WO2022037129A1 - 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法 - Google Patents

车用玻璃弯曲成型装置及车用玻璃弯曲成型方法 Download PDF

Info

Publication number
WO2022037129A1
WO2022037129A1 PCT/CN2021/092105 CN2021092105W WO2022037129A1 WO 2022037129 A1 WO2022037129 A1 WO 2022037129A1 CN 2021092105 W CN2021092105 W CN 2021092105W WO 2022037129 A1 WO2022037129 A1 WO 2022037129A1
Authority
WO
WIPO (PCT)
Prior art keywords
subspace
glass
blowing
air
air extraction
Prior art date
Application number
PCT/CN2021/092105
Other languages
English (en)
French (fr)
Inventor
周遵光
郑宗法
陈道鼎
林涛
卓光进
李振芳
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Priority to EP21857230.3A priority Critical patent/EP4186875A4/en
Priority to JP2023501916A priority patent/JP7479563B2/ja
Publication of WO2022037129A1 publication Critical patent/WO2022037129A1/zh
Priority to US18/111,970 priority patent/US20230202902A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • C03B23/0352Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending by suction or blowing out for providing the deformation force to bend the glass sheet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means

Definitions

  • the present application relates to the technical field of glass processing, and in particular, to a vehicle glass bending and forming device and a vehicle glass bending and forming method.
  • the purpose of the present application is to provide a vehicle glass bending and forming device and a vehicle glass bending forming method, which are used in the bending and forming process of glass, and can adjust the shape change of each position of the glass so that the glass meets the structural requirements of the corresponding bending forming.
  • the present application provides a vehicle glass bending and forming device, comprising a concave bottom mold, at least one blowing duct and a plurality of air suction pipes, the concave bottom mold comprising a base and a top plate, the top plate is covered on the On the base, and enclosed with the base to form a accommodating space, a plurality of first partitions are arranged in the accommodating space, and the plurality of first partitions divide the accommodating space into a plurality of subsections.
  • the bearing surface of the top plate facing away from the base is a concave surface
  • the top plate is provided with a plurality of through holes communicating with the accommodating space at intervals, each of the subspaces corresponds to at least one of the through holes, and each One blowing duct communicates with at least one of the subspaces to blow air into at least one of the subspaces, and a plurality of the air extraction ducts communicate with the remaining multiple of the subspaces one by one, so as to blow air into the remaining multiple subspaces. Evacuation is performed in each of the subspaces.
  • the vehicle glass bending and forming device divides the accommodating space into a plurality of subspaces, and sets an air blowing duct and an air exhausting duct to communicate with the plurality of subspaces one by one, so as to perform air extraction or blowing in the plurality of subspaces.
  • the glass surface corresponding to the multiple subspaces is subjected to different degrees of vacuum action or blowing action, so as to adjust the shape change of each position of the glass, so that the glass meets the structural requirements of the corresponding bending forming.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the middle region of the top plate
  • the buffer subspace surrounds the center.
  • a plurality of the edge subspaces are distributed around the buffer subspace, and together surround the buffer subspace
  • the air blowing duct communicates with the buffer subspace
  • the air suction duct communicate with the other subspaces.
  • the subspace in the vehicle glass bending and forming device is divided into a central subspace, a buffer subspace and multiple edge subspaces, so as to correspond to different regions of the glass, the center subspace and the multiple edge subspaces are respectively separated by air extraction pipes.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the middle region of the top plate
  • the buffer subspace surrounds the center.
  • a plurality of the edge subspaces are distributed around the buffer subspace, and together surround the buffer subspace
  • the air blowing duct communicates with the central subspace
  • the air suction duct communicate with the other subspaces.
  • the blowing effect can prevent the glass sphere at the corresponding position of the subspace connected by the blowing duct from falling further, and because the falling of the glass sphere at the corresponding position of the central subspace is prevented by the blowing effect, other subspaces are also prevented from falling.
  • the force distribution of the glass at the corresponding position changes, and it is easier to change the shape of the glass under the vacuum force generated by the suction pipe, even under lower vacuum. under force.
  • the lower vacuum force can further avoid possible excessive extrusion between the corresponding positions of other glass subspaces (including buffer subspaces and multiple edge subspaces) and the bearing surface, improving the quality of the glass forming surface and the optical quality.
  • the plurality of the edge subspaces include a lower subspace, an upper subspace, a first side subspace and a second side subspace, and the lower subspace and the upper subspace are located in the On opposite sides of the buffer subspace, the first side subspace and the second side subspace are located on opposite sides of the buffer subspace, and the lower subspace corresponds to the area of the top plate is the first region, the region of the top plate corresponding to the upper subspace is the second region, and the radius of curvature of the first region is larger than the radius of curvature of the second region.
  • a plurality of edge subspaces are divided into a lower subspace, an upper subspace, a first side subspace and a second side subspace to correspond to different area positions of the glass edge.
  • the lower subspace, the upper subspace, the first side subspace and the second side subspace are evacuated respectively, so that different areas of the glass edge are subjected to corresponding vacuum forces, so that the edge shape of the glass is more accurate. adjustment.
  • the glass bending and forming device further includes a control part, the control part is used to adjust the air suction duct and the air blow duct, so that the vacuum in each of the subspaces acts Or blowing action is adjustable.
  • the existence of the control parts enables the suction performance of the suction duct and the blowing performance of the blowing duct to be effectively regulated, so as to precisely adjust the vacuum effect or blowing effect in each subspace, and the glass in the corresponding position of each subspace can be adjusted.
  • the shape is changed by the corresponding vacuum force to meet the structural requirements of the corresponding bending forming.
  • the vehicle glass bending and forming device further includes a first gas heating system, and the first gas heating system is arranged in the air blowing duct, so as to prevent the blowing of the glass toward the glass from the air blowing duct.
  • the gas is heated so that the temperature of the gas can be adjusted.
  • the setting of the first gas heating system enables the temperature of the blowing gas in the blowing pipe to be effectively regulated, and then the temperature of the blowing gas in the subspace connected with the blowing pipe can be adjusted, which can control the blowing gas more precisely.
  • the temperature of the glass at the corresponding position of the subspace connected by the air duct can be more accurately controlled and prevented from further falling of the glass sphere at the corresponding position of the subspace connected by the air duct, so as to meet the structural requirements of the corresponding bending molding.
  • the vehicle glass bending and forming device further includes an annular top mold, the annular top mold is disposed on the side of the top plate away from the base, and the annular top mold includes a top template and a The side template arranged on the top template and facing the side of the bearing surface, when the annular top mold and the concave bottom mold move toward each other, so that the side template and the upper surface of the glass are in contact together , the top template, the side template and the upper surface of the glass are enclosed to form a receiving cavity, and an air blowing channel is arranged in the receiving cavity, and the air blowing channel faces the bearing surface and is used for the glass Air blow.
  • the blowing channel on the annular top mold is used to blow the upper surface of the glass, so that the lower surface of the glass is subjected to the vacuum force, and the upper surface of the glass is subjected to the blowing pressure, so that the glass can be rapidly bent and formed. Effect.
  • the vehicle glass bending and forming device includes both a concave bottom mold and an annular top mold, a plurality of laminated glasses can be processed simultaneously, which improves the processing efficiency to a certain extent.
  • the accommodating cavity is provided with a plurality of second partitions, and the plurality of second partitions divide the accommodating cavity into a plurality of sub-accommodating cavities, and the plurality of the sub-accommodating cavities are respectively the center.
  • a sub-accommodating cavity and a plurality of edge sub-accommodating cavities the central sub-accommodating cavity is arranged opposite to the central sub-space and the buffer sub-space, and the plurality of edge sub-accommodating cavities are respectively connected to the first side sub-accommodating cavity
  • the space, the second side subspace, the lower subspace and the upper subspace are arranged one by one opposite to each other. at least one of the insufflation channels.
  • the multiple sub-accommodating cavities are divided into a central sub-accommodating cavity and a plurality of edge sub-accommodating cavities to correspond to the position of the center area and the edge area of the glass.
  • the blowing pressure is applied to the surface of the glass, and the shape change of the glass is adjusted to make the glass meet the structural requirements of the corresponding bending forming.
  • the plurality of sub-accommodating cavities are respectively arranged opposite to the plurality of sub-spaces, so that each area of the glass can be subjected to corresponding vacuum force and blowing pressure, which is more conducive to double adjustment of the molding shape of the glass.
  • the central sub-accommodating cavity includes a first central sub-accommodating cavity and a second central sub-accommodating cavity, the first central sub-accommodating cavity is disposed opposite the central sub-space, and the second central sub-accommodating cavity is arranged opposite to the central sub-space.
  • the accommodating cavity is arranged opposite to the buffer sub-space, and at least one air blowing channel is provided in the first central sub-accommodating cavity and the second central sub-accommodating cavity.
  • the central sub-accommodating cavity is divided into a first central sub-accommodating cavity and a second central sub-accommodating cavity to correspond to the central sub-space and the buffer sub-space, so that the shape of the position of the central area of the glass can be adjusted more accurately.
  • the blowing power, blowing opening time and blowing duration of the blowing channel can be adjusted.
  • the blowing power, blowing opening time and blowing duration of each blowing channel can be effectively regulated, so that the glass in the corresponding position of each sub-accommodating cavity can be adjusted effectively.
  • the shape is adjusted so that the glass can meet the structural requirements of the corresponding bending forming.
  • the vehicle glass bending and forming device further includes a second gas heating system, and the second gas heating system is arranged in the air blowing channel, so as to prevent the glass being blown from the air blowing channel to the glass.
  • the gas is heated so that the temperature of the gas can be adjusted.
  • the setting of the second gas heating system enables the temperature of the blowing gas in the blowing channel to be effectively regulated, so that the temperature of the glass during bending and forming can be controlled more precisely, or the heat loss during the above-mentioned blowing and extraction processes can be compensated.
  • the temperature of the glass during bending and forming can be controlled more precisely, and the forming quality of the glass and the stress controllability after annealing can be further improved.
  • the vehicle glass bending and forming device further includes a pre-forming frame, the pre-forming frame is an annular frame structure, the pre-forming frame can be sleeved on the periphery of the concave bottom mold, and the The radius of curvature of the preform frame is greater than the radius of curvature of the concave bottom mold.
  • the pre-forming frame is used for the pre-forming process of glass. The glass heated to the forming temperature is placed on the pre-forming frame, the glass is pre-formed by the action of gravity, and then the pre-forming frame is sleeved from top to bottom with the concave bottom mold. perimeter to place the glass on a concave bottom mold for overmolding.
  • a vehicle glass bending and forming device can be used to process the plurality of glasses simultaneously, so as to improve the processing efficiency.
  • the present application also provides a method for bending and forming vehicle glass, comprising:
  • a vehicle glass bending and forming device includes a concave bottom mold, a plurality of air suction pipes and at least one blowing pipe, the concave bottom mold includes a base and a top plate, and the top plate is covered at the place. on the base, and is enclosed with the base to form a accommodating space, the carrying surface of the top plate away from the base is an irregular concave surface, the carrying surface is used to carry the glass, and the top plate is spaced with A plurality of through holes, a plurality of first partitions are arranged in the accommodating space, the plurality of first partitions divide the accommodating space into a plurality of subspaces, each of the subspaces is connected to at least one of the subspaces.
  • the through holes are communicated with each other, each air blowing duct is communicated with at least one of the subspaces, and the other multiple subspaces are communicated with a plurality of the air extraction ducts one by one;
  • the glass heated to the forming temperature is placed on the bearing surface, and the glass is deformed by gravity;
  • the plurality of sub-spaces are evacuated by using the plurality of air-extracting ducts, and at least one of the sub-spaces is blown by using the air-blowing ducts, so that the glass is completely adhered to the bearing surface.
  • the shape change of each position of the glass can be effectively adjusted, so that the glass meets the structural requirements of the corresponding bending forming.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the middle region of the top plate
  • the buffer subspace surrounds the center.
  • a plurality of the edge subspaces are distributed around the buffer subspace, and together surround the buffer subspace
  • the air blowing duct communicates with the buffer subspace
  • a plurality of the suction subspaces are The air pipes are respectively communicated with the central subspace, the buffer subspace and the plurality of edge subspaces, and there are differences in air extraction modes among the plurality of air extraction pipes.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the middle region of the top plate
  • the buffer subspace surrounds the center.
  • a plurality of the edge subspaces are distributed around the buffer subspace, and together surround the buffer subspace
  • the air blowing duct is communicated with the central subspace
  • a plurality of the suction subspaces are The air ducts are respectively communicated with the buffer subspace and the plurality of edge subspaces, and there are differences in air extraction modes among the plurality of air extraction ducts.
  • the plurality of the edge subspaces include a lower subspace, an upper subspace, a first side subspace and a second side subspace, and the lower subspace and the upper subspace are located in the On opposite sides of the buffer subspace, the first side subspace and the second side subspace are located on opposite sides of the buffer subspace, and the lower subspace and the upper subspace are located on opposite sides of the buffer subspace.
  • the air extraction method of the connected air extraction pipes is the first method
  • the air extraction method of the air extraction pipes connected with the first side subspace and the second side subspace is the second air extraction method. mode, the first mode is different from the second mode.
  • the glass corresponding to different subspaces is subjected to different vacuum forces, so as to adjust the deformation of each area of the glass, so that the glass meets the structural requirements of the corresponding bending forming. .
  • the plurality of subspaces are evacuated by using a plurality of the air extraction ducts, and at least one of the subspaces is blown by using the air blowing duct, so that the glass is completely blown.
  • Adhering to the bearing surface includes:
  • the vacuum effect or blowing effect in each subspace can be precisely adjusted, and the glass corresponding to each subspace is subjected to the corresponding vacuum force.
  • the shape change occurs to meet the structural requirements of the corresponding bending forming.
  • the adjusting the pumping power, the opening time and the pumping duration of each of the pumping pipes to adjust the vacuum effect in each of the subspaces respectively includes:
  • the first pumping power is used to adjust the air extraction pipeline connected with the central subspace or the buffer subspace
  • the second air extraction power is used for the air extraction pipeline connected with the lower subspace and the upper subspace.
  • the air extraction pipeline connected to the first side subspace and the second side subspace adopts a third air extraction power
  • the first air extraction power, the second air extraction power and the The power of the third pumping power decreases sequentially.
  • the adjusting the pumping power, the opening time and the pumping duration of each of the pumping pipes to adjust the vacuum effect in each of the subspaces respectively includes:
  • the opening time is the second time
  • the opening time of the air extraction pipeline connected with the first side subspace and the second side subspace is the third time, the first time, the first time
  • the chronological order of the second time and the third time is sequentially pushed back.
  • the described adjustment of the pumping power, the pumping opening time and the pumping duration of each of the described pumping pipelines, to adjust the vacuum effect in each of the described subspaces, respectively comprises:
  • the adjusting the pumping power, the opening time and the pumping duration of each of the pumping pipes to adjust the vacuum effect in each of the subspaces respectively includes:
  • the pumping time is successively decreased.
  • the adjusting the pumping power, the opening time and the pumping duration of each of the pumping pipes to adjust the vacuum effect in each of the subspaces respectively includes:
  • the air extraction duct that communicates with the corresponding subspace is closed.
  • the air extraction duct connected to the corresponding subspace can be closed, and the air extraction pipe in the adjacent subspace can be closed.
  • the suction effect of the pipe is used to indirectly adjust the shape change of the glass, avoiding excessive extrusion between the glass and the bearing surface caused by continuous suction.
  • the adjustment of the blowing temperature, blowing power, blowing opening time and blowing duration of the blowing duct includes:
  • the air blowing duct starts to blow air, and the air blowing power of the air blowing duct is less than or equal to the air pumping power of the air extraction duct, And/or the air blowing duration of the air blowing duct is less than or equal to the air extraction duration of the air extraction duct.
  • the air blowing duct can be used to make optical defects. Blow air to reduce the vacuum effect and prevent excessive squeezing between the glass surface and the bearing surface.
  • the blowing action can prevent the glass sphere at the corresponding position of the subspace connected by the blowing duct from further falling, and because the falling of the glass sphere at the position corresponding to the central subspace is prevented by the blowing action, it also makes The force distribution of the glass at the corresponding positions of other subspaces (including the buffer subspace and multiple edge subspaces) changes, and it is easier to change the shape of the glass under the vacuum force generated by the pumping pipeline, even at lower under the vacuum force.
  • the lower vacuum force can further avoid possible excessive extrusion between the corresponding positions of other glass subspaces (including buffer subspaces and multiple edge subspaces) and the bearing surface, improving the quality of the glass forming surface and the optical quality.
  • the adjustment of the blowing temperature, blowing power, blowing opening time and blowing duration of the blowing duct includes:
  • the air blowing treatment can prevent the glass sphere at the position corresponding to the subspace connected by the air blowing duct from further falling.
  • the blowing gas temperature of the gas heating system When the blowing gas temperature of the gas heating system is set to be less than or equal to the surface temperature of the glass, the blowing treatment will reduce the temperature of the glass at the corresponding position of the subspace connected by the blowing pipes, thereby further preventing the blowing pipes from being connected to each other.
  • the blowing gas temperature of the gas heating system is set to a lower temperature value than the surface temperature of the glass. Lowering the surface temperature of the glass at the position corresponding to the subspace connected by the air blowing duct can better prevent the glass sphere at the position corresponding to the subspace connected by the air blowing duct from falling further.
  • the vehicle glass bending and forming device further includes an annular top mold, the annular top mold is disposed on the side of the top plate away from the base, and the annular top mold includes a top template and a The side template arranged on the top template and facing the side of the bearing surface, when the annular top mold and the concave bottom mold move toward each other, so that the side template and the upper surface of the glass are in contact together , the top formwork, the side formwork and the upper surface of the glass are enclosed to form a accommodating cavity, and an air blowing channel is arranged in the accommodating cavity, and the air blowing passage faces the bearing surface and carries out the cleaning process on the glass. blow.
  • the upper surface of the glass is blown by the blowing channel on the annular top mold, so that while the lower surface of the glass is subjected to the vacuum force, the upper surface of the glass is subjected to the blowing pressure, so that the glass can achieve the effect of rapid bending and forming .
  • the concave bottom mold and the annular top mold are used at the same time, a plurality of laminated glasses can be processed at the same time, which improves the processing efficiency to a certain extent.
  • the accommodating cavity is provided with a plurality of second partitions, the plurality of second partitions divide the accommodating cavity into a plurality of sub-accommodating cavities, and the plurality of sub-accommodating cavities are respectively connected with the A plurality of subspaces are arranged opposite to each other, the number of the blowing channels is multiple, and each of the sub-accommodating chambers is provided with one of the blowing channels; adjust the blowing power of the plurality of the blowing channels , the blowing opening time and the blowing time, so that the glass is subjected to different degrees of blowing pressure relative to different parts of the plurality of sub-accommodating cavities.
  • the plurality of sub-accommodating cavities are respectively arranged opposite to the plurality of sub-spaces, so that the positions of each area of the glass can be subjected to corresponding vacuum force and blowing pressure, which is more conducive to double adjustment of the molding shape of the glass.
  • Fig. 1 is the glass structure schematic diagram after pre-forming
  • Figure 2 is a schematic diagram of a glass structure that meets the corresponding bending forming requirements
  • FIG. 3 is a schematic structural diagram of a vehicle glass bending and forming device in an embodiment
  • FIG. 4 is a schematic structural diagram of a vehicle glass bending and forming device in another embodiment
  • FIG. 5 is a schematic diagram of a subdivision of a concave bottom mold in an embodiment
  • FIG. 6 is a schematic top view of a concave bottom mold in an embodiment
  • FIG. 7 is a schematic diagram of the connection structure of the concave bottom mold and the preformed frame in an embodiment
  • FIG. 8 is a schematic structural diagram of a vehicle glass bending and forming device in another embodiment
  • Fig. 9 is the structural representation of the annular top mold in a kind of embodiment
  • FIG. 10 is a schematic top view of an annular top mold in an embodiment
  • FIG. 11 is a schematic structural diagram of a vehicle glass bending and forming device in another embodiment
  • FIG. 12 is a schematic structural diagram of an annular top mold in another embodiment
  • FIG. 13 is a schematic diagram of the distribution of each sub-accommodating cavity of the annular top mold in another embodiment
  • 15 is a schematic structural diagram of a traditional vehicle glass gravity bending forming device
  • FIG. 16 is a schematic flow chart of a method for bending and forming vehicle glass in an embodiment.
  • FIG. 1 is a schematic structural diagram of the pre-formed glass 900
  • FIG. 2 is a schematic structural diagram of the glass 900 that meets the corresponding bending forming requirements.
  • the glass 900 heated to the forming temperature is subjected to the pre-forming process under the influence of gravity. Due to the different shapes of the glass 900 at different positions and the distribution of gravity, the pre-formed glass 900 is likely to produce an “S” shape or a “flat bottom”.
  • the "pot" type glass 900 spherical surface does not meet the molding requirements of the glass 900.
  • an embodiment of the present application provides a vehicle glass bending and forming device, which is used to perform secondary bending and forming processing on the glass 900, as shown in FIG.
  • the drop depth is the same as the desired curvature gap to meet the structural requirements of the corresponding bending forming.
  • FIG. 3 is a schematic structural diagram of a vehicle glass bending and molding device 1000 in an embodiment
  • FIG. 4 is a schematic structural diagram of a vehicle glass bending and forming apparatus 1000 in another embodiment.
  • the embodiment of the present application provides a vehicle glass bending and forming device 1000, which includes a concave bottom mold 100, at least one blowing duct 220 and a plurality of air suction pipes 210.
  • the concave bottom mold 100 includes a base 10 and a top plate 20, and the top plate 20 is covered with On the base 10 and enclosed with the base 10 to form an accommodating space 30 , a plurality of first partitions 40 are arranged in the accommodating space 30 , and the plurality of first partitions 40 divide the accommodating space 30 into a plurality of sub-spaces 31
  • the bearing surface 21 of the top plate 20 away from the base 10 is a concave surface, and the top plate 20 is provided with a plurality of through holes 22 communicating with the accommodating space 30 at intervals, and each subspace 31 corresponds to at least one through hole 22.
  • At least one subspace 31 is communicated with each other for blowing air into the at least one subspace 31 , and a plurality of air extraction pipes 210 are connected with the remaining subspaces 31 one by one for air extraction in the remaining subspaces 31 .
  • the bearing surface 21 is used to support the glass 900, and the shape of the bearing surface 21 is the same as the desired shape, that is, when the surface of the glass 900 is completely adhered to the bearing surface 21, the shape of the glass 900 is consistent with the desired shape, so that the glass 900 can satisfy the Corresponding bending forming requirements.
  • the top plate 20 is provided with a plurality of through holes 22 communicating with the accommodating space 30 at intervals, and each sub-space 31 corresponds to at least one through hole 22 . Therefore, when each subspace 31 is pumped or blown, the vacuum generated in each subspace 31 will directly act on the surface of the glass 900 , so that the glass 900 is affected by the vacuum force and changes its shape. It can be understood that, due to the different distribution positions of each subspace 31, it corresponds to different positions of the glass 900, so that the shape change of each position of the glass 900 can be adjusted, so that the shape of each position of the glass 900 is consistent with the desired shape, so as to achieve the desired shape. Meet the structural requirements of the corresponding bending forming.
  • the vehicle glass bending and forming apparatus 1000 can be used to process the plurality of glasses 900 at the same time, so as to improve the processing efficiency.
  • the vehicle glass bending and forming device 1000 provided by the embodiment of the present application divides the accommodating space 30 into a plurality of sub-spaces 31, and sets at least one of the sub-spaces 31 to communicate with the blowing duct 220, so that the at least one sub-space 31 is connected to the air-blown duct 220.
  • Air blowing is performed inside, and the remaining sub-spaces 31 are connected with the plurality of air extraction pipes 210 one by one, so as to perform air extraction in the remaining sub-spaces 31, so that the surfaces of the glass 900 corresponding to the plurality of sub-spaces 31 are subjected to different degrees of vacuum.
  • Action or blowing action so as to adjust the shape change of each position of the glass 900, so that the glass 900 meets the structural requirements of the corresponding bending forming.
  • the vehicle glass bending and forming apparatus 1000 further includes a first gas heating system (not shown in the figure), and the first gas heating system is arranged in the blowing duct 220 to cool the glass 900 blown from the blowing duct 220 to the glass 900 .
  • the gas is heated so that the temperature of the gas can be adjusted.
  • the setting of the first gas heating system enables the temperature of the blowing gas in the blowing duct 220 to be effectively regulated, thereby making the temperature of the blowing gas in the subspace 31 connected with the blowing duct 220 adjustable, which can be controlled more precisely
  • the temperature of the glass 900 at the corresponding position of the subspace 31 connected with the air blowing duct 220 can be controlled more precisely and the degree of the spherical surface of the glass 900 at the corresponding position of the subspace 31 connected by the air blowing duct 220 can be controlled and prevented from further falling, so as to satisfy the corresponding bending molding requirements. structural requirements.
  • the air blowing treatment can prevent the glass at the position corresponding to the subspace 31 connected by the air blowing duct 220.
  • the blowing treatment will reduce the temperature of the glass 900 at the position corresponding to the subspace 31 connected to the blowing pipe 220 , thereby reducing the temperature of the glass 900 . It is further prevented that the spherical surface of the glass 900 at the position corresponding to the subspace 31 connected with the blowing duct 220 further falls.
  • the blowing gas temperature of the first gas heating system is set to a lower temperature than the surface temperature of the glass 900 This can reduce the surface temperature of the glass 900 at the position corresponding to the subspace 31 connected by the air blowing duct 220, and better prevent the glass sphere at the position corresponding to the subspace 31 connected by the air blowing duct 220 from falling further.
  • FIG. 5 is a schematic diagram of a partition of the concave bottom mold 100 in an embodiment
  • FIG. 6 is a schematic top view of the concave bottom mold 100 in one embodiment.
  • the plurality of subspaces 31 include a central subspace 311 , a buffer subspace 312 and a plurality of edge subspaces 31
  • the central subspace 311 corresponds to the central area of the top plate 20
  • the buffer subspace 312 surrounds the central subspace 311 .
  • a plurality of edge subspaces 31 are distributed around the buffer subspace 312 and together surround the buffer subspace 312 .
  • the air blowing duct 220 communicates with the buffer subspace 312, and the air extraction duct 210 communicates with other subspaces 31 (as shown in FIG. 3).
  • the subspace 31 in the vehicle glass bending and forming device 1000 is divided into a central subspace 311, a buffer subspace 312 and a plurality of edge subspaces 31, so as to correspond to different regions of the glass 900, the air extraction pipes 210 are used to align the central subspace respectively.
  • the space 311 and the plurality of edge subspaces 31 are evacuated, and the buffer subspace 312 is blown by the air blowing pipe 220 to adjust the vacuum effect or air blowing effect in each subspace 31, so that the glass in different areas
  • the vacuum force on the glass 900 changes to adjust the shape of the glass 900 to meet the structural requirements of the corresponding bending forming.
  • the air blowing duct 220 communicates with the central subspace 311 , and the air extraction duct 210 communicates with other subspaces 31 (as shown in FIG. 4 ). It can be understood that the connection methods of the air blowing duct 220 include but are not limited to the above two, and the air blowing duct 220 can also be communicated with any other subspace 31 to meet different operational requirements, which will not be described in detail here.
  • the blowing action can prevent the glass 900 at the position corresponding to the subspace 31 connected by the blowing duct 220 from falling further, and the glass 900 at the position corresponding to the central subspace 311 or the buffer subspace 312 is subject to blowing due to falling down.
  • the blocking of the action also changes the force distribution of the glass 900 in the corresponding positions of the other subspaces 31, and it is easier to change the shape of the glass 900 under the vacuum force generated by the air extraction of the air extraction pipe 210, even under lower vacuum force. under force.
  • the lower vacuum force can further avoid possible excessive extrusion between the corresponding positions of the other subspaces 31 of the glass 900 and the bearing surface 21 , and improve the molding surface quality and optical quality of the glass 900 .
  • the plurality of edge subspaces 31 include a lower subspace 313, an upper subspace 314, a first side subspace 315 and a second side subspace 316, and the lower subspace 313 and the upper subspace 314 are located in the buffer.
  • the first side subspace 315 and the second side subspace 316 are located on opposite sides of the buffer subspace 312, and the area of the top plate 20 corresponding to the lower subspace 313 is the first area,
  • the area of the top plate 20 corresponding to the upper subspace 314 is the second area, and the radius of curvature of the first area is larger than the radius of curvature of the second area.
  • the plurality of edge subspaces 31 are divided into a lower subspace 313 , an upper subspace 314 , a first side subspace 315 and a second side subspace 316 to correspond to different regions of the edge of the glass 900 .
  • the lower subspace 313 , the upper subspace 314 , the first side subspace 315 and the second side subspace 316 are evacuated respectively, so that different regions of the edge of the glass 900 are subjected to corresponding vacuum forces, thereby evacuating the glass 900 for more precise adjustment of the edge shape.
  • the central subspace 311 , the buffer subspace 312 , the lower subspace 313 , the upper subspace 314 , the first side subspace 315 and the second side subspace 316 correspond to different positions of the glass 900 respectively.
  • the vacuum force generated in the subspace 31 by the air extraction through the air extraction pipe 210 acts on the glass 900 to adjust the shape of the glass 900 at different positions.
  • the position division of the above-mentioned multiple subspaces 31 is determined according to the positions of the regions with different shape changes after the glass 900 is pre-formed.
  • the position of the area in the glass 900 that is the most difficult to form and the largest difference between the spherical surface after pre-forming and the desired curvature is disposed opposite to the central subspace 311;
  • the position of the area with the second largest difference in desired curvature is set opposite to the lower subspace 313 and the upper subspace 314;
  • the position of the third difficult-to-shape, pre-formed spherical surface and the third largest difference between the desired curvature in the glass 900 is located opposite to the buffer subspace 312 are arranged oppositely;
  • the position of the area in the glass 900 that is easiest to form and the smallest difference between the spherical surface after pre-forming and the desired curvature is arranged opposite to the first side subspace 315 and the second side subspace 316 .
  • the position of the area in the glass 900 that is the most difficult to form and the largest difference between the spherical surface and the expected curvature after pre-forming is disposed opposite to the buffer subspace 312;
  • the position of the area with the second largest difference between the spherical surface and the desired curvature is opposite to the lower subspace 313 and the upper subspace 314;
  • the subspaces 311 are arranged opposite to each other;
  • the position of the area in the glass 900 that is easiest to form and the smallest difference between the spherical surface and the desired curvature after pre-forming is arranged opposite to the first side subspace 315 and the second side subspace 316 .
  • the glass bending and forming apparatus 1000 further includes a control member (not shown), through which the control member adjusts each of the air suction ducts 210 and the air blowing ducts 220, so that the vacuum effect in each subspace 31 or The blowing action is adjustable.
  • the existence of the control element enables the air extraction performance of the air extraction duct 210 and the air blowing performance of the air blowing duct 220 to be effectively regulated, so as to precisely adjust the vacuum effect or air blowing effect in each subspace 31 , which is consistent with each subspace 31 .
  • the glass 900 at the corresponding position is subjected to the corresponding vacuum force to change the shape to meet the structural requirements of the corresponding bending forming.
  • FIG. 7 is a schematic diagram of the connection structure of the concave bottom mold 100 and the preform frame 300 in an embodiment.
  • the vehicle glass bending and forming device 1000 further includes a pre-forming frame 300, the pre-forming frame 300 is an annular frame structure, the pre-forming frame 300 can be sleeved on the periphery of the concave bottom mold 100, and the pre-forming frame 300 is The radius of curvature is greater than the radius of curvature of the concave bottom mold 100 .
  • the pre-forming frame 300 is used for the pre-forming process of the glass 900, the glass 900 heated to the forming temperature is placed on the pre-forming frame 300, the glass 900 is subjected to the action of gravity to realize pre-forming, and then the pre-forming frame 300 is moved from top to bottom.
  • the existence of the pre-molding frame 300 enables the pre-molding process and the secondary molding process to be performed continuously, ensures the molding temperature of the glass 900, and improves the processing efficiency.
  • FIG. 8 is a schematic structural diagram of a vehicle glass bending and forming device 1000 in another embodiment
  • FIG. 9 is a schematic structural diagram of an annular top mold 400 in an embodiment
  • FIG. 10 is a schematic top view of an annular top mold 400 in one embodiment.
  • the vehicle glass bending and forming device 1000 further includes an annular top mold 400.
  • the annular top mold 400 is disposed on the side of the top plate 20 away from the base 10.
  • the annular top mold 400 includes a top plate 50 and a top mold 400.
  • the side template 60 on the template 50 and facing the side of the bearing surface 21, when the annular top mold 400 and the concave bottom mold 100 move toward each other, so that the side template 60 is in contact with the upper surface of the glass 900, the top template 50
  • the upper surface of the side template 60 and the glass 900 encloses a accommodating cavity 70 .
  • the accommodating cavity 70 is provided with a blowing channel 500 , and the blowing channel 500 faces the bearing surface 21 and blows the glass 900 .
  • the blowing channel 500 on the annular top mold 400 is used for blowing the upper surface of the glass 900, so that the lower surface of the glass 900 is subjected to the vacuum force, and the upper surface of the glass 900 is subjected to the blowing pressure, so that the glass 900 can be blown.
  • the blowing channel 500 on the annular top mold 400 is used for blowing the upper surface of the glass 900, so that the lower surface of the glass 900 is subjected to the vacuum force, and the upper surface of the glass 900 is subjected to the blowing pressure, so that the glass 900 can be blown.
  • the vehicle glass bending and forming apparatus 1000 includes both the concave bottom mold 100 and the annular top mold 400, a plurality of laminated glasses 900 can be processed simultaneously, which improves the processing efficiency to a certain extent.
  • the annular top mold 400 and the concave bottom mold 100 There is a gap between the annular top mold 400 and the concave bottom mold 100, the glass 900 to be processed is placed in the gap, and the lower surface of the annular top mold 400 has the same desired curvature as the area corresponding to the upper surface of the glass 900 periphery curvature.
  • the annular top mold 400 and the glass 900 are closely attached, so as to avoid the problem of air leakage of the annular top mold 400 during the secondary molding process of the glass 900 .
  • the width of the contact surface between the annular top mold 400 and the periphery of the glass 900 is in the range of 0.5-25 cm, and the material of the annular top mold 400 may be metal or ceramic material, or any other material that meets the corresponding requirements materials, which are not specifically limited here.
  • the vehicle glass bending and forming apparatus 1000 further includes a second gas heating system (not shown in the figure), and the second gas heating system is arranged in the air blowing channel 500 to cool the glass 900 blown from the air blowing channel 500 to the glass 900 .
  • the gas is heated so that the temperature of the gas can be adjusted.
  • the setting of the second gas heating system enables the temperature of the blowing gas in the blowing channel 500 to be effectively regulated, so that the temperature of the glass 900 during bending and forming can be controlled more precisely, or the heat in the above-mentioned blowing and pumping processes can be compensated. loss.
  • the temperature of the glass 900 during bending and forming can be controlled more precisely, and the forming quality of the glass 900 and the stress controllability after annealing can be further improved.
  • the thin glass in the bending process of thin glass, the thin glass is more likely to decrease in temperature due to heat loss, increase viscosity and even surface hardening, so that it is more difficult to form the desired spherical surface under the same air blowing treatment conditions, resulting in glass
  • the final bending curvature deviates considerably from the desired curvature.
  • the temperature of the second gas heating system connected to the blowing channel 500 on the annular top mold 400 can be adjusted to be close to the molding temperature of the glass 900, or even higher than the molding temperature of the glass 900, which can reduce the blowing process,
  • the heat loss of the glass 900 during the gas extraction process even has the effect of heating the glass 900 , making it easier for the glass 900 to form a desired spherical curvature.
  • FIG. 11 is a schematic structural diagram of a vehicle glass bending and forming device 1000 in another embodiment
  • FIG. 12 is a schematic structural diagram of an annular top mold 400 in another embodiment
  • FIG. 13 is a schematic diagram of the distribution of each sub-accommodating cavity 71 of the annular top mold 400 in another embodiment.
  • the accommodating cavity 70 is provided with a plurality of second partitions 80, and the plurality of second partitions 80 divide the accommodating cavity 70 into a plurality of sub-accommodating cavities 71, and the plurality of sub-accommodating cavities 71 are respectively a central sub-accommodating cavity.
  • each sub-accommodating cavity 71 is provided with at least one air blowing channel 500 .
  • the plurality of sub-accommodating cavities 71 are divided into a central sub-accommodating cavity 711 and a plurality of edge sub-accommodating cavities 712 to correspond to the position of the central area and the edge area of the glass 900.
  • a blowing channel 500 is provided inside to blow the glass 900 at the corresponding position, so as to apply blowing pressure on the surface of the glass 900 to adjust the shape change of the glass 900 so that the glass 900 meets the structural requirements of the corresponding bending molding.
  • the plurality of sub-accommodating cavities 71 are respectively disposed opposite to the plurality of sub-spaces 31 , so that each area of the glass 900 can be subjected to corresponding vacuum force and blowing pressure, which is more conducive to double adjustment of the molding shape of the glass 900 .
  • there are a plurality of second gas heating systems and the plurality of second gas heating systems are respectively arranged in the plurality of blowing channels 500, and by adjusting the blowing gas temperature of the plurality of second gas heating systems,
  • the corresponding positions of the glass 900 relative to the plurality of sub-accommodating cavities are heated or cooled to different degrees, so that the temperature of the glass relative to the corresponding positions of the plurality of sub-accommodating cavities 71 can be more accurately controlled, and the stress controllable after the glass 900 is formed and annealed is further improved. improve the quality of glass 900 after forming, so as to meet the structural requirements of corresponding bending forming.
  • the blowing power, blowing opening time and blowing duration of the blowing channel 500 can be adjusted.
  • the blowing pressure generated by each sub-accommodating cavity 71 through the blowing channel 500 can be effectively regulated, so as to adjust the blowing pressure generated by each sub-accommodating cavity 71 through the air-blowing channel 500 .
  • the shape of the glass 900 at the corresponding position is adjusted so that the glass 900 can meet the structural requirements of the corresponding bending forming.
  • FIG. 14 is a schematic diagram of the distribution of each sub-accommodating cavity 71 of the annular top mold 400 in another embodiment.
  • the central sub-accommodating cavity 711 includes a first central sub-accommodating cavity 7111 and a second central sub-accommodating cavity 7112, the first central sub-accommodating cavity 7111 is disposed opposite the central sub-space 311, and the second central sub-accommodating cavity 7112
  • the first central sub-accommodating cavity 7111 and the second central sub-accommodating cavity 7112 are each provided with at least one blowing channel 500 opposite to the buffer sub-space 312 .
  • the central sub-accommodating cavity 711 is divided into a first central sub-accommodating cavity 7111 and a second central sub-accommodating cavity 7112 to correspond to the central sub-space 311 and the buffer sub-space 312, so that the shape of the position of the central area of the glass 900 can be obtained more accurately Adjustment.
  • FIG. 15 is a schematic structural diagram of a traditional gravity bending forming device for automotive glass.
  • a typical gravity forming device includes a heating pre-forming zone S1, a heating forming zone S2, an annealing zone S3, a cooling zone Zone S4, loading zone/unloading zone S5, heaters are located in the upper and/or bottom of the heated preforming zone S1 and the thermoforming zone S2, the glass is placed on the mold in the loading zone (unloading zone) S5, and then the mold and its The glass is intermittently transported in the heating preforming zone S1, the heating forming zone S2, the annealing zone S3, the cooling zone S4, and the unloading zone S5 to realize the heating and gravity pre-bending, heating and gravity bending, annealing, cooling, and finally The glass is removed from the mold in the unloading area, and then the glass is placed on the mold to continue the next round of self-weight forming;
  • FIG. 16 is a schematic flow chart of a method for bending and forming vehicle glass in an embodiment.
  • the vehicle glass bending and forming device 1000 provided in the embodiment of the present application is arranged after the heating forming area S2, that is, the glass passes through the thermal preforming area S1,
  • the heating forming area S2 realizes heating and gravity pre-bending, heating and gravity bending, and then the glass after gravity bending is transferred to the concave bottom mold 100 in the vehicle glass bending and forming device 1000 provided by the embodiment of the present application, as shown in FIG. 16 .
  • the process of bending continues, and after the bending is completed, the glass is transferred to the gravity forming mold for annealing, cooling and unloading.
  • the vehicle glass bending and forming device 1000 provided in the embodiment of the present application is not limited to being set in the double-layer vehicle glass gravity bending and forming device as shown in FIG.
  • single layer means that the heated preforming zone S1, the thermoforming zone S2, the annealing zone S3, the cooling zone S4, the loading/unloading zone S5 are on the same plane).
  • the embodiment of the present application provides a method for bending and forming vehicle glass, which includes the following steps:
  • the vehicle glass bending and forming device includes a concave bottom mold, a plurality of air suction pipes and at least one air blowing pipe.
  • the concave bottom mold includes a base and a top plate. The top plate is covered on the base and is connected with the base.
  • the base is enclosed to form an accommodating space
  • the bearing surface of the top plate away from the base is an irregular concave surface
  • the bearing surface is used to carry glass
  • a plurality of through holes are arranged at intervals on the top plate
  • a plurality of first partitions are arranged in the accommodating space, A plurality of first partitions divide the accommodating space into a plurality of subspaces, each subspace is communicated with at least one through hole, each air blowing duct is communicated with at least one subspace, and the remaining subspaces are communicated with a plurality of air extraction ducts connected one by one;
  • A3. Use multiple air extraction ducts to pump air into multiple subspaces, and use air blowing ducts to blow air into at least one subspace, so that the glass is completely fitted to the bearing surface.
  • the shape change of each position of the glass can be effectively adjusted, so that the glass meets the structural requirements of the corresponding bending forming.
  • the shape change of each position of the glass is adjusted so that each position of the glass is formed and attached to the bearing surface at the same time or nearly at the same time, so that the glass can meet the structural requirements of the corresponding bending forming.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the central area of the top plate
  • the buffer subspace surrounds the central subspace
  • the plurality of edge subspaces are distributed.
  • the buffer subspace, and together surround the buffer subspace there are differences in the way of air extraction among the air extraction pipes connected with the central subspace, the buffer subspace and multiple edge subspaces.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the central area of the top plate
  • the buffer subspace surrounds the central subspace
  • the plurality of edge subspaces are distributed.
  • the air blowing duct is connected to the central subspace
  • the plurality of air extraction ducts are respectively connected to the buffer subspace and the plurality of edge subspaces
  • the plurality of air extraction ducts are connected to the buffer subspace and the plurality of edge subspaces respectively.
  • the plurality of subspaces include a central subspace, a buffer subspace and a plurality of edge subspaces
  • the central subspace corresponds to the central area of the top plate
  • the buffer subspace surrounds the central subspace
  • the plurality of edge subspaces are distributed.
  • the blowing duct is connected to the buffer subspace
  • the plurality of air suction ducts are respectively connected to the central subspace, the buffer subspace and the plurality of edge subspaces, and a plurality of There are differences in the extraction method between the extraction pipes.
  • the glass corresponding to different subspaces is subjected to different vacuum forces, so as to adjust the deformation of each area of the glass, so that the glass meets the structural requirements of the corresponding bending forming. .
  • the multiple subspaces are evacuated by using a plurality of air extraction ducts, and at least one subspace is blown by using an air blowing duct, so that the glass is completely adhered to the bearing surface, including:
  • the vacuum effect or blowing effect in each subspace can be precisely adjusted, and the glass at the corresponding position of each subspace is subjected to the corresponding vacuum force.
  • the shape change occurs to meet the structural requirements of the corresponding bending forming.
  • adjusting the pumping power, the opening time and the pumping duration of each pumping pipeline to adjust the vacuum effect in each subspace respectively includes:
  • the first pumping power is used to adjust the air extraction pipeline connected with the central subspace or the buffer subspace
  • the second air extraction power is used for the air extraction pipeline connected with the lower subspace and the upper subspace, which is connected to the first side subspace.
  • the air extraction pipeline communicated with the second side subspace adopts the third air extraction power, and the powers of the first air extraction power, the second air extraction power and the third air extraction power are successively reduced.
  • adjusting the pumping power, the opening time and the pumping duration of each pumping pipeline to adjust the vacuum effect in each subspace respectively includes:
  • the opening time of the air extraction pipeline connected with the first side subspace and the second side subspace is the third time, and the time sequence of the first time, the second time and the third time is sequentially delayed.
  • adjusting the pumping power, the opening time and the pumping duration of each pumping pipeline to adjust the vacuum effect in each subspace respectively includes:
  • the air extraction time of the air extraction pipeline connected to the side subspace and the second side subspace is the third time length, and the durations of the first time length, the second time length and the third time length are successively decreased.
  • adjusting the pumping power, the opening time and the pumping duration of each pumping pipeline to adjust the vacuum effect in each subspace respectively includes:
  • adjusting the pumping power, the opening time and the pumping duration of each pumping pipeline to adjust the vacuum effect in each subspace respectively includes:
  • the glass surface corresponding to at least one of the central subspace, the lower subspace, the upper subspace, the first side subspace and the second side subspace is in contact with the bearing surface or is close to being in contact with the bearing surface, close
  • the exhaust pipes communicated with the corresponding subspaces.
  • the air extraction duct connected to the corresponding subspace can be closed, and the air extraction through the air extraction duct in the adjacent subspace can be closed. It can indirectly adjust the shape change of the glass and avoid the excessive extrusion between the glass and the bearing surface caused by continuous air extraction.
  • the adjustment of the pumping power, pumping opening time and pumping duration of each pumping pipeline includes but is not limited to the above methods. Different adjustment methods can also be adopted according to the actual situation, as long as the The glass only needs to meet the structural requirements of the corresponding bending forming, which is not specifically limited here.
  • adjusting the blowing temperature, blowing power, blowing opening time and blowing duration of the blowing duct includes:
  • the air blowing duct can be used to make optical defects. Blow air to reduce the vacuum effect and prevent excessive squeezing between the glass surface and the bearing surface.
  • the blowing effect can prevent the glass sphere at the corresponding position of the subspace connected by the blowing duct from further falling, and because the falling of the glass sphere at the corresponding position of the central subspace is prevented by the blowing effect, other subspaces are also prevented from falling.
  • the force distribution of the glass at the corresponding position of the space changes, and it is easier to change the shape of the glass under the vacuum force generated by the pumping pipe, even in a lower vacuum under force.
  • the lower vacuum force can further avoid possible excessive extrusion between the corresponding positions of other glass subspaces (including buffer subspaces and multiple edge subspaces) and the bearing surface, improving the quality of the glass forming surface and the optical quality.
  • adjusting the blowing temperature, blowing power, blowing opening time and blowing duration of the blowing duct includes:
  • the air blowing treatment can prevent the glass sphere at the corresponding position of the subspace connected by the air blowing duct from further falling.
  • the blowing gas temperature of the gas heating system connected with the blowing pipes on the concave bottom mold the surface temperature of the glass at the corresponding position of the subspace connected with the blowing pipes can be precisely controlled.
  • the blowing gas temperature of the gas heating system When the blowing gas temperature of the gas heating system is set to be less than or equal to the surface temperature of the glass, the blowing treatment will reduce the temperature of the glass at the corresponding position of the subspace connected by the blowing duct, thereby further preventing the The degree to which the glass sphere at the corresponding position of the subspace falls further.
  • the blowing gas temperature of the gas heating system is set to a lower temperature value than the surface temperature of the glass, which can reduce the blowing rate.
  • the surface temperature of the glass at the corresponding position of the subspace connected by the air duct can better prevent the glass sphere at the corresponding position of the subspace connected by the air duct from falling further.
  • the vehicle glass bending and forming device further includes an annular top mold, the annular top mold is arranged on the side of the top plate away from the base, and the annular top mold includes a top template and a top template disposed on the top template and facing the bearing surface.
  • the annular top mold and the concave bottom mold move toward each other, so that the side template and the upper surface of the glass are in contact together, the top template, the side template and the upper surface of the glass are enclosed to form a accommodating cavity.
  • a blowing channel is provided, and the blowing channel faces the bearing surface and blows the glass.
  • the upper surface of the glass is blown by the blowing channel on the annular top mold, so that while the lower surface of the glass is subjected to the vacuum force, the upper surface of the glass is subjected to the blowing pressure, so that the glass can achieve the effect of rapid bending and forming .
  • the concave bottom mold and the annular top mold are used at the same time, a plurality of laminated glasses can be processed at the same time, which improves the processing efficiency to a certain extent.
  • the accommodating cavity is provided with a plurality of second partitions, the plurality of second partitions divide the accommodating cavity into a plurality of sub-accommodating cavities, and the plurality of sub-accommodating cavities are respectively arranged opposite to the plurality of sub-spaces, and blow air.
  • the plurality of sub-accommodating cavities are respectively arranged opposite to the plurality of sub-spaces, so that the positions of each area of the glass can be subjected to corresponding vacuum force and blowing pressure, which is more conducive to double adjustment of the molding shape of the glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本申请提供一种车用玻璃弯曲成型装置及车用玻璃弯曲成型方法,车用玻璃弯曲成型装置包括凹面底模、吹气管道和多个抽气管道,凹面底模包括底座和顶板,顶板盖合在底座上,并与底座围合形成容置空间,容置空间内设有多个第一隔板,多个第一隔板将容置空间分隔为多个子空间;顶板背离底座的承载面为凹型表面,顶板上间隔设置有多个连通容置空间的通孔,每个子空间至少对应一个通孔,吹气管道与至少一个子空间相连通,以对至少一个子空间内进行吹气,多个抽气管道与其余多个子空间一一连通,以对其余多个子空间内进行抽气。本申请提供的车用玻璃弯曲成型装置,通过设置多个子空间并分别进行抽气或吹气,以使玻璃满足相应弯曲成型的结构要求。

Description

车用玻璃弯曲成型装置及车用玻璃弯曲成型方法
本申请同时要求于2020年8月21日提交中国专利局、申请号为202010853530.6、发明名称为“车用玻璃弯曲成型装置及车用玻璃弯曲成型方法”的中国专利申请的优先权,以及于2020年10月26日提交中国专利局、申请号为202011159604.2、发明名称为“车用玻璃弯曲成型装置及车用玻璃弯曲成型方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及玻璃加工技术领域,尤其涉及一种车用玻璃弯曲成型装置及车用玻璃弯曲成型方法。
背景技术
随着社会的发展,人们的出行已离不开汽车,汽车的生产量逐年递增,对于车用玻璃的需求量也逐年提高,而如何对玻璃进行弯曲加工,使其成型为合适的形状是玻璃加工工艺中的重点和难点。
在使用传统的车用玻璃弯曲成型装置对玻璃进行加工时,受到玻璃的形状及重力分布的影响,玻璃容易产生“S”型或“平底锅”型玻璃球面,从而不满足玻璃的成型要求。因此,需要一种新型的车用玻璃弯曲成型装置,能够调节玻璃各位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
发明内容
本申请的目的是提供一种车用玻璃弯曲成型装置及车用玻璃弯曲成型方法,用于玻璃的弯曲成型工艺,能够调节玻璃各位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
为实现本申请的目的,本申请提供了如下的技术方案:
第一方面,本申请提供了一种车用玻璃弯曲成型装置,包括凹面底模、至 少一个吹气管道和多个抽气管道,所述凹面底模包括底座和顶板,所述顶板盖合在所述底座上,并与所述底座围合形成容置空间,所述容置空间内设有多个第一隔板,多个所述第一隔板将所述容置空间分隔为多个子空间;所述顶板背离所述底座的承载面为凹型表面,所述顶板上间隔设置有多个连通所述容置空间的通孔,每个所述子空间至少对应一个所述通孔,每个吹气管道与至少一个所述子空间相连通,以对至少一个所述子空间内进行吹气,多个所述抽气管道与其余多个所述子空间一一连通,以对其余多个所述子空间内进行抽气。
本申请提供的车用玻璃弯曲成型装置,通过将容置空间分隔为多个子空间,并设置吹气管道、抽气管道与多个子空间一一连通,以对多个子空间内进行抽气或吹气,使得与多个子空间相对应的玻璃表面受到不同程度的真空作用或吹气作用,从而调整玻璃各位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
一种实施方式中,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述缓冲子空间相连通,所述抽气管道与其他所述子空间相连通。将车用玻璃弯曲成型装置内的子空间划分为中心子空间、缓冲子空间和多个边缘子空间,以对应玻璃的不同区域位置,使用抽气管道分别对中心子空间和多个边缘子空间进行抽气,并使用吹气管道对缓冲子空间进行吹气,以调整各个子空间内的真空作用或吹气作用,从而使不同区域位置的玻璃受到的真空作用力或重力作用发生变化,以调整玻璃的形状,使其满足相应弯曲成型的结构要求。
一种实施方式中,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述中心子空间相连通,所述抽气管道与其他所述子空间相连通。在上述结构下,能够调整各个子空间内的真空作用或吹气作用,从而使不同区域位置的玻璃受到的真空作用力或重力作用发生变化,以调整玻璃的形状,使其满足相应弯曲成型的结构要求。吹气作用 能阻止所述吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度,而由于所述中心子空间对应位置玻璃的球面下坠受到吹气作用的阻止,也使得其他子空间(含缓冲区子空间和多个边缘子空间)对应位置的玻璃受力分布发生变化,更容易在抽气管道抽气产生的真空作用力下发生玻璃形状的变化,即便在更低的真空作用力下。而更低的的真空作用力能进一步避免玻璃其他子空间(含缓冲区子空间和多个边缘子空间)对应位置与承载面之间产生可能的过度挤压,提高玻璃的成型型面质量和光学质量。
一种实施方式中,多个所述边缘子空间包括下边子空间、上边子空间、第一侧边子空间和第二侧边子空间,所述下边子空间和所述上边子空间位于所述缓冲子空间的相背两侧,所述第一侧边子空间和所述第二侧边子空间位于所述缓冲子空间的相背两侧,所述下边子空间对应的所述顶板的区域为第一区域,所述上边子空间对应的所述顶板的区域为第二区域,所述第一区域的曲率半径大于所述第二区域的曲率半径。将多个边缘子空间划分为下边子空间、上边子空间、第一侧边子空间和第二侧边子空间,以对应玻璃边缘的不同区域位置。分别对下边子空间、上边子空间、第一侧边子空间和第二侧边子空间进行抽气,使玻璃边缘的不同区域位置受到相应的真空作用力,从而对玻璃的边缘形状进行更加精准的调整。
一种实施方式中,所述玻璃弯曲成型装置还包括控制件,所述控制件用于对所述抽气管道和所述吹气管道进行调节,以使每个所述子空间内的真空作用或吹气作用可调。控制件的存在,使得抽气管道的抽气性能以及吹气管道的吹气性能可以得到有效调控,从而精准调节各个子空间内的真空作用或吹气作用,与各个子空间相对应位置的玻璃受到相应的真空作用力而发生形状改变,以满足相应弯曲成型的结构要求。
一种实施方式中,所述车用玻璃弯曲成型装置还包括第一气体加热系统,所述第一气体加热系统设于所述吹气管道,以对由所述吹气管道吹向所述玻璃的气体进行加热,使气体的温度可调。第一气体加热系统的设置,使得吹气管道的吹气气体温度可以得到有效调控,继而使得与吹气管道相连通的子空间内的吹气气体温度可调,可以更精确的控制所述吹气管道相连通的子空间对应位置玻璃的温度,进而更精确的控制及阻止所述吹气管道相连通的子空间对应位 置的玻璃球面进一步下坠的程度,以满足相应弯曲成型的结构要求。
一种实施方式中,所述车用玻璃弯曲成型装置还包括环状顶模,所述环状顶模设于所述顶板背离所述底座的一侧,所述环状顶模包括顶模板和设置在所述顶模板上并朝向所述承载面一侧的侧模板,当所述环状顶模和凹面底模相向运动,以使所述侧模板与所述玻璃的上表面接触在一起时,所述顶模板、所述侧模板和所述玻璃的上表面围合形成容纳腔,所述容纳腔内设有吹气通道,所述吹气通道朝向所述承载面并用于对所述玻璃进行吹气。环状顶模上的吹气通道用于对玻璃上表面进行吹气处理,使得玻璃下表面受到真空作用力的同时,其上表面受到吹气压力的作用,以使玻璃能够达到快速弯曲成型的效果。并且,当车用玻璃弯曲成型装置同时包括凹面底模和环状顶模时,能够同时对多个层叠设置的玻璃进行加工,在一定程度上提高了加工工艺效率。
一种实施方式中,所述容纳腔内设有多个第二隔板,多个所述第二隔板将所述容纳腔分隔为多个子容纳腔,多个所述子容纳腔分别为中心子容纳腔和多个边缘子容纳腔,所述中心子容纳腔,与所述中心子空间及所述缓冲子空间相对设置,所述多个边缘子容纳腔分别与所述第一侧边子空间、所述第二侧边子空间、所述下边子空间和所述上边子空间一一相对设置,所述吹气通道的数量有多个,且每个所述子容纳腔内均设有至少一个所述吹气通道。将多个子容纳腔划分为中心子容纳腔和多个边缘子容纳腔,以对应玻璃的中心区域位置和边缘区域位置,通过在中心子容纳腔和多个边缘子容纳腔内设置吹气通道,以对相应位置的玻璃进行吹气,从而施加吹气压力于玻璃表面,调整玻璃的形状变化,以使玻璃满足相应弯曲成型的结构要求。并且,多个子容纳腔分别与多个子空间相对设置,使得玻璃各个区域位置能够受到相对应的真空作用力和吹气压力,从而更有利于对玻璃的成型形状进行双重调整。
一种实施方式中,所述中心子容纳腔包括第一中心子容纳腔和第二中心子容纳腔,所述第一中心子容纳腔与所述中心子空间相对设置,所述第二中心子容纳腔与所述缓冲子空间相对设置,所述第一中心子容纳腔和所述第二中心子容纳腔内均设有至少一个所述吹气通道。将中心子容纳腔划分为第一中心子容纳腔和第二中心子容纳腔,以对应中心子空间和缓冲子空间,使得玻璃的中心区域位置的形状能够得到更加精准的调整。
一种实施方式中,所述吹气通道的吹气功率、吹气开启时间以及吹气时长均可调。通过调节各个吹气通道的吹气功率、吹气开启时间以及吹气时长,能够有效调控各个子容纳腔通过吹气通道所产生的吹气压力,以对与各个子容纳腔相对应位置的玻璃形状进行调整,使得玻璃能够满足相应弯曲成型的结构要求。
一种实施方式中,所述车用玻璃弯曲成型装置还包括第二气体加热系统,所述第二气体加热系统设于所述吹气通道,以对由所述吹气通道吹向所述玻璃的气体进行加热,使气体的温度可调。第二气体加热系统的设置,使得吹气通道的吹气气体温度可以得到有效调控,从而可以更精确的控制玻璃弯曲成型时的温度,或者补偿上述吹气处理、抽气处理过程的热量损失。同时还可以更精确的控制玻璃弯曲成型时的温度,也能进一步提高玻璃的成型质量和退火后的应力可控性。
一种实施方式中,所述车用玻璃弯曲成型装置还包括预成型框架,所述预成型框架为环形框架结构,所述预成型框架可套设于所述凹面底模的外围,且所述预成型框架的曲率半径大于所述凹面底模的曲率半径。预成型框架用于玻璃的预成型过程,将加热至成型温度的玻璃放置在预成型框架上,玻璃受到重力的作用而实现预成型,再将预成型框架由上到下套设与凹面底模的外围,以将玻璃放置于凹面底模上进行二次成型。
一种实施方式中,所述玻璃至少为一个,当所述玻璃的数量大于一个时,多个所述玻璃层叠设于所述承载面上。当多个玻璃层叠设于凹面底模的承载面上时,可使用车用玻璃弯曲成型装置对多个玻璃进行同时加工,以提高加工工艺效率。
第二方面,本申请还提供了一种车用玻璃弯曲成型方法,包括:
提供车用玻璃弯曲成型装置,所述车用玻璃弯曲成型装置包括凹面底模和多个抽气管道和至少一个吹气管道,所述凹面底模包括底座和顶板,所述顶板盖合在所述底座上,并与所述底座围合形成容置空间,所述顶板背离所述底座的承载面为不规则的凹面,所述承载面用于承载所述玻璃,所述顶板上间隔设置有多个通孔,所述容置空间内设有多个第一隔板,多个所述第一隔板将所述容置空间分隔为多个子空间,每个所述子空间与至少一个所述通孔相连通,每 个吹气管道与至少一个所述子空间相连通,其余多个所述子空间与多个所述抽气管道一一连通;
将加热至成型温度的玻璃放置在所述承载面上,所述玻璃受重力作用而发生形变;
使用多个所述抽气管道对多个所述子空间进行抽气,使用所述吹气管道对至少一个所述子空间进行吹气,以使所述玻璃完全与所述承载面贴合。
通过本申请提供的车用玻璃弯曲成型方法对玻璃进行加工,能够有效调节玻璃各位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
一种实施方式中,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述缓冲子空间相连通,多个所述抽气管道分别与所述中心子空间、所述缓冲子空间和多个所述边缘子空间相连通,且多个所述抽气管道之间的抽气方式存在差异。
一种实施方式中,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述中心子空间相连通,多个所述抽气管道分别与所述缓冲子空间和多个所述边缘子空间相连通,且多个所述抽气管道之间的抽气方式存在差异。
一种实施方式中,多个所述边缘子空间包括下边子空间、上边子空间、第一侧边子空间和第二侧边子空间,所述下边子空间和所述上边子空间位于所述缓冲子空间的相背两侧,所述第一侧边子空间和所述第二侧边子空间位于所述缓冲子空间的相背两侧,与所述下边子空间和所述上边子空间相连通的所述抽气管道的抽气方式为第一方式,与所述第一侧边子空间和所述第二侧边子空间相连通的所述抽气管道的抽气方式为第二方式,所述第一方式与所述第二方式存在差异。
通过对多个子空间进行不同方式的抽气或吹气,使得与不同子空间对应位置的玻璃受到不同的真空作用力,从而调整玻璃各个区域位置的形变,以使玻 璃满足相应弯曲成型的结构要求。
一种实施方式中,所述使用多个所述抽气管道对多个所述子空间进行抽气,使用所述吹气管道对至少一个所述子空间进行吹气,以使所述玻璃完全与所述承载面贴合包括:
调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节;
调节所述吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长。
通过调节各个抽气管道的抽气性能以及吹气管道的吹气性能,从而精准调节各个子空间内的真空作用或吹气作用,与各个子空间相对应位置的玻璃受到相应的真空作用力而发生形状改变,以满足相应弯曲成型的结构要求。
一种实施方式中,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
调节与所述中心子空间或所述缓冲子空间相连通的抽气管道采用第一抽气功率,与所述下边子空间和所述上边子空间相连通的抽气管道采用第二抽气功率,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道采用第三抽气功率,所述第一抽气功率、所述第二抽气功率和所述第三抽气功率的功率大小依次降低。通过调节抽气管道的抽气功率,以调整各个子空间对应位置的玻璃所受到真空作用力的大小,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施方式中,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
调节与所述中心子空间或所述缓冲子空间相连通的抽气管道的抽气开启时间为第一时间,与所述下边子空间和所述上边子空间相连通的抽气管道的抽气开启时间为第二时间,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气开启时间为第三时间,所述第一时间、所述第二时间和所述第三时间的时间顺序依次推后。通过调节抽气管道的开启时间,以调整各个子空间对应位置的玻璃所受到真空作用力的时间先后,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施方式中,所述调节每个所述抽气管道的抽气功率、抽气开启时间 以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
调节与所述中心子空间或所述缓冲子空间相连通的抽气管道的抽气时长为第一时长,与所述下边子空间和所述上边子空间相连通的抽气管道的抽气时长为第二时长,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气时长为第三时长,所述第一时长、所述第二时长和所述第三时长的持续时间长短依次降低。通过调节抽气管道的抽气时长,以调整各个子空间对应位置的玻璃所受到真空作用力的时间长短,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施方式中,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气功率依次降低;
调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气开启时间依次推后;
调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气时长依次降低。
同时调节抽气管道的抽气功率、抽气开启时间以及抽气时长,从而更加系统的调整玻璃各个区域位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
一种实施方式中,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
当所述中心子空间或所述缓冲子空间、所述下边子空间、所述上边子空间、所述第一侧边子空间和所述第二侧边子空间中的至少一个所述子空间相对应的玻璃表面与所述承载面相贴合或接近相贴合时,关闭与相对应的子空间相连通的所述抽气管道。当一个子空间相对应的玻璃表面与所述承载面相贴合或接近相贴合时,可关闭与相对应的子空间相连通的所述抽气管道,通过其相邻子 空间内的抽气管道的抽气作用,来对玻璃的形状变化进行间接调整,避免了持续抽气而导致玻璃与承载面之间的过度挤压。
一种实施方式中,所述调节所述吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长包括:
当所述中心子空间、所述下边子空间、所述上边子空间、所述缓冲子空间、所述第一侧边子空间和所述第二侧边子空间中的至少一个所述子空间相对应的玻璃表面与所述承载面相贴合或接近相贴合时,所述吹气管道开始吹气,且所述吹气管道的吹气功率小于等于所述抽气管道的抽气功率,和/或所述吹气管道的吹气时长小于等于所述抽气管道的抽气时长。当至少一个子空间相对应的玻璃表面与承载面相贴合或接近相贴合时,为避免抽气管道的抽气作用使得玻璃表面与承载面挤压而产生光学瑕疵,可通过吹气管道进行吹气,以降低真空作用,防止玻璃表面和承载面之间的过度挤压。进一步的,吹气作用能阻止所述吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度,而由于所述中心子空间对应位置玻璃的球面下坠受到吹气作用的阻止,也使得其他子空间(含缓冲区子空间和多个边缘子空间)对应位置的玻璃受力分布发生变化,更容易在抽气管道抽气产生的真空作用力下发生玻璃形状的变化,即便在更低的真空作用力下。而更低的的真空作用力能进一步避免玻璃其他子空间(含缓冲区子空间和多个边缘子空间)对应位置与承载面之间产生可能的过度挤压,提高玻璃的成型型面质量和光学质量。
一种实施方式中,所述调节所述吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长包括:
当所述吹气管道相连通的子空间对应位置的玻璃的球面曲率接近或等于期望曲率时,吹气处理能阻止所述吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。而通过调控与凹面底模上的吹气管道相连通的气体加热系统的吹气气体温度,能够精确控制所述吹气管道相连通的子空间对应位置的玻璃的表面温度。当气体加热系统的吹气气体温度被设置到到小于等于玻璃的表面温度时,吹气处理会降低吹气管道相连通的子空间对应位置的玻璃的温度,进而进一步阻止所述吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。这意味着所述吹气管道相连通的子空间对应位置的玻璃的球面曲率 越接近期望曲率时,气体加热系统的吹气气体温度被设置到相对玻璃的表面温度更低的温度值,这样能降低所述吹气管道相连通的子空间对应位置的玻璃的表面温度,从好更好的阻止所述吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。
一种实施方式中,所述车用玻璃弯曲成型装置还包括环状顶模,所述环状顶模设于所述顶板背离所述底座的一侧,所述环状顶模包括顶模板和设置在所述顶模板上并朝向所述承载面一侧的侧模板,当所述环状顶模和凹面底模相向运动,以使所述侧模板与所述玻璃的上表面接触在一起时,所述顶模板、所述侧模板和所述玻璃的上表面围合形成容纳腔,所述容纳腔内设有吹气通道,所述吹气通道朝向所述承载面并对所述玻璃进行吹气。使用环状顶模上的吹气通道对玻璃上表面进行吹气处理,使得玻璃下表面受到真空作用力的同时,其上表面受到吹气压力的作用,以使玻璃能够达到快速弯曲成型的效果。并且,当同时使用凹面底模和环状顶模时,能够同时对多个层叠设置的玻璃进行加工,在一定程度上提高了加工工艺效率。
一种实施方式中,所述容纳腔内设有多个第二隔板,多个所述第二隔板将所述容纳腔分隔为多个子容纳腔,所述多个子容纳腔分别与所述多个子空间一一相对设置,所述吹气通道的数量有多个,且每个所述子容纳腔内均设有一个所述吹气通道;调节多个所述吹气通道的吹气功率、吹气开启时间以及吹气时长,使所述玻璃相对多个所述子容纳腔的不同部位受到不同程度的吹气压力。多个子容纳腔分别与多个子空间相对设置,使得玻璃各个区域位置能够受到相对应的真空作用力和吹气压力,从而更有利于对玻璃的成型形状进行双重调整。
附图说明
为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是预成型后的玻璃结构示意图;
图2是满足相应弯曲成型要求的玻璃结构示意图;
图3是一种实施例中车用玻璃弯曲成型装置的结构示意图;
图4是另一种实施例中车用玻璃弯曲成型装置的结构示意图;
图5是一种实施例中凹面底模的分区示意图;
图6是一种实施例中凹面底模的俯视示意图;
图7是一种实施例中凹面底模和预成型框架的连接结构示意图;
图8是另一种实施例中车用玻璃弯曲成型装置的结构示意图;
图9是一种实施例中环状顶模的结构示意图;
图10是一种实施例中环状顶模的俯视示意图;
图11是另一种实施例中车用玻璃弯曲成型装置的结构示意图;
图12是另一种实施例中环状顶模的结构示意图;
图13是另一种实施例中环状顶模的各子容纳腔的分布示意图;
图14是另一种实施例中环状顶模的各子容纳腔的分布示意图;
图15是一种传统的车用玻璃重力弯曲成型装置的结构示意图;
图16是一种实施例中车用玻璃弯曲成型方法的流程示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
首先请一并参阅图1和图2,图1是预成型后的玻璃900结构示意图;
图2是满足相应弯曲成型要求的玻璃900结构示意图。
如图1,加热至成型温度的玻璃900受重力的影响而进行预成型过程,而由于玻璃900不同位置的形状及重力分布的不同,预成型后的玻璃900容易产生“S”型或“平底锅”型玻璃900球面,从而不满足玻璃900的成型要求。
因此,本申请实施例提供一种车用玻璃弯曲成型装置,用于对玻璃900进行二次弯曲成型加工,如图2,使得玻璃900不同位置的形状均与期望形状保持一致,即玻璃900表面的下坠深度与期望曲率差距相同,以满足相应弯曲 成型的结构要求。
请一并参阅图3和图4,图3是一种实施例中车用玻璃弯曲成型装置1000的结构示意图;
图4是另一种实施例中车用玻璃弯曲成型装置1000的结构示意图。
本申请实施例提供一种车用玻璃弯曲成型装置1000,包括凹面底模100、至少一个吹气管道220和多个抽气管道210,凹面底模100包括底座10和顶板20,顶板20盖合在底座10上,并与底座10围合形成容置空间30,容置空间30内设有多个第一隔板40,多个第一隔板40将容置空间30分隔为多个子空间31;顶板20背离底座10的承载面21为凹型表面,顶板20上间隔设置有多个连通容置空间30的通孔22,每个子空间31至少对应一个通孔22,每个吹气管道220与至少一个子空间31相连通,以对至少一个子空间31内进行吹气,多个抽气管道210与其余多个子空间31一一连通,以对其余多个子空间31内进行抽气。其中,承载面21用于承载玻璃900,且承载面21的形状与期望形状相同,即当玻璃900表面完全与承载面21相贴合时,玻璃900形状与期望形状一致,从而玻璃900能够满足相应弯曲成型的要求。
其中,顶板20上间隔设置有多个连通容置空间30的通孔22,每个子空间31至少对应一个通孔22。因此,当对每个子空间31进行抽气或吹气时,每个子空间31内产生的真空作用会直接作用于玻璃900表面,使玻璃900受到真空作用力的影响而发生形态改变。可以理解的是,由于各个子空间31的分布位置的不同,其对应玻璃900的不同位置,从而可调整玻璃900各位置的形状变化,使玻璃900各位置的形状均与期望形状保持一致,以满足相应弯曲成型的结构要求。
其中,玻璃900至少为一个,当玻璃900的数量大于一个时,多个玻璃900层叠设于承载面21上。当多个玻璃900层叠设于凹面底模100的承载面21上时,可使用车用玻璃弯曲成型装置1000对多个玻璃900进行同时加工,以提高加工工艺效率。
本申请实施例提供的车用玻璃弯曲成型装置1000,通过将容置空间30分隔为多个子空间31,并设置其中至少一个子空间31与吹气管道220相连通,以对至少一个子空间31内进行吹气,其余多个子空间31与多个抽气管道210 一一连通,以对其余多个子空间31内进行抽气,使得与多个子空间31相对应的玻璃900表面受到不同程度的真空作用或吹气作用,从而调整玻璃900各位置的形状变化,以使玻璃900满足相应弯曲成型的结构要求。
一种实施例中,车用玻璃弯曲成型装置1000还包括第一气体加热系统(图未示),第一气体加热系统设于吹气管道220,以对由吹气管道220吹向玻璃900的气体进行加热,使气体的温度可调。第一气体加热系统的设置,使得吹气管道220的吹气气体温度可以得到有效调控,继而使得与吹气管道220相连通的子空间31内的吹气气体温度可调,可以更精确的控制吹气管道220相连通的子空间31对应位置玻璃900的温度,进而更精确的控制及阻止吹气管道220相连通的子空间31对应位置的玻璃900球面进一步下坠的程度,以满足相应弯曲成型的结构要求。
可以理解的是,当吹气管道220相连通的子空间31对应位置的玻璃900的球面曲率接近或等于期望曲率时,吹气处理能阻止吹气管道220相连通的子空间31对应位置的玻璃900球面进一步下坠的程度。而通过调控与凹面底模100上的吹气管道220相连通的第一气体加热系统的吹气气体温度,能够精确控制吹气管道220相连通的子空间31对应位置的玻璃900的表面温度。当第一气体加热系统的吹气气体温度被设置到到低于或等于玻璃900的表面温度时,吹气处理会降低吹气管道220相连通的子空间31对应位置的玻璃900的温度,进而进一步阻止吹气管道220相连通的子空间31对应位置的玻璃900球面进一步下坠的程度。这意味着吹气管道220相连通的子空间31对应位置的玻璃900的球面曲率越接近期望曲率时,第一气体加热系统的吹气气体温度被设置到相对玻璃900的表面温度更低的温度值,这样能降低吹气管道220相连通的子空间31对应位置的玻璃900的表面温度,从好更好的阻止吹气管道220相连通的子空间31对应位置的玻璃球面进一步下坠的程度。
请一并参阅图5和图6,图5是一种实施例中凹面底模100的分区示意图;
图6是一种实施例中凹面底模100的俯视示意图。
一种实施例中,多个子空间31包括中心子空间311、缓冲子空间312和多个边缘子空间31,中心子空间311对应顶板20的中部区域,缓冲子空间312环绕在中心子空间311的周围,多个边缘子空间31分布在缓冲子空间312的 周围,并共同包围缓冲子空间312。一种实施例中,吹气管道220与缓冲子空间312相连通,抽气管道210与其他子空间31相连通(如图3)。将车用玻璃弯曲成型装置1000内的子空间31划分为中心子空间311、缓冲子空间312和多个边缘子空间31,以对应玻璃900的不同区域位置,使用抽气管道210分别对中心子空间311和多个边缘子空间31进行抽气,并使用吹气管道220对缓冲子空间312进行吹气,以调整各个子空间31内的真空作用或吹气作用,从而使不同区域位置的玻璃900受到的真空作用力发生变化,以调整玻璃900的形状,使其满足相应弯曲成型的结构要求。
另一种实施例中,吹气管道220与中心子空间311相连通,抽气管道210与其他子空间31相连通(如图4)。可以理解的是,吹气管道220的连接方式包括但不限于以上两种,吹气管道220还可以与其他任意子空间31相连通以满足不同的作业需求,在此不进行一一赘述。
可以理解的是,吹气作用能阻止吹气管道220相连通的子空间31对应位置的玻璃900进一步下坠的程度,而由于中心子空间311或缓冲子空间312对应位置的玻璃900下坠受到吹气作用的阻止,也使得其他子空间31对应位置的玻璃900受力分布发生变化,更容易在抽气管道210抽气产生的真空作用力下发生玻璃900形状的变化,即便在更低的真空作用力下。而更低的的真空作用力能进一步避免玻璃900其他子空间31对应位置与承载面21之间产生可能的过度挤压,提高玻璃900的成型型面质量和光学质量。
一种实施例中,多个边缘子空间31包括下边子空间313、上边子空间314、第一侧边子空间315和第二侧边子空间316,下边子空间313和上边子空间314位于缓冲子空间312的相背两侧,第一侧边子空间315和第二侧边子空间316位于缓冲子空间312的相背两侧,下边子空间313对应的顶板20的区域为第一区域,上边子空间314对应的顶板20的区域为第二区域,第一区域的曲率半径大于第二区域的曲率半径。将多个边缘子空间31划分为下边子空间313、上边子空间314、第一侧边子空间315和第二侧边子空间316,以对应玻璃900边缘的不同区域位置。分别对下边子空间313、上边子空间314、第一侧边子空间315和第二侧边子空间316进行抽气,使玻璃900边缘的不同区域位置受到相应的真空作用力,从而对玻璃900的边缘形状进行更加精准的调整。
可以理解的是,中心子空间311、缓冲子空间312、下边子空间313、上边子空间314、第一侧边子空间315和第二侧边子空间316分别对应玻璃900的不同位置,上述多个子空间31内通过抽气管道210抽气产生的真空作用力作用于玻璃900,以对玻璃900的不同位置的形状进行调整。需要说明的是,上述多个子空间31的位置划分,是依据玻璃900在预成型后,具有差异形状变化的区域位置来进行确定的。在一种具体的实施例中,玻璃900中最难以成型、预成型后球面与期望曲率差距最大的区域位置,与中心子空间311相对设置;玻璃900中第二难成型、预成型后球面与期望曲率差距第二大的区域位置,与下边子空间313和上边子空间314相对设置;玻璃900中第三难成型、预成型后球面与期望曲率差距第三大的区域位置,与缓冲子空间312相对设置;玻璃900中最易于成型、预成型后球面与期望曲率差距最小的区域位置,与第一侧边子空间315和第二侧边子空间316相对设置。而在另一种具体的实施例中,玻璃900中最难以成型、预成型后球面与期望曲率差距最大的区域位置,与缓冲子空间312相对设置;玻璃900中第二难成型、预成型后球面与期望曲率差距第二大的区域位置,与下边子空间313和上边子空间314相对设置;玻璃900中第三难成型、预成型后球面与期望曲率差距第三大的区域位置,与中心子空间311相对设置;玻璃900中最易于成型、预成型后球面与期望曲率差距最小的区域位置,与第一侧边子空间315和第二侧边子空间316相对设置。
由于上述不同子空间31对应位置的玻璃900在预成型后,形状与期望形状之间的差距均不相同,因此,需调节与各个子空间31相连通的多个抽气管道210的抽气性能,以调整各个子空间31内的真空作用,从而使不同对应位置的玻璃900受到不同的真空作用力,以使玻璃900在各个位置上的形状均调整至与期望形状相同,即玻璃900满足相应弯曲成型的结构要求。
一种实施例中,玻璃弯曲成型装置1000还包括控制件(图未示),通过控制件对每个抽气管道210和吹气管道220进行调节,以使每个子空间31内的真空作用或吹气作用可调。控制件的存在,使得抽气管道210的抽气性能以及吹气管道220的吹气性能可以得到有效调控,从而精准调节各个子空间31内的真空作用或吹气作用,与各个子空间31相对应位置的玻璃900受到相应的真空作用力而发生形状改变,以满足相应弯曲成型的结构要求。
请参阅图7,图7是一种实施例中凹面底模100和预成型框架300的连接结构示意图。
一种实施例中,车用玻璃弯曲成型装置1000还包括预成型框架300,预成型框架300为环形框架结构,预成型框架300可套设于凹面底模100的外围,且预成型框架300的曲率半径大于凹面底模100的曲率半径。预成型框架300用于玻璃900的预成型过程,将加热至成型温度的玻璃900放置在预成型框架300上,玻璃900受到重力的作用而实现预成型,再将预成型框架300由上到下套设与凹面底模100的外围,以将玻璃900放置于凹面底模100上进行二次成型。可以理解的是,预成型框架300的存在,使得预成型过程和二次成型过程能够连贯进行,保证了玻璃900的成型温度,同时提高了加工工艺效率。
请一并参阅图8、图9和图10,图8是另一种实施例中车用玻璃弯曲成型装置1000的结构示意图;
图9是一种实施例中环状顶模400的结构示意图;
图10是一种实施例中环状顶模400的俯视示意图。
一种实施例中,车用玻璃弯曲成型装置1000还包括环状顶模400,环状顶模400设于顶板20背离底座10的一侧,环状顶模400包括顶模板50和设置在顶模板50上并朝向承载面21一侧的侧模板60,当环状顶模400和凹面底模100相向运动,以使侧模板60与所述玻璃900的上表面接触在一起时,顶模板50、侧模板60和玻璃900的上表面围合形成容纳腔70,容纳腔70内设有吹气通道500,吹气通道500朝向承载面21并对玻璃900进行吹气。环状顶模400上的吹气通道500用于对玻璃900上表面进行吹气处理,使得玻璃900下表面受到真空作用力的同时,其上表面受到吹气压力的作用,以使玻璃900能够达到快速弯曲成型的效果。并且,当车用玻璃弯曲成型装置1000同时包括凹面底模100和环状顶模400时,能够同时对多个层叠设置的玻璃900进行加工,在一定程度上提高了加工工艺效率。
环状顶模400和凹面底模100之间设有间隙,待加工的玻璃900放置在间隙内,并且,环状顶模400的下表面有着与玻璃900周边上表面对应区域的期望曲率相同的曲率。在上述结构下,环状顶模400与玻璃900之间紧密贴合,从而避免环状顶模400在对玻璃900进行二次成型加工的过程中出现漏气的问 题。在一种具体的实施例中,环状顶模400与玻璃900周边的接触面宽度范围为0.5-25cm,环状顶模400的材料可以是金属也可以是陶瓷材料,或者其他任意满足相应要求的材料,在此不进行具体的限定。
一种实施例中,车用玻璃弯曲成型装置1000还包括第二气体加热系统(图未示),第二气体加热系统设于吹气通道500,以对由吹气通道500吹向玻璃900的气体进行加热,使气体的温度可调。第二气体加热系统的设置,使得吹气通道500的吹气气体温度可以得到有效调控,从而可以更精确的控制玻璃900弯曲成型时的温度,或者补偿上述吹气处理、抽气处理过程的热量损失。同时还可以更精确的控制玻璃900弯曲成型时的温度,也能进一步提高玻璃900的成型质量和退火后的应力可控性。
可以理解的是,在薄玻璃的弯曲成型过程中,薄玻璃更容易由于热量损失而导致温度降低粘度升高乃至表面硬化,从而在相同的吹气处理条件下,更难形成期望球面,导致玻璃最终弯曲曲率与期望曲率产生较大偏差。此时,可以通过调控与环状顶模400上的吹气通道500相连通的第二气体加热系统的温度到接近玻璃900成型温度,甚至高于玻璃900成型温度,这样能减少吹气处理、抽气处理过程玻璃900的热量损失,甚至起到加热玻璃900的效果,使玻璃900更容易形成所期望的球面曲率。
请一并参阅图11、图12和图13,图11是另一种实施例中车用玻璃弯曲成型装置1000的结构示意图;
图12是另一种实施例中环状顶模400的结构示意图;
图13是另一种实施例中环状顶模400的各子容纳腔71的分布示意图。
一种实施例中,容纳腔70内设有多个第二隔板80,多个第二隔板80将容纳腔70分隔为多个子容纳腔71,多个子容纳腔71分别为中心子容纳腔711和多个边缘子容纳腔712,中心子容纳腔711,与中心子空间311及缓冲子空间312相对设置,多个边缘子容纳腔712分别与第一侧边子空间315、第二侧边子空间316、下边子空间313和上边子空间314一一相对设置,吹气通道500的数量有多个,且每个子容纳腔71内均设有至少一个吹气通道500。将多个子容纳腔71划分为中心子容纳腔711和多个边缘子容纳腔712,以对应玻璃900的中心区域位置和边缘区域位置,通过在中心子容纳腔711和多个边缘子 容纳腔712内设置吹气通道500,以对相应位置的玻璃900进行吹气,从而施加吹气压力于玻璃900表面,调整玻璃900的形状变化,以使玻璃900满足相应弯曲成型的结构要求。并且,多个子容纳腔71分别与多个子空间31相对设置,使得玻璃900各个区域位置能够受到相对应的真空作用力和吹气压力,从而更有利于对玻璃900的成型形状进行双重调整。
在一种具体的实施例中,第二气体加热系统有多个,多个第二气体加热系统分别设于多个吹气通道500,通过调节多个第二气体加热系统的吹气气体温度,使玻璃900相对多个子容纳腔的对应位置受到不同程度的加热或冷却,使玻璃相对多个子容纳腔71的对应位置的温度得到更精确的控制,进一步提高玻璃900成型、退火后的应力可控性,提高玻璃900成型后质量,以满足相应弯曲成型的结构要求。
一种实施例中,吹气通道500的吹气功率、吹气开启时间以及吹气时长均可调。通过调节各个吹气通道500的吹气功率、吹气开启时间以及吹气时长,能够有效调控各个子容纳腔71通过吹气通道500所产生的吹气压力,以对与各个子容纳腔71相对应位置的玻璃900形状进行调整,使得玻璃900能够满足相应弯曲成型的结构要求。
请一并参阅图14,图14是另一种实施例中环状顶模400的各子容纳腔71的分布示意图。
一种实施例中,中心子容纳腔711包括第一中心子容纳腔7111和第二中心子容纳腔7112,第一中心子容纳腔7111与中心子空间311相对设置,第二中心子容纳腔7112与缓冲子空间312相对设置,第一中心子容纳腔7111和第二中心子容纳腔7112内均设有至少一个吹气通道500。将中心子容纳腔711划分为第一中心子容纳腔7111和第二中心子容纳腔7112,以对应中心子空间311和缓冲子空间312,使得玻璃900的中心区域位置的形状能够得到更加精准的调整。
请一并参阅图15、图16,图15是一种传统的车用玻璃重力弯曲成型装置的结构示意图,典型的重力成型装置包含加热预成型区S1、加热成型区S2、退火区S3、冷却区S4、装载区/卸载区S5,加热器位于加热预成型区S1和加热成型区S2的上部和/或底部,玻璃在装载区(卸载区)S5被放置到模具上, 而后模具以及其上的玻璃间歇性的在加热预成型区S1、加热成型区S2、退火区S3、冷却区S4、卸载区S5中传输,实现玻璃的加热及重力预弯曲、加热及重力弯曲、退火、冷却,最后玻璃在卸载区被从模具上取下,然后在模具上放置玻璃继续开始下一轮自重成型;
图16是一种实施例中车用玻璃弯曲成型方法的流程示意图。
与传统的车用玻璃重力弯曲成型装置不同的是,本申请实施例提供的一种车用玻璃弯曲成型装置1000被设置在加热成型区S2之后,即玻璃在模具上经过热预成型区S1、加热成型区S2实现加热及重力预弯曲、加热及重力弯曲,而后重力弯曲后的玻璃被转移到本申请实施例提供的一种车用玻璃弯曲成型装置1000中的凹面底模100上按图16的流程继续弯曲成型,弯曲成型结束后玻璃再次被转移到重力成型模具上进行退火、冷却、卸载。当然,本申请实施例提供的一种车用玻璃弯曲成型装置1000不限于设置在如图15的双层的车用玻璃重力弯曲成型装置中,也可设置在单层的车用玻璃重力弯曲成型装置中(单层意味着加热预成型区S1、加热成型区S2、退火区S3、冷却区S4、装载区/卸载区S5处于同一平面上)。
本申请实施例提供一种车用玻璃弯曲成型方法,包括以下步骤:
A1、提供车用玻璃弯曲成型装置,车用玻璃弯曲成型装置包括凹面底模和多个抽气管道和至少一个吹气管道,凹面底模包括底座和顶板,顶板盖合在底座上,并与底座围合形成容置空间,顶板背离底座的承载面为不规则的凹面,承载面用于承载玻璃,顶板上间隔设置有多个通孔,容置空间内设有多个第一隔板,多个第一隔板将容置空间分隔为多个子空间,每个子空间与至少一个通孔相连通,每个吹气管道与至少一个子空间相连通,其余多个子空间与多个抽气管道一一连通;
A2、将加热至成型温度的玻璃放置在承载面上,玻璃受重力作用而发生形变;
A3、使用多个抽气管道对多个子空间进行抽气,使用吹气管道对至少一个子空间进行吹气,以使玻璃完全与承载面贴合。
通过本申请提供的车用玻璃弯曲成型方法对玻璃进行加工,能够有效调节玻璃各位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
在一种具体的实施例中,调整玻璃各位置的形状变化,使得玻璃的各个位置同时或接近同时成型贴合于承载面,即可使玻璃满足相应弯曲成型的结构要求,在此情况下,意味着不仅能获得高精度的大球面、复杂玻璃产品,还能避免产生任何可见的光学瑕疵。
一种实施例中,多个子空间包括中心子空间、缓冲子空间和多个边缘子空间,中心子空间对应顶板的中部区域,缓冲子空间环绕在中心子空间的周围,多个边缘子空间分布在缓冲子空间的周围,并共同包围缓冲子空间,与中心子空间、缓冲子空间和多个边缘子空间相连通的抽气管道之间的抽气方式存在差异。
一种实施例中,多个子空间包括中心子空间、缓冲子空间和多个边缘子空间,中心子空间对应顶板的中部区域,缓冲子空间环绕在中心子空间的周围,多个边缘子空间分布在缓冲子空间的周围,并共同包围缓冲子空间,吹气管道与中心子空间相连通,多个抽气管道分别与缓冲子空间和多个边缘子空间相连通,且多个抽气管道之间的抽气方式存在差异。
一种实施例中,多个子空间包括中心子空间、缓冲子空间和多个边缘子空间,中心子空间对应顶板的中部区域,缓冲子空间环绕在中心子空间的周围,多个边缘子空间分布在缓冲子空间的周围,并共同包围缓冲子空间,吹气管道与缓冲子空间相连通,多个抽气管道分别与中心子空间、缓冲子空间和多个边缘子空间相连通,且多个抽气管道之间的抽气方式存在差异。
通过对多个子空间进行不同方式的抽气或吹气,使得与不同子空间对应位置的玻璃受到不同的真空作用力,从而调整玻璃各个区域位置的形变,以使玻璃满足相应弯曲成型的结构要求。
一种实施例中,使用多个抽气管道对多个子空间进行抽气,使用吹气管道对至少一个子空间进行吹气,以使玻璃完全与承载面贴合包括:
调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节;
调节吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长。
通过调节各个抽气管道的抽气性能以及吹气管道的吹气性能,从而精准调节各个子空间内的真空作用或吹气作用,与各个子空间相对应位置的玻璃受到 相应的真空作用力而发生形状改变,以满足相应弯曲成型的结构要求。
一种实施例中,调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节包括:
调节与中心子空间或缓冲子空间相连通的抽气管道采用第一抽气功率,与下边子空间和上边子空间相连通的抽气管道采用第二抽气功率,与第一侧边子空间和第二侧边子空间相连通的抽气管道采用第三抽气功率,第一抽气功率、第二抽气功率和第三抽气功率的功率大小依次降低。通过调节抽气管道的抽气功率,以调整各个子空间对应位置的玻璃所受到真空作用力的大小,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施例中,调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节包括:
调节与中心子空间或缓冲子空间相连通的抽气管道的抽气开启时间为第一时间,与下边子空间和上边子空间相连通的抽气管道的抽气开启时间为第二时间,与第一侧边子空间和第二侧边子空间相连通的抽气管道的抽气开启时间为第三时间,第一时间、第二时间和第三时间的时间顺序依次推后。通过调节抽气管道的开启时间,以调整各个子空间对应位置的玻璃所受到真空作用力的时间先后,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施例中,调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节包括:
调节与中心子空间或缓冲子空间相连通的抽气管道的抽气时长为第一时长,与下边子空间和上边子空间相连通的抽气管道的抽气时长为第二时长,与第一侧边子空间和第二侧边子空间相连通的抽气管道的抽气时长为第三时长,第一时长、第二时长和第三时长的持续时间长短依次降低。通过调节抽气管道的抽气时长,以调整各个子空间对应位置的玻璃所受到真空作用力的时间长短,从而使玻璃的形状发生变化,以满足相应弯曲成型的结构要求。
一种实施例中,调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节包括:
调节与中心子空间或缓冲子空间、下边子空间和上边子空间、第一侧边子空间和第二侧边子空间相连通的抽气管道的抽气功率依次降低;
调节与中心子空间或缓冲子空间、下边子空间和上边子空间、第一侧边子空间和第二侧边子空间相连通的抽气管道的抽气开启时间依次推后;
调节与中心子空间或缓冲子空间、下边子空间和上边子空间、第一侧边子空间和第二侧边子空间相连通的抽气管道的抽气时长依次降低。
同时调节抽气管道的抽气功率、抽气开启时间以及抽气时长,从而更加系统的调整玻璃各个区域位置的形状变化,以使玻璃满足相应弯曲成型的结构要求。
一种实施例中,调节每个抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个子空间内的真空作用进行调节包括:
当中心子空间、下边子空间、上边子空间、第一侧边子空间和第二侧边子空间中的至少一个子空间相对应的玻璃表面与承载面相贴合或接近相贴合时,关闭与相对应的子空间相连通的抽气管道。当一个子空间相对应的玻璃表面与承载面相贴合或接近相贴合时,可关闭与相对应的子空间相连通的抽气管道,通过其相邻子空间内的抽气管道的抽气作用,来对玻璃的形状变化进行间接调整,避免了持续抽气而导致玻璃与承载面之间的过度挤压。
可以理解的是,对每个抽气管道的抽气功率、抽气开启时间以及抽气时长的调节,包括但不限于以上几种方式,还可以根据实际情况采用不同的调节方式,只要能够使得玻璃满足相应弯曲成型的结构要求即可,在此不进行具体的限定。
一种实施例中,调节吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长包括:
当中心子空间、下边子空间、上边子空间、缓冲子空间、第一侧边子空间和第二侧边子空间中的至少一个子空间相对应的玻璃表面与承载面相贴合或接近相贴合时,吹气管道开始吹气,且吹气管道的吹气功率小于等于抽气管道的抽气功率,和/或吹气管道的吹气时长小于等于抽气管道的抽气时长。当至少一个子空间相对应的玻璃表面与承载面相贴合或接近相贴合时,为避免抽气管道的抽气作用使得玻璃表面与承载面挤压而产生光学瑕疵,可通过吹气管道进行吹气,以降低真空作用,防止玻璃表面和承载面之间的过度挤压。
可以理解的是,吹气作用能阻止吹气管道相连通的子空间对应位置的玻璃 球面进一步下坠的程度,而由于中心子空间对应位置玻璃的球面下坠受到吹气作用的阻止,也使得其他子空间(含缓冲区子空间和多个边缘子空间)对应位置的玻璃受力分布发生变化,更容易在抽气管道抽气产生的真空作用力下发生玻璃形状的变化,即便在更低的真空作用力下。而更低的的真空作用力能进一步避免玻璃其他子空间(含缓冲区子空间和多个边缘子空间)对应位置与承载面之间产生可能的过度挤压,提高玻璃的成型型面质量和光学质量。
一种实施例中,调节吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长包括:
当吹气管道相连通的子空间对应位置的玻璃的球面曲率接近或等于期望曲率时,吹气处理能阻止吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。而通过调控与凹面底模上的吹气管道相连通的气体加热系统的吹气气体温度,能够精确控制吹气管道相连通的子空间对应位置的玻璃的表面温度。当气体加热系统的吹气气体温度被设置到到小于等于玻璃的表面温度时,吹气处理会降低吹气管道相连通的子空间对应位置的玻璃的温度,进而进一步阻止吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。这意味着吹气管道相连通的子空间对应位置的玻璃的球面曲率越接近期望曲率时,气体加热系统的吹气气体温度被设置到相对玻璃的表面温度更低的温度值,这样能降低吹气管道相连通的子空间对应位置的玻璃的表面温度,从好更好的阻止吹气管道相连通的子空间对应位置的玻璃球面进一步下坠的程度。
一种实施例中,车用玻璃弯曲成型装置还包括环状顶模,环状顶模设于顶板背离底座的一侧,环状顶模包括顶模板和设置在顶模板上并朝向承载面一侧的侧模板,当环状顶模和凹面底模相向运动,以使侧模板与玻璃的上表面接触在一起时,顶模板、侧模板和玻璃的上表面围合形成容纳腔,容纳腔内设有吹气通道,吹气通道朝向承载面并对玻璃进行吹气。使用环状顶模上的吹气通道对玻璃上表面进行吹气处理,使得玻璃下表面受到真空作用力的同时,其上表面受到吹气压力的作用,以使玻璃能够达到快速弯曲成型的效果。并且,当同时使用凹面底模和环状顶模时,能够同时对多个层叠设置的玻璃进行加工,在一定程度上提高了加工工艺效率。
一种实施例中,容纳腔内设有多个第二隔板,多个第二隔板将容纳腔分隔 为多个子容纳腔,多个子容纳腔分别与多个子空间一一相对设置,吹气通道的数量有多个,且每个子容纳腔内均设有一个吹气通道;调节多个吹气通道的吹气功率、吹气开启时间以及吹气时长,使玻璃相对多个子容纳腔的不同部位受到不同程度的吹气压力。多个子容纳腔分别与多个子空间相对设置,使得玻璃各个区域位置能够受到相对应的真空作用力和吹气压力,从而更有利于对玻璃的成型形状进行双重调整。
以上所揭露的仅为本申请一种较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (24)

  1. 一种车用玻璃弯曲成型装置,其特征在于,包括凹面底模、至少一个吹气管道和多个抽气管道,所述凹面底模包括底座和顶板,所述顶板盖合在所述底座上,并与所述底座围合形成容置空间,所述容置空间内设有多个第一隔板,多个所述第一隔板将所述容置空间分隔为多个子空间;所述顶板背离所述底座的承载面为凹型表面,所述顶板上间隔设置有多个连通所述容置空间的通孔,每个所述子空间至少对应一个所述通孔,每个吹气管道与至少一个所述子空间相连通,以对至少一个所述子空间内进行吹气,多个所述抽气管道与其余多个所述子空间一一连通,以对其余多个所述子空间内进行抽气。
  2. 根据权利要求1所述的车用玻璃弯曲成型装置,其特征在于,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述缓冲子空间或所述中心子空间相连通,所述抽气管道与其他所述子空间相连通。
  3. 根据权利要求2所述的车用玻璃弯曲成型装置,其特征在于,多个所述边缘子空间包括下边子空间、上边子空间、第一侧边子空间和第二侧边子空间,所述下边子空间和所述上边子空间位于所述缓冲子空间的相背两侧,所述第一侧边子空间和所述第二侧边子空间位于所述缓冲子空间的相背两侧,所述下边子空间对应的所述顶板的区域为第一区域,所述上边子空间对应的所述顶板的区域为第二区域,所述第一区域的曲率半径大于所述第二区域的曲率半径。
  4. 根据权利要求1所述的车用玻璃弯曲成型装置,其特征在于,所述玻璃弯曲成型装置还包括控制件,所述控制件用于对所述抽气管道和所述吹气管道进行调节,以使每个所述子空间内的真空作用或吹气作用可调。
  5. 根据权利要求1所述的车用玻璃弯曲成型装置,其特征在于,所述车用玻璃弯曲成型装置还包括第一气体加热系统,所述第一气体加热系统设于所述吹气管道,以对由所述吹气管道吹向所述玻璃的气体进行加热,使气体的温度可调。
  6. 根据权利要求1所述的车用玻璃弯曲成型装置,其特征在于,所述车用玻璃弯曲成型装置还包括环状顶模,所述环状顶模设于所述顶板背离所述底座的一侧,所述环状顶模包括顶模板和设置在所述顶模板上并朝向所述承载面一侧的侧模板,当所述环状顶模和所述凹面底模相向运动,以使所述侧模板与所述玻璃的上表面接触在一起时,所述顶模板、所述侧模板与所述玻璃的上表面围合形成容纳腔,所述容纳腔内设有吹气通道,所述吹气通道朝向所述承载面并用于对所述玻璃进行吹气。
  7. 根据权利要求6所述的车用玻璃弯曲成型装置,其特征在于,所述容纳腔内设有多个第二隔板,多个所述第二隔板将所述容纳腔分隔为多个子容纳腔,多个所述子容纳腔分别为中心子容纳腔和多个边缘子容纳腔,所述中心子容纳腔,与所述中心子空间及所述缓冲子空间相对设置,所述多个边缘子容纳腔分别与所述第一侧边子空间、所述第二侧边子空间、所述下边子空间和所述上边子空间一一相对设置,所述吹气通道的数量有多个,且每个所述子容纳腔内均设有至少一个所述吹气通道。
  8. 根据权利要求7所述的车用玻璃弯曲成型装置,其特征在于,所述中心子容纳腔包括第一中心子容纳腔和第二中心子容纳腔,所述第一中心子容纳腔与所述中心子空间相对设置,所述第二中心子容纳腔与所述缓冲子空间相对设置,所述第一中心子容纳腔和所述第二中心子容纳腔内均设有至少一个所述吹气通道。
  9. 根据权利要求6所述的车用玻璃弯曲成型装置,其特征在于,所述吹气通道的吹气功率、吹气开启时间以及吹气时长均可调。
  10. 根据权利要求6所述的车用玻璃弯曲成型装置,其特征在于,所述车用玻璃弯曲成型装置还包括第二气体加热系统,所述第二气体加热系统设于所述吹气通道,以对由所述吹气通道吹向所述玻璃的气体进行加热,使气体的温度可调。
  11. 根据权利要求1所述的车用玻璃弯曲成型装置,其特征在于,所述车用玻璃弯曲成型装置还包括呈环形框架结构的预成型框架,所述预成型框架套设于所述凹面底模的外围,且所述预成型框架的曲率半径大于所述凹面底模的曲率半径。
  12. 根据权利要求1-11任一项所述的车用玻璃弯曲成型装置,其特征在于,所述玻璃至少为一个,当所述玻璃的数量大于一个时,多个所述玻璃层叠设于所述承载面上。
  13. 一种车用玻璃弯曲成型方法,其特征在于,包括:
    提供车用玻璃弯曲成型装置,所述车用玻璃弯曲成型装置包括凹面底模和多个抽气管道和至少一个吹气管道,所述凹面底模包括底座和顶板,所述顶板盖合在所述底座上,并与所述底座围合形成容置空间,所述顶板背离所述底座的承载面为不规则的凹面,所述承载面用于承载所述玻璃,所述顶板上间隔设置有多个通孔,所述容置空间内设有多个第一隔板,多个所述第一隔板将所述容置空间分隔为多个子空间,每个所述子空间与至少一个所述通孔相连通,每个吹气管道与至少一个所述子空间相连通,其余多个所述子空间与多个所述抽气管道一一连通;
    将加热至成型温度的玻璃放置在所述承载面上,所述玻璃受重力作用而发生形变;
    使用多个所述抽气管道对多个所述子空间进行抽气,使用所述吹气管道对至少一个所述子空间进行吹气,以使所述玻璃完全与所述承载面贴合。
  14. 根据权利要求13所述的车用玻璃弯曲成型方法,其特征在于,多个所述子空间包括中心子空间、缓冲子空间和多个边缘子空间,所述中心子空间对应所述顶板的中部区域,所述缓冲子空间环绕在所述中心子空间的周围,多个所述边缘子空间分布在所述缓冲子空间的周围,并共同包围所述缓冲子空间,所述吹气管道与所述缓冲子空间或所述中心子空间相连通,多个所述抽气管道分别与其他子空间相连通,且多个所述抽气管道之间的抽气方式存在差异。
  15. 根据权利要求14所述的车用玻璃弯曲成型方法,其特征在于,多个所述边缘子空间包括下边子空间、上边子空间、第一侧边子空间和第二侧边子空间,所述下边子空间和所述上边子空间位于所述缓冲子空间的相背两侧,所述第一侧边子空间和所述第二侧边子空间位于所述缓冲子空间的相背两侧,与所述下边子空间和所述上边子空间相连通的所述抽气管道的抽气方式为第一方式,与所述第一侧边子空间和所述第二侧边子空间相连通的所述抽气管道的抽气方式为第二方式,所述第一方式与所述第二方式存在差异。
  16. 根据权利要求15所述的车用玻璃弯曲成型方法,其特征在于,所述使用多个所述抽气管道对多个所述子空间进行抽气,使用所述吹气管道对至少一个所述子空间进行吹气,以使所述玻璃完全与所述承载面贴合包括:
    调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节;
    调节所述吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长。
  17. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
    调节与所述中心子空间或所述缓冲子空间相连通的抽气管道采用第一抽气功率,与所述下边子空间和所述上边子空间相连通的抽气管道采用第二抽气功率,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道采用第三抽气功率,所述第一抽气功率、所述第二抽气功率和所述第三抽气功率的功率大小依次降低。
  18. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
    调节与所述中心子空间或所述缓冲子空间相连通的抽气管道的抽气开启时间为第一时间,与所述下边子空间和所述上边子空间相连通的抽气管道的抽气开启时间为第二时间,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气开启时间为第三时间,所述第一时间、所述第二时间和所述第三时间的时间顺序依次推后。
  19. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
    调节与所述中心子空间或所述缓冲子空间相连通的抽气管道的抽气时长为第一时长,与所述下边子空间和所述上边子空间相连通的抽气管道的抽气时长为第二时长,与所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气时长为第三时长,所述第一时长、所述第二时长和所述第三时长的持 续时间长短依次降低。
  20. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
    调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气功率依次降低;
    调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气开启时间依次推后;
    调节与所述中心子空间或所述缓冲子空间、所述下边子空间和所述上边子空间、所述第一侧边子空间和所述第二侧边子空间相连通的抽气管道的抽气时长依次降低。
  21. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节每个所述抽气管道的抽气功率、抽气开启时间以及抽气时长,以分别对每个所述子空间内的真空作用进行调节包括:
    当所述中心子空间或所述缓冲子空间、所述下边子空间、所述上边子空间、所述第一侧边子空间和所述第二侧边子空间中的至少一个所述子空间相对应的玻璃表面与所述承载面相贴合或接近相贴合时,关闭与相对应的子空间相连通的所述抽气管道。
  22. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述调节所述吹气管道的吹气温度、吹气功率、吹气开启时间以及吹气时长包括:
    当所述中心子空间、所述下边子空间、所述上边子空间、所述缓冲子空间、所述第一侧边子空间和所述第二侧边子空间中的至少一个所述子空间相对应的玻璃表面与所述承载面相贴合或接近相贴合时,所述吹气管道开始吹气,且所述吹气管道的吹气功率小于等于所述抽气管道的抽气功率,和/或所述吹气管道的吹气时长小于等于所述抽气管道的抽气时长,和/或所述吹气管道的吹气温度小于等于玻璃温度。
  23. 根据权利要求16所述的车用玻璃弯曲成型方法,其特征在于,所述 车用玻璃弯曲成型装置还包括环状顶模,所述环状顶模设于所述顶板背离所述底座的一侧,所述环状顶模包括顶模板和设置在所述顶模板上并朝向所述承载面一侧的侧模板,当所述环状顶模和所述凹面底模相向运动,以使所述侧模板与所述玻璃的上表面接触在一起时,所述顶模板、所述侧模板和所述玻璃的上表面围合形成容纳腔,所述容纳腔内设有吹气通道,所述吹气通道朝向所述承载面并用于对所述玻璃进行吹气。
  24. 根据权利要求23所述的车用玻璃弯曲成型方法,其特征在于,所述容纳腔内设有多个第二隔板,多个所述第二隔板将所述容纳腔分隔为多个子容纳腔,所述多个子容纳腔分别与所述多个子空间一一相对设置,所述吹气通道的数量有多个,且每个所述子容纳腔内均设有一个所述吹气通道;调节多个所述吹气通道的吹气功率、吹气开启时间以及吹气时长,使所述玻璃相对多个所述子容纳腔的不同部位受到不同程度的吹气压力。
PCT/CN2021/092105 2020-08-21 2021-05-07 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法 WO2022037129A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21857230.3A EP4186875A4 (en) 2020-08-21 2021-05-07 DEVICE AND METHOD FOR FORMING VEHICLE WINDOW CURVATION
JP2023501916A JP7479563B2 (ja) 2020-08-21 2021-05-07 車用ガラス曲げ成型装置及び車用ガラス曲げ成型方法
US18/111,970 US20230202902A1 (en) 2020-08-21 2023-02-21 Device and method for bending vehicle glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010853530.6 2020-08-21
CN202010853530 2020-08-21
CN202011159604.2A CN112194348B (zh) 2020-08-21 2020-10-26 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法
CN202011159604.2 2020-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/111,970 Continuation US20230202902A1 (en) 2020-08-21 2023-02-21 Device and method for bending vehicle glass

Publications (1)

Publication Number Publication Date
WO2022037129A1 true WO2022037129A1 (zh) 2022-02-24

Family

ID=74011526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092105 WO2022037129A1 (zh) 2020-08-21 2021-05-07 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法

Country Status (5)

Country Link
US (1) US20230202902A1 (zh)
EP (1) EP4186875A4 (zh)
JP (1) JP7479563B2 (zh)
CN (1) CN112194348B (zh)
WO (1) WO2022037129A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194348B (zh) * 2020-08-21 2021-12-14 福耀玻璃工业集团股份有限公司 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839769A1 (fr) * 1996-10-31 1998-05-06 Saint-Gobain Vitrage Procédé et dispositif pour le bombage progressif de vitrages
US6318125B1 (en) * 1998-10-21 2001-11-20 Saint-Gobain Vitrage Method and device for bending glass sheets
CN1764607A (zh) * 2003-03-26 2006-04-26 法国圣戈班玻璃厂 通过挤压和抽吸弯曲玻璃板的方法
CN102884014A (zh) * 2010-05-19 2013-01-16 法国圣戈班玻璃厂 蜂窝弯曲模具
CN105793203A (zh) * 2013-02-20 2016-07-20 康宁股份有限公司 用于形成具有形状的玻璃制品的方法和设备
CN112194348A (zh) * 2020-08-21 2021-01-08 福耀玻璃工业集团股份有限公司 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256030A (ja) * 1993-03-02 1994-09-13 Nippon Sheet Glass Co Ltd 板ガラスの曲げ成形方法
EP1798206B2 (en) * 2005-12-14 2012-09-26 Asahi Glass Company, Limited Method and apparatus for bending a glass sheet
CN108137371A (zh) * 2015-12-03 2018-06-08 科立视材料科技有限公司 弯模玻璃的真空成型装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839769A1 (fr) * 1996-10-31 1998-05-06 Saint-Gobain Vitrage Procédé et dispositif pour le bombage progressif de vitrages
US6318125B1 (en) * 1998-10-21 2001-11-20 Saint-Gobain Vitrage Method and device for bending glass sheets
CN1764607A (zh) * 2003-03-26 2006-04-26 法国圣戈班玻璃厂 通过挤压和抽吸弯曲玻璃板的方法
CN102884014A (zh) * 2010-05-19 2013-01-16 法国圣戈班玻璃厂 蜂窝弯曲模具
CN105793203A (zh) * 2013-02-20 2016-07-20 康宁股份有限公司 用于形成具有形状的玻璃制品的方法和设备
CN112194348A (zh) * 2020-08-21 2021-01-08 福耀玻璃工业集团股份有限公司 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4186875A4

Also Published As

Publication number Publication date
JP7479563B2 (ja) 2024-05-08
EP4186875A1 (en) 2023-05-31
CN112194348A (zh) 2021-01-08
CN112194348B (zh) 2021-12-14
EP4186875A4 (en) 2024-01-24
US20230202902A1 (en) 2023-06-29
JP2023534685A (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
EP3315282B1 (en) Molding device and method thereof
CN101720308B (zh) 玻璃弯曲工艺
US4891055A (en) Method of forming glass product having smooth surface
JP6221745B2 (ja) ガラス筐体の成形装置、成形方法及び製造方法並びにガラス素材の製造方法
WO2022037129A1 (zh) 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法
US20190060970A1 (en) Method for quick gas bulging forming of hot metal sheet
JP6213561B2 (ja) 金属セパレータの成形装置および成形方法
TW201442967A (zh) 曲面玻璃成型方法及其採用之模具
CN109111091B (zh) 石墨模具、3d玻璃热弯装置和3d玻璃热弯方法
CN103570220A (zh) 成型模具、使用该成型模具的玻璃成型装置及方法
CN105084722A (zh) 一种手机3d曲面玻璃盖板热成型炉的加工工艺
TW202039379A (zh) 玻璃板之成形裝置
CN109985955B (zh) 一种控制构件壁厚均匀性等温热拉深成形装置及成形方法
CN113582519B (zh) 玻璃成型用的模具和玻璃壳体的冲压方法
WO2016029713A1 (zh) 真空炉冷却用喷嘴
JP5046075B2 (ja) ガラス物品の成形方法及び成形装置
JP3135098B2 (ja) 光学素子の成形装置
CN112047616B (zh) 车用玻璃弯曲成型装置及车用玻璃弯曲成型方法
JP2018171655A (ja) モバイルデバイスケーシングを漸進的に鍛造する方法及び装置
CN114212979A (zh) 一种玻璃热弯模具及玻璃热弯方法
TW202039380A (zh) 玻璃板之成形方法
JP5448254B2 (ja) ガラス物品の成形方法及び成形装置
CN114206460A (zh) 包括加热回路和冷却回路的用于弯曲玻璃片材的模具
TW201943660A (zh) 模造立體玻璃連續成型裝置之下加熱熱場裝置
JPS63170225A (ja) ガラスレンズのプレス成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501916

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021857230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021857230

Country of ref document: EP

Effective date: 20230223

NENP Non-entry into the national phase

Ref country code: DE