WO2016024444A1 - 信号処理装置と信号処理方法およびモニタリングシステム - Google Patents

信号処理装置と信号処理方法およびモニタリングシステム Download PDF

Info

Publication number
WO2016024444A1
WO2016024444A1 PCT/JP2015/068026 JP2015068026W WO2016024444A1 WO 2016024444 A1 WO2016024444 A1 WO 2016024444A1 JP 2015068026 W JP2015068026 W JP 2015068026W WO 2016024444 A1 WO2016024444 A1 WO 2016024444A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
image
driver
display
vehicle
Prior art date
Application number
PCT/JP2015/068026
Other languages
English (en)
French (fr)
Inventor
英史 大場
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/323,764 priority Critical patent/US10632917B2/en
Priority to JP2016542517A priority patent/JP6686886B2/ja
Priority to EP15832125.7A priority patent/EP3166311B1/en
Priority to CN201580040516.1A priority patent/CN106537905B/zh
Publication of WO2016024444A1 publication Critical patent/WO2016024444A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/002Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles specially adapted for covering the peripheral part of the vehicle, e.g. for viewing tyres, bumpers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/26Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view to the rear of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/28Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with an adjustable field of view
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/268Signal distribution or switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/70Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by an event-triggered choice to display a specific image among a selection of captured images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/802Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for monitoring and displaying vehicle exterior blind spot views

Definitions

  • an image obtained by imaging a peripheral region of a vehicle for example, an image of a peripheral region captured by an imaging unit provided in the vehicle or a plurality of imaging units provided at a plurality of positions different in the traveling direction of the vehicle.
  • An image is acquired. Further, for example, vehicle speed information of the vehicle, information indicating the steering state, gear position information, direction indicator setting state, turning angle of the traction trailer portion with respect to the cabin when the vehicle has a configuration in which the traction trailer portion is connected to the cabin, the traction trailer At least one of information indicating the connection state of the unit and current position information is acquired as operation information related to the driving status of the vehicle.
  • the peripheral area imaging unit 11 images a peripheral area around the vehicle and outputs an image signal to the display unit 50.
  • FIG. 3 is a diagram for explaining the imaging range of the peripheral area imaging unit.
  • the driver DR can visually recognize the range of the area ARb1 in the peripheral area at the head position (eye position) PS1.
  • the torso position and the eye position are simply described as the head position.
  • the mirror unit 55 is provided so that the driver DR can indirectly visually recognize the display surface of the display unit 50.
  • the mirror unit 55 is disposed in the vicinity of the pillar, for example, so that an image reflected on the mirror unit 55 can be visually recognized when the driver DR performs an operation equivalent to the conventional operation of viewing the rearview mirror in the vehicle. Has been.
  • the display unit 50 with respect to the mirror unit 55 has a display size and a mirror unit 55 so that the peripheral area captured image on the display unit 50 reflected on the mirror unit 55 is equivalent to the peripheral area reflected on the conventional rearview mirror.
  • the interval is set.
  • the visual recognition range that the driver can visually recognize from the image of the display unit 50 reflected in the mirror unit 55 in the peripheral region is changed according to the movement of the visual recognition position of the driver with respect to the mirror unit 55. It is arranged so that.
  • FIG. 5 schematically shows the relationship between driver's eye focus switching and response time.
  • FIG. 5A when switching the focus of an eye between two points of an infinitely visible object OBa and a short-distance object OBb, the focus is focused from one to the other object.
  • the response time until changes in accordance with the distance LA to the near visual object OBb.
  • FIG. 5B shows the relationship between the distance LA to the near-distance visual object OBb and the response time TR.
  • the display unit 50 and the mirror unit 55 have a monitor image region GRm that can be viewed through the mirror unit 55 when the driver DR of the vehicle moves the head position in the direction of the arrow Va, for example, to change the viewing range. As in the case of the rear-view mirror, it is arranged so as to move in the direction of the arrow Vb. Specifically, the display unit 50 and the mirror unit 55 are arranged so that the moving direction of the monitor image region GRm when the head position is moved is the longitudinal direction of the display region in the display unit 50.
  • the driver DR visually recognizes the image of the monitor image region GRm through the mirror unit 55.
  • the state of the viewing range ARm in the peripheral area can be confirmed.
  • the monitor image region GRm that the driver DR can visually recognize through the mirror unit 55 is in the opposite direction to the arrow Vbf. Moving. That is, the driver DR moves the head position to the rear of the vehicle and visually recognizes the image of the monitor image area via the mirror unit 55, so that the situation of the inner area in the peripheral area is larger than that before the head position is moved. Can be confirmed.
  • FIG. 8 illustrates the configuration of the second embodiment.
  • the display device 10 includes a peripheral area imaging unit 11, a driver imaging unit 12, a display control unit 20, a display unit 50, and a mirror unit 55.
  • FIG. 9 is a diagram illustrating the positional relationship among the driver, the display unit, the mirror unit, and the driver imaging unit.
  • the surrounding area imaging unit 11 images the surrounding area of the vehicle and outputs an image signal to the display control unit 20. Note that an area captured by the peripheral area imaging unit 11 is set as an imaging target peripheral area.
  • the mirror unit 55 is provided so that the driver DR can indirectly visually recognize the display surface of the display unit 50.
  • the mirror unit 55 is arranged, for example, at a position in the vicinity of the pillar so that an image reflected on the mirror unit 55 can be visually recognized.
  • the mirror unit 55 is configured so that the entire display area of the display unit 50 is reflected on the mirror unit 55 when the driver DR indirectly visually recognizes the peripheral area captured image via the mirror unit 55.
  • the size of the mirror unit 55 are set.
  • the display unit 50 and the mirror unit 55 have a viewable range that the driver can visually recognize from the image of the display unit 50 reflected on the mirror unit 55 in the peripheral region.
  • the driver DR can visually recognize the peripheral region captured image via the mirror unit 55, and the driver DR can visually recognize the display surface directly on the display unit 50.
  • the distance from the driver DR to the display surface of the display unit 50 is increased.
  • the driver DR indirectly visually recognizes the peripheral area captured image via the mirror unit 55, so that the display unit 50 does not allow the driver DR to see the illumination light on the display surface or the display surface. To place. Moreover, it is good also as a structure which provided the shielding so that the display surface and illumination light of the display part 50 would not be directly visible from driver
  • the description is given with respect to the positional relationship of the mirror portion 55 to be arranged when the viewing direction is the same as that of the conventional rearview mirror installed in the vicinity of the A pillar, but the line of sight is the dashboard as the viewing direction equivalent to the fender mirror. It may be arranged in the center.
  • the driver movement determination unit 21 detects the driver's head position based on the image signal supplied from the driver imaging unit 12, and determines the movement direction and movement amount of the driver's head position.
  • the driver movement determination unit 21 recognizes the driver's face based on, for example, the image signal supplied from the driver imaging unit 12, and recognizes the position of the recognized face, the direction of the face (corresponding to the direction of the head), and the line of sight. Determine the direction of. Further, the driver movement determination unit 21 tracks the recognized face to determine the movement direction and movement amount of the head position.
  • the driver movement determination unit 21 outputs the determination result to the control processing unit 35.
  • the control processing unit 35 Based on the determination result of the driver movement determination unit 21, the control processing unit 35 generates a control signal for performing different display control in the monitor image region and other regions (hereinafter referred to as “non-monitor image region”) in the display unit 50. Output to the display adjustment unit 41 and the luminance adjustment unit 42.
  • the display adjustment unit 41 adjusts the magnification of the peripheral region captured image with respect to the image signal supplied from the peripheral region imaging unit 11 based on the control signal from the control processing unit 35, for example, for the non-monitor image region Perform image compression.
  • the luminance adjusting unit 42 reduces the luminance of the non-monitor image area in the display unit 50 based on the control signal from the control processing unit 35 as compared with the monitor image area.
  • the display unit 50 is configured using a display element that requires illumination, such as a liquid crystal display element
  • the brightness adjusting unit 42 controls a partial area of the backlight of the illumination, for example, a liquid crystal panel, so that the non-monitor image area Is made lower than the monitor image area.
  • a display element or a self-luminous element that requires illumination such as an organic EL display element
  • the display control unit 20 performs brightness control, compression processing, and the like on the display image of the display region GR, and displays the image in the viewing range that is the range of the peripheral region visually recognized by the driver through the mirror unit 55.
  • the area GRc is displayed.
  • a display area corresponding to the viewing range is defined as a monitor image area GRm.
  • the display control unit 20 moves the monitor image region GRm in the direction of the arrow Vb based on the movement of the driver DR imaged by the driver imaging unit 12, for example, the movement in the front-rear direction of the vehicle (arrow Va direction).
  • the display control unit 20 moves the viewing range ARm corresponding to the monitor image area GRm instead of moving the monitor image area GRm, or expands the direction of the arrow Vb of the monitor image area GRm.
  • the moving speed of the image may cause a loss of grasping of the situation if the display content of the image is suddenly changed while the driver instantaneously views other than the monitor image. Therefore, a sudden screen movement is avoided, and the parallel movement of the display image is within 0.2 sec / total movement amount (total field angle shift amount) even at the fastest speed.
  • the screen change reaction delay time accompanying the detection of the position of the head and line of sight to be described later within 200 msec, it is possible to prevent or reduce a decrease in operational feeling as compared with the case of using a conventional rearview mirror, It is possible to satisfy the danger oversight prevention associated with the delay in grasping the surrounding situation.
  • the driver performs an operation to obtain direct view information through the window different from the rear peripheral information at a slight interval after issuing the screen display area change instruction.
  • the driver looks at the window direction through the mirror unit 55, and after the screen attention is momentarily interrupted, the driver returns to the step of confirming the display screen again through the mirror unit 55, so that the screen content is completely changed. If this happens, there is a risk of loss of understanding of the situation. Therefore, the display range associated with these screen changes is at least a quarter or more of the original display content before and after the change, and the screen before the switching change is refrained from moving the range included in the changed screen.
  • the wakeup occurs momentarily from the continuity of the memory screen. It is possible to reduce the loss of grasping the situation on the display unit.
  • the display control unit 20 determines that the peripheral region confirmation operation has been performed when the driver's head direction and line-of-sight direction are directed to the mirror unit 55, for example, when the driver is turned to the mirror unit 55, and step ST2 is performed. Proceed to Further, if the driver's head direction or line-of-sight direction is not in the direction of the mirror unit 55, the display control unit 20 determines that the peripheral region confirmation operation is not performed and returns to step ST1.
  • step ST2 the display control unit 20 determines the viewing range.
  • the display control unit 20 detects, for example, the driver's head position based on the image signal supplied from the driver imaging unit 12, and sets the viewing range visually recognized through the mirror unit 55 from the detected head position. It discriminate
  • step ST4 the display control unit 20 determines whether a viewing range change instruction has been issued.
  • the display control unit 20 determines, for example, the head position of the driver based on the image signal supplied from the driver imaging unit 12, and determines whether an instruction operation for changing the visual range in the peripheral area has been performed. If the driver's head position causes a predetermined movement, the display control unit 20 determines that a viewing range change instruction has been issued, and proceeds to step ST5. Further, when the driver's head position does not cause a predetermined movement, the display control unit 20 determines that the visual range change instruction has not been issued, and proceeds to step ST6.
  • step ST5 the display control unit 20 performs a viewing range changing process.
  • the display control unit 20 moves the visual recognition range visually recognized by the driver as the driver's head position moves.
  • the display control unit 20 controls, for example, the backlight and the luminance level, and moves the area where the display is darkened according to the movement of the driver's head position, thereby changing the monitor image area displayed brightly.
  • the display control unit 20 further drives the viewing range in which the image is displayed in the monitor image area by further compressing the image in the non-monitor image area provided on the opposite side to the moving direction of the monitor image area, for example. It moves according to the movement of the person's head position.
  • FIG. 13 is a diagram for explaining a first display control operation of the display control unit.
  • the display control unit when displaying the captured image of the peripheral area, the display control unit reduces the luminance of a part or the whole of the image in the other range excluding the viewing range and is difficult to see from the driver. To do. By doing in this way, the driver
  • the display control unit 20 determines that the head position of the driver DR has moved, for example, in the forward direction of the vehicle, the display control unit 20 moves the monitor image region GRm according to the movement of the head position, and the mirror unit 55 The visual recognition range of the peripheral area that can be visually recognized through is moved outward. Specifically, the display control unit 20 determines the brightness of the image so that the non-monitor image region GRb1 has a narrow region width and the non-monitor image region GRb2 has a wide region width according to the movement of the head position in the vehicle front direction. To control. When such display control is performed, the image in the monitor image area GRm becomes an image in a range outside the peripheral area as compared to before the movement.
  • FIG. 14 is a diagram for explaining a second display control operation of the display control unit.
  • the display control unit when displaying the captured image of the peripheral area, the display control unit replaces the movement of the monitor image area GRm with an image in a range other than the viewing range in the monitor image area GRm. Compress in the moving direction. The display control unit compresses the image in this manner, thereby moving the visual recognition range ARm corresponding to the monitor image region GRm so that the desired visual recognition range in the peripheral region can be confirmed.
  • FIG. 15 shows the relationship between the display on the display unit, the compression rate, and the surrounding area.
  • 15A shows the display of the display unit 50
  • FIG. 15B shows the relationship between the display position of the display unit 50 and the compression ratio
  • FIG. 15C shows the imaging range of the peripheral area imaging unit 11. Show.
  • a captured image of the viewing range ARm is displayed.
  • the non-monitor image area GRb1 the captured image outside the viewing range ARm is compressed and displayed
  • the non-monitor image area GRb2 the captured image inside the viewing range ARm is compressed and displayed.
  • the display control unit 20 determines that an instruction to move the viewing range outward is performed, the display control unit 20 controls the compression ratio of the image so that the range of the peripheral region with respect to the non-monitor image region GRb2 is widened. Therefore, the viewing range ARm corresponding to the monitor image area GRm moves outside the peripheral area.
  • the display control unit 20 makes the brightness of the non-monitor image regions GRb1 and GRb2 darker than the monitor image region GRm corresponding to the viewing range before the change of the viewing range is performed.
  • the images in the monitor image areas GRb1 and GRb2 are made difficult to see.
  • the display unit 50 is configured using a liquid crystal display element
  • backlight emission control is performed to darken the non-monitor image areas GRb1 and GRb2.
  • signal level control of the luminance signal is performed to darken the non-monitor image areas GRb1 and GRb2.
  • the driver DR can visually recognize only the image of the monitor image area GRm. Therefore, the driver DR can confirm the state of the visual recognition range ARm in the peripheral region by visually recognizing the display image of the display unit 50 through the mirror unit 55. Thereafter, when an instruction to change the viewing range is given, the display control unit 20 causes the luminance level to approach the luminance level of the monitor image region GRm with respect to the non-monitor image region.
  • the viewing range ARm corresponding to the monitor image region GRm is moved in accordance with the driver's instruction.
  • the range can be easily confirmed.
  • the brightness level of the non-monitor image area is the same as the brightness level of the monitor image area GRm, there is no division with the monitor image area. Therefore, the viewing range can be automatically expanded.
  • the driver can change the viewing range simply by giving a change instruction, the head position is moved forward until the desired peripheral range appears on the rearview mirror, as in the case of using a conventional rearview mirror. Even if it is not, the desired peripheral range can be easily confirmed.
  • the display part 50 and the mirror part 55 are provided in the interior of the vehicle, it is possible to confirm the peripheral area satisfactorily without being adversely affected by the side window as in the case of using the rearview mirror.
  • FIG. 16 illustrates the configuration of the third embodiment.
  • the display device 10 includes peripheral area imaging units 11a and 11b, a driver imaging unit 12, a display control unit 20, a display unit 50, and a mirror unit 55. Note that the driver imaging unit 12, the driving situation detection sensor 13, the display unit 50, the mirror unit 55, and the driver DR have the positional relationship shown in FIG.
  • the display control unit 20 sets an image area to be presented to the driver of the vehicle from an image obtained by imaging the surrounding area of the vehicle based on operation information related to the driving situation of the vehicle, and the image presented by the driver.
  • the visual range of the peripheral area that can be visually recognized is controlled in the outward direction of the vehicle according to the driving situation. That is, the display control unit 20 displays the peripheral region captured image on the display unit 50 based on the image signals generated by the peripheral region imaging units 11a and 11b.
  • the display control unit 20 also includes sensor information from the driving condition detection sensor 13 or sensor information from the driving condition detection sensor 13 and the head position and head direction of the driver, the direction of the line of sight, and the position and direction. Based on the movement or the like, an image region to be presented to the driver is set, and display control of the peripheral region captured image displayed on the display unit 50 is performed.
  • the mirror unit 55 is provided so that the driver DR can indirectly visually recognize the display surface of the display unit 50.
  • the mirror unit 55 is disposed at, for example, a pillar position so that an image reflected on the mirror unit 55 can be visually recognized.
  • the mirror unit 55 is configured so that the entire display area of the display unit 50 is reflected on the mirror unit 55 when the driver DR indirectly visually recognizes the peripheral area captured image via the mirror unit 55.
  • the size of the mirror unit 55 are set.
  • the display unit 50 and the mirror unit 55 have a viewable range that the driver can visually recognize from the image of the display unit 50 reflected on the mirror unit 55 in the peripheral region. It is changed according to the movement of the viewing position.
  • the size of the mirror portion 55 is preferably set as in the first embodiment or the second embodiment so that the same effect as the conventional rearview mirror can be obtained.
  • FIG. 17 illustrates the arrangement of the peripheral area imaging unit.
  • the peripheral area imaging unit is disposed on the left side surface of the trailer is illustrated, and the peripheral area imaging unit on the right side surface is omitted.
  • the peripheral region imaging unit 11a is provided on the cabin side, and the peripheral region imaging unit 11b is provided on the traction trailer unit side. Note that an area captured by the peripheral area imaging unit 11a is a first imaging target peripheral area, and an area captured by the peripheral area imaging unit 11b is a second imaging target peripheral area.
  • FIG. 17 shows a case where the cabin and the traction trailer are linearly located.
  • FIG. 17B shows a state in which the tow trailer unit is close to the installation side of the peripheral area imaging unit 11a with respect to the cabin
  • FIG. 17C shows the tow trailer unit with respect to the cabin.
  • it has shown the state which has leaned in the reverse direction to the installation side of the peripheral region imaging part 11a.
  • FIG. 17A shows the state in FIG. 17A to FIG.
  • the display control unit 20 uses the captured image acquired by the peripheral region imaging unit 11a and the captured image acquired by the peripheral region imaging unit 11b according to the driving situation and the driver's intention, thereby the mirror unit 55. Display control is performed so that the peripheral area can be confirmed through the screen.
  • FIG. 18 is a diagram showing a configuration of the display control unit.
  • the display control unit 20 includes a driver movement determination unit 21, a driving situation determination unit 22, a control processing unit 35, a display adjustment unit 41, and a luminance adjustment unit 42.
  • the driving status determination unit 22 determines the driving status based on the sensor information supplied from the driving status detection sensor 13. For example, the driving situation determination unit 22 determines whether the vehicle is moving forward or backward based on the gear position or the like, and whether the vehicle is going straight or turning right or left based on the vehicle speed, the direction indicator setting information, the steering state, or the like. To do. In addition, the driving status determination unit 22 is based on information such as a connection state of the tow trailer unit and a turning angle of the tow trailer unit with respect to the cabin, and is based on current position information or the like whether it is a gentle left / right turn or an acute right / left turn. It is determined whether the position is a landabout position or the like. The driving situation determination unit 22 outputs the determination result to the control processing unit 35.
  • the control processing unit 35 performs different display control on the monitor image region and the non-monitor image region on the display unit 50 based on the determination result of the driving situation determination unit 22 or the determination results of the driver movement determination unit 21 and the driving situation determination unit 22.
  • a control signal to be performed is generated and output to the display adjustment unit 41 and the luminance adjustment unit 42.
  • the display adjustment unit 41 adjusts the magnification of the peripheral region captured image with respect to the image signal supplied from the peripheral region imaging unit 11 based on the control signal from the control processing unit 35, for example, for the non-monitor image region Perform image compression. In addition, the display adjustment unit 41 performs switching, synthesis, adjustment of the display width of the peripheral region to be displayed, and the like based on the control signal from the control processing unit 35. You may do it.
  • the luminance adjusting unit 42 reduces the luminance of the non-monitor image area in the display unit 50 based on the control signal from the control processing unit 35 as compared with the monitor image area.
  • the luminance adjustment unit 42 controls the illumination, for example, a backlight, so that the luminance of the non-monitor image area is greater than that of the monitor image area. Also reduce.
  • the display unit 50 is configured using a display element or a self-luminous element that requires illumination, such as an organic EL display element, a process for reducing the signal level of the luminance signal corresponding to the non-monitor image area is performed. Also good.
  • FIG. 19 is a flowchart illustrating the operation of the display control unit according to the third embodiment.
  • the display control unit 20 determines whether or not a surrounding area confirmation operation has been performed. Based on the image signal supplied from the driver imaging unit 12, the display control unit 20 determines whether, for example, the driver's head direction and line-of-sight direction are the directions of the mirror unit 55. The display control unit 20 determines that the peripheral region confirmation operation has been performed when the driver's head direction or line-of-sight direction is the direction of the mirror unit 55, for example, when the driver turns around the mirror unit 55, and the process proceeds to step ST12. move on. Further, if the driver's head direction or line-of-sight direction is not in the direction of the mirror unit 55, the display control unit 20 determines that the peripheral region confirmation operation is not performed and returns to step ST11.
  • step ST13 the display control unit 20 determines the viewing range.
  • the display control unit 20 determines the viewing range visually recognized via the mirror unit 55 based on the determination result of the driving situation, and proceeds to step ST14.
  • the visual recognition range may be determined including the driver's head position.
  • FIG. 20 illustrates the viewing range mode.
  • Mode 1 is, for example, a mirror viewing indispensable range during normal running.
  • Mode 2 is, for example, a range in which the inner and outer ranges can be viewed wider than the mirror viewing essential range during normal driving.
  • Mode 3 is a range in which the driver can visually recognize the outside of the vehicle without blind spots, for example, when reversing.
  • the imaging range of the peripheral area imaging unit 11a is an indispensable range for viewing the mirror during normal running, and the imaging range of the peripheral area imaging unit 11b is wider than the imaging range of the peripheral area imaging unit 11a. As shown in FIG.
  • FIG. 21 exemplifies the relationship between the driving situation determination result and the viewing range mode.
  • the display control unit 20 determines that the vehicle is running straight ahead based on the detection information
  • the display control unit 20 sets the range of mode 1 as the visible range as indicated by a circle.
  • the display control unit 20 sets the range of mode 1 as the visible range as indicated by a circle when, for example, it is a roundabout point.
  • the display control unit 20 sets the range of mode 1 as the visible range as indicated by a circle.
  • the mode 2 range is set as the visible range as shown by a circle, and the range that can be confirmed is widened outward.
  • the display control unit 20 sets the range of mode 1 as the visible range as indicated by a circle when the vehicle is moving straight forward and backward based on the detection information, for example.
  • the range of mode 2 indicated by a circle so as not to generate the blind spot shown in FIG. 17C, that is, the imaging range of the peripheral region imaging unit 11b. Is the viewing range.
  • step ST15 the display control unit 20 determines whether a viewing range change instruction has been performed.
  • the display control unit 20 determines, for example, the head position of the driver based on the image signal supplied from the driver imaging unit 12, and determines whether an instruction operation for changing the visual range in the peripheral area has been performed. If the driver's head position moves with the movement of the viewing range, the display control unit 20 determines that a viewing range change instruction has been issued, and proceeds to step ST16. Further, when the driver's head position does not cause a movement accompanying the movement of the viewing range, the display control unit 20 determines that the viewing range change instruction has not been issued, and proceeds to step ST17.
  • step ST16 the display control unit 20 performs a mode change process.
  • the display control unit 20 switches to a mode with a wide viewing range when the viewing range change instruction is an instruction to widen the viewing range. For example, the display control unit 20 switches to a mode indicated by a square mark if the mode is indicated by a circle mark in FIG. 21, and switches to a mode indicated by an asterisk if the mode is indicated by a square mark.
  • the display control unit 20 switches to a mode with a narrow viewing range when the viewing range change instruction is an instruction to narrow the viewing range. For example, the display control unit 20 switches to a mode indicated by a circle when the mode is indicated by a square mark in FIG. 21, and switches to a mode indicated by a square mark when the mode is indicated by a star.
  • the display control unit 20 switches the mode based on the viewing range change instruction and proceeds to step ST17.
  • step ST17 the display control unit 20 determines whether or not the peripheral area confirmation operation is finished. Based on the image signal supplied from the driver imaging unit 12, the display control unit 20 determines that, for example, the driver's head direction and line-of-sight direction are no longer in the direction of the mirror unit 55. If the driver's head direction and line-of-sight direction are still in the direction of the mirror unit 55, the display control unit 20 determines that the peripheral region confirmation operation is not finished and returns to step ST15. Further, if the driver's head direction or line-of-sight direction is no longer in the direction of the mirror unit 55, the display control unit 20 determines that the peripheral region confirmation operation is completed and proceeds to step ST18.
  • step ST18 the display control unit 20 ends the display.
  • the display control unit 20 ends the image display of the peripheral area on the display unit 50 so that the driver can concentrate on driving, and returns to step ST11.
  • the mode 2 is switched to the mode 3 to
  • the viewing range is expanded so that the outside of the part is included in the viewing range. Therefore, a desired viewing range can be confirmed.
  • the display part 50 and the mirror part 55 are provided in the interior of the vehicle, it is possible to confirm the peripheral area satisfactorily without being adversely affected by the side window as in the case of using the rearview mirror.
  • FIG. 22 illustrates a display image displayed on the display unit 50 using the peripheral images acquired by the peripheral region imaging unit 11a and the peripheral region imaging unit 11b.
  • FIG. 22A illustrates a case where there is a vehicle at the position of the blind spot of the peripheral area imaging unit 11a.
  • FIG. 22B illustrates a case where the peripheral image MGa acquired by the peripheral area imaging unit 11a is displayed.
  • the display vehicle image captured by the peripheral area imaging unit 11a alone is the entire rear vehicle. Cannot be confirmed. Therefore, as shown in FIG. 22C, the display control unit 20 displays not only the peripheral image MGa acquired by the peripheral region imaging unit 11a but also the peripheral image MGb acquired by the peripheral region imaging unit 11b. By doing so, you can see the entire car behind.
  • the display control unit 20 sets the image area to be presented for one or a plurality of images captured from one or a plurality of positions based on the operation information, and is a peripheral area that can be visually recognized by the driver. Is controlled in accordance with driving conditions. Therefore, a desired visual recognition range in the peripheral range can be easily confirmed.
  • the display control unit 20 switches the display shown in FIG. 22B and FIG. 22C according to the driving situation and the driver's intention, or as indicated by an arrow in FIG. 22C. If the region width (or insertion width) of the peripheral image MGa and the peripheral image MGb can be varied, the peripheral region can be displayed in the most visible state.
  • the region width (or insertion width) of the peripheral image MGa and the peripheral image MGb may be variable.
  • the captured image arranged forward with respect to the traveling direction of the vehicle body is disposed above the display screen, and in the traveling direction.
  • the driver can intuitively determine the front-rear relationship of the vehicle body of the visual recognition screen instantaneously.
  • FIG. 24 illustrates another display image displayed on the display unit 50 using the peripheral images acquired by the peripheral region imaging unit 11a and the peripheral region imaging unit 11b.
  • FIG. 24A illustrates a case where the peripheral image MGa acquired by the peripheral area imaging unit 11a is displayed.
  • FIG. 24B the peripheral image MGa acquired by the peripheral region imaging unit 11a and the peripheral image MGb acquired by the peripheral region imaging unit 11b are arranged in the vertical direction, and the peripheral image is acquired by any peripheral region imaging unit.
  • an icon display HT that makes it possible to identify whether the image is an image, for example, an icon display HT that schematically shows a cabin and a traction trailer is provided.
  • peripheral image acquired by the peripheral area imaging unit 11a is displayed, so that a plurality of peripheral images are displayed side by side, resulting in obstructing the visibility of the front outer peripheral area. Can be prevented.
  • switching of the peripheral area imaging unit and control of the peripheral image to be displayed can be appropriately switched based on the driver's intention while changing the display contents according to the operation state of the vehicle. Therefore, the driver can intuitively grasp the visual recognition area for each area without carefully observing the screen.
  • a towed vehicle such as a trailer
  • the ergonomically suitable display is performed.
  • the display range expansion function is effective even if the display expansion is not limited to the method via the mirror unit 55.
  • the system configuration further includes auxiliary touch button control, voice instruction recognition, gesture recognition other than the head, etc. You may go on.
  • auxiliary touch button control voice instruction recognition
  • gesture recognition other than the head etc. You may go on.
  • there is an interface for direct instruction such as button operation when returning to normal state, pointing out misdetection of instruction content recognition at the time of learning, which will be described later, and further complicated posture change of driver at low speed parking operation It is effective to perform the control in combination.
  • Fourth Embodiment> When visually recognizing a peripheral area using a display device, it is necessary to ensure a certain screen magnification during normal driving in accordance with the minimum display magnification defined by laws and regulations. In other words, there is a display screen with a steady head posture during driving, and when it changes from its steady position to a different position, the display is changed via a human machine interface of intention display that the driver makes unsteady It is necessary to change the screen display in response to the instruction. For example, it is necessary to change the screen display in response to an instruction to change the display content to a lower magnification, an instruction to change to a special field of view for unsteady traveling such as parking, or the like. Therefore, in the fourth embodiment, a mechanism of a human machine interface related to display content change will be described.
  • FIG. 25 is a flowchart illustrating the operation when the driver grasps the situation of the surrounding area.
  • the driver starts a turning motion and proceeds to step ST22.
  • the driver supplements the mirror with his eyes and proceeds to step ST23.
  • the driver temporarily stops or semi-stops the head and proceeds to step ST24.
  • the semi-stop is a state in which the movement of the head is small and can be regarded as a stop state.
  • step ST24 the driver focuses on the image via the mirror unit and proceeds to step ST25.
  • step ST25 the driver checks the image in the viewing range to grasp the situation of the surrounding area and proceeds to step ST26. .
  • step ST26 the driver determines whether the viewing range needs to be changed.
  • the driver visually recognizes the image of the monitor image area in step ST25, and if the driver can grasp the situation of the desired range in the peripheral area, the driver proceeds to step ST27 as changing the viewing range is unnecessary. Further, when the driver cannot grasp the situation of the desired range in the surrounding area, the driver needs to change the viewing range and proceeds to step ST28.
  • the driver returns to the forward viewing state in step ST27. Since the driver has grasped the situation of the desired peripheral area, the process is ended in such a state that the turning direction is finished and the front can be visually recognized with the face facing forward.
  • step ST30 the driver determines whether or not it is necessary to return to the state before the change instruction.
  • the driver proceeds to step ST31 because it is necessary to return to the state before the change instruction. If the driver determines that there is no need to return to the state before the change instruction, the driver proceeds to step ST32.
  • step ST31 the driver gives a viewing range restoration instruction.
  • the driver performs a predetermined movement, for example, a movement to return the head, and proceeds to step ST32.
  • the display device detects the driver's visual range restoration instruction and performs processing for returning the visual range in which an image is displayed in the monitor image area to the range before the change.
  • step ST32 the driver proceeds to step ST33 without gazing at the mirror portion for a certain period.
  • the driver returns to the forward viewing state in step ST33.
  • the driver finishes grasping the situation of the surrounding area. That is, the turning direction is finished and the face is turned forward so that the front can be visually recognized.
  • FIG. 26 is a diagram illustrating the configuration of the fourth embodiment.
  • the display device 10 includes a peripheral area imaging unit 11, a driver imaging unit 12, a driver identification information acquisition unit 15, a display control unit 20, a display unit 50, and a mirror unit 55. Further, the driver, the display unit, the mirror unit, and the driver imaging unit are provided as shown in FIG.
  • the surrounding area imaging unit 11 images the surrounding area of the vehicle and outputs an image signal to the display control unit 20. Note that an area captured by the peripheral area imaging unit 11 is set as an imaging target peripheral area.
  • the driver imaging unit 12 is provided, for example, in front of the driver DR or in a direction in which the mirror unit 55 is installed so as to be able to determine the head position, head direction, line-of-sight direction, etc. of the driver DR. Yes.
  • the driver imaging unit 12 images the driver DR and outputs an image signal to the display control unit 20.
  • the driver identification information acquisition unit 15 acquires driver identification information that is identification information unique to the driver, and outputs the driver identification information to the display control unit 20.
  • the driver identification information acquisition unit 15 may use the driver face recognition obtained from the driver imaging unit 12, may use the identification information given to the driver-owned vehicle activation key, or the driver may Various methods such as direct instruction by button operation can be taken.
  • the display unit 50 is arranged so that the driver can visually recognize the display surface of the display unit 50 indirectly through the mirror unit 55.
  • the display surface of the display unit 50 visually recognizes the display image of the display unit 50 through the mirror unit 55 even when the driver DR moves the head position so as to check a wide area with the rearview mirror during driving.
  • the size is larger than the mirror surface of the mirror portion 55 so that it can be made.
  • an image region corresponding to the visual recognition range of the peripheral region that the driver confirms via the mirror unit 55 is set as a monitor image region.
  • the mirror unit 55 is provided so that the driver DR can indirectly visually recognize the display surface of the display unit 50.
  • the mirror unit 55 is disposed in the vehicle so that, for example, when the driver DR performs an operation of viewing a conventional rearview mirror, an image reflected on the mirror unit 55 can be visually recognized.
  • the mirror unit 55 is configured so that the entire display area of the display unit 50 is reflected on the mirror unit 55 when the driver DR indirectly visually recognizes the peripheral area captured image via the mirror unit 55.
  • the size of the mirror unit 55 are set.
  • the display unit 50 and the mirror unit 55 have a viewable range that the driver can visually recognize from the image of the display unit 50 reflected on the mirror unit 55 in the peripheral region. It is changed according to the movement of the viewing position.
  • the size of the mirror part 55 is the same size as the conventional rearview mirror so that the viewing range is reflected so that the same effect as the conventional rearview mirror can be obtained.
  • the driver DR can visually recognize the peripheral region captured image via the mirror unit 55, and the driver DR can visually recognize the display surface directly on the display unit 50.
  • the distance from the driver DR to the display surface of the display unit 50 is increased.
  • the driver DR indirectly visually recognizes the peripheral area captured image via the mirror unit 55, so that the display unit 50 does not allow the driver DR to see the illumination light on the display surface or the display surface. To place. Moreover, it is good also as a structure which provided the shielding so that the display surface and illumination light of the display part 50 would not be visible from driver
  • FIG. 27 is a diagram illustrating a configuration of the display control unit.
  • the display control unit 20 includes a recognition unit 23, a swing direction determination unit 24, an instruction operation determination unit 25, a driver authentication unit 26, a control processing unit 35, a display adjustment unit 41, and a luminance adjustment unit 42.
  • the swing direction determination unit 24 includes a swing direction determination processing unit 241, a swing direction determination learning unit 242, and a determination reference value storage unit 243.
  • the swing direction determination processing unit 241 compares the recognition result from the recognition unit 23 with the swing direction determination reference value supplied from the swing direction determination learning unit 242, and determines whether the driver is facing the mirror unit 55. Is output to the instruction operation determination unit 25 and the control processing unit 35.
  • the swing direction determination learning unit 242 reads the swing direction determination reference value from the determination reference value storage unit 243 and outputs it to the swing direction determination processing unit 241. Further, the turning direction determination learning unit 242 performs the turning direction corresponding to the driver information from the control processing unit 35, the determination parameter setting for driving optimized for high speed ahead driving, the determination parameter setting for driving suitable for low speed, reverse, and parking, etc.
  • the determination reference value is read from the determination reference value storage unit 243 and output to the swing direction determination processing unit 241. Furthermore, the turning direction determination learning unit 242 updates the turning direction determination reference value based on the recognition result of the head direction and the line-of-sight direction, so that the turning direction determination processing unit 241 can accurately determine the turning direction for each driver. Like that.
  • the swing direction determination processing unit 241 can perform determination depending on the speed range for each driver. For example, in high-speed running and high-speed merging work, attention is paid to the front, and the determination threshold time until the line-of-sight swing direction is determined is less than 1 second so that the viewing range can be expanded while watching the monitor with a quick operation.
  • the instruction operation determination unit 25 includes an instruction operation determination processing unit 251, an instruction operation determination learning unit 252, and a determination reference value storage unit 253.
  • the instruction operation determination learning unit 252 reads the instruction operation determination reference value from the determination reference value storage unit 253 and outputs the instruction operation determination reference value to the instruction operation determination processing unit 251. In addition, when the driver is notified from the control processing unit 35, the instruction operation determination learning unit 252 reads the instruction operation determination reference value corresponding to the notified driver from the determination reference value storage unit 253, and determines the instruction operation determination. The data is output to the processing unit 251. Further, the instruction operation determination learning unit 252 can update the instruction operation determination reference value based on the recognition result of the head direction and the line-of-sight direction, so that the instruction operation determination processing unit 251 can accurately determine the instruction operation. Like that.
  • the determination reference value storage unit 253 stores an instruction operation determination reference value used for determining the instruction operation. In addition, when driver authentication is performed, the determination reference value storage unit 253 stores an instruction operation determination reference value for each driver. The instruction operation determination reference value stored in the determination reference value storage unit 253 is updated according to the learning result of the instruction operation determination learning unit 252.
  • the control processing unit 35 determines the driver of the vehicle based on the determination result from the driver authentication unit 26 and notifies the determined driver to the turning direction determination learning unit 242 and the instruction operation determination learning unit 252. Further, the control processing unit 35 generates a control signal for performing different display control in the monitor image area and the non-monitor image area in the display unit 50 based on the determination results from the turning direction determination unit 24 and the instruction motion determination unit 25. The control processing unit 35 outputs the generated control signal to the display adjustment unit 41 and the luminance adjustment unit 42.
  • the display adjustment unit 41 Based on the control signal from the control processing unit 35, the display adjustment unit 41 adjusts the magnification of the peripheral region captured image, switches and synthesizes the image of the peripheral region, and the like on the image signal supplied from the peripheral region imaging unit 11. .
  • the detection of the display unit visual recognition start state is performed at a higher speed and more quickly as a driver's expected operation detection procedure.
  • the normal driver's ergonomic operation steps are expected to be as follows. When grasping the outside world through vision for animals in general, it is the eye movement that changes the direction most quickly, and if there is an object that you want to see in a range that can not be caught only by the rotation range of the eye movement Furthermore, the lack is compensated by changing the posture of the neck and body.
  • the driver grasps the approximate direction in which the image of the mirror part can be visually recognized through a series of steps to pay attention to the mirror part placement direction, which is significantly different from the direction of forward vision, and the rotational movement of the eyeball and the rotational movement of the neck To start.
  • the driver grasps the mirror portion with his / her line of sight, the eyeball rotation is aligned with the line-of-sight direction that cancels the rotation of the neck from the rotation of the neck's turning direction.
  • the head rotation state which is a series of operation features, is sequentially analyzed in time series to learn the change in the state of starting to visually recognize the mirror portion from the acceleration and deceleration states of movement.
  • HMI human machine interface
  • the determination transition of the posture recognition of the head is fed back visually or audibly to the driver DR through an overlay display on the display screen of the display unit 50, such as an LED display or a vehicle speaker,
  • the instruction operation can be determined more accurately and with a minimum operation. It is desirable that feedback to the driver DR is not digital 0/1 true / false judgment, but a status indicating the degree of judgment of the driver's movement is fed back, for example, in an analog manner by the notification unit.
  • the display of these feedbacks more than necessary can also disturb the field of view, once the driver-specific characteristics are no longer needed after learning, the display function is often stopped, and it is not always necessary to display them. .
  • the mode switching determination improves the operability by determining the correlation between the driving state and the vehicle.
  • FIG. 28 is a flowchart showing the operation of the display control unit.
  • the display control unit 20 takes in the determination reference value.
  • the display control unit 20 acquires a determination reference value used for determination of a turning motion, a viewing range change instruction, and a viewing range restoration instruction. Further, a determination reference value may be provided for each driver, and a determination reference value corresponding to the current driver may be acquired. Further, the determination criterion value may be updated in accordance with the driver's action to obtain the latest determination criterion value.
  • the display control unit 20 takes in the determination reference value and proceeds to step ST42.
  • step ST42 the display control unit 20 starts observation of the face direction (head direction).
  • the display control unit 20 starts processing for recognizing the face by using the image signal supplied from the driver imaging unit 12 and determining the face of the driver, and detecting the direction of the determined face (head direction). Then, the process proceeds to step ST43.
  • step ST43 the display control unit 20 determines the position and orientation of the face in a steady state.
  • the display control unit 20 determines the position and orientation of the face in a steady state based on the observation result of the face orientation (head orientation).
  • the display control unit 20 calculates a correction value according to the amount of change when the face position and orientation in a steady state have changed from the previous determination. If there is no information corresponding to the driver, the difference from the initial value is used as the correction value.
  • the display control unit 20 calculates the correction value and proceeds to step ST44.
  • step ST44 the display control unit 20 sets a swing direction determination reference value.
  • the display control unit 20 sets the swing direction determination reference value using the determination reference value and the calculated correction value, and proceeds to step ST45.
  • step ST45 the display control unit 20 starts the swing direction determination.
  • the display control unit 20 starts processing for determining the driver's turning motion using the observation result of the head orientation and the turning direction determination reference value, and proceeds to step ST46.
  • step ST46 the display control unit 20 tracks the position and orientation of the face.
  • the display control unit 20 tracks the face position and orientation based on the observation result of the face position and orientation, and proceeds to step ST47.
  • step ST47 the display control unit 20 determines whether a change has occurred in the position or orientation of the face.
  • the display control unit 20 returns to step ST46 when determining that there is no change in the position or orientation of the face, and proceeds to step ST48 when determining that a change has occurred.
  • step ST48 the display control unit 20 determines whether the mirror unit is in a staring state.
  • the display control unit 20 determines whether or not the driver is staring at the mirror unit using the position and orientation of the face and the determination reference value.
  • the display control unit 20 proceeds to step ST49 when determining that it is in the staring state, and returns to step ST46 when determining that it is not in the staring state.
  • the gaze state here refers to the point at which the moment of shifting to the situation grasp by focusing the eye as a physiological operation occurs, and the driver is not always looking at the image of the mirror part. Is not limited.
  • step ST49 the display control unit 20 shifts to the high speed detection mode.
  • the display control unit 20 can detect the driver's fine movements by observing the face position and orientation at high speed. To do.
  • the display control unit 20 In the high-speed detection mode, the display control unit 20 periodically performs observation of the position and orientation of the driver's face at a frequency of, for example, 100 ms or less. The swing direction is detected in the normal detection mode, and the driver's face position and orientation are observed periodically with a wider time interval than in the high-speed detection mode.
  • the display control unit 20 shifts to the high-speed detection mode and proceeds to step ST50.
  • step ST50 the display control unit 20 starts detecting an instruction.
  • the display control unit 20 starts detection of the viewing range change instruction and the viewing range restoration instruction using the observation result of the face position and orientation and the determination reference value, and proceeds to step ST51.
  • step ST51 the display control unit 20 determines whether an instruction is detected.
  • the display control unit 20 proceeds to step ST52 when the movement of the driver indicating the viewing range change instruction or the viewing range restoration instruction is detected by the instruction detection.
  • the display control part 20 progresses to step ST53, when the instruction
  • step ST52 the display control unit 20 performs display control according to the instruction. For example, when the display control unit 20 detects a viewing range change instruction, the display control unit 20 changes the viewing range in which an image is displayed in the monitor image area according to changes in the face position and orientation. Further, for example, when detecting the viewing range restoration instruction, the display control unit 20 returns the viewing range in which the image is displayed in the monitor image region to the region before the change. The display control unit 20 performs such display control and returns to step ST50.
  • step ST53 the display control unit 20 determines whether the head direction is different from the mirror unit direction.
  • the display control unit 20 determines whether the head direction is different from the image viewing direction using the observation result of the head direction and the determination reference value. If the display control unit 20 determines that the head orientation is different from the image viewing direction, the display control unit 20 switches the high-speed detection mode to the normal detection mode, and returns to step ST47. The display control unit 20 proceeds to step ST54 when it determines that the head direction is the mirror unit direction.
  • step ST54 the display control unit 20 determines whether it is within a predetermined determination period.
  • the display control unit 20 returns to step ST50 when it is within the predetermined determination period, and when the predetermined determination period has elapsed, switches the high-speed detection mode to the normal detection mode and returns to step ST47.
  • FIG. 29 is a diagram illustrating the operation of the turning direction and the viewing range change instruction.
  • FIG. 30 is a diagram illustrating a determination operation of a swing direction determination and a viewing range change instruction.
  • 30A illustrates the relationship between the turning direction (angle) and time
  • FIG. 30B illustrates the relationship between the turning speed and time.
  • a direction PF1 indicates the front direction in which the driver's head is facing normally, and the direction PF2 illustrates the direction of the head when the driver visually recognizes the image of the mirror unit 55. ing.
  • a direction PF3 indicates the direction of the mirror unit 55.
  • the range FS1 exemplifies the movement range of the driver's head direction at normal times
  • the range FSa exemplifies the search range by the driver's eye movement.
  • the range FS2 is a head rotation acceleration band when the head direction is moved from the direction PF1 to the direction PF2, and is a head rotation deceleration band when the head direction is moved from the direction PF2 to the direction PF1.
  • the range FS3 is a head rotation reduction band when the head direction is moved from the direction PF1 to the direction PF2, and is a head rotation acceleration band when the head direction is moved from the direction PF2 to the direction PF1.
  • the angle FVa exemplifies the turning angle of the head when the driver visually recognizes the image of the mirror unit 55.
  • a range JA is a range of turning angles at which the driver can be regarded as facing forward.
  • the range JB is a range of a turning angle in which the driver can be regarded as staring at the mirror unit 55 when the driver rotates his / her head in the direction PF2.
  • the range JC is a range of a turning angle in which it can be considered that the user is staring at the mirror unit 55 by moving the eyeball.
  • a curve QCa indicates the head direction
  • a curve QCb indicates the head direction and the line-of-sight direction based on eye movement.
  • a range JE is a determination range when turning forward.
  • the display control unit 20 returns to the range JE after the turning speed (corresponding to a change in head direction) exceeds the range JE indicated by the determination reference value, and the turning direction (angle) is indicated by the determination reference value. It is detected that it is within the range JB of the turning direction (range set with reference to the mirror portion direction). In this case, the display control unit 20 determines that the turning operation has been performed on the assumption that the driver is turning and staring in the direction of the mirror unit 55. If eye movement is detected and the gaze direction is estimated based on the head direction and the eye movement, it is possible to more accurately determine the turning motion by comparing the estimated gaze direction and the range JC. it can. When the display control unit 20 determines that the turning motion has been performed, the display control unit 20 changes to the high-speed detection mode so that the viewing range change instruction can be detected with high time resolution.
  • the arrangement and direction of the display unit 50 and the mirror unit 55 are different, and it is expected that the instruction operation determination and the turning angle determination are all different. It is desirable to do it individually.
  • the display control unit 20 compares the range JB for determining whether the turning direction (angle) is in a staring state with the turning direction (angle), and the turning direction (angle) is within a predetermined direction within a predetermined number of times. Detect twice.
  • the display control unit 20 determines that the driver has instructed the mirror unit in a staring state and has determined that the viewing range change instruction has been issued. Thereafter, the display control unit 20 performs display control for changing the viewing range in accordance with the viewing range change instruction.
  • the display control unit 20 detects that the head direction is within the range JA indicated by the determination reference value. In this case, the display control unit 20 determines that the driver has changed the direction from the mirror unit direction to the front direction, and returns to the state before the turning motion determination.
  • the viewing range change instruction may have different operation instruction operation amounts depending on the driving state.
  • the driver is accustomed to moving the head and body much more during low-speed driving operations such as parking, and on the other hand, when moving at high speed, the amount of movement of the head is small and eye movement is the main eye movement. Therefore, it is preferable to set the determination standard with less head movement.
  • FIG. 30 illustrates two or more repetitive movements, the driver's head movement may be a series of one-way two-stage acceleration movements that are not substantially restored.
  • FIG. 31 illustrates the case where the acceleration of the rotational motion of the head is used as the operation instruction motion amount.
  • 31A shows a turning direction (angle)
  • FIG. 31B shows a turning speed
  • FIG. 31C shows a turning acceleration.
  • the starting position is not necessarily located in the repetitive movement of the turning direction and the repetitive movement of the next turning direction, for example, the next turning action before returning to the original position in the repetitive movement of the previous turning direction. Is done.
  • the curve QCa indicating the orientation of the head changes as shown in FIG. Therefore, it is not possible to determine the viewing range change instruction based on the turning direction (angle).
  • the repetitive motion in the swing direction is repeated, the swing acceleration becomes a waveform in which one cycle of vibration is generated for each swing motion, as shown in FIG. Therefore, the display control unit 20 can accurately detect the repetition of the swing direction by using the swing direction acceleration.
  • the display control unit 20 learns the driver's turning speed and the operating characteristic history of the turning direction, and updates the determination reference value for each driver according to the characteristics unique to the driver. In this way, by updating the determination reference value, the self-learning function is provided so that the determination accuracy of the turning operation and the viewing range change instruction can be improved and the accurate instruction detection with fewer instruction operations can be performed. Prepare. In the learning function, the operation characteristics including the operation instruction operation amount are self-learned to optimize the driver characteristics.
  • the movement of the head direction is detected after the time when the swinging motion is stable. In this way, for example, when the head movement in the direction orthogonal to the direction of the head is repeated twice or more, or the face swinging motion of rotating the face around the neck is repeated twice or more. In this case, it is determined that a viewing range change instruction or a viewing range restoration instruction has been performed. Therefore, the instruction can be determined with higher accuracy.
  • the object is quickly captured by eye movement, and the eye is focused at the same time.
  • it takes into account movements that stabilize head movement. That is, the driver stabilizes the movement of the head position toward the stop at the timing when the driver can visually grasp the display contents and grasp the situation. Since the driver determines whether or not the view range needs to be changed further by grasping the screen, this reflects that the instruction operation is performed after the stabilization procedure is performed.
  • the display control unit 20 performs display control in response to detecting that the direction of the driver's head has moved in the direction of the mirror unit. For example, when the head direction is not the direction of the mirror unit, the backlight is turned off or the signal level of the luminance signal is lowered to make the image invisible or difficult to see. Further, for example, when the head direction is the direction of the mirror portion, the lighting of the backlight, the luminance control, and the signal level of the luminance signal are adjusted so that the image in the viewing range can be confirmed. Accordingly, it is possible to prevent an unnecessary bright image of the peripheral area from being displayed when the driver is facing forward. In addition, the image of the peripheral area can be displayed only when the driver is facing the mirror unit.
  • the display control unit 20 may gradually return the viewing range to the original position gradually after changing the viewing range. In this case, the driver does not need to perform an operation for returning the viewing range to the original range. Further, the display control unit 20 performs display control so that a change in display magnification and a change in display form are not performed suddenly in order to prevent the driver from being able to instantaneously check the situation. I do.
  • the display control unit 20 is not limited to the configuration of FIG. 27, and may be configured differently as long as the vehicle state and the driver operation instruction gesture response display.
  • a warning display may be provided on or around the screen of the display unit according to the degree of image compression.
  • the control processing unit 35 generates a control signal for performing different display control in the monitor image region and the non-monitor image region in the display unit 50 based on the determination result of the driver movement determination unit 21, and the display adjustment unit 41 and the luminance adjustment To the unit 42 and the warning display superimposing unit 43.
  • the display adjustment unit 41 Based on the control signal from the control processing unit 35, the display adjustment unit 41 adjusts the magnification of the peripheral region captured image, switches and synthesizes the image of the peripheral region, and the like on the image signal supplied from the peripheral region imaging unit 11. .
  • the luminance adjusting unit 42 reduces the luminance of the non-monitor image area in the display unit 50 based on the control signal from the control processing unit 35 as compared with the monitor image area.
  • the luminance adjustment unit 42 controls the illumination, for example, a backlight, so that the luminance of the non-monitor image area is greater than that of the monitor image area. Also reduce.
  • the display unit 50 is configured using a display element or a self-luminous element that requires illumination, such as an organic EL display element, a process for reducing the signal level of the luminance signal corresponding to the non-monitor image area is performed. Also good.
  • the warning display superimposing unit 43 superimposes information indicating the degree of image compression, for example, on the image after the display variable processing based on the control signal from the control processing unit 35.
  • the image of the viewing range is displayed according to the left and right movements of the face, the viewing range is expanded by repeating the face and head more than twice, and the display before the enlargement is restored by the reverse operation.
  • a dynamic warning display is provided to warn that the image is scaled.
  • the dynamic warning display adjusts the frame size according to the scaling operation so that the warning content can be understood intuitively, displays the frame with a zebra dotted line frame, and flows the zebra display according to the scaling. indicate.
  • the display control unit 20 may perform display control in conjunction with the navigation system so as to display an image having a wider viewing angle than the normal rear view at the time of merging on a highway or running on a landabout.
  • FIG. 33 to 35 illustrate display control based on other movements of the driver.
  • FIG. 33 illustrates the arrangement of the peripheral area imaging unit and the peripheral image displayed on the display unit.
  • the vehicle is provided with the peripheral area imaging units 11c and 11d on the side surface of the vehicle, and the peripheral area imaging unit 11e is provided on the back surface of the vehicle.
  • the display control unit 20 displays the images of the three peripheral areas acquired by the peripheral area imaging units 11c, 11d, and 11e on the display unit 50, as illustrated in FIG.
  • the display control using the tilting operation of the head can display the image of the peripheral area in various ways.
  • the viewing range is changed by performing display control based on the driver's movement determination result.
  • the direction of the mirror unit is changed based on the driver's movement determination result.
  • an image in a desired viewing range in the display image on the display unit may be reflected on the mirror unit.
  • the mirror unit may have a configuration in which the semi-transmissive mirror has a semi-transmissive dimming function, or a configuration in which a light dimming device for transmitted light is further disposed on the back of the semi-transmissive mirror.
  • the case where the function corresponding to the rearview mirror is realized is illustrated.
  • the visual recognition of the peripheral area is not limited to the rearview mirror, but is performed by the rearview mirror. Therefore, a function corresponding to the rearview mirror may be realized.
  • a case where a function corresponding to a room mirror is realized will be described.
  • the arrangement of the display unit, the mirror unit, etc. is not necessarily limited to the arrangement corresponding to the conventional mirror, and may be arranged, for example, in the vicinity of the center meter, console panel, etc. on the dashboard. .
  • an area captured by the peripheral area imaging unit 11 (horizontal angle of view of a peripheral image acquired by the peripheral area imaging unit 11) ARu is substantially the same as a visual field area ARrm of the peripheral area reflected on the room mirror 61. Make equal. In this way, a function corresponding to a room mirror can be realized using a single peripheral area imaging unit.
  • the peripheral image reflected in the room mirror 61 is an image of the visual field area ARrm in FIG.
  • the image shown in FIG. 36B is obtained.
  • the peripheral area imaged by the peripheral area imaging unit 11 is the peripheral area ARu of FIG. 36A, for example, an image shown in FIG. That is, in the image of the peripheral area captured by the peripheral area imaging unit 11, the area that becomes a blind spot in the vicinity of the vehicle is larger than the peripheral image reflected on the room mirror 61. Therefore, as shown in FIG. Can not be confirmed.
  • peripheral region images acquired by the peripheral region imaging unit 11g and the peripheral region imaging unit 11h generate parallax, it is difficult to cancel the difference in parallax and to display the peripheral image in a composite manner. Therefore, in the synthesis of the images in the peripheral area, the image synthesis process is easily performed ergonomically so that the difference in parallax is not noticeable.
  • FIG. 38 exemplifies a configuration in which the blind spot is smaller than the room mirror.
  • a peripheral area imaging unit 11j is provided on the left side of the vehicle, and a peripheral area imaging unit 11k is provided on the right side of the vehicle.
  • the peripheral area imaging unit 11j has an area ARuj1 in which the horizontal visual field area (view angle) of the acquired peripheral image is included in the horizontal visual field area ARrm of the peripheral image reflected on the room mirror 61 and the visual field area ARrm.
  • the outer area ARuj2 is set to be included.
  • the peripheral area imaging unit 11k has an area ARuk1 in which the horizontal visual field area (view angle) of the acquired peripheral image is included in the horizontal visual field area ARrm of the peripheral image reflected on the room mirror 61, and to the right of the visual field area ARrm.
  • the outer region ARuk2 is set to be included.
  • the visual field area ARrm is set to be included in at least one of the area ARuj1 and the area ARuk1.
  • the control processing unit 35 combines, for example, the image of the area ARmj in the peripheral image acquired by the peripheral area imaging unit 11j and the image of the area ARmk in the peripheral image acquired by the peripheral area imaging unit 11k, as shown in FIG. As shown in (B), the peripheral area including the area ARrm can be confirmed. Further, an image used for confirming the peripheral region can be generated by simply combining the image of the region ARmj and the image of the region ARmk without performing the process of canceling the difference in parallax and performing the composite display. Can be easily generated.
  • so-called blend processing is performed in a predetermined range based on the image combination position, and the peripheral image acquired by the peripheral region imaging unit 11j and the peripheral image acquired by the peripheral region imaging unit 11k are mixed. Change the ratio continuously. If such a process is performed, the connecting portion can be made inconspicuous.
  • control processing unit 35 varies the image cutout position based on the determination result of the driver movement determination unit 21, and when the position of the driver DR moves to the left or right, for example, the movement of the peripheral region reflected on the room mirror 61 Similarly to the above, the area where the image is cut out is moved. In this way, a function corresponding to the rearview mirror can be realized even if the driver moves.
  • the right viewpoint image and the left viewpoint image are combined. May be in an uncomfortable image on the vehicle or person.
  • the control processing unit 35 can change the coupling position in accordance with an instruction from the driver based on the determination result of the driver movement determination unit 21.
  • FIG. 39 is a diagram for explaining switching of image combining positions.
  • the combined position of the peripheral image acquired by the peripheral region imaging unit 11j and the peripheral image acquired by the peripheral region imaging unit 11k is the position Pb1
  • the succeeding vehicle OBc and the person OBp Since the position Pb1 is not included in the image area, the subsequent vehicle OBc and the person OBp can be easily confirmed from the displayed peripheral image.
  • the combining position is fixed at the position Pb1, and the image area of the person OBp reaches the position Pb1, as shown in FIG. 39B, the left viewpoint image and the right viewpoint image of the person OBp are combined. There is a possibility that it becomes difficult to correctly determine the person OBp.
  • the driver's instruction is detected from the driver's operation instruction gesture using, for example, a human machine interface corresponding to the driver's operation described above. In this way, the driver can easily move the coupling position in a desired direction simply by moving the head or line of sight.
  • the series of processes described in the specification can be executed by hardware, software, or a combined configuration of both.
  • a program in which a sequence for performing the processing as described above is recorded is installed in a memory in a computer incorporated in dedicated hardware and executed.
  • the program can be installed and executed on a general-purpose computer capable of executing various processes.
  • the program can be downloaded from the download site via a network such as LAN (Local Area Network) or the Internet, wirelessly or wired to the computer, self-diagnostic function or OBD (on-board diagnostics). It may be transferred via a (no stick) terminal.
  • the computer can receive the program transferred in such a manner, and can install and update it in a recording medium such as a built-in hard disk.
  • the present technology should not be construed as being limited to the embodiments of the technology described above.
  • the embodiments of this technology disclose the present technology in the form of examples, and it is obvious that those skilled in the art can make modifications and substitutions of the embodiments without departing from the gist of the present technology. In other words, the scope of the claims should be considered in order to determine the gist of the present technology.
  • the signal processing apparatus of this technique can also take the following structures.
  • the signal processing apparatus provided with the display control part which controls the visual recognition range of the said peripheral area
  • the image obtained by imaging the surrounding area of the vehicle is an image captured from a plurality of predetermined positions different in a predetermined position or a traveling direction of the vehicle,
  • the display control unit sets the image area to be presented for one or a plurality of images in the captured image based on the operation information, and sets the visible range of the visible peripheral area according to the driving situation.
  • the signal processing apparatus according to (1) or (2).
  • the vehicle has a configuration in which a tow trailer unit is connected to a cabin.
  • the operation information includes vehicle speed information of the vehicle, information indicating a steering state, gear position information, a direction indicator setting state, and the cabin in a case where a traction trailer unit is connected to a cabin.
  • the signal processing device according to any one of (1) to (5), including at least one of information on a turning angle of the tow trailer unit, information indicating a connection state of the tow trailer unit, and current position information.
  • an image area to be presented to the driver of the vehicle from an image obtained by imaging the surrounding area of the vehicle is set based on operation information related to the driving situation of the vehicle.
  • the visible range of the peripheral area that can be visually recognized by the image presented by the driver is controlled according to the driving situation.
  • the visual recognition range of the peripheral area which can be visually recognized by the driver is controlled according to the driving situation, and the peripheral area of the vehicle can be easily visually recognized, which is suitable for a vehicle such as a trailer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 表示制御部20は、周辺領域撮像部11で車両の周辺領域を撮像して得られた画像から車両の運転者DRに提示する画像領域を、運転状況検出センサ13で取得された車両の運転状況に関する運行情報に基づき設定して、運転者DRがミラー55を介して表示部50で提示された画像によって視認できる周辺領域の視認範囲を、運転状況に応じて制御する。このため、例えばキャビンの向きと牽引トレーラ部の向きが異なる状況を生じる運転状況であるとき、キャビンの向きと牽引トレーラ部の向きが相違しても牽引トレーラ部の外側が視認範囲に含まれるように提示する画像領域を設定されて、車両の所望の周辺領域を容易に視認できるようになる。

Description

信号処理装置と信号処理方法およびモニタリングシステム
 この技術は、信号処理装置と信号処理方法およびモニタリングシステムに関し、車両の周辺領域等を容易に視認できるようにする。
 近年、撮像装置と表示装置により構成されたモニタリングシステムによって、車両のバックミラーに相当する機能を実現することが行われている。バックミラーを用いた視認方法では、運転者が頭部や眼の位置等(以下、単に「頭部位置」という)を移動させることで視認可能な範囲(以下「視認範囲」という)を移動させることが可能である。しかし、撮像装置で取り込んだ画像を単に表示装置に表示するモニタリングシステムでは、視認範囲が固定されてしまい、運転者が頭部位置を移動させも視認可能な範囲を移動させることができない。このため、特許文献1では、運転者の頭部位置の変化を検出して、周辺領域撮像画像から頭部位置の変化に応じて画像の切り出しを行い、切り出した画像を表示装置に表示することで、視認範囲を頭部位置の変化に応じて移動させることが開示されている。
特開2010-179850号公報
 ところで、車両の周辺領域等を視認する場合、車両の運行状況例えばトレーラ等のキャビンと牽引トレーラ部の位置関係によっては、キャビンに設けられたバックミラーに牽引トレーラ部が多く映り込んで、または映り込む周辺領域が牽引トレーラ部から離れて、牽引トレーラ部の近傍の周辺領域を視認することが困難となる場合がある。
 そこで、この技術では、車両の周辺領域を容易に視認できる信号処理装置と信号処理方法およびモニタリングシステムを提供することを目的とする。
 この技術の第1の側面は、車両の周辺領域を撮像して得られた画像から前記車両の運転者に提示する画像領域を、前記車両の運転状況に関する運行情報に基づき設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する表示制御部を備えた信号処理装置にある。
 この技術では、車両の周辺領域を撮像して得られた画像、例えば車両に設けられた撮像部または車両の進行方向に異なる複数の位置に設けられた複数の撮像部で撮像された周辺領域の画像が取得される。また、例えば車両の車速情報,ステアリング状態を示す情報,ギヤ位置情報,方向指示器設定状態,車両がキャビンに牽引トレーラ部が連結された構成である場合におけるキャビンに対する牽引トレーラ部の曲がり角,牽引トレーラ部の接続状態を示す情報,現在位置情報の少なくとも何れかが、車両の運転状況に関する運行情報として取得される。この運行情報に基づき、車両の周辺領域を撮像して得られた画像または複数の位置から撮像された画像における1または複数の画像から車両の運転者に提示する画像領域が設定されて、運転者が提示された画像によって視認できる周辺領域の視認範囲が運転状況に応じて制御される。例えば、車両の進行方向に関した運行情報に基づき、車両の外側方向に視認範囲が制御される。また、車両がキャビンに牽引トレーラ部を連結した構成とされている場合、例えばキャビンと牽引トレーラ部のそれぞれの位置から車両の周辺領域が撮像されて、運行情報に基づきキャビンの向きと牽引トレーラ部の向きが異なる状況を生じる運転状況であるとき、キャビンの向きと牽引トレーラ部の向きが相違しても牽引トレーラ部の外側が視認範囲に含まれるように複数の位置から撮像された画像における1または複数の画像から運行情報に基づき提示する画像領域が設定される。
 この技術の第2の側面は、運転状況検出部で取得された車両の運転状況に関する運行情報に基づき、撮像部で前記車両の周辺領域を撮像して得られた画像から前記車両の運転者に提示する画像領域を表示制御部で設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する工程を含む信号処理方法にある。
 この技術の第3の側面は、車両の周辺領域を撮像する撮像部と、前記車両の運転状況に関する運行情報の運行情報を取得する運転状況検出部と、前記撮像部で得られた画像から前記車両の運転者に提示する画像領域を、前記運転状況検出部で取得された前記運行情報に基づき設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する表示制御部とを備えるモニタリングシステムにある。
 この技術によれば、車両の周辺領域を撮像して得られた画像から車両の運転者に提示する画像領域が、車両の運転状況に関する運行情報に基づき設定されて、運転者が提示された画像によって視認できる周辺領域の視認範囲が運転状況に応じて制御される。このように、運転状況に応じて運転者が視認できる周辺領域の視認範囲が制御されるため、車両の周辺領域を容易に視認できるようになる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
第1の実施の形態の構成を例示した図である。 運転者と表示部とミラー部の位置関係を例示した図である。 周辺領域撮像部の撮像範囲を説明するための図である。 ミラー部と表示部および従来のバックミラーの関係を示した図である。 焦点の切り替えと応答時間の関係を模式化して示した図である。 第1の実施の形態の動作を説明するための図である。 ミラー部が湾曲部分を有している場合を例示した図である。 第2の実施の形態の構成を例示した図である。 運転者と表示部とミラー部の位置関係を例示した図である。 表示制御部の構成を示す図である。 第2の実施の形態の動作を説明するための図である。 表示制御部の動作を示すフローチャートである。 表示制御部の第1の表示制御動作を説明するための図である。 表示制御部の第2の表示制御動作を説明するための図である。 表示部の表示と圧縮率および周辺領域との関係を示している。 第3の実施の形態の構成を例示した図である。 周辺領域撮像部の配置を例示した図である。 表示制御部の構成を示す図である。 表示制御部の動作を示すフローチャートである。 視認範囲のモードを例示した図である。 運転状況判別結果と視認範囲のモードとの関係を例示した図である。 表示部で表示される表示画像を例示した図である。 表示部で表示される他の表示画像を例示した図である。 表示部で表示される他の表示画像を例示した図である。 運転者が周辺領域の状況を把握する場合の動作を例示したフローチャートである。 第4の実施の形態の構成を例示した図である。 表示制御部の構成を示す図である。 表示制御部の動作を示すフローチャートである。 振り向きと視認範囲変更指示の動作を例示した図である。 振り向き判定と視認範囲変更指示の判定動作を例示した図である。 操作指示動作量として頭部の回転動作の加速度を用いる場合を例示した図である。 警告表示を行う場合の表示制御部の構成を例示している。 周辺領域撮像部の配置と表示部で表示される周辺画像を例示した図である。 頭部を前後方向に移動した場合の周辺領域画像の切り替えを説明するための図である。 頭部を左方向に移動した場合の周辺領域画像の切り替えを説明するための図である。 1台の周辺領域撮像部を用いてルームミラーに相当する機能を実現する場合の構成を例示した図である。 複数台の周辺領域撮像部を用いてルームミラーに相当する機能を実現する場合の構成を例示した図である。 ルームミラーよりも死角を少なくした場合の構成を例示した図である。 画像の結合位置の切り替えを説明するための図である。
 以下、本技術を実施するための形態について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
   1-1.第1の実施の形態の構成
   1-2.第1の実施の形態の動作
   1-3.第1の実施の形態の他の構成と動作
 2.第2の実施の形態
   2-1.第2の実施の形態の構成
   2-2.第2の実施の形態の動作
 3.第3の実施の形態
  3-1.第3の実施の形態の構成
  3-2.第3の実施の形態の動作
 4.第4の実施の形態
  4-1.第4の実施の形態の構成
  4-2.第4の実施の形態の動作
 5.他の実施の形態
 <1.第1の実施の形態>
 [1-1.第1の実施の形態の構成]
 図1は第1の実施の形態の構成を例示している。表示装置10は、周辺領域撮像部11、表示部50、ミラー部55を備えている。また、図2は、運転者と表示部とミラー部の位置関係を例示した図である。
 周辺領域撮像部11は、車両周辺の周辺領域を撮像して画像信号を表示部50に出力する。図3は、周辺領域撮像部の撮像範囲を説明するための図である。例えば、バックミラー91を用いた場合に運転者DRが頭部位置(眼の位置)PS1で周辺領域における領域ARb1の範囲を視認できるとする。なお、以下の説明では胴部位置や眼の位置を単に頭部位置として記載する。
 運転者DRが頭部位置を移動して位置PS2で周辺領域における領域ARb2の範囲を視認できるとする。周辺領域撮像部11は、例えば領域ARb1と領域ARb2を含む領域ARcの範囲を撮像して画像信号を生成する。このように、撮像範囲を設定すれば、周辺領域撮像部11はバックミラー91を用いた場合に視認可能な周辺領域を撮像した画像信号を生成できる。なお、周辺領域撮像部11の撮像範囲は、領域ARb1と領域ARb2を含む領域ARcの範囲に限らず例えば領域ARcよりも広画角の範囲としてもよい。以下、周辺領域撮像部11で撮像される領域を撮像対象周辺領域とする。
 表示部50は、運転者DRがミラー部55を介して間接的に表示面を視認できるように配置されており、周辺領域撮像部11で撮像された画像(以下「周辺領域撮像画像」という)を表示面に表示する。なお、表示部50の表示画像において、運転者がミラー部55を介して視認する周辺領域の範囲(以下「視認範囲」という)と対応する画像領域をモニタ画像領域とする。
 ミラー部55は、表示部50の表示面を運転者DRが間接的に視認できるように設けられている。ミラー部55は、車両内であって例えば運転者DRが従来のバックミラーを見る動作と同等の動作を行ったとき、ミラー部55に写った画像を視認できるように例えばピラーの近傍位置に配置されている。
 また、ミラー部55に対して表示部50は、ミラー部55に映る表示部50での周辺領域撮像画像が、従来のバックミラーに映る周辺領域と同等となるように表示サイズやミラー部55との間隔が設定されている。さらに、表示部50とミラー部55は、周辺領域においてミラー部55に映る表示部50の画像によって運転者が視認できる視認範囲が、ミラー部55に対する運転者の視認位置の移動に応じて変更されるように配置されている。
 図4は、ミラー部と表示部および従来のバックミラーの関係を示している。ミラー部55の鏡面サイズと位置は、運転者DRがバックミラー91を見たときのバックミラー91の鏡面範囲(矢印WAの範囲)と略一致するように設定する。また、ミラー部55を介して視認される表示部50の画像領域では、バックミラー91の鏡面に映る周辺領域の撮像画像を表示する。このようにすれば、表示部50とミラー部55によって従来のバックミラー91と同様な作用効果を得ることができる。本実施例では、従来のAピラー近傍設置のサイド(バック)ミラー(後写鏡)を例にそれと同等の視認方向とした場合に配置すべきミラー部55位置関係で説明をしているが、フェンダーミラーの視認方向と同様に、視認方向がダッシュボード中央に来るような配置でもよく、運転者のより少ない首振り動作を実現した配置として有効な負荷低減の効果も期待される。
 表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認できるようにして、運転者DRが表示部50で表示面を直接的に視認する場合に比べて、運転者DRから表示部50の表示面までの距離を長くする。
 図5は、運転者の眼の焦点切り替えと応答時間の関係を模式化して示している。図5の(A)に示すように、無限遠の視認対象物OBaと近距離の視認対象物OBbの2点間で眼の焦点の切り替えを行う場合、一方から他方の対象物に焦点を合わせるまでの応答時間は、近距離の視認対象物OBbまでの距離LAに応じて変化する。図5の(B)は、近距離の視認対象物OBbまでの距離LAと応答時間TRの関係を示しており、近距離の視認対象物OBbまでの距離がある程度の距離よりも短くなると、視認対象物OBbまでの距離が短くなるに伴い応答時間TRが長くなる傾向がある。なお、実線は高年齢者、破線は中年齢者、一点鎖線は若年齢者の場合である。このため、本技術では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認できるようにして、運転者DRから表示部50の表示面までの距離を長くすることで、高速な認知作業を行うことができるようにする。具体的には、運転者DRからミラー部55を介した表示部50の表示面までの光学的視認距離が少なくとも1.1m以上となるように表示部50とミラー部55を配置または光学設計する。このように表示部50とミラー部55を配置すれば、表示装置10では、運転者が表示部50で表示された周辺領域撮像画像に焦点を合わせるために必要とされる時間を、バックミラーを介して見た対象物に焦点を合わせるために必要とされる時間に近づけられる。
 また、表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認することから、表示部50は運転者DRから表示面や表示面の照明光が直接見えないように配置する。また、運転者DRから表示部50の表示面や照明光が見えないように遮蔽物を設けた構成としてもよい。
 [1-2.第1の実施の形態の動作]
 図6は、第1の実施の形態の動作を説明するための図である。表示部50は、周辺領域撮像部11で撮像された撮像画像を表示する。ミラー部55は、例えば平面ミラーで構成して、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認する際に、表示部50における表示領域GRcの一部の領域GRmを視認できるサイズとする。なお、領域GRmをモニタ画像領域とする。また、表示部50は、周辺領域撮像部11で撮像された領域ARcの画像を表示領域GRcに表示する。
 表示部50とミラー部55は、車両の運転者DRが視認範囲を変更するために頭部位置を例えば矢印Vaの方向に移動したとき、ミラー部55を介して視認できるモニタ画像領域GRmが従来のバックミラーの場合と同様に矢印Vbの方向に移動するように配置する。具体的には、頭部位置を移動した場合におけるモニタ画像領域GRmの移動方向が表示部50における表示領域の長手方向となるように、表示部50とミラー部55を配置する。
 ここで、ミラー部55の方向を向いている運転者DRの頭部位置が図に示す位置である場合、運転者DRは、ミラー部55を介してモニタ画像領域GRmの画像を視認することで、周辺領域における視認範囲ARmの状況を確認できる。
 次に視認範囲ARmよりも外側の領域を確認するため、運転者DRが頭部位置を車両前方向である矢印Vafの方向に移動すると、運転者DRがミラー部55を介して視認できるモニタ画像領域GRmは矢印Vbfの方向に移動する。すなわち運転者DRは、頭部位置を車両前方に移動して、ミラー部55を介してモニタ画像領域の画像を視認することで、頭部位置の移動前よりも周辺領域における外側の領域の状況を確認できる。
 また、運転者DRが頭部位置を車両後方(矢印Vafに対して逆方向)に移動すると、運転者DRがミラー部55を介して視認できるモニタ画像領域GRmは矢印Vbfに対して逆方向に移動する。すなわち運転者DRは、頭部位置を車両後方に移動して、ミラー部55を介してモニタ画像領域の画像を視認することで、頭部位置の移動前よりも周辺領域における内側の領域の状況を確認できる。
 したがって、ミラー部55を介して表示部50の画像を運転者に視認させることで、バックミラーを用いた場合と同様に周辺領域の所望の領域を確認できる。また、表示部50とミラー部55は、車両の室内に設けられているので、バックミラーを用いた場合のようにサイドウィンドウによる悪影響を受けることなく良好に周辺領域を確認できる。例えばサイドウィンドウの曇りや雨滴等の付着によって、周辺領域の確認が困難となってしまうことを防止できる。
 [1-3.第1の実施の形態の他の構成と動作]
 ところで、上述の第1の実施の形態のミラー部55は、平面ミラーで構成されている場合について説明したが、ミラー部55は平面ミラーに限らず湾曲部分を有した構成としてもよい。ミラー部55を部分的に湾曲させることにより湾曲部でバックミラー(後写鏡)の凸面鏡に相当する効果が得られる。
 図7は、ミラー部が湾曲部分を有している場合を例示している。ミラー部55は、視認範囲の移動方向、すなわち運転者DRの頭部位置の移動に応じたモニタ画像領域GRmの移動方向の形状を、例えば運転者DRの方向に突出した湾曲形状とする。また、ミラー部55は、視認範囲の移動方向の端部側よりも中央部分MRcの湾曲を少なくて、略平面状の形状とする。
 このように、端部側を湾曲させると、湾曲部分では視認範囲の移動方向について圧縮された画像となる。したがって、ミラー部55の中央部分MRcがモニタ画像領域GRmに対応する領域とすると、周辺領域においてモニタ画像領域GRmに対応する視認範囲ARmの外側や内側をミラー部55の端部側部分の圧縮画像で確認できるようになる。したがって、平面ミラーを用いた場合よりも、運転者が確認できる周辺領域の領域を広く確保できるようになる。
 <2.第2の実施の形態>
 [2-1.第2の実施の形態の構成]
 図8は第2の実施の形態の構成を例示している。表示装置10は、周辺領域撮像部11、運転者撮像部12、表示制御部20、表示部50、ミラー部55を備えている。なお、図9は、運転者と表示部とミラー部および運転者撮像部の位置関係を例示した図である。
 周辺領域撮像部11は、車両の周辺領域を撮像して画像信号を表示制御部20に出力する。なお、周辺領域撮像部11で撮像される領域を撮像対象周辺領域とする。
 運転者撮像部12は、運転者DRの頭部位置や頭部の向き(顔の向きに相当)、視線の向き等を判別できるように、例えば運転者DRの前方またはミラー部55が設置されている方向に設けられている。運転者撮像部12は、運転者DRを撮像して画像信号を表示制御部20に出力する。
 表示制御部20は、周辺領域撮像部11で撮像された周辺領域撮像画像を表示部50に表示させる。また、表示制御部20は、運転者の頭部位置や頭部の向き、視線の向き、および位置や向きの移動等に基づき、予め定めた表示変更意思伝達操作に応じて表示部50に表示する画像の表示制御を行う。
 表示部50は、運転者がミラー部55を介して間接的に表示部50の表示面を視認できるように配置されている。また、表示部50の表示面は、例えば運転者DRが運転時にバックミラーで広範囲の領域を確認するように頭部位置を移動しても、ミラー部55を介して表示部50の表示画像を視認できるように表示面のサイズが設定されている。なお、表示部50の表示画像において、運転者がミラー部55を介して確認する周辺領域の視認範囲と対応する領域をモニタ画像領域とする。
 ミラー部55は、表示部50の表示面を運転者DRが間接的に視認できるように設けられている。ミラー部55は、車両内であって例えば運転者DRが従来のバックミラーを見る動作を行ったとき、ミラー部55に写った画像を視認できるように例えばピラー近傍の位置に配置されている。また、ミラー部55は、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認する際に、表示部50の表示領域全体がミラー部55に映り込むように、表示部50との位置関係およびミラー部55のサイズを設定する。さらに、表示部50とミラー部55は、周辺領域においてミラー部55に映る表示部50の画像によって運転者が視認できる視認範囲が、表示制御部20の表示制御によって、ミラー部55に対する運転者の視認位置の移動に応じて変更される。ミラー部55の鏡面サイズと位置は、図4に示すように、運転者DRがバックミラー91を見たときのバックミラー91の鏡面範囲(矢印WAの範囲)と略一致するように設定する。このように設定して、表示部50とミラー部55によって従来のバックミラー91と同様な作用効果を得ることができるようにする。
 表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認できるようにして、運転者DRが表示部50で表示面を直接的に視認する場合に比べて、運転者DRから表示部50の表示面までの距離を長くする。
 また、表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認することから、表示部50は運転者DRから表示面や表示面の照明光が見えないように配置する。また、運転者DRから表示部50の表示面や照明光が直接見えないように遮蔽物を設けた構成としてもよい。本実施例では、従来のAピラー近傍設置のバックミラーと同等の視認方向とした場合に配置すべきミラー部55位置関係で説明をしているが、フェンダーミラー相当の視認方向として視線がダッシュボード中央に来るような配置でもよい。
 図10は、表示制御部の構成を示す図である。表示制御部20は、運転者動き判別部21、制御処理部35、表示調整部41、輝度調整部42を備えている。
 運転者動き判別部21は、運転者撮像部12から供給された画像信号に基づき、運転者の頭部位置を検出して、運転者の頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、例えば運転者撮像部12から供給された画像信号に基づき、運転者の顔認識を行い、認識した顔の位置や顔の向き(頭部の向きに相当)、視線の向きを判別する。さらに、運転者動き判別部21は、認識した顔を追跡して、頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、判別結果を制御処理部35に出力する。
 制御処理部35は、運転者動き判別部21の判別結果に基づき、表示部50におけるモニタ画像領域とその他の領域(以下「非モニタ画像領域」という)で異なる表示制御を行う制御信号を生成して、表示調整部41と輝度調整部42に出力する。
 表示調整部41は、制御処理部35からの制御信号に基づき、周辺領域撮像部11から供給された画像信号に対して周辺領域撮像画像の倍率調整を行い、例えば、非モニタ画像領域に対して画像の圧縮等を行う。
 輝度調整部42は、制御処理部35からの制御信号に基づき、表示部50における非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。輝度調整部42は、表示部50が照明を必要とする表示素子例えば液晶表示素子を用いて構成されている場合、照明例えば液晶パネルのバックライトの部分的領域を制御して、非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。また、表示部50が照明を必要とする表示素子または自発光素子例えば有機EL表示素子を用いて構成されている場合、非モニタ画像領域に対応する輝度信号の信号レベルを低下させる処理を行ってもよい。
 [2-2.第2の実施の形態の動作]
 図11は、第2の実施の形態の動作を説明するための図である。表示制御部20は、周辺領域撮像部11で撮像された領域ARcの画像を表示部50の表示領域GRcに表示する。ミラー部55は、例えば平面ミラーで構成して、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認する際に、表示部50の表示領域GRcを視認できるサイズとする。
 また、表示制御部20は、表示領域GRの表示画像に対する輝度制御や圧縮処理等を行い、運転者がミラー部55を介して視認する周辺領域の範囲である視認範囲の画像を識別可能として表示領域GRcの表示を行う。なお、視認範囲に対応する表示領域をモニタ画像領域GRmとする。
 さらに、表示制御部20は、運転者撮像部12で撮像された運転者DRの動き例えば車両の前後方向の動き(矢印Va方向)に基づき、モニタ画像領域GRmを矢印Vbの方向に移動する。または、表示制御部20は、モニタ画像領域GRmの移動に代えてモニタ画像領域GRmに対応する視認範囲ARmの移動、あるいはモニタ画像領域GRmの矢印Vbの方向の拡張等を行う。
 画像の移動速度は、運転者がモニタ画像以外を瞬時見るなどする間に、急激な画像の表示内容の変更が発生すると状況把握の喪失を招くおそれが発生する。そこで、急激な画面の移動は避け、表示画像の平行移動が最速でも0.2sec/全移動量(総画角シフト量)以内とする。ここで、後述する頭部や視線の位置検出に伴う画面変更反応遅延時間を200msec以内とすることで、従来のバックミラーを使用した場合に比べて操作感の低下を防止または軽減できると同時に、周辺状況把握遅延に伴う危険見落とし防止を満たすことができる。
 運転者は、画面表示領域変更指示を出した後の僅かな間隔に、後方周辺情報と異なる窓越しの直接視界情報を得る操作をすることも想定される。その場合、運転者はミラー部55越しの窓方向を見て、画面注視注意が一旦瞬間的に途切れた後に再度ミラー部55を通して表示画面確認のステップに復帰するので、画面内容が全面的変更されていると、また状況把握の喪失を招くおそれがある。そこで、これら画面変更に伴う表示範囲が、変更の前後で少なくとも元の表示内容の1/4以上の範囲で、切り替え変更前の画面が変更後の画面に含まれる範囲の移動に控える。例えば運転者が画面変更移動中に他の視覚情報(例えばミラー部55と窓越しに見る直接視界)に注意遷移して表示部50に視線を復帰した場合に、記憶画面の連続性から一瞬起き得る表示部への状況把握の喪失を低減することができる。
 図12は、表示制御部の動作を示すフローチャートである。ステップST1で表示制御部20は周辺領域確認動作が行われたか判別する。ここで、周辺領域確認動作とは、撮像装置と表示装置により構成されたモニタリングシステムを介して運転者が表示装置の画面を目視する動作の全般を指す。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部の向きや視線方向が、ミラー部55の方向であるか判別する。表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向を向いた場合例えばミラー部55の方向に振り向いた場合、周辺領域確認動作が行われたと判別してステップST2に進む。また、表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向でない場合、周辺領域確認動作が行われていないと判別してステップST1に戻る。
 ステップST2で表示制御部20は、視認範囲の判別を行う。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部位置を検出して、検出した頭部位置からミラー部55を介して視認される視認範囲を判別してステップST3に進む。
 ステップST3で表示制御部20は、画像表示制御処理を行う。表示制御部20は、視認範囲の画像をモニタ画像領域の画像として表示部50に表示する。また、表示制御部20は、非モニタ画像領域に高輝度被写体が映っていた場合にその画像の放射高輝度の表示内容で運転者の視界妨害とならないように例えば部分的バックライトや輝度レベルを制御する。また、表示制御部20は、表示部50における所定の領域をモニタ画像領域とする場合、モニタ画像領域の画像で所望の視認範囲を確認できるように、非モニタ画像領域に対応する周辺領域の画像の圧縮等の処理を行う。表示制御部20は画像表示制御処理を行いステップST4に進む。
 ステップST4で表示制御部20は視認範囲変更指示が行われたか判別する。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部位置を判別して、周辺領域における視認範囲を変更する指示動作が行われたか判別する。表示制御部20は、運転者の頭部位置が所定の動きを生じた場合、視認範囲変更指示が行われたと判別してステップST5に進む。また、表示制御部20は、運転者の頭部位置が所定の動きを生じていない場合、視認範囲変更指示が行われていないと判別してステップST6に進む。
 ステップST5で表示制御部20は視認範囲変更処理を行う。表示制御部20は運転者が視認する視認範囲を、運転者の頭部位置の動きに伴い移動させる。表示制御部20は、例えばバックライトや輝度レベルを制御して、表示を暗くする領域を運転者の頭部位置の動きに応じて移動させることで、明るく表示されるモニタ画像領域を変更する。また、表示制御部20は、例えばモニタ画像領域の移動方向とは逆側に設けられている非モニタ画像領域の画像をさらに圧縮することで、モニタ画像領域に画像が表示される視認範囲を運転者の頭部位置の動きに応じて移動させる。また、モニタ画像領域の移動方向に設けられている非モニタ画像領域で表示する周辺領域範囲は範囲が少なくなることから、この非モニタ画像領域の圧縮を少なくする。表示制御部20は視認範囲変更処理を行ってステップST6に進む。
 ステップST6で表示制御部20は周辺領域確認動作の終了であるか判別する。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部の向きや視線方向が、ミラー部55の方向でなくなったことを判別する。表示制御部20は、運転者の頭部の向きや視線方向が引き続きミラー部55の方向である場合、周辺領域確認動作の終了でない判別してステップST4に戻る。また、表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向でなくなった場合、周辺領域確認動作の終了であると判別してステップST7に進む。
 ステップST7で表示制御部20は、表示を終了する。表示制御部20は、運転者が運転に集中できるように表示部50における周辺領域の画像表示を終了してステップST1に戻る。
 図13は、表示制御部の第1の表示制御動作を説明するための図である。第1の表示制御動作において、表示制御部は、周辺領域の撮像画像を表示する際に、視認範囲を除いた他の範囲の画像の一部または全体の輝度を低下させて運転者から見え難くする。このようにすることで、運転者は、ミラー部55を介した画像の視認によって、バックミラーを用いた場合と同様に周辺領域の所望の視認範囲を確認できるようになる。また、特に夜間等で眩しさを引き起こす非モニタ画像領域の不要な明るさを控える等のメリットがある。
 図13の(A)は、表示部50の表示、図13の(B)は、表示部50の表示位置と輝度の関係を示している。表示制御部20は、視認範囲を除いた他の範囲に対応する画像領域である非モニタ画像領域GRb1,GRb2の輝度を、視認範囲に対応するモニタ画像領域GRmよりも暗くして非モニタ画像領域GRb1,GRb2の画像を見え難くする。例えば表示部50が液晶表示素子を用いて構成されている場合にはバックライトの発光制御を行い、非モニタ画像領域GRb1,GRb2を暗くする。また、表示部50が有機EL表示素子を用いて構成されている場合には輝度信号の信号レベル制御を行い、非モニタ画像領域GRb1,GRb2を暗くする。このように、表示部50の表示画像は非モニタ画像領域GRb1,GRb2が暗い状態とされているので、運転者DRはモニタ画像領域GRmの画像のみを視認できるようになる。したがって、運転者DRは、ミラー部55を介して表示部50の表示画像を視認することで、周辺領域における視認範囲ARmの状況を確認できる。
 また、表示制御部20は、運転者DRの頭部位置が例えば車両の前方向に移動したことを判別したとき、頭部位置の移動に応じてモニタ画像領域GRmを移動して、ミラー部55を介して視認できる周辺領域の視認範囲を外側に移動する。具体的には、表示制御部20は、頭部位置の車両前方向に移動に応じて非モニタ画像領域GRb1の領域幅が狭く、非モニタ画像領域GRb2の領域幅が広くなるように画像の輝度を制御する。このような表示制御を行うと、モニタ画像領域GRmの画像は、移動前に比べて周辺領域の外側の範囲の画像となる。表示制御部20は、運転者DRの頭部位置が例えば車両の後方向に移動したことを判別したとき、図示せずも頭部位置の移動に応じて、非モニタ画像領域GRb1の領域幅が広く、非モニタ画像領域GRb2の領域幅が狭くなるように画像の輝度を制御する。このような表示制御を行うと、モニタ画像領域GRmの画像は、移動前に比べて周辺領域の内側の範囲の画像となる。このため、運転者は頭部位置を移動することで、バックミラーを用いた場合と同様に周辺領域における所望の視認範囲を確認できる。また、表示部50とミラー部55は、車両の室内に設けられているので、バックミラーを用いた場合のようにサイドウィンドウによる悪影響を受けることなく良好に周辺領域を確認できる。
 図14は、表示制御部の第2の表示制御動作を説明するための図である。第2の表示制御動作において、表示制御部は、周辺領域の撮像画像を表示する際に、モニタ画像領域GRmの移動に代えて、視認範囲を除いた他の範囲の画像をモニタ画像領域GRmの移動方向に圧縮する。表示制御部は、画像をこのように圧縮することで、モニタ画像領域GRmに対応する視認範囲ARmを移動させて、周辺領域における所望の視認範囲を確認できるようにする。
 図14の(A)は、表示部50の表示、図14の(B)は、表示部50の表示位置と圧縮率の関係、図14の(C)は、表示部50の表示位置と輝度の関係を示している。表示制御部20は、視認範囲を除いた他の範囲に対応する画像領域である非モニタ画像領域GRb1,GRb2に対して、端部側になるに伴い画像がより縮小されるように表示制御を行う。このように非モニタ画像領域GRb1,GRb2を圧縮して、非モニタ画像領域GRb1,GRb2の圧縮率を調整することにより、モニタ画像領域GRmに対応する視認範囲ARmを移動可能とする。
 表示制御部20は、運転者DRの頭部位置の動きに伴い、周辺領域における視認範囲を外側に移動する指示が行われたことを判別したとき、例えば運転者の前方向の首振りが行われたことを判別したとき、モニタ画像領域GRmに対応する視認範囲を外側に移動する。具体的には、表示制御部20は、非モニタ画像領域GRb2に対する周辺領域の範囲が広くなるように画像の圧縮率を制御する。また、外側方向に対応する非モニタ画像領域GRb1の圧縮および輝度低下を少なくすることで、非モニタ画像領域GRb1の画像により視認範囲の外側の範囲を確認できるようになる。すなわち、視認範囲を拡張することができる。なお、非モニタ画像領域GRb1の輝度低下のみを少なくしても、視認範囲の外側の範囲を確認できるようになることから、視認範囲を拡張できる。
 図15は、表示部の表示と圧縮率および周辺領域との関係を示している。なお、図15の(A)は表示部50の表示、図15の(B)は表示部50の表示位置と圧縮率の関係、図15の(C)は周辺領域撮像部11の撮像範囲を示している。モニタ画像領域GRmでは、視認範囲ARmの撮像画像が表示されている。非モニタ画像領域GRb1では、視認範囲ARmの外側の撮像画像が圧縮して表示されており、非モニタ画像領域GRb2では、視認範囲ARmの内側の撮像画像が圧縮して表示されている。ここで、表示制御部20は、視認範囲を外側に移動する指示が行われたことを判別したとき、非モニタ画像領域GRb2に対する周辺領域の範囲が広くなるように画像の圧縮率を制御する。したがって、モニタ画像領域GRmに対応する視認範囲ARmは周辺領域の外側に移動する。
 また、表示制御部20は、視認範囲を内側に移動する指示が行われたことを判別したとき、例えば運転者の後方向の首振りが行われたことを判別したとき、非モニタ画像領域GRb2に対する周辺領域の範囲が広くなるように画像の圧縮率を制御する。したがって、モニタ画像領域GRmに対応する視認範囲ARmは周辺領域の内側に移動する。
 さらに、表示制御部20は、上述のように、視認範囲の変更指示が行われる前は、非モニタ画像領域GRb1,GRb2の輝度を視認範囲に対応するモニタ画像領域GRmよりも暗くして、非モニタ画像領域GRb1,GRb2の画像を見え難くする。例えば表示部50が液晶表示素子を用いて構成されている場合にはバックライトの発光制御を行い、非モニタ画像領域GRb1,GRb2を暗くする。また、表示部50が有機EL表示素子を用いて構成されている場合には輝度信号の信号レベル制御を行い、非モニタ画像領域GRb1,GRb2を暗くする。このように、表示部50の表示画像は非モニタ画像領域GRb1,GRb2が暗い状態とされているので、運転者DRはモニタ画像領域GRmの画像のみを視認できるようになる。したがって、運転者DRは、ミラー部55を介して表示部50の表示画像を視認することで、周辺領域における視認範囲ARmの状況を確認できる。その後、視認範囲の変更指示が行われた場合、表示制御部20は、非モニタ画像領域に対して輝度レベルをモニタ画像領域GRmの輝度レベルに近づけるようにする。
 このような表示制御を行うと、運転者が視認範囲の変更指示を行ったとき、モニタ画像領域GRmに対応する視認範囲ARmが運転者の指示に応じて移動されることから、周辺領域の所望の範囲を容易に確認できるようになる。さらに、非モニタ画像領域の輝度レベルはモニタ画像領域GRmの輝度レベルと同様となることから、モニタ画像領域との区分がなくなる。したがって、視認範囲を自動的に拡張することができる。さらに、運転者は変更指示を行うだけで視認範囲を変更できることから、従来のバックミラーを用いた場合のように、所望の周辺範囲がバックミラーに映るまで頭部位置を前方向等に移動させなくとも、所望の周辺範囲を容易に確認できるようになる。また、表示部50とミラー部55は、車両の室内に設けられているので、バックミラーを用いた場合のようにサイドウィンドウによる悪影響を受けることなく良好に周辺領域を確認できる。
 なお、運転者が視認範囲の変更指示を行ったとき、非モニタ画像領域の輝度レベルは低下した状態としてもよい。この場合、モニタ画像領域GRmの拡張は行われず、変更指示に基づき移動された視認範囲の画像が所定の輝度で表示される。また、非モニタ画像領域の圧縮特性や輝度特性は、図14の特性に限られない。例えば圧縮率を急峻に変化させてもよく、輝度レベルを緩やかに変化させてもよい。また、圧縮特性や輝度特性を運転者が選択可能とすれば、運転者の好みに応じて周辺領域の画像を表示させることもできる。さらに、視認範囲の変更指示に応じて、視認範囲の拡大縮小や表示画像の拡大率等を変化させてもよい。例えば運転者DRがミラー部55に近づいたことや近づく動作を視認範囲の変更指示として、視認範囲の広い画像や拡大率の低い画像(これらの画像を例えば第1画像とする)を表示する。また運転者DRがミラー部55から離れたことや離れる動作を視認範囲の変更指示として、第1画像よりも視認範囲の狭い画像や拡大率の高い画像を表示する。
 <3.第3の実施の形態>
 第3の実施の形態では、運転者が確認したい周辺領域が車両の運転状況に応じて変化する場合について説明する。具体的には、車両の周辺領域を撮像して得られた画像から車両の運転者に提示する画像領域を、車両の運転状況に関する運行情報に基づき設定して、運転者が提示された画像によって視認できる周辺領域の視認範囲を運転状況に応じて制御する。例えば、車両としてはトレーラや連節バスまたはキャンピング牽引カーのように、運転者が運転操作を行う車両部分(以下「キャビン」という)と、キャビンに連結されている車両部分(以下「牽引トレーラ部」という)が分離可能とされており、運転状況に応じてキャビンの向きと牽引トレーラ部の向きが変化する場合、運転状況に応じて、運転者が視認できる周辺領域の視認範囲を制御する場合について説明する。
  [3-1.第3の実施の形態の構成]
 図16は第3の実施の形態の構成を例示している。表示装置10は、周辺領域撮像部11a,11b、運転者撮像部12、表示制御部20、表示部50、ミラー部55を備えている。なお、運転者撮像部12、運転状況検出センサ13、表示部50、ミラー部55および運転者DRは、図9に示す位置関係とする。
 周辺領域撮像部11a,11bは、車両の周辺領域を撮像して画像信号を表示制御部20に出力する。周辺領域撮像部11a,11bは、車両の進行方向に異なる所定位置に設けられている。例えば周辺領域撮像部11aはキャビン側の所定位置(例えば従来のバンクミラー位置)に設けられており、周辺領域撮像部11bは牽引トレーラ部側の所定位置(例えば牽引トレーラ部のキャビン側に近い周辺領域が撮像範囲に含まれるように、キャビン側に近接した位置)に設けられている。なお、周辺領域撮像部11aで撮像される領域を第1撮像対象周辺領域、周辺領域撮像部11bで撮像される領域を第2撮像対象周辺領域とする。
 運転者撮像部12は、運転者DRの頭部位置や頭部の向きや視線の向き等を判別できるように、例えば運転者DRの前方またはミラー部55が設置されている方向に設けられている。運転者撮像部12は、運転者DRを撮像して画像信号を表示制御部20に出力する。
 運転状況検出センサ13は、運転状況に関する情報、例えばステアリング状態を示す情報、牽引トレーラ部の接続状態を示す情報、キャビンに対する牽引トレーラ部の曲がり角等の情報、ギヤ位置情報や車速情報、方向指示器設定情報、現在位置情報(例えば衛星測位システムの測位信号)等を運行情報として取得する。運転状況検出センサ13は、取得した運行情報をセンサ情報として表示制御部20へ出力する。
 表示制御部20は、車両の周辺領域を撮像して得られた画像から車両の運転者に提示する画像領域を、車両の運転状況に関する運行情報に基づき設定して、運転者が提示された画像によって視認できる周辺領域の視認範囲を運転状況に応じて、車両の外側方向に視認範囲を制御する。すなわち、表示制御部20は、周辺領域撮像部11a,11bで生成された画像信号に基づき、周辺領域撮像画像を表示部50に表示する。また、表示制御部20は、運転状況検出センサ13からのセンサ情報、または運転状況検出センサ13からのセンサ情報と運転者の頭部位置や頭部の向き、視線の向き、および位置や向きの移動等に基づき、運転者に提示する画像領域を設定して、表示部50に表示する周辺領域撮像画像の表示制御を行う。
 表示部50は、運転者がミラー部55を介して間接的に表示部50の表示面を視認できるように配置されている。また、表示部50の表示面は、例えば運転者DRが運転時にバックミラーで広範囲の領域を確認するように頭部位置を移動しても、ミラー部55を介して表示部50の表示画像を視認できるように、図4に示す通り、ミラー部55の鏡面を結ぶ光線よりも大きいサイズとされている。なお、表示部50の表示画像において、運転者がミラー部55を介して確認する周辺領域の視認範囲と対応する画像領域をモニタ画像領域とする。
 ミラー部55は、表示部50の表示面を運転者DRが間接的に視認できるように設けられている。ミラー部55は、車両内であって例えば運転者DRが従来のバックミラーを見る動作を行ったとき、ミラー部55に写った画像を視認できるように例えばピラーの位置に配置されている。また、ミラー部55は、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認する際に、表示部50の表示領域全体がミラー部55に映り込むように、表示部50との位置関係およびミラー部55のサイズを設定する。さらに、表示部50とミラー部55は、周辺領域においてミラー部55に映る表示部50の画像によって運転者が視認できる視認範囲が、表示制御部20の表示制御によって、ミラー部55に対する運転者の視認位置の移動に応じて変更される。なお、ミラー部55のサイズは、従来のバックミラーと同様な作用効果が得られるように、第1の実施の形態や第2の実施の形態のように設定することが好ましい。
 表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認できるようにして、運転者DRが表示部50で表示面を直接的に視認する場合に比べて、運転者DRから表示部50の表示面までの距離を長くする。
 また、表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認することから、表示部50は運転者DRから表示面や表示面の照明光が見えないように配置する。また、運転者DRから表示部50の表示面や表示光が見えないように遮蔽物を設けた構成としてもよい。
 図17は、周辺領域撮像部の配置を例示している。なお、図では、例えばトレーラの左側面に周辺領域撮像部を配置した場合を例示しており、右側面の周辺領域撮像部は省略している。
 上述したように、周辺領域撮像部11aはキャビン側に設けられており、周辺領域撮像部11bは牽引トレーラ部側に設けられている。なお、周辺領域撮像部11aで撮像される領域を第1撮像対象周辺領域、周辺領域撮像部11bで撮像される領域を第2撮像対象周辺領域とする。
 図17の(A)は、キャビンと牽引トレーラ部が直線状に位置している場合を示している。図17の(B)は、キャビンに対して牽引トレーラ部が、周辺領域撮像部11aの設置側に寄っている状態を示しており、図17の(C)は、キャビンに対して牽引トレーラ部が、周辺領域撮像部11aの設置側とは逆方向に寄っている状態を示している。周辺領域撮像部11aで取得される撮像画像は、牽引トレーラ部が図17の(A)から図17の(B)に示す状態となると、牽引トレーラ部を示す画像部分が増加して周辺領域を確認できなくなってしまう。また、牽引トレーラ部が図17の(A)から図17の(C)に示す状態となると、周辺領域撮像部11aの撮像範囲から牽引トレーラ部が離れて、牽引トレーラ部の近傍は運転者が確認できない死角となってしまう。一方、周辺領域撮像部11bは牽引トレーラ部に設けられていることから、周辺領域撮像部11bで取得される撮像画像は、キャビンと牽引トレーラ部との位置関係に係らず周辺領域を示した画像となる。
 そこで、表示制御部20は、周辺領域撮像部11aで取得された撮像画像と周辺領域撮像部11bで取得された撮像画像を、運転状況や運転者の意思に応じて用いることで、ミラー部55を介して周辺領域の確認を行うことができるように表示制御を行う。
 図18は、表示制御部の構成を示す図である。表示制御部20は、運転者動き判別部21、運転状況判別部22、制御処理部35、表示調整部41、輝度調整部42を備えている。
 運転者動き判別部21は、運転者撮像部12から供給された画像信号に基づき、運転者の頭部位置を検出して、運転者の頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、例えば運転者撮像部12から供給された画像信号に基づき、運転者の顔認識を行い、認識した顔の位置や頭部の向きを判別する。さらに、運転者動き判別部21は、認識した顔を追跡して、頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、判別結果を制御処理部35に出力する。
 運転状況判別部22は、運転状況検出センサ13から供給されたセンサ情報に基づき、運転状況を判別する。運転状況判別部22は、例えばギヤ位置等に基づき車両が前進または後退のいずれであるか、車速、方向指示器設定情報とステアリング状態等に基づき、直進または右折または左折のいずれであるかを判別する。また、運転状況判別部22は、例えば牽引トレーラ部の接続状態やキャビンに対する牽引トレーラ部の曲がり角等の情報に基づき、緩やかな右左折または鋭角な右左折であるか、現在位置情報等に基づき走行位置がランドアバウトの位置であるか等を判別する。運転状況判別部22は、判別結果を制御処理部35に出力する。
 制御処理部35は、運転状況判別部22の判別結果または運転者動き判別部21と運転状況判別部22の判別結果に基づき、表示部50におけるモニタ画像領域と非モニタ画像領域で異なる表示制御を行う制御信号を生成して、表示調整部41と輝度調整部42に出力する。
 表示調整部41は、制御処理部35からの制御信号に基づき、周辺領域撮像部11から供給された画像信号に対して周辺領域撮像画像の倍率調整を行い、例えば、非モニタ画像領域に対して画像の圧縮等を行う。また、表示調整部41は、制御処理部35からの制御信号に基づき、複数の周辺領域撮像部で取得された周辺領域の画像の切り替えや合成,表示する周辺領域の表示幅の調整等を行うようにしてもよい。
 輝度調整部42は、制御処理部35からの制御信号に基づき、表示部50における非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。輝度調整部42は、表示部50が照明を必要とする表示素子例えば液晶表示素子を用いて構成されている場合、照明例えばバックライトを制御して、非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。また、表示部50が照明を必要とする表示素子または自発光素子例えば有機EL表示素子を用いて構成されている場合、非モニタ画像領域に対応する輝度信号の信号レベルを低下させる処理を行ってもよい。
 [3-2.第3の実施の形態の動作]
 図19は、第3の実施の形態における表示制御部の動作を示すフローチャートである。ステップST11で表示制御部20は周辺領域確認動作が行われたか判別する。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部の向きや視線方向が、ミラー部55の方向であるか判別する。表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向である場合例えばミラー部55の方向に振り向いた場合、周辺領域確認動作が行われたと判別してステップST12に進む。また、表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向でない場合、周辺領域確認動作が行われていないと判別してステップST11に戻る。
 ステップST12で表示制御部20は、運転状況の判別を行う。表示制御部20は、運転状況検出センサ13から供給されたセンサ情報に基づき運転状況を判別する。表示制御部20は、例えば車両が前進または後退のいずれであるか、直進または右折または左折のいずれであるか、緩やかな右左折または鋭角な右左折であるか、走行位置がランドアバウトの位置であるか等の判別を行いステップST13に進む。
 ステップST13で表示制御部20は、視認範囲の判別を行う。表示制御部20は、運転状況の判別結果に基づきミラー部55を介して視認される視認範囲を判別してステップST14に進む。なお、視認範囲の判別では運転者の頭部位置も含めて視認範囲を判別してもよい。
 図20は、視認範囲のモードを例示している。モード1は例えば通常走行時のミラー視認必須範囲である。モード2は例えば通常走行時のミラー視認必須範囲よりも内側および外側の範囲を広く視認できる範囲である。モード3は例えば後退時等において運転者が車両の外側を死角なく視認できる範囲とされている。ここで、例えば周辺領域撮像部11aの撮像範囲は、通常走行時のミラー視認必須範囲として、周辺領域撮像部11bの撮像範囲は、周辺領域撮像部11aの撮像範囲よりも広い範囲とする。また、図20の(A)に示すように、モード1は周辺領域撮像部11aの撮像範囲を視認範囲、モード2は周辺領域撮像部11bの撮像範囲を視認範囲とする。さらに、図20の(B)に示すように、モード3は周辺領域撮像部11aおよび周辺領域撮像部11bの撮像範囲に含まれる範囲を視認範囲とする。また、周辺領域撮像部11aの撮像範囲を切替可能として、運転状況や運転者の指示に応じて周辺領域撮像部11bの撮像範囲を視認範囲としてもよい。例えば図20の(C)に示すように、周辺領域撮像部11aの撮像範囲をモード1~モード3の範囲に切替可能とする。または、モード1~モード3の範囲を全て含む撮像範囲から、運転者に提示する画像領域をモード1~モード3の範囲となるように設定する。
 図21は、運転状況判別結果と視認範囲のモードとの関係を例示している。表示制御部20は、検出情報に基づき例えば直進の運転中であると判別した場合、丸印で示すようにモード1の範囲を視認範囲とする。表示制御部20は、検出情報に基づき例えばラウンドアバウトの地点である場合、丸印で示すようにモード1の範囲を視認範囲とする。表示制御部20は、検出情報に基づき例えば緩やかに右折または左折している場合、丸印で示すようにモード1の範囲を視認範囲とする。表示制御部20は、検出情報に基づき例えば鋭角に右折または左折している場合、丸印で示すようにモード2の範囲を視認範囲として、確認できる範囲を外側に広くする。表示制御部20は、検出情報に基づき例えば直進後退している場合、丸印で示すようにモード1の範囲を視認範囲とする。表示制御部20は、検出情報に基づき例えば鋭角に後退している場合、図17の(C)に示す死角を生じないように丸印で示すモード2の範囲すなわち周辺領域撮像部11bの撮像範囲を視認範囲とする。
 ステップST14で表示制御部20は、画像表示制御処理を行う。表示制御部20は、視認範囲のモードに応じてモニタ画像領域の領域幅を設定して、視認範囲の画像をモニタ画像領域の画像として表示部50に表示する。また、表示制御部20は、非モニタ画像領域の画像が見えないように例えばバックライトや輝度レベルを制御する。また、表示制御部20は、表示部50の所定の領域をモニタ画像領域とする場合、モニタ画像領域で視認範囲の画像を表示できると共に、モニタ画像領域に対応する視認範囲を移動できるように、非モニタ画像領域に対応する周辺領域の画像の圧縮等の処理を行う。表示制御部20は画像表示制御処理を行いステップST15に進む。
 ステップST15で表示制御部20は視認範囲変更指示が行われたか判別する。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部位置を判別して、周辺領域における視認範囲を変更する指示動作が行われたか判別する。表示制御部20は、運転者の頭部位置が視認範囲の移動を伴う動きを生じた場合、視認範囲変更指示が行われたと判別してステップST16に進む。また、表示制御部20は、運転者の頭部位置が視認範囲の移動を伴う動きを生じていない場合、視認範囲変更指示が行われていないと判別してステップST17に進む。
 ステップST16で表示制御部20はモード変更処理を行う。表示制御部20は、視認範囲変更指示が視認範囲を広げる指示である場合に視認範囲の広いモードに切り替えを行う。表示制御部20は、例えば図21の丸印で示すモードとされている場合は四角印で示すモードに切り替えて、四角印で示すモードとされている場合は星印で示すモードに切り替える。また、表示制御部20は、視認範囲変更指示が視認範囲を狭める指示である場合に視認範囲の狭いモードに切り替えを行う。表示制御部20は、例えば図21の四角印で示すモードとされている場合は丸印で示すモードに切り替えて、星印で示すモードとされている場合は四角印で示すモードに切り替える。表示制御部20は、視認範囲変更指示に基づきモードを切り替えてステップST17に進む。
 ステップST17で表示制御部20は周辺領域確認動作の終了であるか判別する。表示制御部20は、運転者撮像部12から供給された画像信号に基づき、例えば運転者の頭部の向きや視線方向が、ミラー部55の方向でなくなったことを判別する。表示制御部20は、運転者の頭部の向きや視線方向が引き続きミラー部55の方向である場合、周辺領域確認動作の終了でない判別してステップST15に戻る。また、表示制御部20は、運転者の頭部の向きや視線方向がミラー部55の方向でなくなった場合、周辺領域確認動作の終了であると判別してステップST18に進む。
 ステップST18で表示制御部20は、表示を終了する。表示制御部20は、運転者が運転に集中できるように表示部50における周辺領域の画像表示を終了してステップST11に戻る。
 このような表示制御を行うことで、車両の周辺領域を撮像して得られた画像から車両の運転者に提示する画像領域が、車両の運転状況に関する運行情報に基づき設定されて、運転者が提示された画像によって視認できる周辺領域の視認範囲が車両の外側方向に運転状況に応じて自動的に変更される。このため、従来のバックミラーを用いた場合よりも容易に、周辺範囲における所望の視認範囲を容易に確認できるようになる。例えば、運転状況検出センサ13から供給されたセンサ情報に基づき、車両の進行方向が直進である場合は、モード1からモード2に切り替えられて、車両の外側方向に視認範囲が拡張される。また、運転状況検出センサ13から供給されたセンサ情報に基づき、キャビンの向きと牽引トレーラ部の向きが相違する鋭角右左折や鋭角後退の場合に、モード2からモード3に切り替えられて、牽引トレーラ部の外側が視認範囲に含まれるように視認範囲が拡張される。したがって、所望の視認範囲を確認できるようになる。また、表示部50とミラー部55は、車両の室内に設けられているので、バックミラーを用いた場合のようにサイドウィンドウによる悪影響を受けることなく良好に周辺領域を確認できる。
 図22は、周辺領域撮像部11aと周辺領域撮像部11bで取得された周辺画像を用いて表示部50で表示される表示画像を例示している。図22の(A)は、周辺領域撮像部11aの死角の位置に車がある場合を例示している。図22の(B)は、周辺領域撮像部11aで取得された周辺画像MGaを表示した場合を例示しており、周辺領域撮像部11aで取り込まれた画像の表示画像のみでは、後方の車全体を確認できない。このため、表示制御部20は、図22の(C)に示すように、周辺領域撮像部11aで取得された周辺画像MGaだけでなく、周辺領域撮像部11bで取得された周辺画像MGbを表示することで後方にいる車全体を確認できる。
 このように、表示制御部20は、運行情報に基づき、1または複数の位置から撮像された画像における1または複数の画像に対して提示する画像領域を設定して、運転者が視認できる周辺領域の視認範囲を運転状況に応じて制御する。したがって、周辺範囲における所望の視認範囲を容易に確認できるようになる。なお、表示制御部20は、運転状況や運転者の意思に応じて、図22の(B)と図22の(C)に示す表示の切り替えや、図22の(C)において矢印で示すように周辺画像MGaと周辺画像MGbの領域幅(または挿入幅)を可変できる構成とすれば、周辺領域を最も視認しやすい状態で表示することができる。
 図23は、周辺領域撮像部11aと周辺領域撮像部11bで取得された周辺画像を用いて表示部50で表示される他の表示画像を例示している。図23の(A)は、周辺領域撮像部11aで取得された周辺画像MGaを表示した場合を例示している。図23の(B)は、周辺領域撮像部11aで取得された周辺画像MGaと周辺領域撮像部11bで取得された周辺画像MGbを縦方向に並べて表示した場合を例示している。表示制御部20は、運転状況や運転者の意思に応じて、図23の(A)に示す表示と図23の(B)に示す表示との切り替えを行う。また、図23の(B)において矢印で示すように周辺画像MGaと周辺画像MGbの領域幅(または挿入幅)を可変できる構成としてもよい。ここで、複数撮像により取り込まれた画像表示を隣接する表示部で表示を行う際に、車体の進行方向に対して前方に配置された撮像画像程、表示画面の上方に配置し、進行方向に対して後方に設置された撮像画像程、表示画面の下方に配置することで、ドライバは直感的に視認画面の車体前後関係は瞬時に判別できるメリットがある。すなわち、車両の外装部に共に車両進行方向に対して後方側を向けて取り付けられた少なくとも2つ以上の撮像装置と、車両の室内の例えばダッシュボード中央部に、隣接配置される少なくとも2つ以上の画面表示領域を設けた表示部を有する場合、画面表示領域に表示する撮像画像の表示内容では、車両進行方向前方側に設置された第1の撮像装置(例えば周辺領域撮像部11a)の画像を第1の撮像装置よりも車両進行方向後方側に設置された撮像装置(例えば周辺領域撮像部11a)の画像より上部に配置する(例えば図23の(B))。このようにすれば、ドライバは直感的に視認画面の車体前後関係を瞬時に判別できるメリットがある。
 また、画面を大きく上下配置が出来ないレイアウトであっても、進行方向前方設置撮像部画面の後方消失点が表示画面では上方に配置する。すなわち、車両の外装部に共に車両進行方向に対して後方側を向けて取り付けられた少なくとも2つ以上の撮像装置と、車両の室内に、隣接配置される少なくとも2つ以上の画面表示領域を設けた表示部を有する場合、画面表示領域に表示する撮像画像の表示内容では、車両進行方向前方側に設置された第1の撮像装置の画像に含まれる無限消失点を第1の撮像装置よりも車両進行方向後方側に設置された撮像装置の画像に含まれる無限消失点より上部に配置する。このようにすれば、同様の効果が得られる。この場合、差異を素早く判別するためには表示画面の少なくとも2割以上、上下方向にシフトが望ましい。
 図24は、周辺領域撮像部11aと周辺領域撮像部11bで取得された周辺画像を用いて表示部50で表示される他の表示画像を例示している。図24の(A)は、周辺領域撮像部11aで取得された周辺画像MGaを表示した場合を例示している。図24の(B)は、周辺領域撮像部11aで取得された周辺画像MGaと周辺領域撮像部11bで取得された周辺画像MGbを縦方向に並べて、周辺画像がいずれの周辺領域撮像部で取得された画像であるか識別可能とする表示、例えば、キャビンと牽引トレーラ部を模式化したアイコン表示HTを設けた場合を例示している。さらに、アイコン表示HTでは、隣接して表示されている周辺画像を取得した周辺領域撮像部を示す例えばカメラ形状のマークHCを設ける。このように車両前方配置の周辺領域撮像部11aにより取り込まれた表示画像を上方に、車両後方方配置の周辺領域撮像部11bにより取り込まれた表示画像を下方に配置すれば、表示された周辺画像と周辺領域撮像部との対応関係を容易に把握することができるようになり、表示画像を参照して、適切な運転操作を行うことができるようになる。表示制御部20は、運転状況や運転者の意思に応じて、図24の(A)に示す表示と図24の(B)に示す表示との切り替えを行う。また、図24の(B)において矢印で示すように周辺画像MGaと周辺画像MGbの領域幅(または挿入幅)を可変できる構成としてもよい。
 また、通常走行等の場合には、例えば周辺領域撮像部11aで取得された周辺画像のみが表示されるので、複数の周辺画像が複数並べて表示されて、前方外周領域の視界妨害となってしまうことを防止できる。
 また、周辺領域撮像部の切り替えや表示する周辺画像の制御は、車両の運行状態に応じて表示内容を可変しつつ、且つ運転者の意思に基づいて適宜切り替えることが可能とされている。したがって、運転者は注意深い画面観察をせずとも直感的に領域別の視認領域把握が自然とできる。トレーラ等の牽引車両の場合は、一画面での合成画面表示とせずに、境界を有する即時区分別画面認識が可能な表示となっていることが人間工学的に見て望ましく、表示制御部20は、人間工学的に適した表示が行われる。
 また、トレーラ等の牽引車両で死角が重要となる状況は、小さい曲率での走行時、例えば2車線以上のランドアバウトでの外側車線への車線変更する際や後退時の後方障害物確認のときである。そこで、車両の運転状態と合わせて運転者の画面操作の意思表示を反映した画面遷移表示を行うことで、死角部の状況把握を改善できる。このような状況では、単一カメラの視界領域変更で行うのではなく、牽引トレーラ部側の周辺領域撮像部11bカメラ切り替えを行った上での表示領域切替え可変操作が効果的である。
 また、表示拡張は、ミラー部55を介した方法に限らずとも表示範囲拡張機能は有効である。
 なお、第3の実施の形態では、モード切替を行う場合について説明したが、第2の実施の形態の処理動作を組み合わせて行ってもよい。
 また、上述の実施の形態では、頭部姿勢や視点認識を行う場合について説明をしているが、システムの構成としてはさらに補助的なタッチボタン制御、音声指示認識や頭部以外のジェスチャー認識等で行ってもよい。特に、通常状態の復帰や後述する学習時の指示内容認識の誤検出指摘、さらには低速駐車操作時の複雑な運転者の姿勢変更が行わる場合にはボタン操作などの直接指示を行うインターフェースとの組み合わせで制御を行うことが効果的である。
 <4.第4の実施の形態>
 表示装置を用いた周辺領域の視認では、法規で定められた最低表示倍率に伴い、通常走行時にはある一定の画面倍率を確保する必要がある。つまり、運転時の定常的な頭部姿勢での表示画面があり、その定常位置から相違する位置に変化した際には、運転者が非定常とする意思表示のヒューマンマシンインターフェースを介して表示変更指示を受けて画面表示変更を行う必要がある。例えば、より低倍率に表示内容を変更する指示や、駐車時などの非定常走行の特殊視野に変更する指示等を受けて画面表示変更を行う必要がある。そこで、第4の実施の形態では、表示内容変更に関するヒューマンマシンインターフェースの仕組みについて説明する。
 図25は、運転者が周辺領域の状況を把握する場合の動作を例示したフローチャートである。ステップST21で運転者は振り向き動作を開始してステップST22に進み、ステップST22で運転者は、眼でミラー部を補足してステップST23に進む。ステップST23で運転者は、頭部を一旦停止乃至準停止してステップST24に進む。なお、準停止とは、頭部の動きが少なく停止状態と見なせる状態である。
 ステップST24で運転者はミラー部を介して画像への合焦を行いステップST25に進み、ステップST25で運転者は視認範囲の画像を確認することで周辺領域の状況を把握してステップST26に進む。
 ステップST26で運転者は、視認範囲の変更が必要か判断する。運転者は、ステップST25でモニタ画像領域の画像を視認することで、周辺領域における所望の範囲の状況を把握できた場合に視認範囲の変更は不要としてステップST27に進む。また、運転者は、周辺領域における所望の範囲の状況を把握できない場合に視認範囲の変更が必要としてステップST28に進む。
 ステップST27で運転者は前方視認状態に復帰する。運転者は所望の周辺領域の状況を把握できたことから、振り向きを終了して顔を前方に向けて前方を視認できる状態として処理を終了する。
 ステップST26からステップST28に進むと、運転者は視認範囲変更指示を行う。運転者は予め規定された動き、例えば胴部を繰り返し移動させる動きを行いステップST29に進む。なお、表示装置では、運転者の視認範囲変更指示を検出して、モニタ画像領域に画像が表示される視認範囲を変更する処理を行う。視認範囲の変更では、運転者が視認できる周辺領域の範囲の移動または拡張を行う。
 ステップST29で運転者は、視認範囲変更後の画像を確認することで周辺領域の状況を把握してステップST30に進む。
 ステップST30で運転者は、変更指示前の状態に戻す必要がないか判別する。運転者は、変更指示前の視認範囲を確認したい場合、変更指示前の状態に戻す必要があるとしてステップST31に進む。また、運転者は、変更指示前の状態に戻す必要がないと判別した場合にステップST32に進む。
 ステップST31で運転者は視認範囲復元指示を行う。運転者は予め規定された動き、例えば頭部を戻す動きを行いステップST32に進む。なお、表示装置では、運転者の視認範囲復元指示を検出して、モニタ画像領域に画像が表示される視認範囲を変更前の範囲に戻す処理を行う。
 ステップST32で運転者はミラー部を一定期間注視しないようにしてステップST33に進む。
 ステップST33で運転者は前方視認状態に復帰する。運転者は周辺領域の状況の把握を終了する。すなわち、振り向きを終了して顔を前方に向けて前方を視認できる状態とする。
 表示装置は、このような運転者の動作に対応させたヒューマンマシンインターフェースを用いて、運転者からの表示変更指示に基づき周辺領域における視認範囲を変更する。なお、このようなヒューマンマシンインターフェースを用いる表示装置は、第1乃至第3の実施の形態の構成の表示装置に限られない。例えば、運転者が表示部50の表示を直接視認して周辺領域の状況を把握する場合等にも適用できる。
 図25に示すフローチャートでは、説明の簡素化のために前方視認復帰までの一連の動作をして単純にそのまま復帰までを説明している。しかし、実際には前方視認復帰までにはより複雑な動作を伴い、直接視認と表示部視認を繰り返し確認してから前方視認に復帰する事象が多く発生するが、あらゆる事象を説明するのが目的ではないため上記以外の例の説明は省略する。
 次に第4の実施の形態の構成と動作について、第1乃至第3の実施の形態と同様に、ミラー部を介して間接的に表示部の画像を運転者が視認する場合について説明する。
 [4-1.第4の実施の形態の構成]
 図26は、第4の実施の形態の構成を例示した図である。表示装置10は、周辺領域撮像部11、運転者撮像部12、運転者識別情報取得部15、表示制御部20、表示部50、ミラー部55を備えている。また、運転者と表示部とミラー部および運転者撮像部は、上述の図9に示すように設けられている。
 周辺領域撮像部11は、車両の周辺領域を撮像して画像信号を表示制御部20に出力する。なお、周辺領域撮像部11で撮像される領域を撮像対象周辺領域とする。
 運転者撮像部12は、運転者DRの頭部位置や頭部の向きや視線の向き等を判別できるように、例えば運転者DRの前方またはミラー部55が設置されている方向に設けられている。運転者撮像部12は、運転者DRを撮像して画像信号を表示制御部20に出力する。
 運転者識別情報取得部15は、運転者固有の識別情報である運転者識別情報を取得して表示制御部20に出力する。運転者識別情報取得部15は運転者撮像部12より得られた運転者顔認識を用いてもよいし、運転者所有車用起動キーに付与した識別情報を用いてもよいし、運転者がボタン操作等で直接指示をするなど様々な方法を取り得る。
 表示制御部20は、周辺領域撮像部11で撮像された周辺領域撮像画像を表示部50に表示させる。また、表示制御部20は、運転者の頭部位置や頭部の向き、視線の向き、および位置や向きの移動、運転者識別情報取得部15から供給された情報等に基づき、ミラー部55の方向への振り向きや確認領域の移動動作や各種指示動作を判別する。さらに、表示制御部20は、判別結果に基づき、表示部50に表示する周辺領域撮像画像の表示制御を行う。表示制御部20は、運転者が例えばミラー部の方向に振り向いた場合に、周辺領域撮像画像を表示部50に表示する。また、表示制御部20は、例えば振り向きの検出後に運転者で予め指定した動きが行われたことを判別した場合に視認範囲の領域を拡張する。
 表示部50は、運転者がミラー部55を介して間接的に表示部50の表示面を視認できるように配置されている。また、表示部50の表示面は、運転者DRが運転時にバックミラーで広範囲の領域を確認するように頭部位置を移動しても、ミラー部55を介して表示部50の表示画像を視認できるように、ミラー部55の鏡面よりも大きいサイズとされている。なお、表示部50の表示画像において、運転者がミラー部55を介して確認する周辺領域の視認範囲と対応する画像領域をモニタ画像領域とする。
 ミラー部55は、表示部50の表示面を運転者DRが間接的に視認できるように設けられている。ミラー部55は、車両内であって例えば運転者DRが従来のバックミラーを見る動作を行ったとき、ミラー部55に写った画像を視認できるように配置されている。また、ミラー部55は、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認する際に、表示部50の表示領域全体がミラー部55に映り込むように、表示部50との位置関係およびミラー部55のサイズを設定する。さらに、表示部50とミラー部55は、周辺領域においてミラー部55に映る表示部50の画像によって運転者が視認できる視認範囲が、表示制御部20の表示制御によって、ミラー部55に対する運転者の視認位置の移動に応じて変更される。なお、ミラー部55のサイズは、従来のバックミラーと同様な作用効果が得られるように、視認範囲が映り込む領域のサイズを従来のバックミラーと同等なサイズとすることが好ましい。
 表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認できるようにして、運転者DRが表示部50で表示面を直接的に視認する場合に比べて、運転者DRから表示部50の表示面までの距離を長くする。
 また、表示装置10では、運転者DRがミラー部55を介して周辺領域撮像画像を間接的に視認することから、表示部50は運転者DRから表示面や表示面の照明光が見えないように配置する。また、運転者DRから表示部50の表示面や照明光が見えないように遮蔽物を設けた構成としてもよい。
 図27は、表示制御部の構成を示す図である。表示制御部20は、認識部23、振り向き判定部24、指示動作判定部25、運転者認証部26、制御処理部35、表示調整部41、輝度調整部42を備えている。
 認識部23は、運転者撮像部12から供給された画像信号に基づき顔認識を行う。また、認識部23は、認識した頭部の向きや認識した顔における視線方向を認識して、認識結果を振り向き判定部24に出力する。
 振り向き判定部24は、振り向き判定処理部241、振り向き判定学習部242、判定基準値記憶部243を有している。
 振り向き判定処理部241は、認識部23からの認識結果と振り向き判定学習部242から供給された振り向き判定基準値を比較して、運転者がミラー部55の方向を向いたか判定して、判定結果を指示動作判定部25と制御処理部35に出力する。
 振り向き判定学習部242は、判定基準値記憶部243から振り向き判定基準値を読み出して振り向き判定処理部241に出力する。また、振り向き判定学習部242は、制御処理部35からの運転者情報、高速先方走行に最適化した運転の判定パラメータ設定、低速、後退、パーキングに適した運転の判定パラメータ設定等に対応する振り向き判定基準値を、判定基準値記憶部243から読み出して振り向き判定処理部241に出力する。さらに、振り向き判定学習部242は、頭部の向きや視線方向の認識結果に基づいて振り向き判定基準値の更新を行うことで、振り向き判定処理部241で、運転者毎に精度よく振り向き判定を行えるようにする。また、車両の速度域で、類似の頭部動作でも目的とする動作が異なることが発生するため、振り向き判定処理部241で、速度域に依存した判定を運転者毎に行えるようにする。例えば、高速走行や高速合流作業は前方に主要な注意を払い、一瞬モニタを早い動作で見る中で視認範囲を拡張できるように、視線振り向き確定までの判定閾値時間を1秒未満とする。駐車などの場合において、大型トレーラなどの各動作は、一旦各状態に視線注意をして全体把握のできる時間で後方把握してから拡張等の操作が行われるので、駐車相当と判別される時速15Km/h未満では少なくとも判定閾値時間を0.5秒以上とする。振り向き判定学習部242は、更新後の振り向き判定基準値を判定基準値記憶部243に出力して、判定基準値記憶部243に記憶されている振り向き判定基準値を更新する。なお、振り向き判定学習部242は、通知された運転者に対応する振り向き判定基準値が判定基準値記憶部243に記憶されていない場合、予め設定されている振り向き判定基準値を振り向き判定処理部241に出力する。また、振り向き判定学習部242は、その後に更新された振り向き判定基準値を、運転者情報と対応付けて判定基準値記憶部243に記憶させる。ここで、頭部の姿勢認識の判定推移を通知部例えば表示部50の表示画面上のオバーレイディスプレー、LED表示または車両のスピーカ等により視覚的や聴覚的に運転者DRにフィードバックすることで、指示動作確定をより正確に且つ最小限の動作で実現することができる。運転者DRへのフィードバックはデジタル的0/1の真偽判定ではなく、運転者の動きの判別度合いを示すステータスを例えばアナログ的に通知部でフィードバックすることが望ましい。
 判定基準値記憶部243は、振り向き判定に用いる振り向き判定基準値を記憶する。また、運転者の認証が行われる場合、判定基準値記憶部243は運転者毎に振り向き判定基準値を記憶する。判定基準値記憶部243に記憶されている振り向き判定基準値は、振り向き判定学習部242の学習結果に応じて更新される。
 指示動作判定部25は、指示動作判定処理部251、指示動作判定学習部252、判定基準値記憶部253を有している。
 指示動作判定処理部251は、認識部23からの認識結果と振り向き判定部24からの振り向き判定結果と指示動作判定学習部252から供給された判定基準値を用いて、運転者が所定の動作を行ったか判定して、制御処理部35に出力する。指示動作判定処理部251は、例えば運転者における頭部の2回以上の加減速動作の組み合わせの検出結果に基づき、運転者の動きから運転者の指示の判定を行う。
 指示動作判定学習部252は、判定基準値記憶部253から指示動作判定基準値を読み出して指示動作判定処理部251に出力する。また、指示動作判定学習部252は、制御処理部35から運転者が通知された場合、通知された運転者に対応する指示動作判定基準値を、判定基準値記憶部253から読み出して指示動作判定処理部251に出力する。さらに、指示動作判定学習部252は、頭部の向きや視線方向の認識結果に基づいて指示動作判定基準値の更新を行うことで、指示動作判定処理部251で精度よく指示動作の判定を行えるようにする。指示動作判定学習部252は、更新後の指示動作判定基準値を判定基準値記憶部253に出力して、判定基準値記憶部253に記憶されている指示動作判定基準値を更新する。なお、指示動作判定学習部252は、通知された運転者に対応する指示動作判定基準値が判定基準値記憶部253に記憶されていない場合、予め設定されている指示動作判定基準値を指示動作判定処理部251に出力する。また、指示動作判定学習部252は、その後に更新された指示動作判定基準値を、運転者情報と対応付けて判定基準値記憶部253に記憶させる。
 判定基準値記憶部253は、指示動作の判定に用いる指示動作判定基準値を記憶する。また、運転者の認証が行われる場合、判定基準値記憶部253は運転者毎に指示動作判定基準値を記憶する。判定基準値記憶部253に記憶されている指示動作判定基準値は、指示動作判定学習部252の学習結果に応じて更新される。
 ここで、指示動作判定学習部252には、ジェスチャーによる操作が目的としない判定結果を生じて誤動作となる場合に、除外分類等の指定をジェスチャーの検出以外のフィードバック形態例えばボタン操作や音声操作等で行える機能を設けてもよい。
 運転者認証部26は、運転者識別情報取得部15で取得された運転者固有の識別情報に基づき、車両の現在の運転者を判別して、判別結果を制御処理部35に出力する。
 制御処理部35は、運転者認証部26からの判別結果に基づき車両の運転者を判別して、判別した運転者を振り向き判定学習部242や指示動作判定学習部252に通知する。また、制御処理部35は、振り向き判定部24と指示動作判定部25からの判別結果に基づき、表示部50におけるモニタ画像領域と非モニタ画像領域で異なる表示制御を行う制御信号を生成する。制御処理部35は、生成した制御信号を表示調整部41と輝度調整部42に出力する。
 表示調整部41は、制御処理部35からの制御信号に基づき、周辺領域撮像部11から供給された画像信号に対して周辺領域撮像画像の倍率調整、周辺領域の画像の切り替えや合成等を行う。
 輝度調整部42は、制御処理部35からの制御信号に基づき、表示部50における非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。輝度調整部42は、表示部50が照明を必要とする表示素子例えば液晶表示素子を用いて構成されている場合、照明例えばバックライトを制御して、非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。また、表示部50が照明を必要とする表示素子または自発光素子例えば有機EL表示素子を用いて構成されている場合、非モニタ画像領域に対応する輝度信号の信号レベルを低下させる処理を行ってもよい。
 上記の構成とすることで、予め予期した運転者の動作検出手順として、表示部視認開始状態の検出を、より高速で素早く行う。
 通常の運転者の人間工学的な動作ステップは以下の通りと予想される。動物全般的に視覚を通して外界把握をする場合、一番俊敏に方向を捉えて向きを変えるのは眼球運動であり、眼球運動の回転範囲のみでは捉えきれない範囲に視認したい対象物がある場合は、さらには首や体の姿勢を追って変化させることで不足の範囲を補う。
 その結果、前方視認と大幅に方向が異なるミラー部配置方向へ視線注意をする一連の手順で、運転者はミラー部の画像を視認できるおおよその方向を捉え、眼球の回転移動と首の回転運動を開始する。運転者は、ミラー部を視線で捉えると首の振り向き回転中から眼球回転は首の回転を打ち消す視線方向を合わせ、ミラー部に視線を合わせた時点では、首の振り向き運動もほぼ停止固定する。この一連の動作特徴となる頭部回転状態を逐次時系列解析して動きの加速と減速状態からミラー部の視認開始の状態の変化を学習する。このように学習を行い、個別運転者の動作シーケンスの特徴解析を行うことで、該当運転者の頭部回転が完全に静止する前から運転者のミラー部注視開始の判定を可能とし、且つ引き続き指示操作解析を速やかに移行することで、遅延の少ない画面操作のHMI(ヒューマンマシンインターフェースが)を実現する。ここで、頭部の姿勢認識の判定推移を通知部例えば表示部50の表示画面上のオバーレイディスプレー、LED表示や車両のスピーカ等により視覚的や聴覚的に運転者DRにフィードバックすることで、指示動作確定をより正確に且つ最小限の動作で実現することができる。運転者DRへのフィードバックはデジタル的0/1の真偽判定ではなく、運転者の動きの判別度合いを示すステータスを例えばアナログ的に通知部でフィードバックすることが望ましい。ただし、これらフィードバックの必要以上の表示は、視界の妨害ともなり得ることから、一旦運転者固有の特性を学習後に不要となれば、表示機能を止めることがよく、必ずしも常に表示を行う必要はない。
 また、運転が通常の高速前方運転では体の動きは少なく狭い範囲が視認対象範囲であり、低速駐車には頭部や体の動きを多く動かして周辺全体を把握する作業となる。このため、各指示検出の判定基準は高速と低速で異なるのが望ましいので、モード切替判定は車両に運転状態と相関判定をとり行うことで操作性を改善する。
 [4-2.第4の実施の形態の動作]
 図28は、表示制御部の動作を示すフローチャートである。ステップST41で表示制御部20は、判定基準値の取り込みを行う。表示制御部20は、振り向き動作や視認範囲変更指示および視認範囲復元指示の判定に用いる判定基準値を取得する。また、判定基準値は運転者毎に設けるようにして、現在の運転者に対応した判定基準値を取得するようにしてもよい。また、運転者の動作に応じて判定基準値を更新して、最新の判定基準値を取得するようにしてもよい。表示制御部20は判定基準値を取り込んでステップST42に進む。
 ステップST42で表示制御部20は顔の向き(頭部の向き)の観測を開始する。表示制御部20は運転者撮像部12から供給された画像信号を用いて顔認識を行い運転者の顔を判別する処理と、判別した顔の向き(頭部の向き)を検出する処理を開始してステップST43に進む。
 ステップST43で表示制御部20は、定常時における顔の位置と向きを判別する。表示制御部20は、顔の向き(頭部の向き)の観測結果に基づき、定常時における顔の位置と向きを判別する。表示制御部20は、定常時における顔の位置や向きが前回の判定から変化している場合、変化量に応じた補正値を算出する。また、運転者に対応した情報がない場合は初期値からの違いを補正値とする。表示制御部20は、補正値を算出してステップST44に進む。
 ステップST44で表示制御部20は振り向き判定基準値を設定する。表示制御部20は、判定基準値と算出した補正値を用いて振り向き判定基準値を設定してステップST45に進む。
 ステップST45で表示制御部20は振り向き判定を開始する。表示制御部20は、頭部の向きの観測結果と振り向き判定基準値を用いて、運転者の振り向き動作を判定する処理を開始してステップST46に進む。
 ステップST46で表示制御部20は顔の位置と向きを追跡する。表示制御部20は、顔の位置と向きの観測結果に基づき、顔の位置と向きの追跡を行ってステップST47に進む。
 ステップST47で表示制御部20は顔の位置や向きに変化を生じたか判別する。表示制御部20は、顔の位置や向きに変化がないと判別した場合にステップST46に戻り、変化が生じたと判別した場合にステップST48に進む。
 ステップST48で表示制御部20はミラー部凝視状態であるか判別する。表示制御部20は、顔の位置や向きと判定基準値を用いて、運転者がミラー部を凝視している状態であるか判別する。表示制御部20は、凝視状態であると判別した場合にステップST49に進み、凝視状態でないと判別した場合にステップST46に戻る。なお、ここでの凝視状態は、生理的な操作として眼の焦点を合わせて状況把握に移行する瞬間が発生するポイントを指しており、必ずしも運転者がミラー部の画像をじっと眺めている状態とは限らない。
 ステップST49で表示制御部20は高速検出モードに移行する。表示制御部20は、運転者の視認範囲変更指示および視認範囲復元指示を精度よく検出するため、顔の位置や向きの観測を高速で行うことにより、運転者の細かな動きを検出できるようにする。表示制御部20は、高速検出モードの場合、運転者の顔の位置や向きの観測を例えば100ms以下の頻度で定期的に行うようにする。なお、振り向きの検出は通常検出モードで行い、運転者の顔の位置や向きの観測は高速検出モードよりも時間間隔を広くして定期的に行うようにする。表示制御部20は高速検出モードに移行してステップST50に進む。
 ステップST50で表示制御部20は、指示の検出を開始する。表示制御部20は、顔の位置や向きの観測結果と判定基準値を用いて、視認範囲変更指示および視認範囲復元指示の検出を開始してステップST51に進む。
 ステップST51で表示制御部20は指示を検出したか判別する。表示制御部20は指示検出によって、視認範囲変更指示または視認範囲復元指示を示す運転者の動きが検出された場合にステップST52に進む。また、表示制御部20は、指示が検出されていない場合にステップST53に進む。
 ステップST52で表示制御部20は指示に応じて表示制御を行う。表示制御部20は、例えば視認範囲変更指示を検出した場合、モニタ画像領域に画像が表示される視認範囲を顔の位置や向きの変化に応じて変更する。また、表示制御部20は、例えば視認範囲復元指示を検出した場合、モニタ画像領域に画像が表示される視認範囲を変更前の領域に戻す。表示制御部20はこのような表示制御を行いステップST50に戻る。
 ステップST53で表示制御部20は、頭部の向きがミラー部方向と異なる方向であるか判別する。表示制御部20は、頭部の向きの観測結果と判定基準値を用いて、頭部の向きが画像視認方向と異なる方向であるか判別する。表示制御部20は、頭部の向きが画像視認方向と異なる方向であると判別した場合に高速検出モードを通常検出モードに切り替えてステップST47に戻る。また、表示制御部20は、頭部の向きがミラー部の方向と判別した場合にステップST54に進む。
 ステップST54で表示制御部20は、所定の判別期間内であるか判別する。表示制御部20は、所定の判別期間内である場合にステップST50に戻り、所定の判別期間が経過した場合、高速検出モードを通常検出モードに切り替えてステップST47に戻る。
 図29は、振り向きと視認範囲変更指示の動作を例示した図である。また、図30は、振り向き判定と視認範囲変更指示の判定動作を例示した図である。なお、図30の(A)は振り向き方向(角度)と時間の関係、図30の(B)は振り向き速度と時間の関係を例示している。
 図29において、方向PF1は通常時において運転者の頭部が向いている正面方向を示しており、方向PF2は、ミラー部55の画像を運転者が視認する際の頭部の向きを例示している。方向PF3は、ミラー部55の方向を示している。
 範囲FS1は通常時における運転者の頭部の向きの移動範囲を例示しており、範囲FSaは運転者の眼球移動による探索範囲を例示している。範囲FS2は、頭部の向きを方向PF1から方向PF2に移動する際の頭部回転加速帯であり、頭部の向きを方向PF2から方向PF1に移動する際の頭部回転減速帯である。範囲FS3は、頭部の向きを方向PF1から方向PF2に移動する際の頭部回転減速帯であり、頭部の向きを方向PF2から方向PF1に移動する際の頭部回転加速帯である。角FVaは、ミラー部55の画像を運転者が視認する際の頭部の振り向き角を例示している。角FVbは、ミラー部55の画像を運転者が視認する際の眼球移動で確保する振り向き角を例示している。範囲FScは、ミラー部55の画像を運転者が視認する際の眼球移動による探索範囲を例示している。
 図30の(A)において、範囲JAは運転者が前方を向いていると見なせる振り向き角度の範囲である。範囲JBは運転者が頭部を方向PF2に向けて回転させたときミラー部55を凝視していると見なせる振り向き角度の範囲である。範囲JCは眼球移動によりミラー部55を凝視していると見なせる振り向き角度の範囲である。曲線QCaは頭部の向きを示しており、曲線QCbは頭部の向きと眼球移動に基づいた視線方向を示している。また、図30の(B)において、範囲JEは、前方振り向き時の判定範囲である。
 表示制御部20は、振り向き速度(頭部の向きの変化に相当)が判定基準値で示された範囲JEを超えたのち範囲JE内に戻り、振り向き方向(角度)が判定基準値で示された振り向き方向の範囲JB(ミラー部方向を基準として設定された範囲)内であることを検出する。この場合、表示制御部20は、運転者がミラー部55の方向を振り向いて凝視していると推定して振り向き動作が行われたと判別する。なお、眼球移動の検出を行い、頭部の向きと眼球移動に基づいて視線方向を推定すれば、推定した視線方向と範囲JCを比較することで、さらに精度よく振り向き動作の判別を行うことができる。表示制御部20は、振り向き動作が行われたと判別した場合、視認範囲変更指示を高い時間解像度で検出できるように高速検出モードに変更する。
 なお、運転席側と助手席側の後方視認モニタリングシステムでは、表示部50やミラー部55の配置や方向が異なり、指示動作判定や振り向き角判定など全て異なることが予想されるために判定基準は個別に行うのが望ましい。
 表示制御部20は、振り向き方向(角度)が凝視状態であるか判定するための範囲JBと振り向き方向(角度)を比較して、振り向き方向(角度)が範囲JBを所定の方向に所定回数例えば2回超えたことを検出する。ここで、図30の(A)に示すように時点tjで運転者における頭部の2回以上の加減速動作の組み合わせを検出した場合、すなわち振り向き方向(角度)が範囲JBを2回超えたことを判別した場合、表示制御部20は、運転者がミラー部に対して凝視状態で指示を行っていると推定して視認範囲変更指示が行われたと判別する。その後、表示制御部20は、視認範囲変更指示に応じて視認範囲を変更する表示制御を行う。
 なお、表示制御部20は、頭部の向きが判定基準値で示された範囲JA内であることを検出する。この場合、表示制御部20は、運転者がミラー部方向から正面方向に向きを変えたと判別して、振り向き動作判別前の状態に戻る。
 また、視認範囲変更指示は、運転その状態に応じて操作指示動作量が異なってもよい。一般的に、駐車時などの低速運転動作では運転者はより頭部や体を大きく動かすことに慣れており、他方で高速走行時には主に頭部の移動量は少なく眼球移動が主な視線移動を占めるため、より少ない頭部移動で判定基準を設けるのが好ましい。さらに、図30では2回以上の反復移動を例示しているが、運転者の頭部動作が実質的に復元を伴わない一連の一方向2段階の加速の動きであってもよい。
 図31は、操作指示動作量として頭部の回転動作の加速度を用いる場合を例示している。図31の(A)は、振り向き方向(角度)、図31の(B)は振り向き速度、図31の(C)は振り向き加速度を示している。
 運転者が複数回の振り向きを行う場合、振り向きの反復動作と次の振り向きの反復動作では開始位置が必ずしも位置せず、例えば前回の振り向きの反復動作で元の位置に戻る前に次の振り向き動作が行われる。この場合、頭部の向きを示す曲線QCaは、図31の(A)に示すように変化する。したがって、振り向き方向(角度)に基づいて視認範囲変更指示の判別を行うことができない。しかし、振り向きの反復動作を繰り返すと、振り向き加速度は、図31の(C)に示すように、振り向きの動作毎に1サイクルの振動を生じた波形となる。したがって、表示制御部20は、振り向き加速度を利用して、精度よく振り向きの繰り返しを検出できる。
 さらに、表示制御部20は、運転者の振り向き速度や振り向き方向の動作特性履歴を学習させその運転者固有の特性に応じて、運転者毎に判定基準値を更新する。このように、判定基準値を更新することで、振り向き動作や視認範囲変更指示の判定精度を向上させると共に、より少ない指示動作での正確な指示検出をすることができるように、自己学習機能を備える。また、学習機能では、操作指示動作量を含めた動作特性を自己学習してドライバの特性に最適化する働きを行わせる。
 このような処理を行うことで、運転者が周辺領域の状況を把握する場合の動作に対応した表示制御を精度よく行うことができる。
 また、振り向きの動作が安定した時間経過後に頭部の向きの移動検出を行う。このようにすれば、例えば頭部の向きに対して直交する方向の頭部移動が2回以上繰り返された場合や、首を軸として顔を向き回転させる顔振り動作が2回以上繰り返された場合に、視認範囲変更指示または視認範囲復元指示が行われたと判別される。したがって、指示の判定をさらに精度よく行うことができる。
 本技術では、人が注意視線方向と異なる方向に振り向いた際の人間工学的手順に基づいて、眼球移動で対象物を素早く捉え、合わせて眼の焦点合わせを行い始めると同時に最後に目視注意が行われ始めるにしたがい、頭部移動を安定化する動きを考慮している。つまり、運転者は表示内容を目視して状況把握ができ始めるタイミングでは頭部位置の移動が安定化して停止に向かう。画面把握を通して運転者はさらに視界範囲の変更が必要かを判断するので、この安定化手順を踏んでから指示動作が行わることを反映している。
 また、表示制御において、表示制御部20は、運転者の頭部の向きがミラー部の方向に移動したことを検出したことに応じて表示制御を行う。例えば頭部の向きがミラー部の方向でない場合は、バックライトを消灯してまたは輝度信号の信号レベルを低下させて、画像が見えないように、または見難くする。また、例えば頭部の向きがミラー部の方向である場合は、バックライトの点灯および輝度制御や輝度信号の信号レベルを調整して視認範囲の画像を確認できるようにする。したがって、運転者が前方を向いている場合に、不必要に明るい周辺領域の画像が表示されることを防止できる。また、運転者がミラー部の方向を向いている場合にのみ、周辺領域の画像を表示できる。
 また、表示制御部20は、視認範囲の変更後、徐々に自動的に視認範囲を元の位置に戻すようにしてもよい。この場合、運転者は視認範囲を元の範囲に戻す操作を行う必要がない。さらに表示制御部20は、運転者が状況の確認を瞬時に行うことができなくなってしまうことを防止するため、表示倍率の変化や表示形態の変化は急激に行われることがないように表示制御を行う。
 本明細書の説明では便宜上、頭部方向や視線を認識して指示検出を行う手順の実施例を記載している。しかし、実際には具体的な頭部方向や視線を正確に求めることが目的ではないため、運転者が表示部50を視認する状態との相関が得られればよく、表示制御部20の役割は必ずしも視線認識や頭部姿勢を正確に把握でき機能を備えることは必要ではない。そのため、表示制御部20は図27の構成に限らず、車両状態と運転者操作指示ジェスチャー応答表示であれば別の構成にしてもよい。
 <5.他の実施の形態>
 また、他の実施の形態として、表示部50に画像を表示する場合に、画像が圧縮して表示されると、表示画像から把握された距離感が周辺範囲に含まれる被写体までの距離と大きく相違してしまうおそれがある。そこで、画像の圧縮度合いに応じて表示部の画面上や周辺に警告表示を設けるようにしてもよい。
 図32は、警告表示を行う場合の表示制御部の構成を例示している。表示制御部20は、運転者動き判別部21、制御処理部35、表示調整部41、輝度調整部42、警告表示重畳部43を備えている。
 運転者動き判別部21は、運転者撮像部12から供給された画像信号に基づき、運転者の頭部位置を検出して、運転者の頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、例えば運転者撮像部12から供給された画像信号に基づき、運転者の顔認識を行い、認識した顔の位置や頭部の向きを判別する。さらに、運転者動き判別部21は、認識した顔を追跡して、頭部位置の移動方向と移動量を判別する。運転者動き判別部21は、判別結果を制御処理部35に出力する。
 制御処理部35は、運転者動き判別部21の判別結果に基づき、表示部50におけるモニタ画像領域と非モニタ画像領域で異なる表示制御を行う制御信号を生成して、表示調整部41と輝度調整部42および警告表示重畳部43に出力する。
 表示調整部41は、制御処理部35からの制御信号に基づき、周辺領域撮像部11から供給された画像信号に対して周辺領域撮像画像の倍率調整、周辺領域の画像の切り替えや合成等を行う。
 輝度調整部42は、制御処理部35からの制御信号に基づき、表示部50における非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。輝度調整部42は、表示部50が照明を必要とする表示素子例えば液晶表示素子を用いて構成されている場合、照明例えばバックライトを制御して、非モニタ画像領域の輝度をモニタ画像領域よりも低下させる。また、表示部50が照明を必要とする表示素子または自発光素子例えば有機EL表示素子を用いて構成されている場合、非モニタ画像領域に対応する輝度信号の信号レベルを低下させる処理を行ってもよい。
 警告表示重畳部43は、制御処理部35からの制御信号に基づき、表示可変処理後の画像に、例えば画像の圧縮の度合いを示す情報を重畳させる。例えば、顔の左右の動きに合わせて視認範囲の画像を表示して、さらに2回以上の顔や頭の繰り返し動作で視認範囲の拡大を行い、逆方向の動作で拡大前の表示に復帰する。また、画像を変倍して表示する場合には変倍表示であることを警告するための動的警告表示を設ける。動的警告表示は警告内容を直感的に理解できるように、変倍動作に応じて枠サイズの調整を行い、枠をゼブラ点線枠で表示して、変倍に応じてゼブラ表示を流れるように表示する。ゼブラ表示の流れに付いては、人の生理的仕組みを考慮すると視線中心外の視野に入った動体反応として認知されその際に危険として接近物に敏感に検知することから接近方向の動きが含まれるのが望ましい。
 このような表示制御を行うことで、画像が圧縮して表示される場合に、運転者の距離感覚等の喪失を防止することができる。例えば画像が圧縮されることで、近接している被写体が離れた位置の被写体として認識されてしまうことを防止できる。
 また、表示制御部20は、ナビゲーションシステムと連動して表示制御を行い、高速道路の合流時やランドアバウトでの走行では通常の後方視界より広い視野角の画像を表示するようにしてもよい。
 また、運転者の動きの判別では、頭部の向きの移動すなわち首を軸とした頭部の回転に限らず、頭部の傾倒動作(首振り)や運転者の例えば上半身の前後左右方向の運動の少なくとも何れかを利用して表示制御を行うようにしてもよい。さらに、ミラー部方向への頭部の移動動作や姿勢変化を利用して、表示画像のズームイン動作やズームアウト動作を行うようにしてもよい。
 図33乃至図35は、運転者の他の動きに基づいた表示制御を例示している。図33は、周辺領域撮像部の配置と表示部で表示される周辺画像を例示している。車両には図33の(A)に示すように車両の側面に周辺領域撮像部11c,11dが設けられており、車両の背面に周辺領域撮像部11eが設けられている。表示制御部20は、図33の(B)に示すように、周辺領域撮像部11c,11d,11eで取得された3つの周辺領域の画像を表示部50に表示する。
 図34は、頭部を前後方向に移動した場合の周辺領域画像の切り替えを説明するための図である。表示制御部は、頭部の移動が行われる前には、図34の(A)に示すように、周辺領域撮像部11c,11d,11eで取得された3つの周辺領域の画像を表示部50に表示する。また、表示制御部は、例えば頭部の前方向の移動を判別した場合、図34の(B)に示すように、車両側面に設けられている周辺領域撮像部11c,11dで取得された周辺領域の画像を表示する表示領域を進行方向に拡張した画像に切り替える。その後、表示制御部は、頭部が元の位置に移動した場合、切り替え前の画像に戻す表示制御を行う。
 図35は、頭部を左方向に移動した場合の周辺領域画像の切り替えを説明するための図である。表示制御部は、頭部の移動が行われる前には、図35の(A)に示すように、周辺領域撮像部11c,11d,11eで取得された3つの周辺領域の画像を表示部50に表示する。また、表示制御部は、例えば頭部の左方向の移動を判別した場合、図35の(B)に示すように、右側の周辺領域の画像を表示する表示領域を拡張した画像に切り替える。その後、表示制御部は、頭部が元の位置に移動した場合、切り替え前の画像に戻す表示制御を行う。
 このように、頭部の向きの移動に限らず、頭部の傾倒動作等を利用して表示制御を行うことで、多様な態様で周辺領域の画像を表示することができる。
 さらに、上述の実施の形態では、運転者の動き判別結果に基づき表示制御を行うことで視認範囲を変更する場合について説明したが、運転者の動き判別結果に基づきミラー部の向きを変更することで、表示部の表示画像における所望の視認範囲の画像がミラー部に映るようにしてもよい。
 また、ミラー部は半透過ミラーを用いた構成として、ミラー部の背面に表示デバイス例えば液晶表示素子や有機EL表示素子,発光ダイオードを用いた表示素子等を設けてもよい。この場合、ミラー部では、表示部で表示された周辺領域の画像と共に背面の表示デバイスで表示された画像を同時に視認できる。したがって、背面の表示デバイスで種々の情報を表示すれば、運転者は周辺領域を確認しながら情報を同時に読み取ることができる。背面の表示デバイスで表示する情報は、表示部に表示された周辺領域画像に関連した情報(例えば判定された運転者の指示や判別された視認範囲のモード等)であってもよく、運転状況等に関連した情報(ナビゲーション指示情報等)等であってもよい。
 さらに、ミラー部は、半透過ミラーが半透過調光機能を有する構成、または半透過ミラーの背面にさらに透過光の光調光デバイスを配置した構成としてもよい。このような構成とすれば、ミラー部の背面に設けられた表示デバイスの表示画像の見え具合を半透過調光機能や光調光デバイスを利用して調整することが可能となる。したがって、周辺領域の確認を行いながら種々の情報を容易に読み取ることができるように情報を表示できる。
 また、上述の実施の形態では、バックミラーに相当する機能を実現する場合について例示した。しかし、周辺領域の視認はバックミラーに限らずルームミラーで行われることから、ルームミラーに相当する機能を実現してもよい。次に、他の実施の形態として、ルームミラーに相当する機能を実現する場合について説明する。なお、この場合、表示部やミラー部等の配置は必ずしも従来のミラーに相当する配置にこだわらなくてもよく、例えばダッシュボード上のセンターメーターやコンソールパネル等の近傍位置等に配置してもよい。
 まず、1台の周辺領域撮像部を用いてルームミラーに相当する機能を実現する場合について説明する。図36は、1台の周辺領域撮像部を用いてルームミラーに相当する機能を実現する場合の構成を例示している。例えば図36の(A)に示すように、車両の後部に1台の周辺領域撮像部を設けて車両の後方を撮像して、周辺領域撮像部11で取得された周辺領域の画像を運転者DRが確認できるようにする。なお、図36の(A)では、周辺領域の画像を表示する表示部は省略している。
 また、周辺領域撮像部11で取得された周辺画像を運転者DRが目視する場合でも、ルームミラー61に映る周辺領域と同等の距離感を維持できるようにする。例えば、周辺領域撮像部11で撮像された領域(周辺領域撮像部11で取得される周辺画像の水平方向の画角)ARuは、ルームミラー61に映る周辺領域の水平方向の視野領域ARrmと略等しくする。このようにすれば、1台の周辺領域撮像部を用いてルームミラーに相当する機能を実現できる。
 ところで、図36の(A)に示すように後続車OBcや人物OBpが位置している場合、ルームミラー61に映る周辺画像は図36の(A)の視野領域ARrmの画像であることから例えば図36の(B)に示す画像となる。また、周辺領域撮像部11で撮像される周辺領域は図36の(A)の周辺領域ARuであることから例えば図36の(C)に示す画像となる。すなわち、周辺領域撮像部11で撮像される周辺領域の画像では、ルームミラー61に映る周辺画像に対して車両近傍で死角となる領域が大きいため、図36の(C)に示すように人物OBpを確認することができない。
 そこで、図37に示すように、複数台の周辺領域撮像部を用いてルームミラーに相当する機能を実現する。例えば車両の左側に周辺領域撮像部11g、車両の右側に周辺領域撮像部11hを設けてそれぞれの周辺領域撮像部で後方を撮像してルームミラーに相当する機能を実現する場合に、図36の場合に比べて死角を少なくする。なお、領域ARrmはルームミラー61に映る周辺画像の水平方向の視野領域、領域ARugは左側の周辺領域撮像部11gで取得された周辺画像の水平方向の視野領域、領域ARuhは右側の周辺領域撮像部11hで取得された周辺画像の水平方向の視野領域である。このようにすれば、周辺領域撮像部を用いてルームミラーに相当する機能を実現する場合に、周辺領域撮像部11gと周辺領域撮像部11hで取得された周辺領域の画像を合成することで、車両近傍で死角となる領域が大きくなってしまうことを防ぐことができる。
 また、周辺領域撮像部11gと周辺領域撮像部11hで取得された周辺領域の画像は視差を生じていることから、視差の違いを打ち消して周辺画像を合成表示することは困難である。そこで、周辺領域の画像の合成では、視差の違いが目立たないように画像の合成処理を人間工学的に容易に行えるようにする。
 図38は、ルームミラーよりも死角を少なくした場合の構成を例示している。車両の左側には周辺領域撮像部11j、車両の右側には周辺領域撮像部11kが設けられている。周辺領域撮像部11jは、取得される周辺画像の水平方向の視野領域(画角)が、ルームミラー61に映る周辺画像の水平方向の視野領域ARrmに含まれる領域ARuj1と、視野領域ARrmより左外側の領域ARuj2を含むように設定されている。周辺領域撮像部11kは、取得される周辺画像の水平方向の視野領域(画角)が、ルームミラー61に映る周辺画像の水平方向の視野領域ARrmに含まれる領域ARuk1と、視野領域ARrmより右外側の領域ARuk2を含むように設定されている。また、車両の後方位置では、領域ARuj1と領域ARuk1の少なくとも一方に視野領域ARrmが含まれるように設定されている。
 上述の表示制御部20の表示調整部41は、制御処理部35からの制御信号に基づき、周辺領域撮像部11j,11kで取得された周辺画像から画像を切り出して結合する。制御処理部35は、係合後の画像において周辺領域が連続しているように画像の切り出しを制御する。さらに制御処理部35は、運転者動き判別部21の判別結果に基づき画像の切り出し位置や結合位置を運転者の指示に応じて移動する。
 制御処理部35は、例えば周辺領域撮像部11jで取得された周辺画像における領域ARmjの画像と、周辺領域撮像部11kで取得された周辺画像における領域ARmkの画像を結合することで、図38の(B)に示すように、領域ARrmを含む周辺領域を確認できるようになる。また、視差の違いを打ち消して合成表示する処理を行わなくとも、領域ARmjの画像と領域ARmkの画像を結合するだけで周辺領域の確認に用いる画像を生成できるので、周辺領域の確認用の画像を容易に生成できる。
 また、画像の結合では、画像の結合位置を基準とした所定範囲において、所謂ブレンド処理を行い、周辺領域撮像部11jで取得された周辺画像と周辺領域撮像部11kで取得された周辺画像の混合比を連続的に変化させる。このような処理を行えば、結合部分を目立たなくできる。
 また、制御処理部35は、運転者動き判別部21の判別結果に基づき画像の切り出し位置を可変させて、運転者DRの位置が例えば左右に移動した場合、ルームミラー61に映る周辺領域の移動と同様に画像の切り出しを行う領域を移動させる。このようにすれば、運転者が動きを生じてもバックミラーに相当する機能を実現できる。
 ところで、周辺領域撮像部11jで取得された周辺画像と周辺領域撮像部11kで取得された周辺画像の結合では、右視点の画像と左視点の画像が結合されることから、後方の車両や人物が結合位置にある場合、車両や人物等の画像が違和感のある画像となってしまうおそれがある。特に、車両や人物等が近接していると、視差が大きいため結合部分で画像の違和感が顕著となってしまう。そこで、制御処理部35は、運転者動き判別部21の判別結果に基づき、運転者からの指示に応じて結合位置を変更できるようにする。
 図39は、画像の結合位置の切り替えを説明するための図である。図39の(A)に示すように、周辺領域撮像部11jで取得された周辺画像と周辺領域撮像部11kで取得された周辺画像の結合位置が位置Pb1である場合、後続車OBcや人物OBpの画像領域に位置Pb1が含まれていないことから、表示された周辺画像によって、後続車OBcや人物OBpを容易に確認できる。しかし、結合位置が位置Pb1で固定されており、図39の(B)に示すように、人物OBpの画像領域が位置Pb1となると、人物OBpの左視点の画像と右視点の画像が結合された画像となり、人物OBpを正しく判別することが困難になってしまうおそれがある。そこで、制御処理部35は、運転者の指示に応じて結合位置を変更する。例えば結合位置を左方向に移動する運転者の指示を判別した場合、図39の(C)に示すように、結合位置を左方向に移動する。このように結合位置の移動が行われると、人物OBpは周辺領域撮像部11kで取得された周辺画像のみで表示されることから、人物OBpを容易に正しく判別できるようになる。
 また、制御処理部35は、結合位置を示す表示(例えばマーカー等の表示)を行うようにすれば、運転者は、結合位置と後続車や人物等の位置関係を容易に把握できることから、結合位置の移動が必要であるか否か、また結合位置をいずれの方向に移動することが好ましいか容易に判別できるようになる。なお、結合位置の初期位置は、予め設定されている位置またはユーザが設定した位置に自動的に設定してもよく、前回の運転終了時に設定されていた位置としてもよい。
 また、運転者の指示は、例えば上述の運転者の動作に対応させたヒューマンマシンインターフェースを用いて、運転者の操作指示ジェスチャーから指示を検出する。このようにすれば、運転者は頭部や視線を移動させるだけで容易に結合位置を所望の方向に移動させることが可能となる。
 なお、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、上述のような処理を行うシーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させる。または、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。
 例えば、プログラムは記録媒体としてのハードディスクやSSD(Solid State Drive)、信号処理半導体内蔵または個別のROM(Read Only Memory)に予め記録しておくことができる。あるいは、プログラムはフレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、BD(Blu-Ray Disc(登録商標))、磁気ディスク、半導体メモリカード等のリムーバブル記録媒体に、一時的または永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、プログラムは、リムーバブル記録媒体からコンピュータにインストールする他、ダウンロードサイトからLAN(Local Area Network)やインターネット等のネットワークを介して、コンピュータに無線または有線、自己診断機能またはOBD(オン・ボード・ダイアグノースティックス)端子経由で転送してもよい。コンピュータでは、そのようにして転送されてくるプログラムを受信し、内蔵するハードディスク等の記録媒体にインストール、アップデートすることができる。
 また、本技術は、上述した技術の実施の形態に限定して解釈されるべきではない。この技術の実施の形態は、例示という形態で本技術を開示しており、本技術の要旨を逸脱しない範囲で当業者が実施の形態の修正や代用をなし得ることは自明である。すなわち、本技術の要旨を判断するためには、請求の範囲を参酌すべきである。
 なお、本技術の信号処理装置は以下のような構成もとることができる。
 (1) 車両の周辺領域を撮像して得られた画像から前記車両の運転者に提示する画像領域を、前記車両の運転状況に関する運行情報に基づき設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する表示制御部を備えた信号処理装置。
 (2) 前記表示制御部は、前記車両の進行方向に関した運行情報に基づき、前記車両の外側方向に前記視認範囲を制御する(1)に記載の信号処理装置。
 (3) 前記車両の周辺領域を撮像して得られた画像は、前記車両の所定位置または進行方向に異なる複数の所定位置から撮像された画像であり、
 前記表示制御部は、前記運行情報に基づき、前記撮像された画像における1または複数の画像に対して前記提示する画像領域を設定して、前記視認できる周辺領域の視認範囲を前記運転状況に応じて制御する(1)または(2)に記載の信号処理装置。
 (4) 前記車両はキャビンに牽引トレーラ部が連結された構成とされており、
 前記車両の所定位置から撮像された画像は、前記キャビンの所定位置から前記車両の周辺領域を撮像した画像であり、前記車両の進行方向に異なる複数の所定位置から撮像された画像は、前記キャビンと前記牽引トレーラ部のそれぞれの所定位置から前記車両の周辺領域を撮像した画像である(3)に記載の信号処理装置。
 (5) 前記表示制御部は、前記運行情報に基づき前記キャビンの向きと前記牽引トレーラ部の向きが相違する運転状況であるとき、前記牽引トレーラ部の外側が前記視認範囲に含まれるように前記提示する画像領域を設定する(4)に記載の信号処理装置。
 (6) 前記運行情報は、前記車両の車速情報,ステアリング状態を示す情報,ギヤ位置情報,方向指示器設定状態,前記車両がキャビンに牽引トレーラ部が連結された構成である場合における前記キャビンに対する前記牽引トレーラ部の曲がり角,前記牽引トレーラ部の接続状態を示す情報,現在位置情報の少なくとも何れかの情報を含む(1)乃至(5)の何れかに記載の信号処理装置。
 この技術の信号処理装置と信号処理方法およびモニタリングシステムでは、車両の周辺領域を撮像して得られた画像から車両の運転者に提示する画像領域が、車両の運転状況に関する運行情報に基づき設定されて、運転者が提示された画像によって視認できる周辺領域の視認範囲が運転状況に応じて制御される。このため、運転者が視認できる周辺領域の視認範囲が運転状況に応じて制御されて、車両の周辺領域を容易に視認できるようになり、トレーラ等の車両に適している。
 10・・・表示装置
 11,11a,11b,11・・・周辺領域撮像部
 12・・・運転者撮像部
 13・・・運転状況検出センサ
 15・・・運転者識別情報取得部
 20・・・表示制御部
 21・・・運転者動き判別部
 22・・・運転状況判別部
 23・・・認識部
 24・・・振り向き判定部
 25・・・指示動作判定部
 26・・・運転者認証部
 35・・・制御処理部
 41・・・表示調整部
 42・・・輝度調整部
 43・・・警告表示重畳部
 50・・・表示部
 55・・・ミラー部
 61・・・ルームミラー
 91・・・バックミラー
 241・・・振り向き判定処理部
 242・・・振り向き判定学習部
 243・・・判定基準値記憶部
 251・・・指示動作判定処理部
 252・・・指示動作判定学習部
 253・・・判定基準値記憶部

Claims (8)

  1.  車両の周辺領域を撮像して得られた画像から前記車両の運転者に提示する画像領域を、前記車両の運転状況に関する運行情報に基づき設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する表示制御部
    を備えた信号処理装置。
  2.  前記表示制御部は、前記車両の進行方向に関した運行情報に基づき、前記車両の外側方向に前記視認範囲を制御する
    請求項1記載の信号処理装置。
  3.  前記車両の周辺領域を撮像して得られた画像は、前記車両の所定位置または進行方向に異なる複数の所定位置から撮像された画像であり、
     前記表示制御部は、前記運行情報に基づき、前記撮像された画像における1または複数の画像に対して前記提示する画像領域を設定して、前記視認できる周辺領域の視認範囲を前記運転状況に応じて制御する
    請求項1記載の信号処理装置。
  4.  前記車両はキャビンに牽引トレーラ部が連結された構成とされており、
     前記車両の所定位置から撮像された画像は、前記キャビンの所定位置から前記車両の周辺領域を撮像した画像であり、前記車両の進行方向に異なる複数の所定位置から撮像された画像は、前記キャビンと前記牽引トレーラ部のそれぞれの所定位置から前記車両の周辺領域を撮像した画像である
    請求項3記載の信号処理装置。
  5.  前記表示制御部は、前記運行情報に基づき前記キャビンの向きと前記牽引トレーラ部の向きが相違する運転状況であるとき、前記牽引トレーラ部の外側が前記視認範囲に含まれるように前記提示する画像領域を設定する
    請求項4記載の信号処理装置。
  6.  前記運行情報は、前記車両の車速情報,ステアリング状態を示す情報,ギヤ位置情報,方向指示器設定状態,前記車両がキャビンに牽引トレーラ部が連結された構成である場合における前記キャビンに対する前記牽引トレーラ部の曲がり角,前記牽引トレーラ部の接続状態を示す情報,現在位置情報の少なくとも何れかの情報を含む
    請求項1記載の信号処理装置。
  7.  運転状況検出部で取得された車両の運転状況に関する運行情報に基づき、撮像部で前記車両の周辺領域を撮像して得られた画像から前記車両の運転者に提示する画像領域を表示制御部で設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する工程
    を含む信号処理方法。
  8.  車両の周辺領域を撮像する撮像部と、
     前記車両の運転状況に関する運行情報の運行情報を取得する運転状況検出部と、
     前記撮像部で得られた画像から前記車両の運転者に提示する画像領域を、前記運転状況検出部で取得された前記運行情報に基づき設定して、前記運転者が提示された画像によって視認できる前記周辺領域の視認範囲を前記運転状況に応じて制御する表示制御部と
    を備えるモニタリングシステム。
PCT/JP2015/068026 2014-08-12 2015-06-23 信号処理装置と信号処理方法およびモニタリングシステム WO2016024444A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/323,764 US10632917B2 (en) 2014-08-12 2015-06-23 Signal processing device, signal processing method, and monitoring system
JP2016542517A JP6686886B2 (ja) 2014-08-12 2015-06-23 信号処理装置と信号処理方法およびモニタリングシステム
EP15832125.7A EP3166311B1 (en) 2014-08-12 2015-06-23 Signal processing device, signal processing method and monitoring system
CN201580040516.1A CN106537905B (zh) 2014-08-12 2015-06-23 信号处理设备、信号处理方法和监视系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-164180 2014-08-12
JP2014164180 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024444A1 true WO2016024444A1 (ja) 2016-02-18

Family

ID=55304074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068026 WO2016024444A1 (ja) 2014-08-12 2015-06-23 信号処理装置と信号処理方法およびモニタリングシステム

Country Status (5)

Country Link
US (1) US10632917B2 (ja)
EP (1) EP3166311B1 (ja)
JP (1) JP6686886B2 (ja)
CN (1) CN106537905B (ja)
WO (1) WO2016024444A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196913A (ja) * 2016-04-25 2017-11-02 本田技研工業株式会社 画像表示装置
JP2019047143A (ja) * 2017-08-29 2019-03-22 サカエ理研工業株式会社 車両周辺視認装置
WO2019093176A1 (ja) * 2017-11-07 2019-05-16 アイシン精機株式会社 周辺監視装置
CN109952231A (zh) * 2016-12-30 2019-06-28 金泰克斯公司 具有按需侦察视图的全显示镜
JP2019186853A (ja) * 2018-04-16 2019-10-24 株式会社Jvcケンウッド 車両用表示制御装置、車両用表示システム、車両用表示制御方法、およびプログラム
JP2021044725A (ja) * 2019-09-12 2021-03-18 サカエ理研工業株式会社 車両用表示装置
WO2023063224A1 (ja) * 2021-10-15 2023-04-20 株式会社Ihi 連結車両の障害物検出装置、連結車両の運転システム、及び連結車両の障害物検出方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515773B2 (ja) * 2015-10-09 2019-05-22 株式会社デンソー 情報処理装置
US10318829B2 (en) * 2016-03-17 2019-06-11 Nec Corporation Passenger counting device, system, method and program, and vehicle movement amount calculation device, method and program
US10719724B2 (en) * 2016-08-23 2020-07-21 Blinkeyelabs Electronics Private Limited Safety system for an automobile
CN109429518B (zh) * 2017-06-22 2022-10-28 百度时代网络技术(北京)有限公司 基于地图图像的自动驾驶交通预测
JP6837931B2 (ja) * 2017-06-26 2021-03-03 アルパイン株式会社 表示制御装置、表示制御方法及びカメラモニタリングシステム
US10311726B2 (en) * 2017-07-21 2019-06-04 Toyota Research Institute, Inc. Systems and methods for a parallel autonomy interface
JP2019207618A (ja) * 2018-05-30 2019-12-05 日本電気株式会社 情報処理システム
JP2019207617A (ja) * 2018-05-30 2019-12-05 日本電気株式会社 情報処理システム
CN110645999A (zh) * 2018-06-26 2020-01-03 杭州海康威视数字技术股份有限公司 导航方法、装置、服务器、终端及存储介质
US11383656B2 (en) 2018-12-11 2022-07-12 Sony Group Corporation Image processing apparatus, image processing method, and image processing system
CN109910751A (zh) * 2019-02-12 2019-06-21 苏州佳世达光电有限公司 影像显示控制装置及影像显示控制方法
CN110956134B (zh) * 2019-11-29 2023-08-25 华人运通(上海)云计算科技有限公司 人脸识别方法、装置、设备以及计算机可读存储介质
CN112046470A (zh) * 2020-07-29 2020-12-08 北汽福田汽车股份有限公司 控制后视图像显示的方法、装置、介质、控制器及车辆
EP3967552A1 (en) * 2020-09-11 2022-03-16 Ficosa Adas, S.L.U. Camera monitoring system for motor vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046533A (ja) * 2000-08-03 2002-02-12 Isuzu Motors Ltd 車両後方視界支援装置
JP2008077628A (ja) * 2006-08-21 2008-04-03 Sanyo Electric Co Ltd 画像処理装置並びに車両周辺視界支援装置及び方法
JP2010030341A (ja) * 2008-07-25 2010-02-12 Asmo Co Ltd 後退確認装置
JP2012105158A (ja) * 2010-11-11 2012-05-31 Mitsubishi Fuso Truck & Bus Corp 連結車両用鳥瞰図表示システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553130B1 (en) * 1993-08-11 2003-04-22 Jerome H. Lemelson Motor vehicle warning and control system and method
JP3031139B2 (ja) * 1993-10-19 2000-04-10 三菱自動車工業株式会社 カメラシステム
JP3436436B2 (ja) * 1995-03-22 2003-08-11 日産ディーゼル工業株式会社 車両の後方確認装置
IL136652A0 (en) * 2000-06-08 2001-06-14 Arlinsky David A closed-loop control system in a car
JP4744026B2 (ja) * 2001-07-30 2011-08-10 オリンパス株式会社 カプセル内視鏡およびカプセル内視鏡システム
JP3607994B2 (ja) 2001-11-12 2005-01-05 トヨタ自動車株式会社 車両用周辺監視装置
JP4766841B2 (ja) * 2003-09-08 2011-09-07 株式会社オートネットワーク技術研究所 車両に搭載されるカメラ装置及び車両周辺監視装置
JP2005110202A (ja) * 2003-09-08 2005-04-21 Auto Network Gijutsu Kenkyusho:Kk カメラ装置及び車両周辺監視装置
JP2006050246A (ja) * 2004-08-04 2006-02-16 Auto Network Gijutsu Kenkyusho:Kk 車両周辺視認装置
DE202004013984U1 (de) 2004-09-08 2006-01-19 Mekra Lang Gmbh & Co. Kg Kamerasystem
JP2006180446A (ja) 2004-11-26 2006-07-06 Nissan Motor Co Ltd 映像撮像装置及び映像撮像方法
JP4606336B2 (ja) * 2005-02-21 2011-01-05 株式会社オートネットワーク技術研究所 車両周辺視認装置
US7911410B2 (en) * 2007-03-06 2011-03-22 Sony Ericsson Mobile Communications Ab Peripheral with a display
DE102008040149A1 (de) * 2008-07-03 2010-01-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur Freigabe einer automatischen Führung eines Fahrzeugs
DE102008039649A1 (de) 2008-08-26 2009-04-02 Daimler Ag Umgebungserfassungsvorrichtung zur Beobachtung einer Umgebung eines gegliederten Fahrzeuges
JP2010179850A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp 車両用表示装置
JP2010244128A (ja) * 2009-04-01 2010-10-28 Hino Motors Ltd 大型車両用安全運転支援装置
JP4949487B2 (ja) * 2010-01-13 2012-06-06 本田技研工業株式会社 車両用表示装置
WO2011099431A1 (ja) * 2010-02-10 2011-08-18 株式会社 東芝 表示装置、表示方法及び移動体
DE102010032411A1 (de) * 2010-07-27 2012-02-02 Hans Dominik Vorrichtung zur Überwachung der seitlichen und rückwärtigen Umgebung eines Fahrzeugs
KR101544524B1 (ko) * 2010-12-16 2015-08-17 한국전자통신연구원 차량용 증강현실 디스플레이 시스템 및 차량용 증강현실 디스플레이 방법
TWI468645B (zh) * 2011-11-09 2015-01-11 Altek Autotronics Corp 盲點偵測警示系統
JP5874920B2 (ja) 2012-04-12 2016-03-02 スズキ株式会社 車両周囲確認用モニター装置
JP5888087B2 (ja) * 2012-04-25 2016-03-16 ソニー株式会社 走行支援画像生成装置、走行支援画像生成方法、車載用カメラおよび機器操縦支援画像生成装置
JP6205640B2 (ja) * 2012-07-30 2017-10-04 市光工業株式会社 車両用警告装置
US9139135B2 (en) * 2012-09-07 2015-09-22 Musaid A. ASSAF System and method that minimizes hazards of blind spots while driving
JP5799920B2 (ja) * 2012-09-07 2015-10-28 株式会社デンソー 車両用ヘッドアップディスプレイ装置
US9809169B1 (en) * 2013-03-15 2017-11-07 Mouhamad A. Naboulsi Safety control system for vehicles
JP6007848B2 (ja) * 2013-03-28 2016-10-12 富士通株式会社 目視確認評価装置、方法及びプログラム
US9280202B2 (en) * 2013-05-10 2016-03-08 Magna Electronics Inc. Vehicle vision system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046533A (ja) * 2000-08-03 2002-02-12 Isuzu Motors Ltd 車両後方視界支援装置
JP2008077628A (ja) * 2006-08-21 2008-04-03 Sanyo Electric Co Ltd 画像処理装置並びに車両周辺視界支援装置及び方法
JP2010030341A (ja) * 2008-07-25 2010-02-12 Asmo Co Ltd 後退確認装置
JP2012105158A (ja) * 2010-11-11 2012-05-31 Mitsubishi Fuso Truck & Bus Corp 連結車両用鳥瞰図表示システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3166311A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196913A (ja) * 2016-04-25 2017-11-02 本田技研工業株式会社 画像表示装置
CN109952231A (zh) * 2016-12-30 2019-06-28 金泰克斯公司 具有按需侦察视图的全显示镜
CN109952231B (zh) * 2016-12-30 2023-07-14 金泰克斯公司 具有按需侦察视图的全显示镜
JP2019047143A (ja) * 2017-08-29 2019-03-22 サカエ理研工業株式会社 車両周辺視認装置
WO2019093176A1 (ja) * 2017-11-07 2019-05-16 アイシン精機株式会社 周辺監視装置
JP2019087875A (ja) * 2017-11-07 2019-06-06 アイシン精機株式会社 周辺監視装置
JP2019186853A (ja) * 2018-04-16 2019-10-24 株式会社Jvcケンウッド 車両用表示制御装置、車両用表示システム、車両用表示制御方法、およびプログラム
JP7067225B2 (ja) 2018-04-16 2022-05-16 株式会社Jvcケンウッド 車両用表示制御装置、車両用表示システム、車両用表示制御方法、およびプログラム
JP2021044725A (ja) * 2019-09-12 2021-03-18 サカエ理研工業株式会社 車両用表示装置
JP7339821B2 (ja) 2019-09-12 2023-09-06 サカエ理研工業株式会社 車両用表示装置
WO2023063224A1 (ja) * 2021-10-15 2023-04-20 株式会社Ihi 連結車両の障害物検出装置、連結車両の運転システム、及び連結車両の障害物検出方法

Also Published As

Publication number Publication date
US20170166131A1 (en) 2017-06-15
EP3166311B1 (en) 2020-02-12
CN106537905A (zh) 2017-03-22
EP3166311A4 (en) 2018-01-17
US10632917B2 (en) 2020-04-28
JPWO2016024444A1 (ja) 2017-05-25
EP3166311A1 (en) 2017-05-10
JP6686886B2 (ja) 2020-04-22
CN106537905B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
JP6384188B2 (ja) 車両用表示装置と表示制御方法および後方モニタリングシステム
WO2016024444A1 (ja) 信号処理装置と信号処理方法およびモニタリングシステム
JP4353162B2 (ja) 車輌周囲情報表示装置
EP3445611B1 (en) Vehicle with an image display device and method
JP4699054B2 (ja) 車両周囲監視装置
WO2010137684A1 (ja) 画像生成装置及び画像表示システム
JP2007087337A (ja) 車輌周囲情報表示装置
JP2005223524A (ja) 車両周辺監視装置
JP2005067514A (ja) 車両用表示装置
JP6939737B2 (ja) 情報処理装置と情報処理方法およびプログラム
JP4720979B2 (ja) 車両用監視装置
JP7230964B2 (ja) 情報処理装置及び情報処理方法、並びにプログラム
JP7130688B2 (ja) 車両用表示装置
JP2012131329A (ja) 車両用表示装置
KR20190069643A (ko) 차량의 영상 출력 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15323764

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015832125

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832125

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE