信号の送信にも適用可能である。
(実施の形態7にかかる無線通信システムにおける動作)
 図26は、実施の形態7にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態7にかかる無線通信システム100においては、たとえば図26に示す各ステップが実行される。
 図26に示すステップS2601~S2609は、図3に示したステップS301~S309と同様である。ただし、ステップS2604において、UE101は、ステップS2602によって通知された周波数帯域f2によって、ディスカバリ信号をUE102へ送信する(ステップS2604)。また、ステップS2606において、UE102は、ステップS2603によって通知された周波数帯域f1によって、同期を確立したことを示す同期確立信号をUE101へ送信する(ステップS2606)。
 このように、UE101によるディスカバリ信号の送信には、周波数帯域f1に限らず周波数帯域f2を用いてもよい。また、UE102による同期確立信号の送信には、周波数帯域f2に限らず周波数帯域f1を用いてもよい。たとえば、ディスカバリ信号の送信および同期確立信号の送信の両方に周波数帯域f1を用いてもよい。また、ディスカバリ信号の送信および同期確立信号の送信の両方に周波数帯域f2を用いてもよい。
 これらの周波数帯域の変形例は、上述した各実施の形態と組み合わせて用いることができる。一例として、実施の形態1(図3等)において、ディスカバリ信号の送信および同期確立信号の送信の両方に周波数帯域f1を用いてもよい。この場合は、周波数帯域f2は使用されないため、eNB112には周波数帯域f2が設定されていなくてもよい。また、周波数帯域f2に関する各種の通知も省いてもよい。
 このように、実施の形態7によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。
(実施の形態8)
 実施の形態8について、上述した各実施の形態と異なる部分について説明する。上述した各実施の形態において、eNB111が、eNB112のD2D用帯域情報をeNB112から受信し、受信したD2D用帯域情報が示す周波数帯域f2をUE101へ報知する場合について説明した。
 これに対して、UE101が、eNB112から送信される報知情報を、バンドサーチなどを用いて受信(傍受)することにより周波数帯域f2を特定してもよい。同様に、UE102が、eNB111から送信される報知情報を、バンドサーチなどを用いて受信(傍受)することにより周波数帯域f1を特定してもよい。
(実施の形態8にかかる無線通信システムにおける動作)
 図27は、実施の形態8にかかる無線通信システムにおける動作の一例を示すシーケンス図である。実施の形態8にかかる無線通信システム100においては、たとえば図27に示す各ステップが実行される。図27に示すステップS2701~S2708は、図3に示したステップS302~S309と同様である。
 ただし、ステップS2701において、eNB111は、自局の帯域201のうちの他社とのD2D通信に使用可能な周波数帯域f1を示すD2D用帯域情報を含む報知情報をUE101へ送信する(ステップS2701)。上述したSIBなどの報知情報は、異なるオペレータのUEであっても受信可能な情報であるため、UE102は、ステップS2701によって送信された報知情報を傍受して周波数帯域f1を特定することができる。
 また、ステップS2702において、eNB112は、自局の帯域202のうちの他社とのD2D通信に使用可能な周波数帯域f2を示すD2D用帯域情報を含む報知情報をUE102へ送信する(ステップS2702)。上述したSIBなどの報知情報は、異なるオペレータのUEであっても受信可能な情報であるため、UE101は、ステップS2702によって送信された報知情報を傍受して周波数帯域f2を特定することができる。
 これにより、eNB111(A社)およびeNB112(D社)が、D2D用帯域情報を交換する処理(たとえば図3に示したステップS301)を省き、eNB111,112の間のシグナリング量を低減することができる。
 このように、実施の形態8によれば、実施の形態1と同様に、オペレータが異なるUE101,102の間でD2D通信が可能になる。また、D2D通信を行うためのシグナリングの量を抑えることができる。
 また、UE101,102が、他オペレータのeNBから送信された報知情報を傍受することで、eNB111,112がD2D用帯域情報を交換する処理を省き、eNB111,112の間のシグナリング量を低減することができる。
 以上説明したように、無線通信システム、基地局、端末および通信方法によれば、オペレータが異なる端末間の直接通信を可能にすることができる。
 たとえば、3GPPのリリース12のWIの1つとしてD2Dコミュニケーションが検討されているが、オペレータが異なる各端末の間の無線レイヤでのリンク確立方法やデータ通信方法については検討されていない。
 たとえば、デバイス間通信をしたい各UEが近接していても、各UEが契約しているオペレータが異なれば、各UEは異なるeNBに接続しているため、ネットワークを経由して通信することになる。このため、ネットワークの負荷が大きくなる。
 また、eNBに接続している各UEは、互いの情報を得るためにはネットワーク経由のシグナリングを要する。このため、ネットワークの負荷が大きく、各UEにおけるシグナリングの量も多くなる。
 これに対して、上述した各実施の形態によれば、たとえば、各オペレータの帯域内に他社UEでも使用可能なD2D用帯域を用意し、報知しておくことができる。これに対して各オペレータのUEは、このD2D用帯域を使用して、ディスカバリ信号を送受信して同期を確立し、データ送信を行うことができる。
 これにより、オペレータが異なる各UEの間でD2D通信が可能になる。また、たとえばD2D通信を実行するごとにD2D用帯域に関する情報を送受信する方法に比べて、D2D通信を行うためのシグナリングの量を抑えることができる。
 100 無線通信システム
 101,102 UE
 111,112,400 eNB
 120 ネットワーク
 201,202 帯域
 401,501 受信アンテナ
 402,502 受信機
 403,503 L1受信部
 404,504 上位レイヤ処理部
 405,505 L1送信部
 406,506 送信機
 407,507 送信アンテナ
 408 報知情報生成部
 409 送信許可判定部
 430,550 通信装置
 431,551 CPU
 432,552 メモリ
 433,554 無線通信インタフェース
 434 有線通信インタフェース
 439,559 バス
 508 D2D用帯域情報取得部
 509 送信許可設定部
 510,533 D2D信号設定部
 531 ディスカバリ信号検出部
 532 同期確立信号設定部
 553 ユーザインタフェース

Claims (14)

  1.  第1のオペレータの第1の基地局と、
     前記第1の基地局に無線接続する第1の端末と、
     前記第1のオペレータと異なる第2のオペレータの第2の基地局と、
     前記第2の基地局に無線接続する第2の端末と、
     を含み、
     前記第1の基地局および前記第2の基地局の少なくともいずれかは、前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示す報知情報を送信し、
     前記第2の端末は、前記報知情報に基づいて前記所定帯域を使用して前記第1の端末との間の直接通信を行う、
     ことを特徴とする無線通信システム。
  2.  前記第1の端末は、前記所定帯域を使用して無線信号を前記第2の端末へ送信し、
     前記第2の端末は、前記第1の端末によって前記所定帯域を使用して送信された無線信号を前記報知情報に基づいて受信する、
     ことを特徴とする請求項1に記載の無線通信システム。
  3.  前記第2の端末は、前記報知情報に基づいて前記所定帯域を使用して無線信号を前記第1の端末へ送信し、
     前記第1の端末は、前記第2の端末によって前記所定帯域を使用して送信された無線信号を受信する、
     ことを特徴とする請求項1に記載の無線通信システム。
  4.  前記第1の端末は、前記所定帯域を使用して無線信号を前記第2の端末へ送信し、
     前記第2の端末は、前記報知情報に基づいて前記所定帯域を使用して無線信号を前記第1の端末へ送信し、
     前記第2の端末は、前記第1の端末によって前記所定帯域を使用して送信された無線信号を前記報知情報に基づいて受信し、
     前記第1の端末は、前記第2の端末によって前記所定帯域を使用して送信された無線信号を受信する、
     ことを特徴とする請求項1に記載の無線通信システム。
  5.  前記第1の基地局および前記第2の基地局の少なくともいずれかは、前記第1のオペレータに割り当てられた無線周波数帯域に含まれる第1の帯域であって前記直接通信に使用可能な第1の帯域を示す第1の報知情報を送信し、
     前記第2の端末は、前記第1の報知情報に基づいて前記第1の帯域を使用して前記第1の端末との間の直接通信を行い、
     前記第1の基地局および前記第2の基地局の少なくともいずれかは、前記第2のオペレータに割り当てられた無線周波数帯域に含まれる第2の帯域であって前記直接通信に使用可能な第2の帯域を示す第2の報知情報を送信し、
     前記第1の端末は、前記第2の報知情報に基づいて前記第2の帯域を使用して前記第2の端末との間の直接通信を行う、
     ことを特徴とする請求項1に記載の無線通信システム。
  6.  前記第1の端末は、前記第1の帯域を使用して無線信号を前記第2の端末へ送信し、
     前記第2の端末は、前記第2の帯域を使用して無線信号を前記第1の端末へ送信し、
     前記第1の端末は、前記第2の端末によって前記第2の帯域を使用して送信された無線信号を前記第2の報知情報に基づいて受信し、
     前記第2の端末は、前記第1の端末によって前記第1の帯域を使用して送信された無線信号を前記第1の報知情報に基づいて受信する、
     ことを特徴とする請求項5に記載の無線通信システム。
  7.  前記第1の端末は、前記第2の報知情報に基づいて前記第2の帯域を使用して無線信号を前記第2の端末へ送信し、
     前記第2の端末は、前記第1の報知情報に基づいて前記第1の帯域を使用して無線信号を前記第1の端末へ送信し、
     前記第1の端末は、前記第2の端末によって前記第1の帯域を使用して送信された無線信号を受信し、
     前記第2の端末は、前記第1の端末によって前記第2の帯域を使用して送信された無線信号を受信する、
     ことを特徴とする請求項5に記載の無線通信システム。
  8.  前記第1の基地局は、前記所定帯域を前記第2の基地局へ通知し、
     前記第2の基地局は、前記第1の基地局によって通知された所定帯域を示す前記報知情報を送信することを特徴とする請求項1に記載の無線通信システム。
  9.  前記第1の基地局は、前記報知情報を送信し、
     前記第2の端末は、前記第1の基地局によって送信された報知情報を受信し、受信した報知情報に基づいて前記所定帯域を使用して前記第1の端末との間の直接通信を行う、
     ことを特徴とする請求項1に記載の無線通信システム。
  10.  前記報知情報は、前記直接通信によるデータ送信を許可することを示す情報を含むことを特徴とする請求項1に記載の無線通信システム。
  11.  第1のオペレータの第1の基地局と、前記第1の基地局に無線接続する第1の端末と、前記第1のオペレータと異なる第2のオペレータの第2の基地局と、前記第2の基地局に無線接続する第2の端末と、を含む通信システムの前記第1の基地局または前記第2の基地局であって、
     前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示し、前記第2の端末が受信可能な報知情報を送信する送信部を備えることを特徴とする基地局。
  12.  第1のオペレータの第1の基地局と、前記第1の基地局に無線接続する第1の端末と、前記第1のオペレータと異なる第2のオペレータの第2の基地局と、前記第2の基地局に無線接続する第2の端末と、を含む通信システムの前記第2の端末であって、
     前記第1の基地局および前記第2の基地局の少なくともいずれかから送信される、前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示す報知情報を受信する受信部と、
     前記受信部によって受信された報知情報に基づいて前記所定帯域を使用して前記第1の端末との間の直接通信を行う通信部と、
     を備えることを特徴とする端末。
  13.  第1のオペレータの第1の基地局と、前記第1の基地局に無線接続する第1の端末と、前記第1のオペレータと異なる第2のオペレータの第2の基地局と、前記第2の基地局に無線接続する第2の端末と、を含む通信システムの前記第1の基地局または前記第2の基地局による通信方法であって、
     前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示し、前記第2の端末が受信可能な報知情報を送信することを特徴とする通信方法。
  14.  第1のオペレータの第1の基地局と、前記第1の基地局に無線接続する第1の端末と、前記第1のオペレータと異なる第2のオペレータの第2の基地局と、前記第2の基地局に無線接続する第2の端末と、を含む通信システムの前記第2の端末による通信方法であって、
     前記第1の基地局および前記第2の基地局の少なくともいずれかから送信される、前記第1のオペレータに割り当てられた無線周波数帯域に含まれる所定帯域であって、前記第1の端末と前記第2の端末との間の直接通信に使用可能な所定帯域を示す報知情報を受信し、
     受信した前記報知情報に基づいて前記所定帯域を使用して前記第1の端末との間の直接通信を行う、
     ことを特徴とする通信方法。
PCT/JP2014/072205 2014-08-25 2014-08-25 無線通信システム、基地局、端末および通信方法 WO2016030953A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177003107A KR101968426B1 (ko) 2014-08-25 2014-08-25 무선 통신 시스템, 기지국, 단말기 및 통신 방법
CN202110393065.7A CN112911682A (zh) 2014-08-25 2014-08-25 无线通信系统、基站、终端和通信方法
JP2016545111A JP6690094B2 (ja) 2014-08-25 2014-08-25 無線通信システム、基地局、端末および通信方法
EP14900513.4A EP3188567A4 (en) 2014-08-25 2014-08-25 Wireless communication system, base station, terminal, and communication method
PCT/JP2014/072205 WO2016030953A1 (ja) 2014-08-25 2014-08-25 無線通信システム、基地局、端末および通信方法
CN201480081337.8A CN106576376A (zh) 2014-08-25 2014-08-25 无线通信系统、基站、终端和通信方法
US15/412,713 US20170135143A1 (en) 2014-08-25 2017-01-23 Wireless communications system, base station, terminal, and communications method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072205 WO2016030953A1 (ja) 2014-08-25 2014-08-25 無線通信システム、基地局、端末および通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/412,713 Continuation US20170135143A1 (en) 2014-08-25 2017-01-23 Wireless communications system, base station, terminal, and communications method

Publications (1)

Publication Number Publication Date
WO2016030953A1 true WO2016030953A1 (ja) 2016-03-03

Family

ID=55398898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072205 WO2016030953A1 (ja) 2014-08-25 2014-08-25 無線通信システム、基地局、端末および通信方法

Country Status (6)

Country Link
US (1) US20170135143A1 (ja)
EP (1) EP3188567A4 (ja)
JP (1) JP6690094B2 (ja)
KR (1) KR101968426B1 (ja)
CN (2) CN112911682A (ja)
WO (1) WO2016030953A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201663A (ja) * 2015-04-09 2016-12-01 ソニー株式会社 装置及び方法
JP2019165481A (ja) * 2019-05-09 2019-09-26 ソニー株式会社 装置及び方法
WO2022264412A1 (ja) * 2021-06-18 2022-12-22 日本電信電話株式会社 無線通信方法、及び無線通信システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186667A1 (ko) 2017-04-03 2018-10-11 엘지전자 주식회사 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088398A1 (en) * 2011-12-16 2013-06-20 Renesas Mobile Corporation Device to Device Communication
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法
WO2013179472A1 (ja) * 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8910176B2 (en) * 2010-01-15 2014-12-09 International Business Machines Corporation System for distributed task dispatch in multi-application environment based on consensus for load balancing using task partitioning and dynamic grouping of server instance
US9198210B2 (en) * 2010-04-20 2015-11-24 Nokia Solutions And Networks Oy D2D communications considering different network operators
US20140034274A1 (en) * 2010-07-01 2014-02-06 Melvin E. Shaffer Air Barrier
US9191961B2 (en) * 2011-06-17 2015-11-17 Lg Electronics Inc. Method for allocating wireless resources in wireless access system and device therefore
WO2013109100A1 (ko) * 2012-01-18 2013-07-25 엘지전자 주식회사 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치
US9706589B2 (en) * 2012-09-18 2017-07-11 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes, devices and methods therein for enabling device to device communication
US20150305075A1 (en) * 2012-11-05 2015-10-22 Telefonaktiebolaget L M Ericsson (Publ) Neighbor Discovery in Device-to-Device Communications
US9603177B2 (en) * 2012-11-14 2017-03-21 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for enabling direct mode communication between user equipments
EP2939484B1 (en) * 2012-12-28 2018-12-05 Koninklijke KPN N.V. Multi-band device-to-device multicast or broadcast communication
CN103369585B (zh) * 2013-04-24 2016-06-08 华为技术有限公司 快速建立d2d通信的方法和装置
CN103281788B (zh) * 2013-05-17 2016-03-02 北京邮电大学 多运营商网络系统中基于d2d通信的上行干扰协调方法
WO2015053382A1 (ja) * 2013-10-11 2015-04-16 京セラ株式会社 通信制御方法、ユーザ端末及び通信装置
EP3132576B1 (en) * 2014-04-18 2021-07-21 Nokia Technologies Oy Inter-operator device-to-device operation
EP3521880B1 (en) * 2015-06-30 2020-09-09 Corning Optical Communications LLC Optical fiber cable assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088398A1 (en) * 2011-12-16 2013-06-20 Renesas Mobile Corporation Device to Device Communication
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法
WO2013179472A1 (ja) * 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188567A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201663A (ja) * 2015-04-09 2016-12-01 ソニー株式会社 装置及び方法
US10536929B2 (en) 2015-04-09 2020-01-14 Sony Corporation Device and method in a public land mobile network including direct communications between terminals
US10999823B2 (en) 2015-04-09 2021-05-04 Sony Corporation Device and method in a public land mobile network including direct communications between terminals
JP2019165481A (ja) * 2019-05-09 2019-09-26 ソニー株式会社 装置及び方法
WO2022264412A1 (ja) * 2021-06-18 2022-12-22 日本電信電話株式会社 無線通信方法、及び無線通信システム

Also Published As

Publication number Publication date
JP6690094B2 (ja) 2020-04-28
JPWO2016030953A1 (ja) 2017-04-27
KR20170030556A (ko) 2017-03-17
CN112911682A (zh) 2021-06-04
EP3188567A1 (en) 2017-07-05
US20170135143A1 (en) 2017-05-11
KR101968426B1 (ko) 2019-04-11
EP3188567A4 (en) 2018-03-28
CN106576376A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6480005B2 (ja) ユーザ装置及び通知方法
JP7031613B2 (ja) 無線通信における電子デバイス及び方法
JP6509353B2 (ja) ユーザ装置、基地局、通信方法及び通知方法
CN111356161B (zh) 无线网络通信方法、基站、终端及通信装置
WO2017005047A1 (zh) 一种频谱共享的方法和装置
US10728881B2 (en) User equipment and signal transmission method
TWI571167B (zh) 裝置對裝置使用者裝置及基地台
JP2016519523A (ja) D2d発見方法及び基地局、ユーザ装置
JP2010187371A (ja) 通信システム、通信装置、プログラム、及び通信制御方法
JP6690094B2 (ja) 無線通信システム、基地局、端末および通信方法
US20190037534A1 (en) User equipment and reception method
US11871442B2 (en) Methods and devices for resource selection
KR20190140896A (ko) 전자 디바이스 및 전자 디바이스에 의해 실행되는 방법
WO2019215823A1 (ja) 通信装置
JP7410318B2 (ja) V2x通信におけるリソース割り当てを処理するための方法、システム、およびデバイス、ならびに媒体
JP2023530553A (ja) 通信方法、端末デバイス、及びコンピュータ可読媒体
WO2019207660A1 (ja) 通信装置
CN108282905B (zh) 一种随机接入方法及其网元
WO2019196922A1 (zh) 资源分配方法、装置及系统
WO2017005079A1 (zh) 一种数据传输方法和设备、系统
US20190037535A1 (en) Resource scheduling method and apparatus
US20240097845A1 (en) Method and apparatus for determining transmission resource, and communication device and storage medium
WO2014205852A1 (zh) 信号测量方法和装置
WO2018203412A1 (ja) ユーザ装置、及び通信方法
JP6776429B2 (ja) 無線通信システム、基地局、端末および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545111

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014900513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177003107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE