WO2016024312A1 - 車両の走行制御装置及び方法 - Google Patents
車両の走行制御装置及び方法 Download PDFInfo
- Publication number
- WO2016024312A1 WO2016024312A1 PCT/JP2014/071177 JP2014071177W WO2016024312A1 WO 2016024312 A1 WO2016024312 A1 WO 2016024312A1 JP 2014071177 W JP2014071177 W JP 2014071177W WO 2016024312 A1 WO2016024312 A1 WO 2016024312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- target
- host vehicle
- information
- avoidance
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 64
- 238000013459 approach Methods 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 description 28
- 238000001514 detection method Methods 0.000 description 26
- 230000006870 function Effects 0.000 description 24
- 239000003550 marker Substances 0.000 description 17
- 238000004891 communication Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 101100162205 Aspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1) aflI gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
Definitions
- the present invention relates to a travel control apparatus and method for controlling travel of a vehicle.
- a first control threshold based on the first risk on the left side of the vehicle and a second control threshold based on the second risk on the right side of the vehicle are obtained.
- the first control threshold which is the distance from the edge
- the second control threshold which is the distance from the road edge
- the problem to be solved by the present invention is to prevent the travel position of the host vehicle from being changed when the travel control that avoids the avoidance target is being performed.
- the present invention when setting the target area based on the position of the membership fee target, by considering the relative speed of the host vehicle with respect to the avoidance target, by obtaining the length along the extending direction of the traveling lane of the target area, Solve the above problems.
- the position of the target route set based on the position of the target area is changed during the travel control. Can be suppressed.
- FIG. 10 is a first diagram for explaining target area setting processing at the time of overtaking start / passing completion.
- 10 is a second diagram for explaining the target area setting process at the time of overtaking start / passing completion. It is a 1st flowchart which shows the control procedure of the traveling control system of this embodiment. It is a 2nd flowchart which shows the control procedure of the traveling control system of this embodiment.
- the vehicle travel control apparatus according to the present invention is applied to a travel control system mounted on a vehicle
- the embodiment of the travel control device of the present invention is not limited, and can be applied to a mobile terminal device capable of exchanging information with the vehicle side.
- the travel control device, the travel control system, and the mobile terminal device are all computers that execute arithmetic processing.
- FIG. 1 is a diagram showing a block configuration of the traveling control system 1.
- the travel control system 1 of this embodiment is mounted on a vehicle and includes a travel control device 100 and an in-vehicle device 200.
- the travel control device 100 recognizes the lane in which the host vehicle is traveling, and controls the movement of the host vehicle so that the position of the lane marker in the lane and the position of the host vehicle maintain a predetermined relationship. Equipped with lane departure prevention function (lane keep support function).
- the travel control device 100 of this embodiment controls the movement of the host vehicle so that the host vehicle travels in the center of the lane.
- the travel control device 100 may control the movement of the host vehicle so that the distance along the road width direction from the lane marker on the lane to the host vehicle is within a predetermined value range.
- the lane marker in the present embodiment is not limited as long as it has a function of defining the lane, and may be a diagram drawn on the road surface or may be planted between the lanes. Alternatively, it may be a road structure such as a guardrail, a curb, a sidewalk, or a motorcycle road existing on the shoulder side of the lane. Further, it may be a stationary object such as a signboard, a sign, a store, a roadside tree, etc. existing on the shoulder side of the lane. The detection method of these lane markers is not limited, and various methods such as pattern matching known at the time of filing this application can be used.
- the travel control device 100 of the present embodiment includes a communication device 20, the in-vehicle device 200 includes a communication device 40, and both devices exchange information with each other through wired communication or wireless communication.
- the in-vehicle device 200 of the present embodiment includes a detection device 50, a sensor 60, a vehicle controller 70, a drive device 80, a steering device 90, an output device 110, and a navigation device 120.
- the devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.
- CAN Controller Area Network
- the detection device 50 detects the presence of an avoidance target that should be avoided by the vehicle and its location.
- the detection device 50 of the present embodiment includes a camera 51.
- the camera 51 of the present embodiment is a camera including an image sensor such as a CCD.
- the camera 51 is installed at a predetermined position of the host vehicle, images the surroundings of the host vehicle, and acquires image data including an avoidance target existing around the host vehicle.
- the detection device 50 processes the acquired image data, and calculates the distance from the own vehicle to the avoidance target based on the position of the avoidance target with respect to the own vehicle.
- the detection device 50 changes the position of the avoidance target with time.
- the relative speed between the host vehicle and the avoidance target and the relative acceleration between the host vehicle and the avoidance target are calculated as target information.
- the method known at the time of filing this application can be used as appropriate.
- the detection device 50 may analyze the image data and identify the type of the avoidance target based on the analysis result.
- the detection device 50 uses a pattern matching technique or the like to identify whether the avoidance target included in the image data is a vehicle, a pedestrian, or a sign.
- the detection device 50 extracts an image of the object from the image data, and based on the size and shape of the image, the specific type of the object (four-wheeled vehicle, two-wheeled vehicle, bus, truck, construction vehicle, etc.) and the vehicle type (small vehicle). Large vehicle).
- the detection device 50 can identify the type and model of the vehicle from the identifiers written on the license plate included in the image data.
- Each type of avoidance target may be associated with the size in advance, and the size of the avoidance target may be obtained by referring to the information. These types of identification information and avoidance target size information can be used in target area setting processing.
- the radar apparatus 52 may be used as the detection apparatus 50 of the present embodiment.
- a system known at the time of filing such as a millimeter wave radar, a laser radar, and an ultrasonic radar can be used.
- the target information including the position of the avoidance target is sent to the traveling control device 100 side.
- the detection device 50 includes speed information, acceleration information, type information of the avoidance target obtained from the change in the position of the avoidance target, and information such as the vehicle type when the avoidance target is a vehicle. You may send to the control apparatus 100 side.
- the “avoidance target” is a target that the host vehicle should avoid. That is, the host vehicle travels while maintaining a state where it is not too close to the avoidance target.
- the detection device 50 detects an object having a predetermined positional relationship with the host vehicle as an avoidance object.
- the detection device 50 detects an object or the like that exists on the traveling lane of the own vehicle and exists in front of the traveling direction of the own vehicle within a predetermined distance from the own vehicle as an avoidance target.
- the avoidance target of this embodiment includes a stationary object and a moving object.
- stationary avoidance targets include other parked vehicles, other parked vehicles, road structures such as sidewalks, median strips, guardrails, road installations such as signs and power poles, fallen objects, and snow removed An object that obstructs driving of the vehicle, such as an object placed on the road, is included.
- Other vehicles and pedestrians are included as moving avoidance targets.
- other vehicles traveling in front of the own vehicle other vehicles traveling in the front side of the own vehicle, other vehicles traveling in the rear, other vehicles traveling in the rear side, from the traveling direction of the own vehicle
- Other vehicles (oncoming vehicles) approaching the host vehicle are included.
- the avoidance targets include objects that the host vehicle should avoid, such as a construction site, a damaged area of a road surface, and a puddle, although there is no object.
- the sensor 60 of this embodiment includes a steering angle sensor 61 and a vehicle speed sensor 62.
- the steering angle sensor 61 detects steering information related to steering such as the steering amount, steering speed, and steering acceleration of the host vehicle, and sends the steering information to the vehicle controller 70 and the travel control device 100.
- the vehicle speed sensor 62 detects the vehicle speed and acceleration of the host vehicle and sends them to the vehicle controller 70 and the travel control device 100.
- the vehicle controller 70 of the present embodiment is an in-vehicle computer such as an engine control unit (Engine Control Unit, ECU), and electronically controls the driving state of the vehicle.
- Examples of the vehicle of the present embodiment include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source.
- electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor.
- the drive device 80 of this embodiment includes a drive mechanism for the host vehicle V.
- the drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels.
- a braking device 81 and the like are included.
- the drive device 80 generates control signals for these drive mechanisms based on input signals from the driver's accelerator operation and brake operation, and control signals acquired from the vehicle controller 70 or the travel control device 100, and includes acceleration and deceleration of the vehicle. Run control. By sending control information to the driving device 80, traveling control including acceleration / deceleration of the vehicle can be automatically performed.
- torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 80.
- the steering device 90 of this embodiment includes a steering actuator.
- the steering actuator includes a motor and the like attached to the column shaft of the steering.
- the steering device 90 executes turning control of the vehicle based on the control signal acquired from the vehicle controller 70 or the input signal by the driver's steering operation.
- the vehicle controller 70 performs turn control by sending control information including the steering amount to the steering device 90.
- the traveling control apparatus 100 may execute the turn control by controlling the braking amount of each wheel of the vehicle. In this case, the vehicle controller 70 executes turning control of the vehicle by sending control information including the braking amount of each wheel to the braking device 81.
- the navigation device 120 of this embodiment sets a route from the current position of the host vehicle to the destination, and outputs route guidance information via the output device 110 described later.
- the navigation device 120 includes a position detection device 121, road type, road width, road shape, and other road information 122, and map information 123 in which the road information 122 is associated with each point.
- the position detection device 121 of this embodiment includes a global positioning system (Global Positioning System, GPS), and detects a traveling position (latitude / longitude) of a traveling vehicle.
- the navigation device 120 specifies a road link on which the host vehicle travels based on the current position of the host vehicle detected by the position detection device 121.
- the road information 122 stores the road type, road width, road shape, passability (possibility of entry into adjacent lanes), and other road-related information for each road link identification information. .
- the navigation apparatus 120 acquires the information regarding the road to which the road link where the own vehicle drive
- the road type, road width, and road shape on which the host vehicle travels are used to calculate the target route RT on which the host vehicle travels in the travel control process.
- the target route RT in the present embodiment includes specific information (coordinate information) of one or more points where the host vehicle V1 will pass in the future.
- the target route RT of the present embodiment includes at least one point that suggests the next traveling position of the host vehicle V1.
- the target route RT may be constituted by a continuous line or may be constituted by discrete points.
- the output device 110 outputs various types of information related to driving support to the user or a passenger in the surrounding vehicle.
- the output device 110 includes information according to target information, information according to the position of the target area, information according to the position of the target route, and information according to control information that causes the host vehicle to travel on the target route. Any one or more of them are output.
- the output device 110 according to the present embodiment includes a display 111, a speaker 112, a vehicle exterior lamp 113, and a vehicle interior lamp 114.
- the vehicle exterior lamp 113 includes a headlight, a blinker lamp, and a brake lamp.
- the vehicle interior lamp 114 includes an indicator lighting display, a display 111 lighting indication, other lamps provided on the steering wheel, and lamps provided around the steering wheel.
- the output device 110 may output various types of information related to driving support to an external device such as an intelligent transportation system (ITS) via the communication device 40.
- An external device such as an intelligent road traffic system uses information related to travel support including vehicle speed, steering information, travel route, and the like for traffic management of a plurality of vehicles.
- a specific information output mode will be described by taking as an example a case where there is a parked vehicle to be avoided in front of the left side of the host vehicle.
- the output device 110 provides the occupant of the own vehicle with the direction and position where the parked vehicle exists as information corresponding to the target information.
- the display 111 displays the direction and position where the parked vehicle exists in a visible manner.
- the speaker 112 utters and outputs a text indicating the direction and position of the parked vehicle, such as “There is a parked vehicle in front of the left side”.
- the lamps provided on the left and right door mirrors that are the vehicle exterior lamps 113 only the left lamp may be blinked to notify the occupant of the host vehicle that a parked vehicle is present in front of the left side.
- the lamps provided on the left and right in the vicinity of the steering wheel which is the vehicle interior lamp 114, only the left lamp may blink to notify the occupant that there is a parked vehicle in front of the left side.
- the setting direction and the setting position of the target area may be output via the output device 110 as information corresponding to the position of the target area.
- the display 111, the speaker 112, the vehicle exterior lamp 113, and the vehicle interior lamp 114 can inform the occupant that the target area is set to the left front.
- the setting direction and setting position of the target area are output to the outside using the outside lamp 113 from the viewpoint of informing the passengers of other vehicles of the movement of the host vehicle in advance.
- the traveling direction of the host vehicle is changed to avoid this, and a turning operation (including a steering operation, the same applies hereinafter) is performed.
- the driver of the other vehicle can be notified in advance that the traveling direction of the host vehicle changes in order to avoid the target area.
- the target area is set to the left front side, the right turn signal lamp (outside cabin lamp 113) is turned on, so that the host vehicle moves to the right side in order to pass the side of the avoidance target existing on the left side. This can be notified to other external vehicles.
- the shape of the target route and the position of the curved point can be notified to the occupant by the display 111 and the speaker 112.
- the display 111 displays the shape of the target route and the like as a visible diagram.
- the speaker 112 outputs an announcement such as “turn the steering wheel to the right to avoid a parked vehicle ahead”.
- information indicating that the turning operation and acceleration / deceleration are executed as information corresponding to the control information for causing the host vehicle to travel on the target route. Inform the passenger of the own vehicle or the passenger of another vehicle in advance.
- the output device 110 may output the above-described information to an external device of the intelligent transportation system via the communication device 20.
- crew of another vehicle can respond
- the travel control device 100 of this embodiment includes a control device 10, a communication device 20, and an output device 30.
- the communication device 20 exchanges information with the in-vehicle device 200.
- the output device 30 has the same function as the output device 110 of the in-vehicle device 200 described above.
- the output device 110 of the in-vehicle device 110 may be used.
- the travel control device 100 is a computer that can be carried by an occupant
- the travel control device 100 outputs control information for controlling blinking of the vehicle interior lamp 113 and the vehicle interior lamp 114 of the in-vehicle device 200 to each device. May be.
- the control device 10 of the travel control device 100 is configured as a travel control device 100 by executing a ROM (Read Only Memory) 12 in which a program for executing the travel control of the host vehicle is stored and a program stored in the ROM 12.
- a computer including a CPU (Central Processing Unit) 11 as a functioning operation circuit and a RAM (Random Access Memory) 13 functioning as an accessible storage device.
- CPU Central Processing Unit
- RAM Random Access Memory
- the control device 10 of the travel control device 100 has a target information acquisition function, a vehicle information acquisition function, a region setting function, a route setting function, and a control function.
- the control apparatus 10 of this embodiment performs each function by cooperation of the software for implement
- the control apparatus 10 acquires target information including the position of the avoidance target that the host vehicle should avoid.
- the avoidance target has a predetermined positional relationship with the host vehicle.
- the control device 10 acquires target information including the position of the avoidance target detected by the detection device 50.
- the target information includes a relative position, a relative speed, and a relative acceleration of the avoidance target.
- the control device 10 of the host vehicle detects the vehicle speed and acceleration of the other vehicle detected by the vehicle speed sensor of the other vehicle as target information. You may get as Of course, the control device 10 can also acquire target information including the position, speed, and acceleration of other vehicles from an external device of the intelligent transportation system.
- the vehicle information acquisition function of the control device 10 will be described.
- the control device 10 acquires host vehicle information including the position of the host vehicle.
- the position of the host vehicle can be acquired by the position detection device 121 of the navigation device 120.
- the own vehicle information includes the vehicle speed and acceleration of the own vehicle.
- the control device 10 acquires the speed of the host vehicle from the vehicle speed sensor 62.
- the speed of the host vehicle can also be acquired based on the change over time of the position of the host vehicle.
- the acceleration of the host vehicle can be obtained from the speed of the host vehicle.
- the host vehicle information includes the position of the host vehicle at a future time determined from the current position of the host vehicle and the vehicle speed. Based on the position of the host vehicle at the future time, the positional relationship between the host vehicle and the avoidance target at the future time can be obtained.
- the area setting function of the control device 10 will be described.
- the control device 10 sets the target area based on the position of the avoidance target included in the acquired target information.
- the avoidance target is a three-dimensional object that exists around the host vehicle and should be avoided.
- FIGS. 2A to 2C are diagrams illustrating an example of a method for setting the target region R.
- FIG. In the example shown in FIGS. 2A to 2C, the traveling direction Vd1 of the host vehicle is the + y direction in the figure. In the figure, the extending direction of the traveling lane Ln1 on which the host vehicle travels is also the + y direction in the figure.
- FIG. 2A is a view of the state where the other vehicle V2 parked on the left shoulder side of the travel lane Ln1 of the host vehicle V1 is detected as viewed from above.
- FIG. 2A shows a scene in which the host vehicle V1 approaches the other vehicle V2 from behind, passes through the side of the other vehicle V2 (avoidance target), and travels in the lane Ln1 in the traveling direction Vd1.
- the other vehicle V2 to be avoided exists in front of the host vehicle V1.
- the detected other vehicle V2 exists in the travel lane Ln1 on which the host vehicle V1 travels, and prevents the host vehicle V1 from going straight, and is therefore an avoidance target that the host vehicle V1 should avoid.
- the control device 10 sets the target region R0 based on the relationship between the position of the own vehicle and the avoidance target position (
- R including R1 and R2 may be collectively referred to as R).
- the target region R may be set from the viewpoint of avoiding an approaching state or a contact state in which the distance between the host vehicle V1 and the avoidance target V1 is less than the predetermined value X1, or between the host vehicle V1 and the avoidance target V1. It may be set from the viewpoint of keeping the distance at or above the predetermined value X2.
- the control device 10 sets the target region R in a predetermined range including the other vehicle V2.
- the control device 10 sets the target region R based on the position of the avoidance target such as the other vehicle V2.
- the “position to avoid” used in setting the target area R can be defined in advance.
- the avoidance target is the other vehicle V2
- the control device 10 sets the target region R with reference to the “position to be avoided”.
- the target region R0 is described as an example, but the same applies to target regions R1 and R2 described later.
- the target region R0 may have a shape that follows the outer shape of the other vehicle V2, or may have a shape that includes the other vehicle V2. Further, the control device 10 may set the boundary of the target region R0 to a shape along the outer shape of the other vehicle V2, or may be a circle, an ellipse, a rectangle, or a polygon that includes the other vehicle V2. Further, the target area R0 may be set so that the boundary of the target area R0 is less than a predetermined distance (A) from the surface (outer edge) of the other vehicle V2, and the area of the target area R0 may be set small. The area of the target region R0 may be set to be larger than the predetermined distance B (B> A) separated from the other vehicle V2.
- the target area R0 shown in FIG. 2A is defined by a rectangular shape that encompasses the other vehicle V2.
- the target region R0 has front and rear end portions RL1, RL2.
- the front and rear end portions RL1 and RL2 are end lines that define the length of the target region R0 along the extending direction (+ y) of the traveling lane Ln1 of the host vehicle.
- the length along the extending direction (+ y) of the travel lane Ln1 of the target region R0 illustrated in FIG. 2A is L0 which is the distance between (y1) and RL2 (y2) of the front and rear end portions RL1.
- a front and rear end portion located on the near side (upstream side) when viewed from the host vehicle V1 approaching the target region R0 is defined as a first end portion RL1.
- a front and rear end portion located on the back side (downstream side) when viewed from the own vehicle V1 approaching or passing through the side to be avoided is referred to as a second end portion RL2.
- the first end RL1 and the second end RL2 are set according to the distance from the position (reference position) V20 of the other vehicle V2.
- the first end RL1 and the second end RL2 are located on the boundary of the target region R0.
- the target region R0 has left and right end portions RW1 and RW2 on the left and right sides thereof.
- the left and right end portions RW1 and RW2 are end lines (end portions) that define a distance along the vehicle width direction from the host vehicle V1.
- the left and right end portions RW1 and RW2 are end lines that define the length (width) of the target region along the road width direction (X) of the travel lane Ln1 of the host vehicle.
- the left and right end portions of the left and right end portions RW1 and RW2 of the target region R0 that are located to the side of the host vehicle V1 when viewed from the host vehicle V1 Is the first lateral end RW1.
- the left and right end portions located on the side (road shoulder side) opposite to the side of the own vehicle V1 when viewed from the own vehicle V1 are defined as the second lateral end portion RW2.
- the first lateral end RW1 and the second lateral end RW2 can be set according to the distance from the position (reference position) V20 of the other vehicle V2.
- the first horizontal end RW1 and the second horizontal end RW2 are located on the boundary of the target region R0.
- the control device 10 detects the oncoming vehicle V3 as an avoidance target. Although not shown in the figure, the control device 10 sets a target region in a range including the oncoming vehicle V3 by the same method.
- the control device 10 may define the distance dRL as an interval to be secured from the position y0 of the host vehicle V1 to the first end RL1.
- the target region R0 is set at the timing when the avoidance target is detected, that is, at the timing before the operation for turning for avoidance (steering operation or the like) is performed.
- the target area R0 is set by a uniform method without considering the relative speed of the host vehicle V1 with respect to the avoidance target
- the target route RT1 calculated based on the boundary of the target area R0 may be obtained depending on the actual relative speed. You may have to change it.
- the target route RT1 is changed, the turning amount, turning angle, vehicle speed, acceleration, and the like are changed, so that the continuity of the behavior of the vehicle cannot be maintained. An occupant may feel uncomfortable with such vehicle behavior.
- the length of the target region R1 along the extending direction (+ y) of the lane on which the host vehicle V1 travels depends on the actual relative speed of the host vehicle V1 with respect to the other vehicle V2 to be avoided. Since the length L1 is set, an appropriate target region R1 can be set. According to the target route RT1 that is set according to the relative speed and is set based on the position of the boundary of the target region R1, the target route RT1 is suppressed from being changed during the execution of the travel control. . For this reason, the turning amount, turning angle, vehicle speed, acceleration, and the like of the host vehicle are not suddenly changed. As a result, the continuity of the behavior of the vehicle is maintained, so that the occupant does not feel discomfort.
- the target area R1 shown in FIG. 2B is an area set on the assumption that the relative speed of the host vehicle V1 with respect to the other vehicle V2 is higher than the relative speed of the host vehicle V1 described in FIG. 2A.
- the target region R0 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is low is set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is high. This is shown superimposed on the target region R1.
- the control device 10 of the present embodiment sets the length L10 of the target region R1 along the extending direction of the lane in which the host vehicle V1 travels as the relative speed of the host vehicle V1 with respect to the other vehicle V2 increases.
- the relative speed of the host vehicle V1 relative to the other vehicle V2 referred to when adjusting the length L10 of the target region R1 may be a relative speed of the vehicle length direction component of the host vehicle V1, or the vehicle width direction component and the vehicle length. It may be a relative speed obtained by synthesizing the direction components.
- the relative speed of the vehicle length direction component is larger than the relative speed component of the vehicle width direction, so the degree of approach to the avoidance target is also determined by the combined relative speed. I can judge.
- the length L10 of the target area R1 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is high is the length L0 of the target area R0 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is low. Longer (L10> L0).
- the length L0 of the target region R0 is increased.
- the length of the target route RT when passing the side of the avoidance target V2 is increased. it can. That is, since the distance between the points where the turning operation for passing the side of the other vehicle V2 is performed can be increased, the turning amount and the turning speed of the host vehicle V1 during the turning operation can be controlled to be low. If the turning amount and the turning speed can be suppressed low, it is possible to suppress the speed and acceleration of the host vehicle V1 from being changed. As a result, traveling control can be executed so that the passenger does not feel uncomfortable.
- the first end portion RL1a positioned on the near side when viewed from the host vehicle V1 is set on the host vehicle V1 side, and the method of viewing from the host vehicle V1.
- the second end portion RL2a located on the far side is set on the far side in the traveling direction of the host vehicle V1.
- the control device 10 is closer to the front side of the front and rear end portions RL1a, RL2a of the target region R1 as viewed from the host vehicle V1 (opposite direction of travel: -y direction in the figure)
- the target region R1 is set so that the distance between the first end RL1a located at the same position and the other vehicle V2 becomes longer. That is, as the relative speed of the host vehicle V1 with respect to the other vehicle V2 is higher, the first end RL1a is set to a position on the host vehicle V1 side. In the example shown in FIG.
- the position of the first end RL1a of the target region R1 when the relative speed is VR2 is the first end RL1a of the target region R0 when the relative speed is VR0 (VR1> VR0). It shifts to the own vehicle V1 side by the distance L1 from the position of. Since the curved point (turning start point) of the target route RT1a set so that the own vehicle V1 passes the side to be avoided can be shifted to the own vehicle V1 side, the turning amount (steering amount of the turning amount at the turning start point) can be changed. Including, the same shall apply hereinafter), and the turning speed (including the steering speed, the same shall apply hereinafter) can be controlled low.
- the control device 10 has a rear side (traveling direction side: + y direction in the figure, below) of the front and rear end portions RL1a and RL2a of the target region R1 as viewed from the host vehicle V1.
- the target region R1 is set so that the distance between the second end portion RL2a located at the same position and the other vehicle V2 becomes longer. That is, as the relative speed of the host vehicle V1 with respect to the other vehicle V2 is higher, the second end RL2a is set to a position on the back side of the host vehicle V1. In the example shown in FIG.
- the position of the second end RL2a of the target region R1 when the relative speed is VR2 is the second end RL2a of the target region R0 when the relative speed is VR0 (VR1> VR0).
- the vehicle shifts toward the traveling direction side of the host vehicle V1 by a distance L2 from the position of.
- the host vehicle V1 passes the side of the avoidance target and the inflection point of the target route RT1a set to return to the center position of the lane Ln1 (turning completion point: return point to the straight traveling state) is on the traveling direction side of the host vehicle V1. Therefore, the turning amount and turning speed at the turning completion point can be controlled to be low.
- the method of setting the target region R1 with the second end RL2a positioned on the back side as viewed from the back side as viewed from the back side may be applied independently, or both methods may be applied simultaneously. That is, when extending the length of the target region R1, only the first end portion RL1a may be shifted to the own vehicle V1 side approaching the avoidance target, or only the second end portion RL2a is shifted to the own vehicle V1.
- the second end RL2a may be shifted toward the traveling direction of the host vehicle V1 while extending the first end RL1a toward the host vehicle V1 approaching the avoidance target.
- the avoidance target is a stationary object or a moving object that moves at a low speed
- the shift amount of the first end RL1a and the second end RL2a may be controlled based on the speed of the host vehicle V1.
- the distance along the vehicle width direction between the host vehicle V1 and the target region R2 is controlled according to the relative speed of the vehicle width direction component of the host vehicle V1 with respect to the other vehicle V2 to be avoided. Processing will be described.
- the target region R2 shown in FIG. 2C is set under the condition that the relative speed of the vehicle width direction component of the host vehicle V1 with respect to the other vehicle V2 is higher than the relative speed of the vehicle width direction component of the host vehicle V1 described in FIG. 2A. This is the area that has been In FIG.
- the target region R0 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is low is set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is high. This is shown superimposed on the target region R2.
- the control apparatus 10 of this embodiment passes the side of the other vehicle V2 among the left and right end portions RW1, RW2 of the target region R as the relative speed of the vehicle width direction component of the host vehicle V1 with respect to the other vehicle V2 is higher.
- the target region R2 is set so that the distance between the lateral end RW1 (closest to the host vehicle V1) located on the host vehicle V1 side when viewed from the host vehicle V1 and the other vehicle V2 to be avoided is increased. To do. That is, as the relative speed of the vehicle width direction component of the host vehicle V1 with respect to the other vehicle V2 is higher, the first lateral end RW1 is set at a position further away from the other vehicle V2. In the example shown in FIG.
- the position of the first lateral end RW1a of the target area R1 when the relative speed in the vehicle width direction is VR4 is the position of the target area R0 when the relative speed is VR3 (VR4> VR3).
- the distance from the other vehicle V2 is shifted by a distance W1 from the position of the first lateral end RW1a.
- the position of the first lateral end RW1a is shifted to the target route RT side of the host vehicle V1 provided on the side of the other vehicle V2.
- the position of the first lateral end RW1a of the target region R1 is shifted to a position away from the other vehicle V2.
- the host vehicle V1 moves along the target route RT based on the position of the target region R1 set in this way. That is, it is possible to prevent the host vehicle V1 from being too close to the other vehicle V2 (approaching a predetermined distance or more). As a result, it is possible to execute the traveling control that matches the driving feeling when the occupant avoids the avoidance target and that does not feel uncomfortable.
- the position of the host vehicle V1 at one timing among the positions of the host vehicle V1 at a plurality of timings when passing the side of the other vehicle V2 is shown as V1t.
- the timing or position when passing the side of the other vehicle V2 can be arbitrarily defined by the distance and angle between the other vehicle V2 and the host vehicle V1.
- the “side of the other vehicle V2” includes a front side (right front, left front) and a rear side (right rear, left rear).
- the control device 10 of the present embodiment executes a process of predicting the future position of the host vehicle V1 based on various types of vehicle information in order to calculate an appropriate target route RT.
- the lateral position (position along the x direction) of the host vehicle V1 at each timing when passing the side to be avoided can be predicted in the future.
- the control device 10 can calculate the position of the lateral end RW1 of the target area R to be avoided that is approaching.
- the width W10 of the target region R1 is also changed.
- the width W10 of the target region R1 of the present embodiment is defined based on the position of the lane marker (for example, x1) on the avoidance target side.
- the width W10 of the target area R1 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is higher than the width W0 of the target area R0 set when the relative speed of the host vehicle V1 with respect to the other vehicle V2 is low. Large (W10> W0).
- the control device 10 sets the target region R2 so that the distance between the lateral end RW1b of the target region R2 and the other vehicle V2 increases as the distance along the vehicle width direction of the host vehicle V1 with respect to the other vehicle V2 is shorter. Can be set.
- the closer the host vehicle V1 and the other vehicle V2 are along the vehicle width direction the more the lateral end RW1b located on the host vehicle V1 side is shifted to a position separated from the other vehicle V2.
- the lateral position (position in the x direction) of the target route RT1b can be separated from the other vehicle V2.
- the host vehicle V1 traveling along the target route RT1b does not approach the other vehicle V2 too much.
- the horizontal position of the target region R0 as a target is the position of the horizontal end RW1 located on the host vehicle V1 side.
- the position of the target region R (distance in the width direction between the lane marker x1 on the road shoulder side and the lateral end RW1 on the own vehicle V1 side: one aspect of the side distance) is calculated so as to satisfy the above condition.
- the position of the lateral end RW1 of the target region R may be defined by the distance from the lane marker x1 on the road shoulder side, or may be defined by the width W0 of the target region R. Further, the lateral end RW1 of the target region R may be defined by the distance from the lane marker x2 on the opposite lane side of the lane Ln1.
- the horizontal position RW1 of the target region R0 or its width W0 ′ may be set. These d1 and d2 may be set together or may be set separately. In this case, the control device 10 calculates the width W0 of the target region R0 such that W0 + VW + (d1 / or d2) ⁇ LW.
- the travel lane width LW may be calculated based on the road width LW2 and the number of lanes included in the road information 122, or the position of a pair of lanes is detected from the image information of the detection device 50, and the image information is displayed. Based on this, the lane width may be calculated.
- the width VW of the host vehicle V1 is acquired from the vehicle controller 70.
- the width W0 of the target area R0 may be a distance from either one of the pair of lane markers x1 and x2 defining the lane on which the host vehicle V1 travels to the end RW1 on the host vehicle V1 side of the target area R0.
- the position of the lateral end RW1 on the host vehicle V1 side of the target region R0 may be defined by the distance from the host vehicle V1 when traveling on the side of the avoidance target OB1.
- the dimension of the width W0 may be a value proportional to the square of the relative speed of the host vehicle V1 with respect to the avoidance target OB1.
- a target region R3 that includes the oncoming vehicle V3 is set.
- the target region R3 is set by the same method as the method for setting the target region R1 described above.
- the lateral end RW3 on the host vehicle V1 side of the target region R3 is set based on the position of the oncoming vehicle V3.
- the control device 10 calculates the width W0 of the target region R0 so that W0 + VW + (d1and / ord2) + dV1 ⁇ LW2. That is, when the relationship of VW ⁇ LW2 ⁇ (W0 ′ + dV1) is established, the host vehicle V1 can pass the opposite oncoming vehicle V3 while avoiding the parked other vehicle V2. If the above relationship is not established, the host vehicle V1 stops in front of the other vehicle V2 ( ⁇ y side) and waits for the timing when the oncoming vehicle V3 passes by the side of the host vehicle V1.
- dV1 is a width
- the avoidance target is a road structure such as the median strip OB4.
- the target region R4 is set so as to include the central separation band OB4.
- the control device 10 calculates the dimension (distance between the end portions) of the width W0 of the target region R0 so that W0 + VW + (d1 and / or sd2) + d4 + W4 * (1/2) ⁇ LW.
- the control device 10 detects that the passing of the avoidance target and the own vehicle V1 starts (the position) and the passing completion point (position), and the own vehicle V1 passes the avoidance target.
- the starting point (position) and the point (position) where overtaking is completed are calculated.
- the control device 10 detects an overtaking start position PS2 where the distance between the front end of the host vehicle V1 and the target region R2 is less than a predetermined value based on the host vehicle information and the target information.
- the host vehicle V1 Start overtaking V2.
- the overtaking start position at which the host vehicle V1 starts to overtake another vehicle V2 that is parked is PS2.
- the control device 10 detects a passing start position PS3 where the distance between the front end of the host vehicle V1 and the target region R3 is less than a predetermined value.
- a passing start position PS3 where the distance between the front end of the host vehicle V1 and the target region R3 is less than a predetermined value.
- the control device 10 acquires the own vehicle information and the target information at the overtaking start position PS2 and the passing start position PS3 based on the current own vehicle information and the target information.
- the control device 10 sets the target region R based on the own vehicle information and the target information at the overtaking start position PS2 and the passing start position PS3.
- the control device 10 calculates the overtaking start position PS2 and the passing start position PS3 at a predetermined period. As a result, an accurate overtaking start position PS2 and a passing start position PS3 can be obtained. Then, after the own vehicle V1 starts overtaking the other vehicle V2 that is actually the avoidance target, the calculation of the overtaking start position is finished, and after the passing of the oncoming vehicle V3 is started, the passing start position calculation processing is performed. Exit. Then, traveling control of the host vehicle V1 is executed so as to avoid the target region R set from the target information at the overtaking start position PS2 and the passing start position PS3.
- the timing of traveling in the vicinity of the overtaking start position PS2 and the passing start position PS3 is a timing at which the host vehicle V1 and the avoidance target are most likely to approach each other.
- the control device 10 determines the front and rear end portions of the target regions R2 and R3 based on the own vehicle information at the overtaking start position PS2 and the passing start position PS3 and the target information of the other vehicles V2 and V3 (avoidance targets) obtained from the target information.
- the position RL1 of the first end located on the near side when viewed from the host vehicle V1 is set.
- the target information includes any information on the position, speed, or acceleration of the avoidance target (other vehicle).
- the own vehicle information includes information on the position, speed, or acceleration of the own vehicle.
- the control device 10 determines the own vehicle V1 among the left and right ends of the target regions R2, R3.
- the position RW1 of the lateral end located on the side is set.
- the avoidance target is a moving body like the oncoming vehicle V3
- the positional relationship between the host vehicle V1 and the oncoming vehicle V3 changes every moment.
- an appropriate target region R3 can be set based on the positional relationship when the host vehicle V1 and the oncoming vehicle V3 actually pass each other.
- the vehicle may decelerate and wait for the oncoming vehicle V3 to pass by the side of the host vehicle V1. After the oncoming vehicle V3 passes, the vehicle may pass through a region including the passing start position PS3.
- the control device 10 may simultaneously pass.
- a weighting coefficient corresponding to the relative position between the host vehicle V1 and each avoidance target is obtained. This weighting coefficient is a coefficient corresponding to the degree of caution with respect to a plurality of avoidance targets that the host vehicle V1 passes or passes.
- the control device 10 calculates, for each avoidance target, a weighting factor corresponding to the relative position between the own vehicle and the avoidance target from the own vehicle information and the target information.
- the weighting coefficient is higher than that of the avoidance target that is stationary like the other vehicle V2 that is parked and overtaken by the host vehicle V1.
- the relative speed with the host vehicle V1 like the other vehicle V2 that is parked in front of the host vehicle V1 is overtaking.
- a higher weighting factor than the avoidance target with a low is set.
- a higher weight coefficient is set than an avoidance target that is far from the host vehicle V1.
- a higher weighting coefficient is set than an avoidance target having a small relative distance to the host vehicle V1.
- the control device 10 sets the position of the lateral end RW1 located on the side of the host vehicle V1 when viewed from the host vehicle V1 among the left and right ends of the target region R2 to be avoided. .
- the position of the lateral end RW1 is shifted to a position separated from the avoidance target (to the own vehicle V1 side) as the weighting factor is higher.
- the distance d13 along the vehicle width direction between the target region R3 to be avoided approaching the host vehicle V1 and the host vehicle V1 is the distance between the target region R2 to be avoided at rest and the host vehicle V1.
- the distance d13 along the vehicle width direction between the target area R3 to be avoided whose relative speed with the lane marker own vehicle V1 is high and the own vehicle V1 is in the vehicle width direction between the target area R2 with the low relative speed and the own vehicle V1. It is longer than the distance d1 (or d1 + d2) along (d13> d1 (d1 + d2)).
- the distance d13 between the avoidance target area R3 and the own vehicle V1 that is short in the vehicle width direction and the own vehicle V1 is the avoidance target area R2 and the own vehicle V1 that are long in the vehicle width direction and the own vehicle V1. Is longer than the distance d1 (or d1 + d2) (d13> d1 (d1 + d2)).
- FIG. 4A the state of FIG. 4A will be described as an example.
- the host vehicle V1 travels between the other vehicle V2 that is parked on the left hand and the oncoming vehicle V3 that travels in the adjacent facing lane.
- a traveling space having a width of VW10 (or VW10 ′) is given to the host vehicle V1.
- the control device 10 assigns weight coefficients to the left and right target areas R2 and R3 of the host vehicle V1, respectively.
- the control device 10 sets a weighting factor WH1 for the target region R2 of the other vehicle V2 that is parked, and a weighting factor WH2 for the target region R3 of the oncoming vehicle V3 that runs oppositely.
- the control device 10 sets the distance between the lateral end RW1 on the host vehicle V1 side and the other vehicle V2 among the left and right ends of the target region R2 using each weighting factor WH1. Similarly, for the target region R3, the distance between the lateral end RW1 located on the host vehicle V1 side and the oncoming vehicle V3 is set.
- the control device 10 may set the width W0 (or W0 ′) of the lateral end RW1 of the target region R0 from the lane marker x1 on the other vehicle V2 side.
- the control device 10 may set W3 ′ from the lane marker x3 on the oncoming vehicle V3 side to the lateral end RW1 of the target region R3.
- Width W0 ' VW10 ⁇ xWH1 / (WH1 + WH2)
- Width W3 ' VW10 ⁇ xWH2 / (WH1 + WH2)
- the position of the lateral end RW1 of the target region R0 is set for an avoidance target that is close to the host vehicle V1 and / or an avoidance target that has a large relative speed with the host vehicle V1. Further away from other vehicles V2, V3.
- the host vehicle V1 traveling on the target route RT based on the target region R0 can be prevented from approaching the other vehicles V2, V3 too much. Thereby, the risk at the time of approaching the avoidance target can be reduced.
- the control device 10 Based on the host vehicle information and the target information, the control device 10 detects positions that increase after the distance between the rear end of the host vehicle V1 and the target region R2 decreases as the overtaking completion position PE2 and the passing completion position PE3. .
- the control device 10 determines that the overtaking has been completed.
- the overtaking completion position where the host vehicle V1 has overtaken the other vehicle V2 being parked is PE2. Also, when the position in the Y-axis direction of the rear end of the host vehicle V1 and the rear end of the oncoming vehicle V3 that runs opposite each other substantially coincides (when the distance is less than a predetermined value), Judge that completed.
- the passing completion position between the oncoming vehicle V3 and the host vehicle V1 during the opposite running (moving) is PE3.
- the control device 10 acquires the own vehicle information and the target information at the overtaking completion position PE2 and the passing completion position PE3 based on the current own vehicle information and the target information.
- the control device 10 sets the target region R based on the own vehicle information and the target information at the overtaking completion position PE2 and the passing completion position PE3.
- the control device 10 calculates the overtaking completion position PE2 and the passing completion position PE3 at a predetermined cycle. Thereby, the overtaking completion position PE2 and the passing completion position PE3 can be obtained.
- the distance d13 between the target region R3 and the host vehicle V1 at the passing completion position with the oncoming vehicle V3 is maintained for a predetermined time. That is, in the state of FIG. 4B, the distance d13 between the target region R3 and the host vehicle V1 is kept constant for a predetermined time after the host vehicle V1 passes the passing completion position PE3. Further, the marginal distances d1 and d2 between the host vehicle V1 and the target region R1 are also kept constant over a predetermined time.
- the distance W0 ′ from the lane marker x1 to the host vehicle V1 is also kept constant over a predetermined time.
- the overtaking completion position calculation process is terminated.
- the calculation process of the passing completion position is terminated.
- the control device 10 determines the target area R2 based on the own vehicle information at the overtaking completion position PE2 and the passing completion position PE3 and the target information of the other vehicles V2 and V3 (avoidance targets).
- the position RL2 of the second end portion on the far side as viewed from the host vehicle is set.
- the control device 10 of the present embodiment aligns the position RL2 of the second end portion of the target region R3 with the passing completion position PE3.
- the traveling control is executed based on the target region R3 having the same width W3 until the passing completion timing. It can be prevented from turning until at least the passing is completed.
- the host vehicle V1 returns to an appropriate position (the center of the travel lane).
- the passing completion position PE3 may be shifted to the traveling direction side of the host vehicle V1. That is, the position RL2 of the second end portion of the target region R0 is shifted to the back side (traveling direction side) as viewed from the host vehicle V1 with respect to the passing completion position PE3.
- traveling control is executed in a state where the distance between the host vehicle V1 and the target region R3 along the vehicle width direction is maintained for a predetermined time. Since the same control content is maintained after the passing is completed, it is possible to prevent the turning from being executed immediately after the passing is completed. Then, after the passing is completed and the vehicle travels the shift amount (distance L3), the host vehicle V1 returns to an appropriate position (the center of the travel lane). This process can also be applied at the time of passing the overtaking completion position PE2.
- the shift amount L3 of the passing completion position PE3 can be determined according to the vehicle speed of the host vehicle V1.
- the shift amount L3 of the passing completion position PE3 is preferably reduced as the vehicle speed of the host vehicle V1 increases.
- the distance L3 from the oncoming vehicle V3 of the target region R3 can be relatively increased.
- This distance L3 corresponds to the shift amount of the passing completion position PE3 described above.
- the control device 10 decreases the extension amount of the second end portion RL2 of the target region R3 to the far side as the vehicle speed of the host vehicle V1 is higher. This process can also be applied to the overtaking completion position PE2.
- the control device 10 determines the left and right ends of the target region R3 based on the own vehicle information at the overtaking completion position PE2 and the passing completion position PE3 and the target information of the other vehicles V2 and V3 (avoidance target) obtained from the target information.
- the position of the lateral end RW1 located on the own vehicle V1 side is set.
- the first ends of the target areas R0 and R3 based on the relative positions of the own vehicle V1 from the overtaking start position PS2 closest to the other vehicles V2 and V3 to be avoided to the overtaking completion position PE2 with respect to the other vehicles V2 and V3.
- Position RL1, second end position RL2, and lateral end position RW1 are set.
- the position RW1 of the part is set.
- region R2, R3 which the own vehicle V1 can avoid the other vehicles V2, V3 can be set.
- the object to be avoided is a moving body such as the oncoming vehicle V3
- the positional relationship between the host vehicle V1 and the oncoming vehicle V3 changes every moment, but according to this embodiment, the closest approach when actually passing each other
- An appropriate target region R3 can be set according to the positional relationship to be performed.
- the control device 10 accelerates when the passing completion position PE3 with the oncoming vehicle V3 that runs opposite is less than a predetermined distance from the rear end RL2 on the host vehicle V1 side of the target region R3 (or oncoming vehicle V3).
- the oncoming vehicle V3 may pass by the side of the oncoming vehicle V3 before approaching the other vehicle V2, or it is decelerated and waits for the oncoming vehicle V3 to pass, and after passing the oncoming vehicle V3, the passing completion position PE3 is included. You may pass through the area. By decelerating the own vehicle V1 in the vicinity of the passing completion positions PE2 and PE3, it is possible to execute traveling control with high safety.
- a minimum value may be set for the distance L2 from the end on the side to the second end RL2 of the target region R0, and a smaller value may not be set.
- a minimum value may be set for the horizontal width W0 of the target region R2, and a smaller value may not be set.
- the minimum value may be set for the distance L13 from the front end of the oncoming vehicle V3 to the first end RL1 of the target area R3 and the width W3 of the target area R3, and the minimum value may not be set.
- the control device 10 of the present embodiment calculates the target route RT based on the set boundary position of the target region R0 and controls the distance between the host vehicle V1 and the avoidance target.
- the method of “calculating the target route RT based on the position of the target region R0” is not limited.
- the control device 10 may calculate the target route RT so that the host vehicle V1 does not enter the target region R0, and the overlapping area between the target region R0 and the existing region of the host vehicle V1 is less than a predetermined value.
- the target route RT may be calculated, a position separated from the boundary line of the target region R0 by a predetermined distance may be calculated as the target route RT, or the boundary line of the target region R0 may be calculated as the target route RT. May be.
- the target region R0 is set so that the distance between the host vehicle V1 and the avoidance target does not become less than a predetermined value, or the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold.
- the target route RT is also set at a position where the distance between the host vehicle V1 and the avoidance target is not less than a predetermined value, or at a position where the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold.
- the control function of the control device 10 will be described.
- the control device 10 of the present embodiment outputs control information for causing the host vehicle V1 to travel on the target route RT to the vehicle controller 70, the drive device 80, and the steering device 90 on the vehicle side.
- the vehicle controller 70 of the present embodiment controls the drive device 80 and the steering device 90 to drive the host vehicle V1 along the target route RT.
- the vehicle controller 70 uses the road shape detected by the detection device 50 and the lane marker model stored in the road information 122 and the map information 123 of the navigation device 120 to maintain the vehicle in a predetermined lateral position with respect to the lane.
- the steering device 90 is controlled to travel while traveling.
- the vehicle controller 70 calculates a steering control amount (turning control amount) based on the steering angle acquired from the steering angle sensor 61, the vehicle speed acquired from the vehicle speed sensor 62, and the current of the steering actuator, and a current is supplied to the steering actuator.
- control is performed so that the host vehicle travels in the target lateral position.
- the driving direction of the host vehicle V1 is determined by the difference in rotational speed between the left and right drive wheels using the driving device 80 and / or the braking device 81. (That is, the lateral position) may be controlled.
- the “turning” of the vehicle includes not only the case of using the steering device 90 but also the case of using the driving device 80 and / or the braking device 81.
- the control device 10 calculates the information according to the target information, the information according to the position of the target region R, the information according to the position of the target route, and the information according to the control information for causing the host vehicle to travel on the target route. Is output to the output device 110 and output to the outside in the manner described above.
- step S101 the control device 10 acquires host vehicle information including at least the position of the host vehicle V1.
- the own vehicle information may include the vehicle speed and acceleration of the own vehicle V1.
- step S102 the control device 10 acquires target information including a position to be avoided that the host vehicle V1 should avoid.
- the target information may include speed / acceleration to be avoided.
- step S103 the control device 10 acquires the detection result of the avoidance target from the detection device 50.
- the detection result of the avoidance target includes information on the position of the avoidance target.
- step S104 the control device 10 sets the target region R according to the position to be avoided. The subroutine for the target area R setting process will be described with reference to FIG.
- step S105 the control device 10 calculates the target route RT based on the position of the boundary of the target region R.
- the target route RT includes one or a plurality of target coordinates on which the host vehicle V1 travels. Each target coordinate includes a target horizontal position (target X coordinate) and a target vertical position (target Y coordinate).
- the target route RT is obtained by connecting the calculated one or more target coordinates and the current position of the host vehicle V1. The method for calculating the target coordinates shown in step S105 will be described later.
- step 106 the control device 10 acquires the target lateral position of the target coordinates calculated in step S105.
- step S107 the control device 10 calculates a feedback gain related to the lateral position based on the comparison result between the current lateral position of the host vehicle V1 and the target lateral position acquired in step S106.
- step S108 the control device 10 moves the target lateral position to the host vehicle V1 based on the actual lateral position of the host vehicle V1, the target lateral position corresponding to the current position, and the feedback gain in step S107.
- a target control value relating to the turning angle, turning angular velocity, etc. necessary for the movement is calculated.
- step S112 the control device 10 outputs the target control value to the in-vehicle device 200. Thereby, the host vehicle V1 travels on the target route RT defined by the target lateral position.
- step S105 When a plurality of target coordinates are calculated in step S105, the processing of steps S106 to S112 is repeated each time the target lateral position is acquired, and the control value for each acquired target lateral position is transmitted to the in-vehicle device 200. Output.
- step S109 the control device 10 acquires a target vertical position for one or a plurality of target coordinates calculated in step S105.
- step S110 the control device 10 determines the current vertical position of the host vehicle V1, the vehicle speed and acceleration / deceleration at the current position, the target vertical position corresponding to the current vertical position, and the vehicle speed and acceleration / deceleration at the target vertical position. Based on the comparison result, a feedback gain related to the vertical position is calculated.
- step S111 the control device 10 calculates a target control value related to the vertical position based on the vehicle speed and acceleration / deceleration according to the target vertical position and the feedback gain of the vertical position calculated in step S110.
- the processing in steps S109 to S112 is repeated each time the target vertical position is acquired, similarly to steps S106 to S108 and S112 described above, and the control value for each of the acquired target horizontal positions is output to the in-vehicle device 200.
- the target control value in the vertical direction means the operation of a drive mechanism for realizing acceleration / deceleration and vehicle speed according to the target vertical position (in the case of an engine vehicle, the operation of an internal combustion engine, in the case of an electric vehicle system).
- the control function calculates a target intake air amount (target opening of the throttle valve) and a target fuel injection amount based on the calculated values of the current and target acceleration / deceleration and vehicle speed. Then, this is sent to the driving device 80.
- the control function calculates the acceleration / deceleration and the vehicle speed, and sends them to the vehicle controller 70.
- the vehicle controller 70 operates the drive mechanism for realizing the acceleration / deceleration and the vehicle speed (in the case of an engine vehicle, an internal combustion engine). Control values for engine operation, electric motor operation in an electric vehicle system, and torque distribution between an internal combustion engine and an electric motor in a hybrid vehicle) and brake operation may be calculated.
- step S112 the control apparatus 10 outputs the target control value of the vertical direction calculated by step S111 to the vehicle-mounted apparatus 200.
- FIG. The vehicle controller 70 executes turn control and drive control, and causes the host vehicle to travel on the target route RT defined by the target lateral position and the target vertical position.
- step S113 the control device 10 causes the output device 110 to present information.
- the information to be presented to the output device 110 may be the position / velocity of the target area calculated in step S106, the shape of the target route calculated in steps S105 to S111, or in step S112.
- the target control value output to the in-vehicle device 200 may be used.
- step S114 it is determined whether or not the driver has performed a steering operation or the like, and whether or not the driver has intervened. If no driver operation is detected, the process returns to step S101 to repeat the setting of a new target area, calculation of the target route, and travel control. On the other hand, when the driver performs an operation, the process proceeds to step S115, and the traveling control is interrupted. In the next step S116, information indicating that the traveling control has been interrupted is presented.
- step S201 the control device 10 performs a step when an avoidance target (such as another parked vehicle) existing in the lane on which the host vehicle V1 travels is detected.
- the process proceeds to S202.
- step S202 if an avoidance target (such as another vehicle that faces opposite) is detected in the opposite lane of the lane in which the host vehicle V1 is traveling, the process proceeds to step S203, and if not, the process proceeds to step S211.
- Step S211 and subsequent steps are processing when there is an avoidance target in the traveling lane of the host vehicle V1.
- the control device 10 sets the target area R according to the position of the avoidance target detected in the travel lane.
- the control device 10 determines whether or not the host vehicle V1 can travel without entering the target region R in the travel lane.
- the control device 10 calculates a route passing through the approximate center of the target region and the lane marker as the target route RT.
- step S214 it is determined whether it is possible to enter an adjacent traveling lane. Whether or not the vehicle can enter an adjacent traveling lane is determined based on road information 122 including information on whether or not the overtaking regulation is applied to the lane. If it is determined in step S214 that the host vehicle V1 can enter the adjacent travel lane, the process proceeds to step S215, and the target route RT is calculated. On the other hand, if the host vehicle V1 cannot enter the adjacent travel lane, the process proceeds to step S216, and the host vehicle V1 is decelerated or stopped.
- step S ⁇ b> 203 the control device 10 calculates a passing start position and a passing completion position at predetermined intervals based on the own vehicle information and the target information. And the control apparatus 10 sets the object area
- step S204 the other vehicle V2 is avoided based on the own vehicle information and target information at the passing start position and / or the passing completion position with the passing other vehicle V2.
- the target area R is set.
- step S205 a target region R that avoids the oncoming vehicle V3 is set based on the own vehicle information and the target information at the passing start position and / or the passing completion position with the oncoming vehicle V3 that passes by later.
- the target region R is set based on the vehicle information and the target information at the passing start position and / or the passing completion position.
- the control device 10 automatically passes the other vehicle V2 while keeping the distance from the other vehicle V2 properly, and further passes the other vehicle V3 while keeping the distance from the left and right other vehicles V2 and the opposite vehicle V3 appropriately.
- the vehicle V1 is caused to travel. Accordingly, the host vehicle V1 can pass the avoidance target while maintaining an appropriate distance from the avoidance target.
- the control device 10 uses the weighting coefficient to beside the target region R2.
- a distance d1 (d1 + d2) between the end portion and the host vehicle V may be set.
- the control device 10 sets the length L0 of the target region R2 according to the positions of the passing start point PS and the passing completion point PE.
- the positions of the first end RL1 and the second end RL2 of the target region R2 are adjusted according to the positions of the passing start point PS and the passing completion point PE. Therefore, the turning operation for avoiding the avoidance target is performed.
- the point to do can be set appropriately. Thereby, it is possible to set the target region R2 suitable for the situation at the passing start point PS and the passing completion point RE.
- step S204 and step S205 are the processes performed sequentially about the avoidance object close to the own vehicle V1, either one of the steps may be executed depending on the situation.
- step S206 the control device 10 starts the target route calculation process in step S105 of FIG. 5 based on the set target region R, and executes the processes in and after step S106.
- traveling control apparatus 100 Since the traveling control apparatus 100 according to the embodiment of the present invention is configured and operates as described above, the following effects can be obtained.
- the travel control device 100 of the present embodiment in the extending direction (+ y) of the lane on which the host vehicle V1 travels according to the actual relative speed of the host vehicle V1 with respect to the other vehicle V2 to be avoided. Since the length L10 of the target region R along is set, an appropriate target region R can be set. The target region R is set in consideration of the relative speed, and the target route RT is calculated so as to avoid this. Thereby, it can suppress that target route RT is changed during execution of traveling control. That is, the turning amount, turning angle, vehicle speed, acceleration, and the like of the host vehicle are not suddenly changed. As a result, the continuity of the behavior of the vehicle is maintained, so that the occupant does not feel discomfort.
- the higher the relative speed the more the first end RL1 of the target region R is set to a position that is separated from the other vehicle V2 (avoidance target) toward the host vehicle V1.
- the turning point (turning start point) of the target route RT1 that avoids the target region R1 is set on the own vehicle V1 side.
- the target route for avoiding the other vehicle V2 can be formed with a gentle curve. Since the turning amount and the turning speed of the host vehicle V1 are lowered, the occupant does not feel discomfort.
- the second end RL2 of the target region R is separated from the other vehicle V2 (avoidance target) toward the traveling direction of the host vehicle V1.
- the turning point (turning completion point: return point to the straight traveling state) of the target route RT1 that avoids the target region R1 can be shifted to the traveling direction side of the host vehicle V1.
- the turning amount and the turning speed at the turning completion point can be lowered, and the target route for avoiding the other vehicle V2 can be formed with a gentle curve.
- the turning amount and turning speed of the host vehicle V1 can be controlled to be low.
- the travel control device 100 is located on the side of the host vehicle V1 as viewed from the host vehicle V1 in the left and right ends of the target region R as the relative speed of the vehicle width direction component with respect to the avoidance target increases.
- the target region R is set so that the distance between the horizontal end portion to be avoided and the avoidance target becomes long.
- the target region R is set in consideration of the relative speed of the vehicle width direction component, it is possible to suppress the target route RT from being changed during the execution of the travel control. That is, the turning amount, turning angle, vehicle speed, acceleration, and the like of the host vehicle are not suddenly changed. As a result, the continuity of vehicle behavior can be maintained.
- the travel control device 100 as the distance to the avoidance target along the vehicle width direction is shorter, of the left and right end portions of the target region R and the lateral end portion on the own vehicle side as viewed from the own vehicle V1 and the avoidance.
- the target region R is set so that the distance to the target becomes long.
- the position of the target route RT calculated based on the position of the boundary of the target region R can be separated from the avoidance target. Thereby, it can prevent the own vehicle V1 from approaching the other vehicle V2 too much. And there exists an effect described in said [4].
- the target region R is based on the relative position of the own vehicle V1 with the other vehicles V2 and V3 at the passing start position PS2 and the passing start position PS3 that are closest to the avoidance target.
- the avoidance target is a moving object such as the oncoming vehicle V3
- the positional relationship between the host vehicle V1 and the oncoming vehicle V3 changes every moment, but the target according to the positional relationship when actually overtaking or passing each other.
- Region R can be set.
- the target region R is based on the relative position of the own vehicle V1 with the other vehicles V2 and V3 at the passing start position PS2 and the passing start position PS3 that are closest to the avoidance target.
- the avoidance target is a moving object such as the oncoming vehicle V3
- the positional relationship between the host vehicle V1 and the oncoming vehicle V3 changes every moment, but the target according to the positional relationship when actually overtaking or passing each other.
- Region R can be set.
- the lateral end RW1 is the avoidance target for the avoidance target that is close to the host vehicle V1 and / or the avoidance target that has a large relative speed with the host vehicle V1.
- the target region R is set so as to be farther from the position. Thereby, it can suppress that the own vehicle V1 approaches an avoidance object too much. The risk when the host vehicle V1 approaches the avoidance target is reduced.
- the own vehicle V1 passes from the passing start position PS2 closest to the other vehicles V2 and V3 to be avoided to the passing completion position PE2, passing from the passing start position PS3 to the passing completion position.
- the target area R3 can be set in consideration of the situation of overtaking or passing.
- the target area R in consideration of the situation of overtaking or passing. Can be set.
- the avoidance target is a moving body whose positional relationship changes every moment like the oncoming vehicle V3, an appropriate target region R can be set according to the positional relationship when actually passing each other.
- the traveling control apparatus 100 of the present embodiment by outputting information related to traveling control that avoids the target region R to the outside, the behavior of the own vehicle is notified in advance to the passengers of the own vehicle and / or other vehicles. be able to. Thereby, the passenger
- the travel control device 100 that constitutes the travel control system 1 together with the in-vehicle device 200 will be described as an example, but the present invention is limited to this. It is not a thing.
- a control device 10 that executes a target information acquisition function, a region setting function, and a control function is provided.
- the travel control device 100 will be described as an example, but the present invention is not limited to this.
- the travel control device 100 in which the control device 10 executes the own vehicle information acquisition function will be described as an example.
- the present invention is not limited thereto. is not.
- the travel control device 100 further including the output devices 30 and 110 will be described as an example, but the present invention is not limited thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
Abstract
自車両(V1)の周囲の回避すべき回避対象の位置を含む対象情報を取得する対象情報取得機能と、回避対象の位置とに応じて対象領域(R)を設定する領域設定機能と、対象領域(R)を回避する目標経路(RT)を設定する経路設定機能と、目標経路(RT)上を自車両(V1)に走行させる制御情報を出力する制御機能と、を実行する走行制御装置(100)を提供する。領域設定機能は、回避対象に対する自車両(V1)の相対速度に基づいて自車両(V1)が走行するレーンの延在方向に沿う対象領域(R)の長さ(L)を設定する。
Description
本発明は、車両の走行を制御する走行制御装置及びその方法に関する。
この種の装置に関し、車両の左側の第1危険度に基づく第1の制御閾値と、車両の右側の第2危険度に基づく第2の制御閾値とを求め、第2危険度が大きいほど道路端からの距離である第1の制御閾値を車両左側の第1の物体の方へ変更し、第1危険度が大きいほど道路端からの距離である第2の制御閾値を車両右側の第2の物体の方へ変更する技術が知られている(特許文献1)。
しかしながら、従来の技術では、回避対象に対する自車両の相対速度を考慮せずに自車両の走行位置を制御するので、実際の速度によっては、回避対象を避ける走行制御が行われているときに、自車両の走行位置が変更されるという問題がある。
本発明が解決しようとする課題は、回避対象を避ける走行制御が行われているときに、自車両の走行位置が変更されないようにすることである。
本発明は、会費対象の位置に基づいて対象領域を設定する際に、回避対象に対する自車両の相対速度を考慮して、対象領域の走行レーンの延在方向に沿う長さを求めることにより、上記課題を解決する。
本発明によれば、回避対象に対する自車両の相対速度に応じた長さの対象領域を設定するので、その対象領域の位置に基づいて設定される目標経路の位置が、走行制御中に変更されることを抑制できる。
以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、本発明に係る車両の走行制御装置を、車両に搭載された走行制御システムに適用した場合を例にして説明する。本発明の走行制御装置の実施の形態は限定されず、車両側と情報の授受が可能な携帯端末装置に適用することもできる。走行制御装置、走行制御システム、及び携帯端末装置は、いずれも演算処理を実行するコンピュータである。
図1は、走行制御システム1のブロック構成を示す図である。本実施形態の走行制御システム1は、車両に搭載され、走行制御装置100と車載装置200とを備える。
本実施形態の走行制御装置100は、自車両が走行している車線を認識し、車線のレーンマーカの位置と自車両の位置とが所定の関係を維持するように、自車両の動きを制御する車線逸脱防止機能(レーンキープサポート機能)を備える。本実施形態の走行制御装置100は車線の中央を自車両が走行するように、自車両の動きを制御する。走行制御装置100は、車線のレーンマーカから自車両までの路幅方向に沿う距離が所定値域となるように、自車両の動きを制御してもよい。
なお、本実施形態におけるレーンマーカは、レーンを規定する機能を有するものであれば限定されず、路面に描かれた線図であってもよいし、レーンの間に存在する植栽であってもよいし、レーンの路肩側に存在するガードレール、縁石、歩道、二輪車専用道路などの道路構造物であってもよい。また、レーンの路肩側に存在する看板、標識、店舗、街路樹などの不動の物体であってもよい。これらのレーンマーカの検出手法は限定されず、本願出願時に知られたパターンマッチングなどの各種の手法を用いることができる。
本実施形態の走行制御装置100は通信装置20を有し、車載装置200は通信装置40を有し、両装置は有線通信又は無線通信により互いに情報の授受を行う。
なお、本実施形態におけるレーンマーカは、レーンを規定する機能を有するものであれば限定されず、路面に描かれた線図であってもよいし、レーンの間に存在する植栽であってもよいし、レーンの路肩側に存在するガードレール、縁石、歩道、二輪車専用道路などの道路構造物であってもよい。また、レーンの路肩側に存在する看板、標識、店舗、街路樹などの不動の物体であってもよい。これらのレーンマーカの検出手法は限定されず、本願出願時に知られたパターンマッチングなどの各種の手法を用いることができる。
本実施形態の走行制御装置100は通信装置20を有し、車載装置200は通信装置40を有し、両装置は有線通信又は無線通信により互いに情報の授受を行う。
まず、車載装置200について説明する。
本実施形態の車載装置200は、検出装置50と、センサ60と、車両コントローラ70と、駆動装置80と、操舵装置90と、出力装置110と、ナビゲーション装置120とを備える。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。
本実施形態の車載装置200は、検出装置50と、センサ60と、車両コントローラ70と、駆動装置80と、操舵装置90と、出力装置110と、ナビゲーション装置120とを備える。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。
以下、車載装置200を構成する各装置についてそれぞれ説明する。
検出装置50は、車両が回避するべき回避対象の存在及びその存在位置を検出する。特に限定されないが、本実施形態の検出装置50はカメラ51を含む。本実施形態のカメラ51は、例えばCCD等の撮像素子を備えるカメラである。カメラ51は自車両の所定の位置に設置され、自車両の周囲を撮像し、自車両の周囲に存在する回避対象を含む画像データを取得する。
検出装置50は、車両が回避するべき回避対象の存在及びその存在位置を検出する。特に限定されないが、本実施形態の検出装置50はカメラ51を含む。本実施形態のカメラ51は、例えばCCD等の撮像素子を備えるカメラである。カメラ51は自車両の所定の位置に設置され、自車両の周囲を撮像し、自車両の周囲に存在する回避対象を含む画像データを取得する。
検出装置50は、取得した画像データを処理し、自車両に対する回避対象の位置に基づいて、自車両から回避対象までの距離を算出する、検出装置50は、回避対象の位置の経時的な変化から自車両と回避対象の相対速度、自車両と回避対象の相対加速度を対象情報として算出する。画像データに基づく自車両と他車両との位置関係の導出処理、その経時的な変化量に基づく速度情報の導出処理については、本願出願時に知られている手法を適宜に用いることができる。
また、検出装置50は、画像データを解析し、その解析結果に基づいて回避対象の種別を識別してもよい。検出装置50は、パターンマッチング技術などを用いて、画像データに含まれる回避対象が、車両であるか、歩行者であるか、標識であるか否かを識別する。検出装置50は、画像データから対象物の像を抽出し、その像の大きさや形状から対象物の具体的な種別(四輪車、二輪車、バス、トラック、工事車両など)や、車種(小型車、大型車)を識別できる。さらに、検出装置50は、画像データに含まれるナンバープレートに表記された識別子から、その車両の種別、車種を識別できる。回避対象の各種別と大きさは予め対応づけ、その情報を参照して回避対象の大きさを求めてもよい。これら種別の識別情報、回避対象の大きさの情報は、対象領域の設定処理において用いることができる。
なお、本実施形態の検出装置50はレーダー装置52を用いてもよい。レーダー装置52としては、ミリ波レーダー、レーザーレーダー、超音波レーダーなどの出願時に知られた方式のものを用いることができる。
回避対象の位置を含む対象情報は、走行制御装置100側へ送出される。検出装置50は、回避対象の位置の変化から求めた回避対象の速度情報、加速度情報、回避対象の種別情報、回避対象が車両である場合には車種などの情報を対象情報に含めて、走行制御装置100側へ送出してもよい。
本実施形態における「回避対象」は、自車両が避けて走行するべき対象である。つまり、自車両は、回避対象に接近しすぎない状態を維持して走行する。検出装置50は、自車両と所定の位置関係を有する対象を回避対象として検出する。検出装置50は、自車両の走行レーン上に存在し、自車両の走行方向前方に存在する物体等であって、自車両から所定距離以内に存在するものを回避対象として検出する。
本実施形態の回避対象は、静止物と移動物を含む。静止している回避対象としては、駐車中の他車両、停車中の他車両、歩道,中央分離帯,ガードレールなどの道路構造物、標識,電柱などの道路設置物、落下物や除雪された雪などの道路の載置物など、車両の走行の障害となる物体が含まれる。移動する回避対象としては、他車両、歩行者が含まれる。他車両としては、自車両の前方を走行する他車両、自車両の前方側方を走行する他車両、後方を走行する他車両、後方側方を走行する他車両、自車両の進行方向からその自車両に接近する他車両(対向車両)が含まれる。車両としては、自転車、バイクなどの二輪車、バス,トラックなどの大型車両、トレーラ、クレーン車などの特殊車両が含まれる。さらに、回避対象としては、工事現場、路面の損傷エリア、水溜りなど、物体が存在しないものの自車両が回避すべき対象を含む。
本実施形態のセンサ60は、操舵角センサ61、車速センサ62を備える。操舵角センサ61は、自車両の操舵量、操舵速度、操舵加速度などの操舵に関する操舵情報を検出し、車両コントローラ70、走行制御装置100へ送出する。車速センサ62は、自車両の車速、加速度を検出し、車両コントローラ70、走行制御装置100へ送出する。
本実施形態の車両コントローラ70は、エンジンコントロールユニット(Engine Control Unit, ECU)などの車載コンピュータであり、車両の運転状態を電子的に制御する。本実施形態の車両としては、電動モータを走行駆動源として備える電気自動車、内燃機関を走行駆動源として備えるエンジン自動車、電動モータ及び内燃機関の両方を走行駆動源として備えるハイブリッド自動車を例示できる。なお、電動モータを走行駆動源とする電気自動車やハイブリッド自動車には、二次電池を電動モータの電源とするタイプや燃料電池を電動モータの電源とするタイプのものも含まれる。
本実施形態の駆動装置80は、自車両Vの駆動機構を備える。駆動機構には、上述した走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、及び車輪を制動する制動装置81などが含まれる。駆動装置80は、運転者のアクセル操作及びブレーキ操作による入力信号、車両コントローラ70又は走行制御装置100から取得した制御信号に基づいてこれら駆動機構の各制御信号を生成し、車両の加減速を含む走行制御を実行する。駆動装置80に制御情報を送出することにより、車両の加減速を含む走行制御を自動的に行うことができる。なお、ハイブリッド自動車の場合には、車両の走行状態に応じた電動モータと内燃機関とのそれぞれに出力するトルク配分も駆動装置80に送出される。
本実施形態の操舵装置90は、ステアリングアクチュエータを備える。ステアリングアクチュエータは、ステアリングのコラムシャフトに取り付けられるモータ等を含む。操舵装置90は、車両コントローラ70から取得した制御信号、又は運転者のステアリング操作により入力信号に基づいて車両の転回制御を実行する。車両コントローラ70は、操舵量を含む制御情報を操舵装置90に送出することにより、転回制御を実行する。また、走行制御装置100は、車両の各輪の制動量をコントロールすることにより転回制御を実行してもよい。この場合、車両コントローラ70は、各輪の制動量を含む制御情報を制動装置81へ送出することにより、車両の転回制御を実行する。
本実施形態のナビゲーション装置120は、自車両の現在位置から目的地までの経路を設定し、後述する出力装置110を介して経路案内情報を出力する。ナビゲーション装置120は、位置検出装置121と、道路種別、道路幅、道路形状その他の道路情報122と、道路情報122が各地点に対応づけられた地図情報123とを有する。本実施形態の位置検出装置121は、グローバル・ポジショニング・システム(Global Positioning System, GPS)を備え、走行中の車両の走行位置(緯度・経度)を検出する。ナビゲーション装置120は、位置検出装置121により検出された自車両の現在位置に基づいて、自車両が走行する道路リンクを特定する。本実施形態の道路情報122は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、追い越しの可否(隣接レーンへの進入の可否)その他の道路に関する情報を対応づけて記憶する。そして、ナビゲーション装置120は、道路情報122を参照し、自車両が走行する道路リンクが属する道路に関する情報を取得し、走行制御装置100へ送出する。自車両が走行する道路種別、道路幅、道路形状は、走行制御処理において、自車両が走行する目標経路RTの算出に用いられる。なお、本実施形態における目標経路RTは、自車両V1が将来通過する一つ又は複数の地点の特定情報(座標情報)を含む。本実施形態の目標経路RTは、自車両V1の次の走行位置を示唆する一つの点を少なくとも含む。目標経路RTは、連続した線により構成されてもよいし、離散的な点により構成されてもよい。
本実施形態の出力装置110は、走行支援に関する各種の情報をユーザ又は周囲の車両の乗員に向けて出力する。本実施形態において、出力装置110は、対象情報に応じた情報、対象領域の位置に応じた情報、目標経路の位置に応じた情報、及び目標経路上を自車両に走行させる制御情報に応じる情報のうち、何れか一つ以上を出力する。本実施形態の出力装置110は、ディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114を含む。車室外ランプ113は、ヘッドライト、ウィンカランプ、ブレーキランプを含む。車室内ランプ114は、インジケータの点灯表示、ディスプレイ111の点灯表示、その他ステアリングに設けられたランプや、ステアリング周囲に設置されたランプを含む。また、本実施形態の出力装置110は、通信装置40を介して、高度道路交通システム(Intelligent Transport Systems:ITS)などの外部装置に走行支援に関する各種の情報を出力してもよい。高度道路交通システムなどの外部装置は、車両の速度、操舵情報、走行経路などを含む走行支援に関する情報を、複数の車両の交通管理に用いる。
情報の具体的な出力態様を、自車両の左側前方に回避対象としての駐車車両が存在する場合を例にして説明する。
出力装置110は、対象情報に応じた情報として、駐車車両が存在する方向や位置を自車両の乗員に提供する。ディスプレイ111は、駐車車両が存在する方向や位置を視認可能な態様で表示する。スピーカ112は「左側前方に駐車車両が存在します」といった駐車車両が存在する方向や位置を伝えるテキストを発話出力する。車室外ランプ113である左右のドアミラーに設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを自車両の乗員に知らせてもよい。車室内ランプ114であるステアリング近傍の左右に設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを乗員に知らせてもよい。
出力装置110は、対象情報に応じた情報として、駐車車両が存在する方向や位置を自車両の乗員に提供する。ディスプレイ111は、駐車車両が存在する方向や位置を視認可能な態様で表示する。スピーカ112は「左側前方に駐車車両が存在します」といった駐車車両が存在する方向や位置を伝えるテキストを発話出力する。車室外ランプ113である左右のドアミラーに設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを自車両の乗員に知らせてもよい。車室内ランプ114であるステアリング近傍の左右に設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを乗員に知らせてもよい。
また、対象領域の位置に応じた情報として、対象領域の設定方向や設定位置を、出力装置110を介して出力してもよい。先述したように、対象領域が左側前方に設定されたことを、ディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114により乗員に知らせることができる。
本実施形態では、自車両の動きを他車両の乗員に予め知らせる観点から、対象領域の設定方向や設定位置を、車室外ランプ113を用いて外部に出力する。対象領域が設定されると、これを回避するために自車両の進行方向が変更され、転回操作(操舵操作を含む、以下同じ)が行われる。対象領域が設定されたことを外部に知らせることにより、対象領域を回避するために自車両の進行方向が変化することを、予め、他車両のドライバに予告できる。例えば、対象領域が左側前方に設定されたときに、右側のウィンカランプ(車室外ランプ113)を点灯させることにより、左側に存在する回避対象の側方を通り過ぎるために自車両が右側に移動することを外部の他車両等に知らせることができる。
さらに、目標経路の位置に応じた情報として、目標経路の形状や曲点の位置をディスプレイ111、スピーカ112により乗員に知らせることができる。ディスプレイ111は、目標経路の形状等を視認可能な線図として表示する。スピーカ112は、「前方の駐車車両を回避するので、右にハンドルを切ります」などのアナウンスを出力する。
さらにまた、目標経路上を自車両に走行させる制御情報に応じた情報として、転回操作や加減速が実行されることをディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114を介して、自車両の乗員又は他車両の乗員に予め知らせる。
このように、回避対象の側方を通り過ぎる際の走行制御に関する情報を出力することにより、自車両及び/又は他車両の乗員に自車両の挙動を予め知らせることができる。出力装置110は、通信装置20を介して上述した情報を高度道路交通システムの外部装置に出力してもよい。これにより、自車両の乗員及び/他車両の乗員は、走行制御される自車両の挙動に応じた対応ができる。
以下、本実施形態の走行制御装置100について説明する。
図1に示すように、本実施形態の走行制御装置100は、制御装置10と、通信装置20と、出力装置30とを備える。通信装置20は、車載装置200との情報の授受を行う。出力装置30は、先述した車載装置200の出力装置110と同様の機能を有する。出力装置30として、車載装置110の出力装置110を用いてもよい。走行制御装置100が、乗員によって持ち運び可能なコンピュータである場合には、走行制御装置100は、車載装置200の車室外ランプ113、車室内ランプ114の点滅を制御する制御情報を、各装置に出力してもよい。
走行制御装置100の制御装置10は、自車両の走行制御を実行させるプログラムが格納されたROM(Read Only Memory)12と、このROM12に格納されたプログラムを実行することで、走行制御装置100として機能する動作回路としてのCPU(Central Processing Unit)11と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)13と、を備えるコンピュータである。
本実施形態に係る走行制御装置100の制御装置10は、対象情報取得機能と、自車情報取得機能と、領域設定機能と、経路設定機能と、制御機能とを有する。本実施形態の制御装置10は、上記機能を実現するためのソフトウェアと、上述したハードウェアの協働により各機能を実行する。
以下、本実施形態に係る走行制御装置100の各機能について説明する。
まず、制御装置10の対象情報取得機能について説明する。制御装置10は、自車両が回避すべき回避対象の位置を含む対象情報を取得する。回避対象は自車両と所定の位置関係を有する。制御装置10は、検出装置50により検出された回避対象の位置を含む対象情報を取得する。対象情報は回避対象の相対位置、相対速度、相対加速度を含む。
まず、制御装置10の対象情報取得機能について説明する。制御装置10は、自車両が回避すべき回避対象の位置を含む対象情報を取得する。回避対象は自車両と所定の位置関係を有する。制御装置10は、検出装置50により検出された回避対象の位置を含む対象情報を取得する。対象情報は回避対象の相対位置、相対速度、相対加速度を含む。
回避対象が他車両であり、この他車両と自車両とが車車間通信が可能であれば、自車両の制御装置10は、他車両の車速センサが検出した他車両の車速、加速度を対象情報として取得してもよい。もちろん、制御装置10は、高度道路交通システムの外部装置から他車両の位置、速度、加速度を含む対象情報を取得することもできる。
制御装置10の自車情報取得機能について説明する。制御装置10は、自車両の位置を含む自車情報を取得する。自車両の位置は、ナビゲーション装置120の位置検出装置121により取得できる。自車情報は、自車両の車速、加速度を含む。制御装置10は、自車両の速度を車速センサ62から取得する。自車両の速度は、自車両の位置の経時的な変化に基づいて取得することもできる。自車両の加速度は、自車両の速度から求めることができる。自車情報は、自車両の現在位置と車速から求められた、将来の時刻における自車両の位置を含む。の将来の時刻における自車両の位置に基づいて、将来の時刻における自車両と回避対象との位置関係を求めることができる。
制御装置10の領域設定機能について説明する。制御装置10は、取得した対象情報に含まれる回避対象の位置に基づいて、対象領域を設定する。回避対象は、自車両の周囲に存在し、自車両が回避するべき立体物である。
図2A~図2Cは、対象領域Rの設定手法の一例を示す図である。図2A~図2Cに示す例において、自車両の走行方向Vd1は、図中+y方向である。同図において、自車両が走行する走行レーンLn1の延在方向も、図中+y方向である。
図2Aは、自車両V1の走行レーンLn1の左側の路肩側に駐車された他車両V2が検出された状態を上方から見た図である。図2Aは、自車両V1は、その後方から他車両V2に接近し、他車両V2(回避対象)の側方を通り、レーンLn1内を走行方向Vd1に向かって走行する場面を示す。回避対象としての他車両V2は自車両V1の前方に存在する。検出された他車両V2は、自車両V1が走行する走行レーンLn1に存在し、自車両V1の直進を妨げるため、自車両V1が回避するべき回避対象である。
本例において、制御装置10は、自車両V1が走行方向Vd1に沿って回避対象V2に接近するときに、自車両の位置と回避対象の位置との関係に基づいて対象領域R0を設定する(以下、R1,R2を含めRと総称することもある)。対象領域Rは、自車両V1と回避対象V1との距離が所定値X1未満となる接近状態又は接触状態が生じることを避ける観点から設定されてもよいし、自車両V1と回避対象V1との距離を所定値X2以上に保つ観点から設定されてもよい。
制御装置10は、他車両V2を含む所定の範囲に対象領域Rを設定する。制御装置10は、他車両V2などの回避対象の位置に基づいて、対象領域Rを設定する。対象領域Rの設定において用いられる「回避対象の位置」は、予め定義できる。回避対象が他車両V2である場合には、他車両V2の重心位置、中央位置、他車両V2のフロント部分の何れかの位置、他車両V2のリア部分の何れかの位置、他車両V2の左右ドア部分の何れかの位置を、「他車両V2の位置」として定義できる。制御装置10は、「回避対象の位置」を基準として、対象領域Rを設定する。本図では、対象領域R0を例にして説明するが、後述する対象領域R1,R2についても同じである。
本実施形態において、対象領域R0は、他車両V2の外形に沿った形状としてもよいし、他車両V2を内包する形状としてもよい。また、制御装置10は、対象領域R0の境界を、他車両V2の外形に沿った形状としてもよいし、他車両V2を包含する円形、楕円形、矩形、多角形としてもよい。また、対象領域R0は、対象領域R0の境界を他車両V2の表面(外縁)から所定距離(A)未満として、対象領域R0の面積を小さく設定してもよいし、対象領域R0の境界を、他車両V2から離隔させた所定距離B(B>A)以上として、対象領域R0の面積を大きく設定してもよい。
図2Aに示す対象領域R0は、他車両V2を包含する矩形の形状で定義されている。図2Aに示すように、自車両の走行方向Vd1を前方とし、その逆方向を後方として定義した場合において、対象領域R0はその前後に前後端部RL1,RL2を有する。この前後端部RL1,RL2は、自車両の走行レーンLn1の延在方向(+y)に沿う対象領域R0の長さを規定する端線である。図2Aに示す対象領域R0の走行レーンLn1の延在方向(+y)に沿う長さは、前後端部RL1の(y1)とRL2(y2)の間の距離であるL0である。前後端部RL1,RL2のうち、対象領域R0に接近する自車両V1から見て手前側(上流側)に位置する前後端部を第1端部RL1とする。一方、前後端部RL1,RL2のうち、回避対象に接近又はその側方を通過する自車両V1から見て奥手側(下流側)に位置する前後端部を第2端部RL2とする。第1端部RL1及び第2端部RL2は、他車両V2の位置(基準位置)V20からの距離により設定される。第1端部RL1と第2端部RL2は、対象領域R0の境界上に位置する。
図2Aに示すように、自車両の車幅方向をVw1(図中X方向)として定義した場合において、対象領域R0はその左右のそれぞれに左右端部RW1,RW2を有する。この左右端部RW1,RW2は、自車両V1との車幅方向に沿う距離を規定する端線(端部)である。また、左右端部RW1,RW2は、自車両の走行レーンLn1の路幅方向(X)に沿う対象領域の長さ(幅)を規定する端線である。図2Aに示す対象領域R0の路幅方向に(X)沿う長さは、左端部RW1(レーンマーカx1側の端部)と右端部RW2(レーンマーカx2側の端部)との間の距離W0である。自車両が車幅方向に沿って回避対象V2に接近するときに、対象領域R0の左右端部RW1,RW2のうち、自車両V1から見てその自車両V1の側方に位置する左右端部を第1横端部RW1とする。一方、左右端部RW1,RW2のうち、自車両V1から見てその自車両V1の側方とは反対の側方(路肩側)に位置する左右端部を第2横端部RW2とする。第1横端部RW1及び第2横端部RW2は、他車両V2の位置(基準位置)V20からの距離により設定できる。第1横端部RW1と第2横端部RW2は、対象領域R0の境界上に位置する。
なお、図2Aに示すように、自車両V1の走行レーンLn1の対向車線Ln2を対向走行する対向車両V3が存在する場合には、制御装置10は対向車両V3を回避対象として検出する。同図には示さないが、制御装置10は、同様の手法で、対向車両V3を含む範囲の対象領域を設定する。
本実施形態の制御装置10は、他車両V2に対する自車両V1の相対速度が異なる場合には、他車両V2を回避するために設定される対象領域R0の適切な長さが異なるという観点から、回避対象としての他車両V2に対する自車両V1の相対速度に応じて、自車両V1が走行するレーンの延在方向(+y)に沿う対象領域R0の長さL0を設定する。制御装置10は、自車両V1の位置y0から第1端部RL1までの確保すべき間隔として距離dRLを定義してもよい。
ちなみに、対象領域R0は回避対象を検出したタイミング、つまり回避のための転回のための操作(操舵操作など)が行われるよりも前のタイミングにおいて設定される。回避対象に対する自車両V1の相対速度を考慮せずに、画一的な手法により対象領域R0を設定すると、実際の相対速度によっては、対象領域R0の境界に基づいて算出された目標経路RT1を変更せざるを得ない場合がある。目標経路RT1が変更されると、転回量、転回角、車速、加速度などが変更されるので、車両の挙動の連続性を保つことができない。このような車両の挙動に対して乗員は違和感を覚える場合がある。
これに対し、本実施形態では、回避対象としての他車両V2に対する自車両V1の実際の相対速度に応じて、自車両V1が走行するレーンの延在方向(+y)に沿う対象領域R1の長さL1を設定するので、適切な対象領域R1を設定できる。相対速度に応じて対象領域R1を設定し、対象領域R1の境界の位置に基づいて設定された目標経路RT1によれば、走行制御の実行中に目標経路RT1が変更されることが抑制される。このため、自車両の転回量、転回角、車速、加速度などが急に変更されることがない。この結果、車両の挙動の連続性が保たれるので乗員は違和感を覚えることがない。
図2Bに基づいて、回避対象としての他車両V2に対する自車両V1の相対速度に応じて長さL10を有する対象領域R1を設定する処理を説明する。図2Bに示す対象領域R1は、他車両V2に対する自車両V1の相対速度が図2Aで説明した自車両V1の相対速度よりも高いという前提において設定された領域である。なお、図2Bでは、説明の便宜のために、他車両V2に対する自車両V1の相対速度が低い場合に設定された対象領域R0を、他車両V2に対する自車両V1の相対速度が高い場合に設定された対象領域R1に重畳して示す。
本実施形態の制御装置10は、他車両V2に対する自車両V1の相対速度が高いほど、自車両V1が走行するレーンの延在方向に沿う対象領域R1の長さL10を長く設定する。対象領域R1の長さL10を調節する際に参照される他車両V2に対する自車両V1の相対速度は、自車両V1の車長方向成分の相対速度としてもよいし、車幅方向成分と車長方向成分を合成した相対速度としてもよい。回避対象に接近中(直進中)の自車両V1においては、車長方向成分の相対速度のほうが車幅方向の相対速度成分よりも大きいため、合成した相対速度によっても回避対象への接近度を判断できる。
他車両V2に対する自車両V1の相対速度が高い場合に設定された対象領域R1の長さL10は、他車両V2に対する自車両V1の相対速度が低い場合に設定された対象領域R0の長さL0よりも長い(L10>L0)。本実施形態では、他車両V2に対する自車両V1の相対速度が高い場合に、対象領域R0の長さL0を長くするので、回避対象V2の側方を通る際の目標経路RTの長さを長くできる。つまり、他車両V2の側方を通るための転回操作が行われる地点間の距離を長くできるので、転回操作時における自車両V1の転回量や転回速度を低く制御できる。転回量や転回速度が低く抑制できれば、自車両V1の速度や加速度を変更させることも抑制できる。この結果、乗員が違和感を覚えないように走行制御を実行できる。
他車両V2に対する自車両V1の相対速度が高い場合に設定された対象領域R1の長さL10は、他車両V2に対する自車両V1の相対速度が低い場合に設定された対象領域R0の長さL0よりも長い(L10>L0)。本実施形態では、他車両V2に対する自車両V1の相対速度が高い場合に、対象領域R0の長さL0を長くするので、回避対象V2の側方を通る際の目標経路RTの長さを長くできる。つまり、他車両V2の側方を通るための転回操作が行われる地点間の距離を長くできるので、転回操作時における自車両V1の転回量や転回速度を低く制御できる。転回量や転回速度が低く抑制できれば、自車両V1の速度や加速度を変更させることも抑制できる。この結果、乗員が違和感を覚えないように走行制御を実行できる。
本実施形態において、対象領域R1の長さを延長する手法としては、自車両V1から見て手前側に位置する第1端部RL1aを自車両V1側に設定する手法と、自車両V1から見て奥手側に位置する第2端部RL2aを自車両V1の進行方向の奥手側に設定する手法とがある。
制御装置10は、他車両V2に対する自車両V1の相対速度が高いほど、対象領域R1の前後端部RL1a,RL2aのうち自車両V1から見て手前側(進行方向反対側:図中-y方向、以下同じ)に位置する第1端部RL1aと他車両V2との距離が長くなるように対象領域R1を設定する。つまり、他車両V2に対する自車両V1の相対速度が高いほど、第1端部RL1aは自車両V1の側の位置に設定される。図2Bに示す例では、相対速度がVR2であるときの対象領域R1の第1端部RL1aの位置は、相対速度がVR0(VR1>VR0)であるときの対象領域R0の第1端部RL1aの位置よりも距離L1だけ自車両V1側へシフトする。自車両V1が回避対象の側方を通り過ぎるために設定された目標経路RT1aの曲点(転回開始点)を自車両V1側にシフトさせることができるので、転回開始点における転回量(操舵量を含む、以下同じ)、転回速度(操舵速度を含む、以下同じ)を低く制御できる。
制御装置10は、他車両V2に対する自車両V1の相対速度が高いほど、対象領域R1の前後端部RL1a,RL2aのうち自車両V1から見て奥手側(進行方向側:図中+y方向、以下同じ)に位置する第2端部RL2aと他車両V2との距離が長くなるように対象領域R1を設定する。つまり、他車両V2に対する自車両V1の相対速度が高いほど、第2端部RL2aは自車両V1の奥手側の位置に設定される。図2Bに示す例では、相対速度がVR2であるときの対象領域R1の第2端部RL2aの位置は、相対速度がVR0(VR1>VR0)であるときの対象領域R0の第2端部RL2aの位置よりも距離L2だけ自車両V1の進行方向側へシフトする。自車両V1が回避対象の側方を通り過ぎ、レーンLn1の中央位置に戻るために設定された目標経路RT1aの曲点(転回完了点:直進状態への復帰点)を自車両V1の進行方向側にシフトさせることができるので、転回完了点における転回量、転回速度を低く制御できる。
これにより、他車両V2を回避し、対象領域R1を通り過ぎる際の目標経路を緩やかな曲線で形成できる。つまり、自車両V1の転回量、転回速度を低く制御できるので、乗員に違和感のない走行制御を実行できる。
上述した、対象領域R1の前後端部RL1a,RL2aのうち自車両V1から見て手前側に位置する第1端部RL1aを手前側の位置とする対象領域R1の設定手法と、自車両V1から見て奥手側に位置する第2端部RL2aを奥手側の位置とする対象領域R1の設定手法は、それぞれ独立に適用してもよいし、両手法を同時に適用してもよい。つまり、対象領域R1の長さを延長させる場合には、第1端部RL1aのみを回避対象に接近する自車両V1側にシフトしてもよいし、第2端部RL2aのみを自車両V1の進行方向側にシフトしてもよい。もちろん、第1端部RL1aを回避対象に接近する自車両V1側に延長しつつ第2端部RL2aを自車両V1の進行方向側にシフトしてもよい。また、回避対象が静止物又は低速で移動する移動物である場合には、自車両V1の速度に基づいて、第1端部RL1a,第2端部RL2aのシフト量を制御してもよい。
続いて、図2Cに基づいて、回避対象としての他車両V2に対する自車両V1の車幅方向成分の相対速度に応じて、自車両V1と対象領域R2との車幅方向に沿う距離を制御する処理を説明する。図2Cに示す対象領域R2は、他車両V2に対する自車両V1の車幅方向成分の相対速度が図2Aで説明した自車両V1の車幅方向成分の相対速度よりも高いという条件の下に設定された領域である。なお、図2Cでは、説明の便宜のために、他車両V2に対する自車両V1の相対速度が低い場合に設定された対象領域R0を、他車両V2に対する自車両V1の相対速度が高い場合に設定された対象領域R2に重畳して示す。
本実施形態の制御装置10は、他車両V2に対する自車両V1の車幅方向成分の相対速度が高いほど、対象領域Rの左右端部RW1,RW2のうち、他車両V2の側方を通過する際の自車両V1から見て当該自車両V1側に位置する(自車両V1に最も近い)横端部RW1と回避対象である他車両V2との距離が長くなるように、対象領域R2を設定する。つまり、他車両V2に対する自車両V1の車幅方向成分の相対速度が高いほど、第1横端部RW1は他車両V2から離隔した位置に設定される。図2Cに示す例では、車幅方向の相対速度がVR4であるときの対象領域R1の第1横端部RW1aの位置は、相対速度がVR3(VR4>VR3)であるときの対象領域R0の第1横端部RW1aの位置よりも距離W1だけ他車両V2から離隔する方向へシフトする。第1横端部RW1aの位置は、他車両V2の側方に設けられる自車両V1の目標経路RT側にシフトする。本実施形態では、他車両V2に対する自車両V1の車幅方向成分の相対速度が高い場合に、対象領域R1の第1横端部RW1aの位置が他車両V2から離隔する位置にシフトされる。自車両V1はこのように設定された対象領域R1の位置に基づく目標経路RTに沿って移動する。つまり、自車両V1が他車両V2に接近しすぎる(所定距離以上接近する)ことを防止できる。この結果、乗員が回避対象を避けるときの運転感覚に合致した、違和感のない走行制御を実行できる。
図2Cでは他車両V2の側方を通過する際の複数のタイミングにおける自車両V1位置のうち一つのタイミングにおける自車両V1の位置をV1tとして示す。他車両V2の側方を通過する際のタイミング又は位置は、他車両V2と自車両V1の距離、角度により任意に定義できる。「他車両V2の側方」には、前方の側方(右前方、左前方)と後方の側方(右後方、左後方)を含む。
ちなみに、本実施形態の制御装置10は、適切な目標経路RTを算出するために、各種の車両情報に基づいて、将来の自車両V1の位置を予測する処理を実行する。本実施形態では、将来、回避対象の側方を通る際の各タイミングにおける自車両V1の横位置(x方向に沿う位置)を予測できる。制御装置10は、予測された自車両V1の横位置に基づいて、接近しつつある回避対象の対象領域Rの横端部RW1の位置を算出できる。
なお、対象領域Rの横端部RW1の位置を変更することにより、対象領域R1の幅W10も変更される。本実施形態の対象領域R1の幅W10は、回避対象側のレーンマーカ(例えばx1)の位置に基づいて定義する。他車両V2に対する自車両V1の相対速度が高い場合に設定された対象領域R1の幅W10は、他車両V2に対する自車両V1の相対速度が低い場合に設定された対象領域R0の幅W0よりも大きい(W10>W0)。
また、制御装置10は、他車両V2に対する自車両V1の車幅方向に沿う距離が短いほど、対象領域R2の横端部RW1bと他車両V2との距離が長くなるように、対象領域R2を設定できる。本実施形態では、車幅方向に沿う自車両V1と他車両V2が接近しているほど、自車両V1側に位置する横端部RW1bを、他車両V2から離隔した位置にシフトする。対象領域R2の横端部RW1bを他車両V2から離隔させることにより、目標経路RT1bの横位置(x方向の位置)を他車両V2から離隔させることができる。この結果、目標経路RT1bに従って走行する自車両V1が他車両V2に接近しすぎない。
次に、図3A及び図3Bに基づいて、具体的な対象領域R0の設定手法について説明する。走行する自車両V1の目標経路RTに影響を与えるのは、対象領域R0(上述したR1,R2を含む)の左右端部のうち自車両V1に隣接する横端部RW1であるため、説明の対象とする対象領域R0の横位置は、自車両V1側に位置する横端部RW1の位置である。
図3Aに示すように、対象領域Rの路肩側のレーンマーカx1からの幅がW0である場合には、幅W0と自車両V1の幅VWとの和(W0+VW)が、走行レーン幅LWよりも小さい場合に、自車両V1は回避対象OB1の側方を走行できる。本実施形態では、上記条件を満たすように、対象領域Rの位置(路肩側のレーンマーカx1と自車両V1側の横端部RW1との幅方向の距離:サイドディスタンスの一態様)を算出する。対象領域Rの横端部RW1の位置は、路肩側のレーンマーカx1からの距離により定義してもよいし、対象領域Rの幅W0により定義してもよい。また、対象領域Rの横端部RW1を、レーンLn1の対向車線側のレーンマーカx2からの距離により定義してもよい。
さらに、本実施形態では、自車両V1と対象領域R0との間に最低限確保するべき安全代d1と、乗員が安心して回避対象OB1の側方を通過できる余裕代d2とを考慮して、対象領域R0の横位置RW1又はその幅W0´を設定してもよい。これらd1,d2は、併せて設定されてもよいし、別々に設定されてもよい。この場合には、制御装置10は、W0+VW+(d1 and/or d2)<LWとなるように対象領域R0の幅W0を算出する。なお、走行レーン幅LWは、道路情報122に含まれる道路幅LW2とレーン数とに基づいて算出してもよいし、検出装置50の画像情報から一対のレーンの位置を検出し、画像情報に基づいてレーン幅を算出してもよい。自車両V1の幅VWは、車両コントローラ70から取得する。
対象領域R0の幅W0は、自車両V1が走行するレーンを規定する一対のレーンマーカx1,x2のいずれか一方から、対象領域R0の自車両V1側の端部RW1までの距離としてもよい。対象領域R0の自車両V1側の横端部RW1の位置は、回避対象OB1の側方を走行する際の自車両V1からの距離により規定してもよい。特に限定されないが、幅W0の寸法を、回避対象OB1に対する自車両V1の相対速度の2乗に比例する値としてもよい。
また、図3Aに示すように、本実施形態では、自車両V1の走行レーンに対向する対向レーンを対向走行する対向車両V3が存在する場合には、対向車両V3を含む対象領域R3を設定する。上述した対象領域R1の設定手法と同様の手法により、対象領域R3を設定する。対象領域R3の自車両V1側の横端部RW3は、対向車両V3の位置に基づいて設定される。
本例において、自車両V1はレーンマーカx2を超えて走行することができない。この場合において、制御装置10は、W0+VW+(d1and/ord2)+dV1<LW2となるように対象領域R0の幅W0を算出する。つまりVW<LW2-(W0´+dV1)の関係が成立するときに自車両V1は駐車中の他車両V2を回避しつつ、対向する対向車両V3とすれ違うことができる。仮に、上記関係が成立しない場合には、自車両V1は、他車両V2の手前(-y側)で停車して、対向車両V3が自車両V1の横を通り過ぎるタイミングを待機する。なお、dV1は対向レーンの幅など、自車両V1が走行するときに最低限確保する幅である。
さらに、図3Bに示すように、回避対象が中央分離帯OB4などの道路構造物である場合も同様に適用できる。同図に示すように、中央分離帯OB4を含むように対象領域R4を設定する。この場合において、制御装置10は、W0+VW+(d1 and/or sd2)+d4+W4*(1/2)<LWとなるように対象領域R0の幅W0の寸法(端部間の距離)を算出する。
次に、図4A~図4Cに基づいて、自車両V1と回避対象である駐車中の他車両V2、対向車両V3とすれ違う場面において適用される対象領域Rの設定手法について説明する。制御装置10は、回避対象が検出された場合には、回避対象と自車両V1とのすれ違いが開始する地点(位置)とすれ違いが完了する地点(位置)、自車両V1が回避対象の追い越しを開始する地点(位置)と追い越しが完了する地点(位置)を算出する。
図4Aに示すように、制御装置10は、自車情報と対象情報に基づいて、自車両V1の前方端部と対象領域R2との距離が所定値未満となる追越し開始位置PS2を検出する。自車両V1の先端部分と前方に駐車中の他車両V2の後方端部とのY軸方向の位置が略一致したとき(距離が所定値未満となったとき)に、自車両V1は他車両V2の追い越しを開始する。自車両V1が駐車中の他車両V2を追い越し始める追い越し開始位置はPS2である。
制御装置10は、自車両V1の前方端部と対象領域R3との距離が所定値未満となるすれ違い開始位置PS3を検出する。自車両V1の先端部分と対向走行する対向車両V3の先端部分とのY軸方向の位置が略一致したとき(距離が所定値未満となったとき)に、両者はすれ違いを開始する。対向走行中(移動中)の対向車両V3と自車両V1とのすれ違い開始位置はPS3である。
制御装置10は、現在の自車情報と対象情報に基づいて、追い越し開始位置PS2,すれ違い開始位置PS3における自車情報と対象情報を取得する。制御装置10は、追い越し開始位置PS2,すれ違い開始位置PS3における自車情報と対象情報に基づいて、対象領域Rを設定する。
本実施形態において、制御装置10は、追い越し開始位置PS2,すれ違い開始位置PS3の算出を所定周期で実行する。これにより、正確な追い越し開始位置PS2,すれ違い開始位置PS3を求めることができる。そして、自車両V1が、実際に回避対象である他車両V2の追い越しを開始した後は、追い越し開始位置の算出を終了し、対向車両V3とすれ違いを開始した後は、すれ違い開始位置の算出処理を終了する。そして、追い越し開始位置PS2、すれ違い開始位置PS3における対象情報から設定された対象領域Rを回避するように、自車両V1の走行制御を実行する。追い越し開始位置PS2,すれ違い開始位置PS3の近傍を走行するタイミングは、自車両V1と回避対象とが最も接近する可能性が高いタイミングである。このような追い越し開始位置PS2,すれ違い開始位置PS3における対象情報に基づいて対象領域Rを設定し、これを回避させることにより、安全性の高い走行制御を実行できる。
制御装置10は、追い越し開始位置PS2,すれ違い開始位置PS3における自車情報と対象情報から得た他車両V2,V3(回避対象)の対象情報とに基づいて、対象領域R2,R3の前後端部のうち自車両V1から見て手前側に位置する第1端部の位置RL1を設定する。対象情報は、回避対象(他車両)の位置、速度、又は加速度の何れかの情報を含む。自車情報は、自車両の位置、速度、又は加速度の何れかの情報を含む。
制御装置10は、追い越し開始位置PS2,すれ違い開始位置PS3における自車情報と他車両V2,V3(回避対象)の対象情報とに基づいて、対象領域R2,R3の左右端部のうち自車両V1側に位置する横端部の位置RW1を設定する。追い越し開始位置PS2,すれ違い開始位置PS3における他車両V2,V3との相対位置に基づいて対象領域R2,R3の第1端部の位置RL1、第2端部の位置RL2、横端部の位置RW1を設定することにより、他車両V2,V3を回避できる。回避対象が対向車両V3のように移動体である場合には、自車両V1と対向車両V3の位置関係は刻々と変化する。本実施形態によれば、自車両V1と対向車両V3とが実際にすれ違うときの位置関係に基づいて、適切な対象領域R3を設定できる。
制御装置10は、追い越し開始位置PS2,すれ違い開始位置PS3における自車情報と他車両V2,V3(回避対象)の対象情報とに基づいて、対象領域R2,R3の左右端部のうち自車両V1側に位置する横端部の位置RW1を設定する。追い越し開始位置PS2,すれ違い開始位置PS3における他車両V2,V3との相対位置に基づいて対象領域R2,R3の第1端部の位置RL1、第2端部の位置RL2、横端部の位置RW1を設定することにより、他車両V2,V3を回避できる。回避対象が対向車両V3のように移動体である場合には、自車両V1と対向車両V3の位置関係は刻々と変化する。本実施形態によれば、自車両V1と対向車両V3とが実際にすれ違うときの位置関係に基づいて、適切な対象領域R3を設定できる。
また、制御装置10は、対向走行する対向車両V3とのすれ違い開始位置PS3が、対象領域R3(又は対向車両V3)の自車両V1側の前方端部RL1と所定距離未満である場合には、減速して対向車両V3が自車両V1の側方を通過するのを待ち、対向車両V3が通過してから、すれ違い開始位置PS3を含む領域を通過してもよい。
制御装置10は、追い越し開始位置、すれ違い開始位置が自車両V1からの距離が所定値以内の範囲に複数検出された場合、つまり、自車両V1が所定距離内に追い越しとすれ違いが同時に発生したり、複数の回避対象とすれ違う場合には、自車両V1と各回避対象との相対位置に応じた重み係数を求める。この重み係数は、自車両V1が追い越し又はすれ違う複数の回避対象に対する注意度に応じた係数である。制御装置10は、自車情報と対象情報から自車両と回避対象との相対位置に応じた重み係数を回避対象ごとに算出する。
対向車両V3のように自車両V1に接近し、自車両V1とすれ違う回避対象に対しては、駐車中の他車両V2のように静止し、自車両V1が追い越す回避対象よりも高い重み係数が設定される。自車両V1がすれ違う対向対向車両V3のように自車両V1との相対速度が高い回避対象に対しては、自車両V1が追い越す前方駐車中の他車両V2のように自車両V1との相対速度が低い回避対象よりも高い重み係数が設定される。自車両V1との距離が近い回避対象に対しては、自車両V1との距離が遠い回避対象よりも高い重み係数が設定される。自車両V1との相対距離が大きい回避対象に対しては、自車両V1との相対距離が小さい回避対象よりも、高い重み係数が設定される。
そして、制御装置10は、算出された重み係数に応じて、回避対象の対象領域R2の左右端部のうち自車両V1から見て自車両V1側に位置する横端部RW1の位置を設定する。本実施形態では、重み係数が高いほど横端部RW1の位置を回避対象から離隔した位置に(自車両V1側に)シフトする。図4Aに示す例において、自車両V1に接近する回避対象の対象領域R3と自車両V1との車幅方向に沿う距離d13は、静止している回避対象の対象領域R2と自車両V1との車幅方向に沿う距離d1(又はd1+d2)よりも長い(d13>d1(d1+d2))。レーンマーカ自車両V1との相対速度が高い回避対象の対象領域R3と自車両V1との車幅方向に沿う距離d13は、相対速度低い回避対象の対象領域R2と自車両V1との車幅方向に沿う距離d1(又はd1+d2)よりも長い(d13>d1(d1+d2))。車幅方向において自車両V1との距離が短い回避対象の対象領域R3と自車両V1との距離d13は、車幅方向において自車両V1との距離が長い回避対象の対象領域R2と自車両V1との距離d1(又はd1+d2)よりも長い(d13>d1(d1+d2))。
一例ではあるが、図4Aの状態を例にして説明する。図4Aに示すように、自車両V1は、左手の駐車中の他車両V2と、隣接対向レーンを走行する対向車両V3との間を走行する。このとき、自車両V1にはVW10(又はVW10´)の幅の走行用スペースが与えられる。制御装置10は、自車両V1の左右の対象領域R2とR3にそれぞれ重み係数を付与する。制御装置10は、駐車中の他車両V2の対象領域R2に対する重み係数WH1と、対向走行する対向車両V3の対象領域R3に対する重み係数WH2とを設定する。制御装置10は、各重み係数WH1を用いて、対象領域R2の左右端部のうち自車両V1側の横端部RW1と他車両V2との距離を設定する。対象領域R3についても同様に、自車両V1側に位置する横端部RW1と対向車両V3との距離を設定する。
制御装置10は、他車両V2側のレーンマーカx1から対象領域R0の横端部RW1の幅W0(又はW0´)を設定してもよい。制御装置10は、対向車両V3側のレーンマーカx3から対象領域R3の横端部RW1までのW3´を設定してもよい。
幅W0´=VW10・xWH1/(WH1+WH2)
幅W3´=VW10・xWH2/(WH1+WH2)
対向走行する対向車両V3の対象領域R3に係るWH2を相対的に大きくすることにより(WH2>WH1)、対向走行する対向車両V3の対象領域R3と自車両V1との車幅方向の沿う距離d13を通常時に適用される規定の距離よりも長くできる。これにより、自車両V1が対向走行する対向車両V3に接近しすぎることを防止できる。
幅W0´=VW10・xWH1/(WH1+WH2)
幅W3´=VW10・xWH2/(WH1+WH2)
対向走行する対向車両V3の対象領域R3に係るWH2を相対的に大きくすることにより(WH2>WH1)、対向走行する対向車両V3の対象領域R3と自車両V1との車幅方向の沿う距離d13を通常時に適用される規定の距離よりも長くできる。これにより、自車両V1が対向走行する対向車両V3に接近しすぎることを防止できる。
このように、重み係数を用いることにより、自車両V1と距離が近い回避対象及び/又は自車両V1との相対速度が大きい回避対象に対しては、対象領域R0の横端部RW1の位置を他車両V2,V3からより離隔させる。これにより、対象領域R0に基づく目標経路RTを走行する自車両V1が他車両V2,V3に接近しすぎないようにできる。これにより、回避対象に接近した場合のリスクを低減できる。
次に、図4B、図4Cに基づいて、追い越し、すれ違いが完了した位置を考慮した対象領域R2,R3の設定手法について説明する。制御装置10は、自車情報と対象情報に基づいて、自車両V1の後方端部と対象領域R2との距離が減少した後に増加する位置を、追い越し完了位置PE2、すれ違い完了位置PE3として検出する。制御装置10は、自車両V1の後方端部と駐車中の他車両V2の先端部分とのY軸方向の位置が略一致したとき(距離が所定値未満となったとき)に、他車両V2の追い越しは完了したと判断する。自車両V1が駐車中の他車両V2を追い抜いた追い抜き完了位置はPE2である。また、自車両V1の後方端部と対向走行する対向車両V3の後方端部とのY軸方向の位置が略一致したとき(距離が所定値未満となったとき)に、両者のすれ違い状態は完了したと判断する。対向走行中(移動中)の対向車両V3と自車両V1とのすれ違い完了位置はPE3である。制御装置10は、現在の自車情報と対象情報に基づいて、追い抜き完了位置PE2,すれ違い完了位置PE3における自車情報と対象情報を取得する。制御装置10は、追い抜き完了位置PE2,すれ違い完了位置PE3における自車情報と対象情報に基づいて、対象領域Rを設定する。
本実施形態において、制御装置10は、追い抜き完了位置PE2,すれ違い完了位置PE3の算出を所定周期で実行する。これにより、追い抜き完了位置PE2,すれ違い完了位置PE3を求めることができる。対向車両V3とのすれ違い完了位置における対象領域R3と自車両V1との距離d13は所定時間維持される。つまり、図4Bの状態において、自車両V1がすれ違い完了位置PE3を通過した後の所定時間に渡って、対象領域R3と自車両V1との距離d13は一定に保たれる。また、自車両V1と対象領域R1との間の余裕代の距離d1,d2も所定時間に渡って一定に保たれる。結果として、レーンマーカx1から自車両V1までの距離W0´も所定時間に渡って一定に保たれる。自車両V1が回避対象である他車両V2を実際に追い抜いた後は、追い抜き完了位置の算出処理を終了する。自車両V1が回避対象である対向車両V3とすれ違いを完了した後は、すれ違い完了位置の算出処理を終了する。
制御装置10は、対象領域R2,R3を設定する際に、追い抜き完了位置PE2,すれ違い完了位置PE3における自車情報と他車両V2,V3(回避対象)の対象情報とに基づいて、対象領域R2の前後端部のうち自車両から見て奥手側の第2端部の位置RL2とを設定する。図4Bに示すように、本実施形態の制御装置10は、対象領域R3の第2端部の位置RL2の位置をすれ違い完了位置PE3に合わせる。これにより、すれ違い完了のタイミングまで同じ幅W3の対象領域R3に基づいて走行制御が実行される。少なくともすれ違い完了時までは転回がされないようにできる。そして、すれ違いが完了したら、自車両V1は適切な位置(走行レーンの中央)に戻る。
また、図4Cに示すように、すれ違い完了位置PE3を自車両V1の進行方向側にシフトしてもよい。つまり、対象領域R0の第2端部の位置RL2をすれ違い完了位置PE3よりも、自車両V1から見て奥手側(走行方向側)にシフトする。これにより、すれ違い完了の後、所定時間に渡って、車幅方向に沿う自車両V1と対象領域R3との距離が保たれた状態で走行制御が実行される。すれ違い完了の後も同じ制御内容が維持されるので、すれ違いが完了した直後に転回が実行されることを防止できる。そして、すれ違いが完了し、シフト量(距離L3)を走行した後に、自車両V1は適切な位置(走行レーンの中央)に戻る。この処理は、追い抜き完了位置PE2の通過時点でも適用できる。
なお、すれ違い完了位置PE3のシフト量L3は、自車両V1の車速に応じて決定できる。すれ違い完了位置PE3のシフト量L3は自車両V1の車速が高いほど小さくすることが好ましい。すれ違い完了位置PE3を進行方向の奥手側へシフトすることにより、対象領域R3の対向車両V3からの距離L3を相対的に長くできる。この距離L3は先述したすれ違い完了位置PE3のシフト量に対応する。制御装置10は、自車両V1の車速が高いほど、対象領域R3の第2端部RL2が奥手側への延長量を小さくする。この処理は、追い抜き完了位置PE2についても適用できる。
同様に、制御装置10は、追い抜き完了位置PE2,すれ違い完了位置PE3における自車情報と対象情報から得た他車両V2,V3(回避対象)の対象情報とに基づいて、対象領域R3の左右端部のうち自車両V1側に位置する横端部RW1の位置を設定する。自車両V1が回避対象としての他車両V2,V3に最も接近する追越し開始位置PS2から追い抜き完了位置PE2までにおける他車両V2,V3との相対位置に基づいて対象領域R0,R3の第1端部の位置RL1、第2端部の位置RL2、横端部の位置RW1を設定する。同様に、すれ違い開始位置PS3からすれ違い完了位置PE3までにおける他車両V2,V3との相対位置に基づいて対象領域R0,R3の第1端部の位置RL1、第2端部の位置RL2、横端部の位置RW1を設定する。これにより、自車両V1が他車両V2,V3を回避できる対象領域R2,R3を設定できる。特に、回避対象が対向車両V3のように移動体である場合には、自車両V1と対向車両V3の位置関係は刻々と変化するが、本実施形態によれば、実際にすれ違う際の最も接近する位置関係に応じた適切な対象領域R3を設定できる。
制御装置10は、対向走行する対向車両V3とのすれ違い完了位置PE3が、対象領域R3(又は対向車両V3)の自車両V1側の後方端部RL2と所定距離未満である場合には、加速して対向車両V3が他車両V2に接近する前に対向車両V3の横を通過してもよいし、減速して対向車両V3の通過を待ち、対向車両V3の通過後に、すれ違い完了位置PE3を含む領域を通過してもよい。すれ違い完了位置PE2,PE3近傍において自車両V1に減速させることにより、安全性の高い走行制御を実行できる。
なお、図4Aに示すように、駐車中の他車両V2の対象領域R2について、回避対象V2の手前側の端部から対象領域R2の第1端部RL1までの距離L1、回避対象V2の奥手側の端部から対象領域R0の第2端部RL2までの距離L2については最小値を設定し、それよりも小さい値としないようにしてもよい。対象領域R2の横幅W0についても最小値を設定し、それよりも小さい値としないようにしてもよい。対向車両V3の先端から対象領域R3の第1端部RL1までの距離L13、対象領域R3の幅W3についても最小値を設定し、それよりも小さい値としないようにしてもよい。
続いて、制御装置10の経路設定機能について説明する。本実施形態の制御装置10は、設定された対象領域R0の境界の位置に基づいて目標経路RTを算出し、自車両V1と回避対象との距離を制御する。ここで、「対象領域R0の位置に基づいて目標経路RTを算出する」手法は限定されない。制御装置10は、対象領域R0内に自車両V1が進入しないように目標経路RTを算出してもよいし、対象領域R0と自車両V1の存在領域との重複面積が所定値未満となるように目標経路RTを算出してもよいし、対象領域R0の境界線から所定距離だけ離隔した位置を目標経路RTとして算出してもよいし、対象領域R0の境界線を目標経路RTとして算出してもよい。先述したように、対象領域R0は、自車両V1と回避対象との距離が所定値未満とならないように、又は、自車両V1と回避対象との距離が所定閾値に保たれるように設定される。このため、目標経路RTも自車両V1と回避対象との距離が所定値未満とならない位置に、又は、自車両V1と回避対象との距離が所定閾値に保たれる位置に設定される。
制御装置10の制御機能について説明する。本実施形態の制御装置10は、目標経路RT上を自車両V1に走行させる制御情報を車両側の車両コントローラ70、駆動装置80、及び操舵装置90に出力する。
制御装置10から制御情報を取得した本実施形態の車両コントローラ70は、駆動装置80及び操舵装置90を制御して、目標経路RTに沿って自車両V1を走行させる。車両コントローラ70は、検出装置50により検出された道路形状や、ナビゲーション装置120の道路情報122及び地図情報123が記憶するレーンマーカモデルを用いて、自車両が車線に対して所定の横位置を維持しながら走行するように操舵装置90の制御を行う。車両コントローラ70は、操舵角センサ61から取得した操舵角、車速センサ62から取得した車速、およびステアリングアクチュエータの電流の情報に基づいて、操舵制御量(転回制御量)を算出し、ステアリングアクチュエータに電流指令を送ることで、自車両が目標の横位置を走行するように制御を行う。なお、自車両V1の横位置を制御する方法として、上述した操舵装置90を用いる他、駆動装置80及び/又は制動装置81を用いて左右の駆動輪の回転速度差により自車両V1の走行方向(すなわち、横位置)を制御してもよい。その意味において、車両の「転回」とは、操舵装置90による場合の他、駆動装置80及び/又は制動装置81による場合も含む趣旨である。
最後に、本実施形態の制御装置10の提示機能について説明する。制御装置10は、算出された、対象情報に応じた情報、対象領域Rの位置に応じた情報、目標経路の位置に応じた情報、及び目標経路上を自車両に走行させる制御情報に応じる情報を出力装置110に送出し、上述した態様で外部に出力させる。
続いて、本実施形態の走行制御装置100の制御手順を、図5及び図6のフローチャートに基づいて説明する。なお、各ステップでの処理の内容は、上述したとおりであるため、ここでは処理の流れを中心に説明する。
まず、図5に基づいて、走行制御の全体の手順について説明する。
ステップS101において、制御装置10は、少なくとも自車両V1の位置を含む自車情報を取得する。自車情報は、自車両V1の車速・加速度を含んでもよい。ステップS102において、制御装置10は、自車両V1が回避すべき回避対象の位置を含む対象情報を取得する。対象情報は、回避対象の速度・加速度を含んでもよい。
ステップS103において、制御装置10は、回避対象の検出結果を検出装置50から取得する。回避対象の検出結果は、回避対象の位置の情報を含む。ステップS104において、制御装置10は、回避対象の位置に応じて対象領域Rを設定する。対象領域Rの設定処理のサブルーチンについては、図6において説明する。
ステップS105において、制御装置10は、対象領域Rの境界の位置に基づいて目標経路RTを算出する。目標経路RTは、自車両V1が走行する一又は複数の目標座標を含む。各目標座標は、目標横位置(目標X座標)と目標縦位置(目標Y座標)とを含む。算出された一又は複数の目標座標と自車両V1の現在位置とを結ぶことにより、目標経路RTを求める。なお、ステップS105に示す目標座標の算出方法については後述する。
ステップ106において、制御装置10は、ステップS105で算出された目標座標の目標横位置を取得する。また、ステップS107において、制御装置10は、自車両V1の現在の横位置とステップS106で取得した目標横位置との比較結果に基づいて、横位置に関するフィードバックゲインを算出する。
そして、ステップS108において、制御装置10は、自車両V1の実際の横位置と、現在位置に対応する目標横位置と、ステップS107のフィードバックゲインとに基づいて、目標横位置上を自車両V1に移動させるために必要な転回角や転回角速度等に関する目標制御値を算出する。ステップS112において、制御装置10は、目標制御値を車載装置200に出力する。これにより、自車両V1は、目標横位置により定義される目標経路RT上を走行する。なお、ステップS105において複数の目標座標が算出された場合には、目標横位置を取得する度にステップS106~S112の処理を繰り返し、取得した目標横位置のそれぞれについての制御値を車載装置200に出力する。
ステップS109において、制御装置10は、ステップS105で算出された一又は複数の目標座標についての目標縦位置を取得する。また、ステップS110において、制御装置10は、自車両V1の現在の縦位置、現在位置における車速及び加減速と、現在の縦位置に対応する目標縦位置、その目標縦位置における車速及び加減速との比較結果に基づいて、縦位置に関するフィードバックゲインを算出する。そして、ステップS111において、制御装置10は、目標縦位置に応じた車速および加減速度と、ステップS110で算出された縦位置のフィードバックゲインとに基づいて、縦位置に関する目標制御値を算出する。ステップS109~S112の処理は、先述したステップS106~S108,S112と同様に、目標縦位置を取得する度に繰り返し、取得した目標横位置のそれぞれについての制御値を車載装置200に出力する。
ここで、縦方向の目標制御値とは、目標縦位置に応じた加減速度および車速を実現するための駆動機構の動作(エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては電動モータ動作を含み、ハイブリッド自動車にあっては内燃機関と電動モータとのトルク配分も含む)およびブレーキ動作についての制御値である。たとえば、エンジン自動車にあっては、制御機能は、現在および目標とするそれぞれの加減速度および車速の算出値に基づいて、目標吸入空気量(スロットルバルブの目標開度)と目標燃料噴射量を算出し、これを駆動装置80へ送出する。なお、制御機能は、加減速度および車速を算出し、これらを車両コントローラ70へ送出し、車両コントローラ70において、これら加減速度および車速を実現するための駆動機構の動作(エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては電動モータ動作を含み、ハイブリッド自動車にあっては内燃機関と電動モータとのトルク配分も含む)およびブレーキ動作についての制御値をそれぞれ算出してもよい。
そして、ステップS112に進み、制御装置10は、ステップS111で算出された縦方向の目標制御値を、車載装置200に出力する。車両コントローラ70は、転回制御及び駆動制御を実行し、自車両に目標横位置及び目標縦位置によって定義される目標経路RT上を走行させる。
ステップS113において、制御装置10は、出力装置110に情報を提示させる。出力装置110に提示させる情報は、ステップS106において算出された対象領域の位置・速度であってもよいし、ステップS105~S111において算出された目標経路の形状であってもよいし、ステップS112において車載装置200へ出力された目標制御値であってもよい。
ステップS114において、ドライバがステアリング操作等をしたか否か、ドライバの操作介入の有無を判断する。ドライバの操作が検出されなければ、ステップS101へ戻り、新たな対象領域の設定、目標経路の算出及び走行制御を繰り返す。他方、ドライバが操作をした場合には、ステップS115に進み、走行制御を中断する。次のステップS116において、走行制御を中断した旨の情報を提示する。
続いて、図6のフローチャートに基づいて、本実施形態の走行制御装置100の対象領域の設定処理(図5 S104)のサブルーチンについて説明する。
自車情報、対象情報を取得した後(ステップS103)、ステップS201において、制御装置10は、自車両V1が走行するレーンに存在する回避対象(駐車中の他車両など)が検出されたら、ステップS202へ進む。ステップS202において、自車両V1が走行するレーンの対向レーンに回避対象(対向走行する他車両など)が検出された場合には、ステップS203へ進み、そうでない場合にはステップS211へ進む。
ステップS211以降は、自車両V1の走行レーンに回避対象が存在する場合の処理である。ステップS211において、制御装置10は走行レーンに検出された回避対象の位置に応じて対象領域Rを設定する。ステップS212において、制御装置10は、自車両V1が走行レーン内を対象領域R内に進入せずに、走行可能か否かを判断する。
走行レーンの幅から対象領域Rの幅を減算した距離が自車両V1の車幅よりも広ければ、自車両V1は対象領域R内に進入せずに走行レーンを走行できる。この場合はステップS213に進み、制御装置10は、対象領域とレーンマーカの略中央を通る経路を目標経路RTとして算出する。
他方、自車両V1が対象領域R内に進入せずに走行レーンを走行できないときには、ステップS214へ進む。ステップS214において、隣接する走行レーンに進入可能であるか否かを判断する。隣接する走行レーンへの進入可否は、そのレーンに追い越し規制が適応されているか否かの情報を含む道路情報122に基づいて判断する。ステップS214において、自車両V1が隣接する走行レーンへ進入可能である場合には、ステップS215へ進み、目標経路RTを算出する。他方、自車両V1が隣接する走行レーンへ進入不可能である場合には、ステップS216へ進み、自車両V1を減速又は停止させる。
ステップS202に戻り、対向レーンに存在する回避対象(対向走行する対向車両V3)が検出された場合には、ステップ203に進む。ステップS203において、制御装置10は、自車情報と対象情報に基づいて、すれ違い開始位置とすれ違い完了位置を所定周期で算出する。そして、制御装置10は、すれ違い開始位置における自車情報と対象情報に基づいて対象領域Rを設定する。同様に、すれ違い完了位置における自車情報と対象情報に基づいて対象領域Rを設定する。
具体的に図4Aに示す状況を例にすると、ステップS204において、先にすれ違う他車両V2とのすれ違い開始位置及び/又はすれ違い完了位置における自車情報と対象情報に基づいて他車両V2を回避する対象領域Rを設定する。ステップS205において、後にすれ違う対向車両V3とのすれ違い開始位置及び/又はすれ違い完了位置における自車情報と対象情報に基づいて対向車両V3を回避する対象領域Rを設定する。
本実施形態では、すれ違い開始位置及び/又はすれ違い完了位置における自車情報と対象情報とに基づいて対象領域Rを設定する。制御装置10は、他車両V2との距離を適当に保ちつつ他車両V2とすれ違い、さらに、左右の他車両V2及び対向車両V3との距離を適当に保ちつつ対向車両V3とすれ違うように、自車両V1を走行させる。これにより、自車両V1は回避対象と適切な距離を保ちながら、回避対象とすれ違うことができる。
上述したように、制御装置10は、複数の回避対象が検出され、自車両V1が二つ以上の回避対象に挟まれた状態である場合には、重みづけ係数を用いて対象領域R2の横端部と自車両Vとの距離d1(d1+d2)を設定してもよい。これにより、対象領域Rと自車両V1との車幅方向の距離が安定し、対象領域Rの境界に基づいて算出される目標経路RTの位置も左右にぶれない。
上述したように、制御装置10は、すれ違い開始地点PS、すれ違い完了地点PEの位置に応じて、対象領域R2の長さL0を設定する。これにより、対象領域R2の第1端部RL1、第2端部RL2の位置がすれ違い開始地点PS、すれ違い完了地点PEの位置に応じて調整されるので、回避対象を回避するための転回操作を行うポイントを適切に設定できる。これにより、すれ違い開始地点PS、すれ違い完了ポイントREにおける状況に適した対象領域R2を設定できる。
なお、ステップS204とステップS205は、自車両V1に近い回避対象について順次行われる処理であるので、状況に応じてステップの何れか一方が実行される場合もある。
続くステップS206において、制御装置10は、設定した対象領域Rに基づいて、図5のステップS105の目標経路の算出処理を開始し、ステップS106以降の処理を実行する。
本発明の実施形態の走行制御装置100は、以上のように構成され動作するので、以下の効果を奏する。
[1]本実施形態の走行制御装置100によれば、回避対象としての他車両V2に対する自車両V1の実際の相対速度に応じて、自車両V1が走行するレーンの延在方向(+y)に沿う対象領域Rの長さL10を設定するので、適切な対象領域Rを設定できる。相対速度を考慮した対象領域Rを設定し、これを回避するように目標経路RTを算出する。これにより、走行制御の実行中に目標経路RTが変更されることを抑制できる。つまり、自車両の転回量、転回角、車速、加速度などが急に変更されることがない。この結果、車両の挙動の連続性が保たれるので、乗員は違和感を覚えることがない。
[2]本実施形態の走行制御装置100によれば、相対速度が高いほど、対象領域Rの第1端部RL1を他車両V2(回避対象)から自車両V1側に離隔させた位置に設定する。これにより、この対象領域R1を回避する目標経路RT1の曲点(転回開始点)は、自車両V1側に設定される。これにより、転回開始点における転回量、転回速度が低くなるので、他車両V2を回避するための目標経路を緩やかな曲線で形成できる。自車両V1の転回量、転回速度が低くなるので、乗員は違和感を覚えることがない。
[3]本実施形態の走行制御装置100によれば、相対速度が高いほど、対象領域Rの第2端部RL2を、他車両V2(回避対象)から自車両V1の進行方向側に離隔させた位置に設定する。これにより、対象領域R1を回避する目標経路RT1の曲点(転回完了点:直進状態への復帰点)を自車両V1の進行方向側にシフトさせることができる。これにより、転回完了点における転回量、転回速度を低くすることができ、他車両V2を回避するための目標経路を緩やかな曲線で形成できる。自車両V1の転回量、転回速度を低く制御できる。
[4]本実施形態の走行制御装置100は、車幅方向成分の回避対象に対する相対速度が高いほど、対象領域Rの左右端部のうち自車両V1から見て自車両V1の側方に位置する横端部と回避対象との距離が長くなるように、対象領域Rを設定する。これにより、自車両V1が高い相対速度で他車両V2に接近するときには、対象領域Rの境界位置に基づいて算出される目標経路RTを他車両V2から離隔させ、自車両V1が他車両V2に接近しすぎないようにできる。車幅方向成分の相対速度を考慮して対象領域Rを設定するので、走行制御の実行中に目標経路RTが変更されることを抑制できる。つまり、自車両の転回量、転回角、車速、加速度などが急に変更されることがない。この結果、車両の挙動の連続性を保つことができる。
[5]本実施形態の走行制御装置100は、車幅方向に沿う回避対象に対する距離が短いほど、対象領域Rの左右端部のうち自車両V1から見て自車両側の横端部と回避対象との距離が長くなるように対象領域Rを設定する。対象領域Rの横端部を自車両V1側へシフトすることにより、対象領域Rの境界の位置に基づいて算出される目標経路RTの位置を回避対象から離隔させることができる。これにより、自車両V1が他車両V2に接近しすぎないようにできる。そして、上記[4]で述べた作用効果を奏する。
[6]本実施形態の走行制御装置100によれば、自車両V1が回避対象に最も接近する追い越し開始位置PS2,すれ違い開始位置PS3における他車両V2,V3との相対位置に基づいて対象領域Rの第1端部の位置RL1,RL3を設定することにより、他車両V2,V3を回避できる。特に、回避対象が対向車両V3のように移動体である場合には、自車両V1と対向車両V3の位置関係が刻々に変化するが、実際に追い越すとき又はすれ違うときの位置関係に応じた対象領域Rを設定できる。
[7]本実施形態の走行制御装置100によれば、自車両V1が回避対象に最も接近する追い越し開始位置PS2,すれ違い開始位置PS3における他車両V2,V3との相対位置に基づいて対象領域Rの横端部の位置RW1を設定することにより、他車両V2,V3を回避できる。特に、回避対象が対向車両V3のように移動体である場合には、自車両V1と対向車両V3の位置関係が刻々に変化するが、実際に追い越すとき又はすれ違うときの位置関係に応じた対象領域Rを設定できる。
[8]本実施形態の走行制御装置100によれば、自車両V1と距離が近い回避対象及び/又は自車両V1との相対速度が大きい回避対象に対しては、横端部RW1が回避対象からより遠い位置となるように対象領域Rを設定する。これにより、自車両V1が回避対象に接近しすぎることを抑制できる。自車両V1が回避対象に接近した場合のリスクを低減させる。
[9]本実施形態の走行制御装置100によれば、自車両V1が回避対象としての他車両V2,V3に最も接近する追い越し開始位置PS2から追い越し完了位置PE2,すれ違い開始位置PS3からすれ違い完了位置PE3までにおける他車両V2,V3との相対位置に基づいて対象領域Rの第2端部の位置RL2を設定することにより、追い越し又はすれ違いの状況を考慮した対象領域R3を設定できる。
[10]本実施形態の走行制御装置100によれば、自車両V1が回避対象としての他車両V2,V3に最も接近する追い越し開始位置PS2から追い越し完了位置PE2までにおける他車両V2との相対位置、又はすれ違い開始位置PS2からすれ違い完了位置PE3までにおける対向車両V3との相対位置に基づいて対象領域Rの横端部の位置RW1を設定することにより、追い越し又はすれ違いの状況を考慮した対象領域Rを設定できる。また、回避対象が対向車両V3のように位置関係が刻々と変化する移動体であっても、実際にすれ違うときの位置関係に応じて、適切な対象領域Rを設定できる。
[11]本実施形態の走行制御装置100によれば、対象領域Rを回避する走行制御に関する情報を外部に出力することにより、自車両及び/又は他車両の乗員に自車両の挙動を予め知らせることができる。これにより、自車両の乗員及び/他車両の乗員は、自車両の挙動に応じた対応ができる。
[12]本実施形態の走行制御方法が制御装置10により実行されることにより、上記走行制御装置100と同様の作用を奏し、同様の効果を奏する。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
すなわち、本明細書では、本発明に係る走行制御装置の一態様として、車載装置200ともに走行制御システム1を構成する走行制御装置100を例にして説明するが、本発明はこれに限定されるものではない。
本明細書では、対象情報取得手段と、設定手段と、制御手段と、を備える走行制御装置の一例として、対象情報取得機能と、領域設定機能と、制御機能とを実行する制御装置10を備える走行制御装置100を例にして説明するが、これに限定されるものではない。本明細書では、自車情報取得手段をさらに備える走行制御装置の一例として、制御装置10が自車情報取得機能を実行する走行制御装置100を例にして説明するが、これに限定されるものではない。本明細書では、出力手段をさらに備える走行制御装置の一例として、出力装置30,110をさらに備える走行制御装置100を例にして説明するが、これに限定されるものではない。
1…走行制御システム
100…走行制御装置
10…制御装置
11…CPU
12…ROM
13…RAM
20…通信装置
30…出力装置
31…ディスプレイ
32…スピーカ
200…車載装置
40…通信装置
50…検出装置
51…カメラ
52…レーダー装置
60…センサ
61…操舵角センサ
62…車速センサ
70…車両コントローラ
80…駆動装置
90…操舵装置
110…出力装置
111…ディスプレイ
112…スピーカ
113…車室外ランプ
114…車室内ランプ
120…ナビゲーション装置
121…位置検出装置
122…道路情報
123…地図情報
100…走行制御装置
10…制御装置
11…CPU
12…ROM
13…RAM
20…通信装置
30…出力装置
31…ディスプレイ
32…スピーカ
200…車載装置
40…通信装置
50…検出装置
51…カメラ
52…レーダー装置
60…センサ
61…操舵角センサ
62…車速センサ
70…車両コントローラ
80…駆動装置
90…操舵装置
110…出力装置
111…ディスプレイ
112…スピーカ
113…車室外ランプ
114…車室内ランプ
120…ナビゲーション装置
121…位置検出装置
122…道路情報
123…地図情報
Claims (12)
- 自車両の周囲の回避すべき回避対象の位置と自車両との相対速度を含む対象情報を取得する対象情報取得手段と、
前記回避対象の位置に基づいて対象領域を設定する領域設定手段と、
前記対象領域の位置に基づいて目標経路を設定する経路設定手段と、
前記目標経路上を前記自車両に走行させる制御情報を出力する制御手段と、を備え、
前記領域設定手段は、前記回避対象に対する前記自車両の相対速度に基づいて、前記自車両が走行するレーンの延在方向に沿う前記対象領域の長さを設定する走行制御装置。 - 前記領域設定手段は、前記自車両が前記回避対象に接近する際における、前記回避対象に対する前記自車両の相対速度が高いほど、前記対象領域の前後端部のうち前記自車両から見て手前側に位置する第1端部と前記回避対象との距離が長くなるように、前記対象領域を設定する請求項1に記載の走行制御装置。
- 前記領域設定手段は、前記自車両が前記回避対象に接近する際における、前記回避対象に対する前記自車両の相対速度が高いほど、前記対象領域の前後端部のうち前記自車両から見て奥手側に位置する第2端部と前記回避対象との距離が長くなるように、前記対象領域を設定する請求項1又は2に記載の走行制御装置。
- 前記領域設定手段は、前記自車両が前記回避対象に接近する際における、前記回避対象に対する前記自車両の車幅方向成分の相対速度が高いほど、前記対象領域の左右端部のうち、前記回避対象の側方を通過する際の前記自車両から見て当該自車両の側方に位置する横端部と前記回避対象との距離が長くなるように前記対象領域を設定する請求項1~3の何れか一項に記載の走行制御装置。
- 前記領域設定手段は、前記自車両が前記回避対象に接近する際における、前記回避対象に対する前記自車両の車幅方向に沿う距離が短いほど、前記対象領域の左右端部のうち、前記回避対象の側方を通過する際の前記自車両から見て当該自車両側に位置する横端部と前記回避対象との距離が長くなるように、前記対象領域を設定する請求項1~3の何れか一項に記載の走行制御装置。
- 前記自車両の位置を含む自車情報を取得する自車情報取得手段を、さらに備え、
前記領域設定手段は、前記自車情報と前記対象情報に基づいて、走行する前記自車両と前記対象領域との距離が所定値未満となる追い越し開始位置又はすれ違い開始位置を検出し、前記追い越し開始位置又はすれ違い開始位置における前記自車情報と前記対象情報とに基づいて、前記対象領域の前後端部のうち前記自車両から見て手前側の第1端部の位置を設定する請求項1~5の何れか一項に記載の走行制御装置。 - 前記自車両の位置を含む自車情報を取得する自車情報取得手段を、さらに備え、
前記領域設定手段は、前記自車情報と前記対象情報に基づいて、走行する前記自車両の前方端部と前記対象領域との距離が所定値未満となる追い越し開始位置又はすれ違い開始位置を検出し、前記追い越し開始位置又はすれ違い開始位置における前記自車情報と前記対象情報とに基づいて、前記対象領域の左右端部のうち前記自車両側に位置する横端部の位置を設定する請求項1~6の何れか一項に記載の走行制御装置。 - 前記領域設定手段は、前記追い越し開始位置及び/又はすれ違い開始位置が前記自車両からの所定距離以内の範囲に複数検出された場合には、前記自車両に対する前記回避対象の相対位置に応じた重み係数を前記回避対象ごとに算出し、前記重み係数を用いて、前記対象領域を設定する請求項7に記載の走行制御装置。
- 前記自車両の位置を含む自車情報を取得する自車情報取得手段を、さらに備え、
前記領域設定手段は、前記自車情報と前記対象情報とに基づいて、前記自車両の後方端部と前記対象領域との距離が減少した後に増加する追い越し完了位置又はすれ違い完了位置を検出し、前記追い越し完了位置又はすれ違い完了位置における前記自車情報と前記対象情報とに基づいて、前記対象領域の前後端部のうち前記自車両から見て奥手側の第2端部の位置を算出し、前記第2端部の位置を含む前記対象領域を設定する請求項1~8の何れか一項に記載の走行制御装置。 - 前記自車両の位置を含む自車情報を取得する自車情報取得手段を、さらに備え、
前記領域設定手段は、前記自車情報と前記対象情報とに基づいて、前記自車両の後方端部と前記対象領域との距離が減少した後に増加する追い越し完了位置又はすれ違い完了位置を検出し、前記追い越し完了位置又はすれ違い完了位置における前記自車情報と前記対象情報とに基づいて、前記対象領域の左右端部のうち前記自車両側に位置する横端部の位置を算出し、前記横端部の位置を含む前記対象領域を設定する請求項1~9の何れか一項に記載の走行制御装置。 - 前記対象情報に応じた情報、前記対象領域の位置に応じた情報、前記目標経路の位置に応じた情報、及び前記目標経路上を自車両に走行させる制御情報に応じる情報のうち、何れか一つ以上の情報を外部に出力する出力手段を、さらに備える請求項1~10の何れか一項に記載の走行制御装置。
- 所定の対象領域の位置に基づいて設定された目標経路に従い、自車両を走行させるコンピュータが実行する車両の走行制御方法であって、
前記自車両の周囲の回避すべき回避対象の位置と自車両の相対速度を含む対象情報を取得するステップと、
前記回避対象の位置に基づいて前記対象領域を設定するステップと、を有し、
前記対象領域を設定するステップにおいて、前記回避対象に対する前記自車両の相対速度に基づいて、前記自車両が走行するレーンの延在方向に沿う前記対象領域の長さを算出し、当該長さの前記対象領域を設定する車両の走行制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/071177 WO2016024312A1 (ja) | 2014-08-11 | 2014-08-11 | 車両の走行制御装置及び方法 |
JP2016542447A JP6296161B2 (ja) | 2014-08-11 | 2014-08-11 | 車両の走行制御装置及び方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/071177 WO2016024312A1 (ja) | 2014-08-11 | 2014-08-11 | 車両の走行制御装置及び方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016024312A1 true WO2016024312A1 (ja) | 2016-02-18 |
Family
ID=55303957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071177 WO2016024312A1 (ja) | 2014-08-11 | 2014-08-11 | 車両の走行制御装置及び方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6296161B2 (ja) |
WO (1) | WO2016024312A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017187846A (ja) * | 2016-04-01 | 2017-10-12 | 株式会社デンソー | 車両用装置、車両用プログラム |
KR20190080017A (ko) * | 2017-12-28 | 2019-07-08 | 현대엠엔소프트 주식회사 | 차량 제어 장치 및 방법 |
CN110049909A (zh) * | 2016-12-05 | 2019-07-23 | 马自达汽车株式会社 | 车辆控制装置 |
WO2020116265A1 (ja) * | 2018-12-05 | 2020-06-11 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
CN112896152A (zh) * | 2019-12-02 | 2021-06-04 | 上海汽车集团股份有限公司 | 一种无人驾驶车辆的避障方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006039698A (ja) * | 2004-07-23 | 2006-02-09 | Denso Corp | 車両用物体検知装置 |
JP2007276508A (ja) * | 2006-04-03 | 2007-10-25 | Fujitsu Ten Ltd | 車両の衝突回避制御装置 |
JP2008065481A (ja) * | 2006-09-05 | 2008-03-21 | Mazda Motor Corp | 車両用運転支援システム |
JP2009120116A (ja) * | 2007-11-16 | 2009-06-04 | Hitachi Ltd | 車両衝突回避支援装置 |
WO2011114442A1 (ja) * | 2010-03-16 | 2011-09-22 | トヨタ自動車株式会社 | 運転支援装置 |
-
2014
- 2014-08-11 JP JP2016542447A patent/JP6296161B2/ja active Active
- 2014-08-11 WO PCT/JP2014/071177 patent/WO2016024312A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006039698A (ja) * | 2004-07-23 | 2006-02-09 | Denso Corp | 車両用物体検知装置 |
JP2007276508A (ja) * | 2006-04-03 | 2007-10-25 | Fujitsu Ten Ltd | 車両の衝突回避制御装置 |
JP2008065481A (ja) * | 2006-09-05 | 2008-03-21 | Mazda Motor Corp | 車両用運転支援システム |
JP2009120116A (ja) * | 2007-11-16 | 2009-06-04 | Hitachi Ltd | 車両衝突回避支援装置 |
WO2011114442A1 (ja) * | 2010-03-16 | 2011-09-22 | トヨタ自動車株式会社 | 運転支援装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017187846A (ja) * | 2016-04-01 | 2017-10-12 | 株式会社デンソー | 車両用装置、車両用プログラム |
CN110049909A (zh) * | 2016-12-05 | 2019-07-23 | 马自达汽车株式会社 | 车辆控制装置 |
CN110049909B (zh) * | 2016-12-05 | 2022-05-03 | 马自达汽车株式会社 | 车辆控制装置 |
KR20190080017A (ko) * | 2017-12-28 | 2019-07-08 | 현대엠엔소프트 주식회사 | 차량 제어 장치 및 방법 |
KR102300714B1 (ko) | 2017-12-28 | 2021-09-10 | 현대엠엔소프트 주식회사 | 차량 제어 장치 및 방법 |
WO2020116265A1 (ja) * | 2018-12-05 | 2020-06-11 | 日立オートモティブシステムズ株式会社 | 車両制御装置 |
CN112896152A (zh) * | 2019-12-02 | 2021-06-04 | 上海汽车集团股份有限公司 | 一种无人驾驶车辆的避障方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016024312A1 (ja) | 2017-05-18 |
JP6296161B2 (ja) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6296162B2 (ja) | 車両の走行制御装置及び方法 | |
JP6365672B2 (ja) | 走行制御装置および走行制御方法 | |
JP6206595B2 (ja) | 走行制御装置および走行制御方法 | |
JP6222368B2 (ja) | 走行制御装置および走行制御方法 | |
JP6299872B2 (ja) | 車両の走行制御装置及び方法 | |
JP6323246B2 (ja) | 車両の走行制御装置及び方法 | |
JP6304384B2 (ja) | 車両の走行制御装置及び方法 | |
JP6414221B2 (ja) | 車両の走行制御装置及び方法 | |
JP6288286B2 (ja) | 走行制御装置および走行制御方法 | |
JP6354440B2 (ja) | 走行制御装置および走行制御方法 | |
WO2018211708A1 (ja) | 運転支援装置及び運転支援方法 | |
JP6229798B2 (ja) | 走行制御装置および走行制御方法 | |
JP2016037267A (ja) | 走行制御装置および走行制御方法 | |
WO2016027347A1 (ja) | 車両の走行制御装置及び方法 | |
JP6296161B2 (ja) | 車両の走行制御装置及び方法 | |
JP6375770B2 (ja) | 走行制御装置および走行制御方法 | |
JP2016038838A (ja) | 走行制御装置および走行制御方法 | |
WO2016024313A1 (ja) | 走行制御装置および走行制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14899774 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016542447 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14899774 Country of ref document: EP Kind code of ref document: A1 |