WO2016029713A1 - 真空炉冷却用喷嘴 - Google Patents
真空炉冷却用喷嘴 Download PDFInfo
- Publication number
- WO2016029713A1 WO2016029713A1 PCT/CN2015/078486 CN2015078486W WO2016029713A1 WO 2016029713 A1 WO2016029713 A1 WO 2016029713A1 CN 2015078486 W CN2015078486 W CN 2015078486W WO 2016029713 A1 WO2016029713 A1 WO 2016029713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- nozzles
- heating furnace
- deep cavity
- mold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0062—Heat-treating apparatus with a cooling or quenching zone
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
Definitions
- the invention relates to a vacuum heat treatment device for a mold, in particular to a nozzle for cooling a vacuum furnace.
- die-casting molds have become more and more widely used in various fields, and the development of super-large-scale die-casting molds has become more and more complicated in shape and deeper in cavities, so that the performance of mold materials and heat treatment has higher requirements.
- the die-casting mold is generally heat-treated by a vacuum gas quenching furnace. Because the mold is far away from the cold gas source during cooling, the gas cannot be blown directly to the key parts of the mold.
- the general vacuum heat treatment equipment can not make the bottom or root of the mold cavity reach faster.
- the shape of the mold is various, there are concave die steps, etc., and the distance from the nozzle to the concave model cavity or the root of the punch is different, resulting in uneven cooling rate, so that the heat treatment performance of the deep cavity die-casting mold at various points is obtained. Not uniform, even causing large deformation and cracking risks of the mold. Because the cooling rate is not uniform, the heat treatment effect is not ideal. The main reason is that the distance between the cold gas source and the deep cavity die-casting mold is far, so as long as the problem of the distance between the cold gas source and the deep cavity die-casting mold is solved, how to close The distance between the cavity and the cold air source, thereby increasing the cooling rate of the mold cavity, is a subject of the present invention.
- An object of the present invention is to provide a nozzle for cooling a vacuum furnace in view of the defects existing in the prior art.
- the technical solution of the invention comprises: a vacuum heating furnace, a nozzle, an elongated nozzle, a thermocouple, a deep cavity die-casting mold, wherein the vacuum heating furnace is provided with a plurality of rows of nozzles, and each row of nozzles is equally distributed in the empty heating furnace, generally In a row distribution of 30°, the entire vacuum heating furnace is divided into 12 rows of nozzles, and 6 nozzles are arranged in each row, characterized in that the nozzle is provided with an elongated nozzle, and the length of the elongated nozzle is set according to the depth of the shape of the deep cavity die-casting mold.
- the vacuum heating furnace is provided with a tray, and the deep cavity die-casting mold is placed on the tray at the center of the vacuum heating furnace, and several thermocouples are placed on the surface of the deep cavity die-casting mold.
- the elongated nozzle processed by the graphite material has a cylindrical shape and is internally formed with a circular hole.
- the inner first half has a truncated cone shape, the elongated nozzle is set on the nozzle opening, and the rear end of the elongated nozzle is provided with a plurality of walls. Fix the threaded hole of the extended nozzle, and the bolt passes through the threaded hole to fix the elongated nozzle on the nozzle.
- the invention has the advantages that the problem of uneven cooling rate on the surface of the deep cavity die casting mold is effectively solved.
- the nozzle When the cooling is extended, the nozzle will spray cold air and spray directly onto the surface of the mold.
- the heated gas passes through the heat exchanger and is ejected from the elongated nozzle to form a cycle to achieve uniform and rapid cooling of the deep cavity die-casting mold.
- the cooling rate of the deep cavity die-casting mold is obviously improved, and the surface cooling speed is accelerated, thereby solving the problem of the cooling rate in the recess of the deep cavity die-casting mold and improving the heat treatment performance.
- Figure 1 is a plan view of the nozzle of the vacuum heating furnace
- Figure 2 is a schematic view showing the structure of the elongated nozzle and the nozzle set
- Figure 3 is a schematic left side view of the elongated nozzle and nozzle set
- Figure 4 is a schematic cross-sectional view showing the A-A plane of the elongated nozzle and the nozzle set;
- Figure 5 is a schematic view showing the structure of the deep cavity cavity die casting mold placed on the tray;
- Figure 6 is a schematic cross-sectional view of the A-A plane in Figure 5;
- Figure 7 is a schematic cross-sectional view of the B-B plane in Figure 6;
- thermocouples 1 nozzle, 2 extension nozzle, 3 vacuum furnace, 4 deep cavity die-casting mold, 5 threaded holes, 6 bolts, 7 thermocouples.
- the vacuum heating furnace 3 of the present embodiment is provided with twelve rows of nozzles, and each row of nozzles is equally distributed in the vacuum heating furnace 3 at 30°. Referring to Fig. 1, in the figure, 0 to 330 degrees are the positions of the twelve rows of nozzles, and six nozzles 1 are disposed at the positions of each row of nozzles, and a total of 72 nozzles 1 are provided in the vacuum heating furnace 3.
- Each nozzle 1 is provided with an elongated nozzle 2, and the elongated nozzle 2 processed by the graphite material has a cylindrical shape, and a circular hole is formed inside, and the inner first half has a truncated cone shape, and the elongated nozzle 2 is set at the nozzle opening 1 Upper, the wall of the rear portion of the elongated nozzle 2 is provided with a plurality of threaded holes 5 for fixing the elongated nozzles, and the bolts 6 are passed through the threaded holes 5 to fix the elongated nozzles 2 to the nozzles 1.
- the extension nozzle has a length of 50-250 mm according to the depth of the deep cavity die-casting mold.
- the deep cavity die-casting mold 4 has a concave die, and the position of the mold is varied widely.
- the extended nozzle 1 is selectively installed with 72 different types.
- the position and the different number or different length of the elongated nozzle 2 can accelerate or more uniformly cool the cold cavity of the deep cavity die-casting mold 4, thereby achieving the desired mold. Heat treatment performance.
- the length of the elongated nozzle 2 and the installation position and the number of the nozzles are selected, so that the nozzle end surface after the extension nozzle 2 is mounted and the cavity surface of the deep cavity die-casting mold 4 are selected. The distance between them reaches 450 to 600 mm.
- a tray is provided in the vacuum heating furnace 3
- a deep cavity die-casting mold 4 is placed on the tray and at the center of the vacuum heating furnace, and nine thermocouples 7 are placed on the surface of the deep cavity die-casting mold 4.
- the nozzle 2 When the cooling nozzle is extended, the nozzle 2 will spray cold air and spray directly onto the surface of the deep cavity die-casting mold 4, and the heated gas passes through the heat exchanger, and then is ejected from the elongated nozzle 2 to form a cycle to achieve deep cavity die casting.
- the purpose of the mold 4 cooling The purpose of the mold 4 cooling.
- Table 1 Comparison of test data without extended nozzles and extended nozzles.
- the mold is placed in the middle of the tray without extending the nozzle
- the mold is placed in the middle of the tray and the nozzle is extended by 200mm. (1020-540 degrees) cooling rate °C/min (1020-540 degrees) cooling rate °C/min B2 open end surface temperature control 65.56 90.77 B3 pit on the bottom 29.56 38.77 B4 pit bottom 34.33 57.85 B5 under the bottom of the pit 23.78 40.00 B6 pit inside the upper end of the mouth mouth 100mm 48.00 67.08 B7 pit inside the mouth end face 100mm 44.00 62.92 B8 pit inside and below the mouth end face 100mm 43.22 69.69 B9 pit inside the mouth end face 100mm 47.33 64.92
- the cooling rate is significantly improved, and the surface cooling rate is generally increased by about 50%. Therefore, the problem of the cooling rate in the recess of the deep cavity die-casting mold 4 can be solved, and the heat treatment performance can be improved. At the same time, the installation of nozzles of different positions and different numbers also solves the problem of uneven cooling rate on the surface of the mold.
- the application of the nozzle of the embodiment has strong versatility. Except for the die type die mentioned above, for the other types of molds, for example, the mold thickness is not uniform, that is, the mold having a large difference in thickness can also pass.
- the nozzle is extended to strengthen the thick end of the mold to achieve a uniform cooling rate with the thin end, thereby reducing the risk of deformation and cracking and improving the heat treatment performance of the material.
- the overall cooling condition and cooling rate of the mold can be controlled.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
公开了一种真空炉冷却用喷嘴,包括真空加热炉(3)、喷嘴(1)、加长喷嘴(2)、热电偶(7)和深型腔压铸模具(4),所述真空加热炉(3)内设有数排喷嘴(1),每排喷嘴(1)在真空加热炉(3)内以等分分布,所述喷嘴(1)上加装加长喷嘴(2),加长喷嘴(2)的长度根据深型腔压铸模具(4)外形的深浅设置为50~250mm,以使加长喷嘴(2)端面与模具型腔面的距离为450~600mm,真空加热炉(3)内设有料盘,深型腔压铸模具(4)被放置在料盘上并处于真空加热炉(3)中心位置,数个热电偶(7)放置在深型腔压铸模具(4)的表面。由于使用了加长喷嘴,使深型腔压铸模具冷却速度明显提升,表面冷却速度加快,解决了模具凹处冷速慢、模具表面冷速不均的问题。
Description
本发明涉及一种模具真空热处理设备,特别涉及一种真空炉冷却用喷嘴。
近几年压铸模具在各领域应用越来越广泛,而且向超大型压铸模具发展,形状越来越复杂,型腔越来越深,从而对模具材料及热处理的性能有了更高的要求。目前压铸模具一般采用真空气淬炉进行热处理,冷却时由于模具距离冷气源较远,致使气体不能直吹至模具的关键部位,一般的真空热处理设备均无法使模具型腔底部或者根部达到较快的冷速,从而使热处理时模具的局部达不到较好的性能,由于性能不理想,导致在使用过程中模具在此部位发生早期失效,而型腔的底部与根部恰恰是压铸产品的关键部位,影响压铸产品的外观质量,最终由于产品的外观无法达到要求,而导致模具的过早报废。因而如何提高模具的型腔底部与根部的热处理性能,将是行业内研究的重点课题。
淬火时的冷却速度越快,其模具的热处理性能就越好,那么如何使深型腔压铸模具的型腔底部与根部的淬火冷却速度提高成为提高热处理性能的研究方向。一旦此问题得到解决,将大幅提升大且深型腔模具的热处理性能,从而将有效地提高深型腔压铸模具的寿命。由于目前的真空热处理设备热处理深型腔压铸模具时,型腔的底部或者根部冷速较慢,而冷却时从喷嘴内喷出的气体距离模具较远时,将降低冷速,影响模具热处理性能。同时模具形状各式各样,有凹模凸模台阶等,从喷嘴到凹模型腔或凸模根部等不同位置距离不同,导致冷速不均匀,从而使深型腔压铸模具各点位置热处理性能不统一,甚至造成模具大的变形和开裂风险。由于冷却速度不均匀造成热处理效果不理想,其主要原因是冷气源距离与深型腔压铸模具较远,那么只要解决了冷气源与深型腔压铸模具之间距离较远的问题,如何拉近型腔与冷气源之间的距离,从而提高模具型腔的冷速,这是本发明研究的课题。
发明内容
本发明的目的是针对已有技术中存在的缺陷,提供一种真空炉冷却用喷嘴。本发明的技术方案包括:真空加热炉、喷嘴、加长喷嘴、热电偶、深型腔压铸模具,所述真空加热炉内设有数排喷嘴,每排喷嘴在空加热炉内以等分分布,一般以30°一排分布,整个真空加热炉分成12排喷嘴,每排设置6个喷嘴,其特征在于所述喷嘴上加装加长喷嘴,加长喷嘴的长度根据深型腔压铸模具外形的深浅设置为50~250mm,以使喷嘴端面与模
具型腔面的距离达到450~600mm。真空加热炉内设有料盘,深型腔压铸模具被放置在料盘上并处于真空加热炉中心位置,数个热电偶放置在深型腔压铸模具的表面。
所述由石墨类材料加工而成的加长喷嘴的外形为圆柱体,内部加工有圆孔,其内部前半段呈圆台状,加长喷嘴套装在喷嘴口上,加长喷嘴的后部的壁上设有数个固定加长喷嘴的螺纹孔,螺栓穿过螺纹孔将加长喷嘴固定在喷嘴上。
本发明的优点是有效地解决了深型腔压铸模具表面冷速不均匀问题。冷却时加长喷嘴将喷出冷气,直接喷到模具表面,变热的气体经过热交换器,重新从加长喷嘴内喷出,形成一种循环,达到深型腔压铸模具均匀而迅速冷却的目的。使深型腔压铸模具冷却速度明显提升,表面冷却速度加快,从而解决深型腔压铸模具凹处的冷速问题,提升热处理性能。
图1真空加热炉喷嘴平面布置图;
图2加长喷嘴及喷嘴套装的结构示意图;
图3加长喷嘴及喷嘴套装的左视结构示意图;
图4加长喷嘴及喷嘴套装的A-A面剖视结构示意图;
图5实施例中深型腔压铸模具被放置在料盘上的结构示意图;
图6图5中的A-A面剖视结构示意图;
图7图6中的B-B面剖视结构示意图;
图中:1喷嘴、2加长喷嘴、3真空加热炉、4深型腔压铸模具、5螺纹孔、6螺栓、7热电偶。
下面结合附图进一步说明本发明的实施例:
本实施例的真空加热炉3内设有十二排喷嘴,每排喷嘴在真空加热炉3内以30°等分分布。参见图1,图中以0°~330°为十二排喷嘴的位置,每排喷嘴的位置上设置有6个喷嘴1,真空加热炉3内共有72个喷嘴1。每个喷嘴1上安装有加长喷嘴2,由石墨类材料加工而成的加长喷嘴2的外形为圆柱体,内部加工有圆孔,其内部前半段呈圆台状,加长喷嘴2套装在喷嘴口1上,加长喷嘴2的后部的壁上设有数个固定加长喷嘴的螺纹孔5,螺栓6穿过螺纹孔5将加长喷嘴2固定在喷嘴1上。加长喷嘴根据深型腔压铸模具的深浅设置的长度为50~250mm,本实施例深型腔压铸模具4有凹模凸模,模具装炉位置千差万别,利用延长喷嘴1选择性加装72个不同位置和不同数量或不同长度的加长喷嘴2可使深型腔压铸模具4的冷速加快或更均匀冷却,从而达到理想的模具
热处理性能。根据深型腔压铸模具4的具体形状及装炉位置选择合适加长喷嘴2的长度及加装位置和数量,从而使得在安装了加长喷嘴2之后的喷嘴端面与深型腔压铸模具4的腔面之间的距离达到450~600mm。这样解决因喷嘴端面与深型腔压铸模具表面距离不一导致冷却不良和不均匀的问题。真空加热炉3内设有料盘,深型腔压铸模具4被放置在料盘上并处于真空加热炉中心位置,9个热电偶7放置在深型腔压铸模具4的表面。
冷却时加长喷嘴2将喷出冷气,直接喷到深型腔压铸模具4的表面,变热气体经过热交换器,然后重新从加长喷嘴2内喷出,形成一种循环,达到深型腔压铸模具4冷却的目的。
本实施例在采用同样的热处理工艺淬火冷却之后,与未加装加长喷嘴2的数据进行比对,详见表1。
表1:未加装加长喷嘴与加装加长喷嘴的测试数据对比表。
模具放在料盘中间,不延长喷嘴 | 模具放在料盘中间,喷嘴延长200mm | |
(1020-540度)冷速℃/min | (1020-540度)冷速℃/min | |
B2开口端面表面控温 | 65.56 | 90.77 |
B3凹坑底部上 | 29.56 | 38.77 |
B4凹坑底部中 | 34.33 | 57.85 |
B5凹坑底部下 | 23.78 | 40.00 |
B6凹坑内上距离口端面100mm | 48.00 | 67.08 |
B7凹坑内距离口端面100mm | 44.00 | 62.92 |
B8凹坑内下距离口端面100mm | 43.22 | 69.69 |
B9凹坑内距离口端面100mm | 47.33 | 64.92 |
从上表可以看出,在喷嘴1加装加长喷嘴2之后,冷却速度明显提升,表面冷速普遍提高50%左右。从而可以解决深型腔压铸模具4凹处的冷速问题,提升热处理性能。同时加装不同位置和不同数量发明喷嘴同样解决模具表面冷速不均匀问题。
通过以上试验可以看出,经过加装加长喷嘴2的方式,使冷速将明显提升。
本实施例的喷嘴的应用具有较强的通用性,除了上面所讲到的凹模类的模具,对于其余类型的模具,例如:模具厚度不均一,即厚度相差比较大的模具,同样可以通过喷嘴延长,使模具的厚端加强冷却,从而达到与薄端冷速较为一致,从而减少变形与开裂风险,提高材料的热处理性能。对于各种类型的模具,通过延长喷嘴调节模具端面与喷嘴端面的距离在450~600mm之间,即可控制模具整体冷却均匀状况和冷却速度。
依据以上的实验及生产实践,可以说已经彻底解决了所有模具热处理淬火局部冷却慢和冷却均匀性问题,使热处理性能得以提升,而且淬火不易开裂,此将是模具热处理行业内一次质的飞跃,将会对延长模具的寿命产生非常深远的影响。
Claims (2)
- 一种真空炉冷却用喷嘴,包括:真空加热炉、喷嘴、加长喷嘴、热电偶、深型腔压铸模具,所述真空加热炉内设有数排喷嘴,每排喷嘴在真空加热炉内以等分分布,其特征在于所述喷嘴上加装加长喷嘴,加长喷嘴的长度根据深型腔压铸模具外形的深浅设置为50~250mm,以使加长喷嘴端面与模具型腔面的距离达到450~600mm,真空加热炉内设有料盘,深型腔压铸模具被放置在料盘上并处于真空加热炉中心位置,数个热电偶放置在深型腔压铸模具的表面。
- 根据权利要求1所述的真空炉冷却用喷嘴,其特征在于所述加长喷嘴由石墨类材料加工而成其外形为圆柱体,内部设有圆孔,加长喷嘴的内部前半段呈圆台状,加长喷嘴套装在喷嘴口上,加长喷嘴的后部的壁上设有数个固定加长喷嘴的螺纹孔,螺栓穿过螺纹孔将加长喷嘴固定在喷嘴上。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15836621.1A EP3034200A4 (en) | 2014-08-29 | 2015-05-07 | Nozzle for cooling vacuum furnace |
US15/073,437 US20160201156A1 (en) | 2014-08-29 | 2016-03-17 | Nozzle for cooling vacuum heat treatment furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2014104376131 | 2014-08-29 | ||
CN201410437613.1A CN105364045A (zh) | 2014-08-29 | 2014-08-29 | 真空炉冷却用喷嘴 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/073,437 Continuation US20160201156A1 (en) | 2014-08-29 | 2016-03-17 | Nozzle for cooling vacuum heat treatment furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016029713A1 true WO2016029713A1 (zh) | 2016-03-03 |
Family
ID=55366950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/078486 WO2016029713A1 (zh) | 2014-08-29 | 2015-05-07 | 真空炉冷却用喷嘴 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160201156A1 (zh) |
EP (1) | EP3034200A4 (zh) |
CN (1) | CN105364045A (zh) |
WO (1) | WO2016029713A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6604843B2 (ja) * | 2015-12-22 | 2019-11-13 | 小山鋼材株式会社 | 金型の冷却装置およびその方法 |
JP2017175102A (ja) * | 2016-03-16 | 2017-09-28 | ソニー株式会社 | 光電変換素子及びその製造方法並びに撮像装置 |
JP2019203184A (ja) * | 2018-05-25 | 2019-11-28 | 光洋サーモシステム株式会社 | 熱処理装置 |
KR102314086B1 (ko) * | 2021-02-08 | 2021-10-18 | 김웅기 | 진공열처리로의 냉각가스 분사노즐 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009052838A (ja) * | 2007-08-28 | 2009-03-12 | Daido Steel Co Ltd | 真空浸炭炉 |
KR20120032380A (ko) * | 2010-09-28 | 2012-04-05 | 주식회사 하이박 | 진공 브레이징로의 냉각장치 |
DE202012010241U1 (de) * | 2012-10-26 | 2012-12-05 | Schmetz Gmbh | Vakuum-Kammerofen |
CN203021619U (zh) * | 2012-12-27 | 2013-06-26 | 上海汇森益发工业炉有限公司 | 工件冷处理设备 |
CN103192084A (zh) * | 2013-05-05 | 2013-07-10 | 沈阳中北真空磁电科技有限公司 | 一种旋转式真空热处理设备 |
CN204075135U (zh) * | 2014-08-29 | 2015-01-07 | 一胜百模具技术(上海)有限公司 | 真空炉冷却用喷嘴 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2586480B2 (ja) * | 1987-04-11 | 1997-02-26 | 大同特殊鋼株式会社 | 真空熱処理炉 |
CN2379217Y (zh) * | 1999-07-29 | 2000-05-24 | 上海宝钢集团公司 | 加长气雾喷嘴 |
US6533991B1 (en) * | 2000-06-20 | 2003-03-18 | Ipsen International, Inc. | Cooling gas injection nozzle for a vacuum heat treating furnace |
US6903306B2 (en) * | 2002-05-23 | 2005-06-07 | Ipsen International, Inc. | Directional cooling system for vacuum heat treating furnace |
JP2010249332A (ja) * | 2009-04-10 | 2010-11-04 | Ihi Corp | 熱処理装置及び熱処理方法 |
CN202063961U (zh) * | 2011-03-23 | 2011-12-07 | 马鞍山钢铁股份有限公司 | 车轮淬火冷却装置 |
CN103757186B (zh) * | 2013-12-31 | 2015-09-09 | 马钢(集团)控股有限公司 | 组合式火车车轮淬火冷却装置 |
-
2014
- 2014-08-29 CN CN201410437613.1A patent/CN105364045A/zh active Pending
-
2015
- 2015-05-07 EP EP15836621.1A patent/EP3034200A4/en not_active Withdrawn
- 2015-05-07 WO PCT/CN2015/078486 patent/WO2016029713A1/zh active Application Filing
-
2016
- 2016-03-17 US US15/073,437 patent/US20160201156A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009052838A (ja) * | 2007-08-28 | 2009-03-12 | Daido Steel Co Ltd | 真空浸炭炉 |
KR20120032380A (ko) * | 2010-09-28 | 2012-04-05 | 주식회사 하이박 | 진공 브레이징로의 냉각장치 |
DE202012010241U1 (de) * | 2012-10-26 | 2012-12-05 | Schmetz Gmbh | Vakuum-Kammerofen |
CN203021619U (zh) * | 2012-12-27 | 2013-06-26 | 上海汇森益发工业炉有限公司 | 工件冷处理设备 |
CN103192084A (zh) * | 2013-05-05 | 2013-07-10 | 沈阳中北真空磁电科技有限公司 | 一种旋转式真空热处理设备 |
CN204075135U (zh) * | 2014-08-29 | 2015-01-07 | 一胜百模具技术(上海)有限公司 | 真空炉冷却用喷嘴 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3034200A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3034200A1 (en) | 2016-06-22 |
EP3034200A4 (en) | 2017-04-12 |
US20160201156A1 (en) | 2016-07-14 |
CN105364045A (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016029713A1 (zh) | 真空炉冷却用喷嘴 | |
KR20180012328A (ko) | 템퍼링 될 비-무한인 표면의 균일한 비접촉 템퍼링 방법 및 이를 위한 장치 | |
JP2017515689A (ja) | シート金属合金から部品を成形する方法 | |
CN105280518A (zh) | 半导体基板的热处理装置 | |
CN205437048U (zh) | 三偏心蝶阀阀体铸造模具 | |
WO2014027598A1 (ja) | シリンダヘッドの焼入れ方法とこれに用いる保温部材 | |
CN109985955A (zh) | 一种控制构件壁厚均匀性等温热拉深成形装置及其成形方法 | |
WO2015196862A1 (zh) | 玻璃退火窑强制对流区的等温降速度冷却方法及其装置 | |
CN108103433B (zh) | 一种太阳能铝型材挤压模具氮化处理工艺 | |
CN104959580B (zh) | 铸造模具的冷却装置及其应用 | |
CN105734214A (zh) | 一种h13钢退火工艺 | |
CN204075135U (zh) | 真空炉冷却用喷嘴 | |
CN205309270U (zh) | 一种用于车轮铸造的模具 | |
CN106399651B (zh) | 一种薄壁大直径模具整体真空淬火工艺 | |
CN107988479B (zh) | 一种大尺寸轧辊的准差温热处理方法 | |
WO2022037129A1 (zh) | 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法 | |
CN206188848U (zh) | 一种薄壁大直径模具整体真空淬火防变形工装 | |
JP6338881B2 (ja) | ダイカスト金型およびその熱処理方法 | |
CN109468557B (zh) | 高强度铝合金在线淬火系统及在线淬火工艺 | |
CN207596703U (zh) | 封堵式保温结构的玻璃模具 | |
CN217929754U (zh) | 一种内部加热温度均匀的液化炉 | |
TWM519021U (zh) | 金屬板材成型系統 | |
JP7212872B1 (ja) | 成形金型部品の製造方法 | |
KR101478614B1 (ko) | 고주파 열처리 장치에 적용되는 고주파 열처리용 베드코일 장치 | |
JP2656839B2 (ja) | 真空熱処理炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2015836621 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15836621 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |