WO2016023352A1 - 氮化镓发光二极管及其制作方法 - Google Patents

氮化镓发光二极管及其制作方法 Download PDF

Info

Publication number
WO2016023352A1
WO2016023352A1 PCT/CN2015/073459 CN2015073459W WO2016023352A1 WO 2016023352 A1 WO2016023352 A1 WO 2016023352A1 CN 2015073459 W CN2015073459 W CN 2015073459W WO 2016023352 A1 WO2016023352 A1 WO 2016023352A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting diode
light emitting
nitride light
temperature
Prior art date
Application number
PCT/CN2015/073459
Other languages
English (en)
French (fr)
Inventor
蓝永凌
张家宏
卓昌正
林兓兓
谢翔麟
谢祥彬
徐志波
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2016023352A1 publication Critical patent/WO2016023352A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector

Definitions

  • the present invention relates to a nitride semiconductor photovoltaic device, and more particularly to a nitride semiconductor photovoltaic device having an improved buffer layer structure.
  • LED Light-Emitting Diode
  • IQE External Quantum Efficiency
  • These LED assemblies have a nitride buffer layer formed on a sapphire substrate, an N-type contact layer of Si-doped GaN, and a multilayer quantum well structure (MQW: Multi-Quantum-Well) active layer having InGaN, by Mg A structure in which a doped P-type nitride contact layer is laminated in this order, and this structure has characteristics of semiconductor components of higher luminance.
  • MQW Multi-Quantum-Well
  • the present invention provides a gallium nitride light emitting diode and a manufacturing method thereof, and the main scheme thereof comprises: providing a buffer layer structure of trimethyl aluminum growth, using trimethyl
  • the melting point of aluminum is low. If the temperature rises above 660 °C, ammonia gas can be introduced. Since the ammonia gas is not passed before reaching the temperature of 660 °C, only the trimethyl aluminum source is introduced, and the temperature is T1, so that the trimethyl aluminum is melted.
  • the irregular shape is formed so that the light-emitting diode can generate reflection and refraction effects through the irregular aluminum metal of the buffer layer to improve the external quantum efficiency.
  • the structure includes a buffer layer, an N-type layer, a stress relief layer, an active layer, and a P-type layer, and the thickness of the metal aluminum buffer layer (a) is
  • the substrate under the buffer layer of the present invention may be selected from alumina single crystal (Sapphire) or SiC (6H-SiC or 4H-SiC) or Si or GaAs or GaN substrates.
  • the growth temperature (b) of the buffer layer of the present invention ranges from 200 ° C ⁇ b ⁇ 1000 ° C, wherein the temperature T1 is less than or equal to 660 ° C, and more preferably, the temperature T1 is from 200 ° C to 660 ° C.
  • the buffer layer of the present invention grows, it needs to raise the temperature higher than the melting point of trimethylaluminum by 660 ° C, and the temperature is T2 (T2>T1), followed by the growth of the nitride structure, which can be deposited by organometallic vapor deposition of trimethylaluminum. A film is formed or an aluminum metal is vapor-deposited to form a film.
  • FIG. 1 is a cross-sectional view showing a gallium nitride light emitting diode according to Embodiment 1 of the present invention.
  • the figure shows: 1. substrate; 2. buffer layer; 3. N-type layer; 4. stress release layer; 5. multiple quantum well active region (active layer); 6. p-type layer.
  • a buffer layer 2 is grown on a substrate 1, then an N-type layer 3 is grown on the buffer layer 2, and a stress-relieving layer 4 is grown on the N-type layer 3, followed by growth on the stress-relieving layer 4.
  • the quantum well active region (active layer) 5 is then grown on the multiple quantum well active region 5 to form a p-type layer 6.
  • the material of the substrate 1 may be selected from an alumina single crystal (Sapphire) or SiC (6H-SiC or 4H-SiC) or a Si or GaAs or GaN substrate, but is not limited thereto.
  • a single crystal oxide having a lattice constant close to that of a nitride semiconductor may also be included.
  • Sapphire is preferably used; a buffer layer 2 on the substrate 1 is made of metal aluminum (Al).
  • the N-type gallium nitride layer 3 on the buffer layer 2 is located on the stress relief layer 4 on the N-type gallium nitride layer 3.
  • the stress relaxation layer 4 is an indium gallium nitride or an indium gallium nitride/gallium nitride supercrystal.
  • the active structure 5 on the stress relief layer 4 is made of indium gallium nitride, and the P-type layer 6 on the active layer 5 has a growth temperature of 700 ° C to 1100 ° C and a thickness of the P-type layer 6 is less than
  • the gallium nitride light emitting diode structure of the present embodiment uses a buffer layer 2 on a substrate 1 in which Sapphire is a substrate, and the buffer layer 2 is formed by vapor deposition of organic metal of trimethylaluminum, and has a growth temperature (b) of 200. °C ⁇ b ⁇ 1000°C, thickness (a) is After the buffer layer 2 is grown, it needs to be heated to a temperature higher than the melting point of trimethylaluminum at 660 ° C, and the temperature is T2 (T2>T1). When the temperature is raised to 660 ° C or higher, ammonia gas can be introduced or trimethylgallium can be introduced simultaneously.
  • Ammonia gas is then continued to form an N-type layer, an active layer, and a P-type layer on the buffer layer 2. Since the ammonia gas is not passed before reaching the temperature of 660 ° C, the trimethyl aluminum can be melted to form an irregular shape, so that the light-emitting diode can generate reflection and refraction effects through the irregular aluminum metal of the buffer layer to improve the external quantum efficiency.
  • gallium nitride having a low-resistance P-type layer the P-type electrode layer comprises Ni/Au, Ni/Pd, Ni/Pt, Pd/Au, Pt/Au, Ti/Au, Cr/Au, TiN
  • the metal conductive layer or transparent conductive oxide layer of TiWNx, WSix comprises ITO, ZnO, NiO, CTO and the like.
  • the metal aluminum thin film layer of the embodiment 1 is formed by vapor deposition of an organic metal of trimethylaluminum, and the metal aluminum thin film layer of the present embodiment is formed by evaporating aluminum by electron beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物发光二极管和制作方法,氮化物发光二极管包括:衬底(1)、缓冲层(2)、N型层(3)、活性层(5)以及P型层(6),其特征在于:缓冲层为(2)为金属铝,其呈不规则颗粒状,当活性层(5)发出的光线入射至缓冲层(2)时发生反射与折射效应。提高了发光二极管的发光效率。

Description

氮化镓发光二极管及其制作方法
本申请要求于2014年8月11日提交中国专利局、申请号为201410391600.5、发明名称为“氮化镓发光二极管及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及氮化物半导体光电组件,尤其涉及一种具有改善缓冲层结构的氮化物半导体光电器件。
背景技术
发光二极管(Light-Emitting Diode,LED)在节能,环保和寿命长方面的优势,所以受到广泛关注。特别是基于氮化镓材料的LED,由于其波长范围理论上覆盖了整个可见光波段和紫外波段,因此成为目前LED发展的主流方向。氮化镓材料蓝光LED技术无论在研究上和商业化生产应用上都取得了进步,其应用领域广阔。但目前LED的发光效率相对较低,从外延结构而言,除了提升内部量子效率(IQE:Internal Quantum Efficiency)之外,改善外部量子效率(EQE:External Quantum Efficiency)也是重要的课题。
这些LED组件,具有在蓝宝石衬底上形成氮化物缓冲层,由Si掺杂GaN的N型接触层,由具有InGaN的多层量子井结构(MQW:Multi-Quantum-Well)活性层,由Mg掺杂的P型氮化物接触层依次迭层而形成的结构,这种结构具有较高亮度的半导体组件特性。
发明内容
针对现有技术,为了有效地提高发光二极管的发光效率,本发明提供一种氮化镓发光二极管及其制作方法,其主要方案包括:提供三甲基铝成长的缓冲层结构,利用三甲基铝熔点较低的特性,升温至660℃以上可通入氨气,由于在达到660℃温度前不通氨气,只通入三甲基铝源,记此温度为T1,让三甲基铝熔解形成不规则的形状,使发光二极管可通过缓冲层的不规则铝金属产生反射与折射效应,以提高外部量子效率。
为了达到上述目的,此结构包括缓冲层、N型层、应力释放层、活性层以及P型层,此 金属铝缓冲层厚度(a)的范围为
Figure PCTCN2015073459-appb-000001
本发明的缓冲层下的衬底可选用氧化铝单晶(Sapphire)或SiC(6H-SiC或4H-SiC)或Si或GaAs或GaN衬底。
本发明的缓冲层的成长温度(b)的范围为200℃≦b≦1000℃,其中温度T1小于或等于660℃,更优地,所述温度T1为200℃~660℃。
本发明的缓冲层成长后需要升温高于三甲基铝的熔点660℃,记此温度为T2(T2>T1),再接着进行氮化物结构成长,可通过三甲基铝的有机金属气相沉积形成薄膜或利用电子束蒸镀铝金属形成薄膜。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为本发明之实施例1之氮化镓发光二极管剖视图。
图中标示:1.衬底;2.缓冲层;3.N型层;4.应力释放层;5.多量子阱有源区(活性层);6.P型层。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式进行详细说明。
实施例1
请参看附图1,在衬底1上生长缓冲层2,然后在缓冲层2上生长N型层3,再在N型层3上生长应力释放层4,接着在应力释放层4上生长多量子阱有源区(活性层)5,然后在多量子阱有源区5上生长P型层6。衬底1的材质可选用氧化铝单晶(Sapphire)或SiC(6H-SiC或4H-SiC)或Si或GaAs或GaN衬底,但不以此为限。晶格常数(lattice constant)接近于氮化物半导体的单晶氧化物也可包含其中,在本实施例优选使用Sapphire;位于衬底1上之缓冲层2,其材料为金属铝(Al)。
位于缓冲层2上之N型氮化镓层3,位于N型氮化镓层3上的应力释放层4,此应力释放层4为氮化铟镓或氮化铟镓/氮化镓超晶格结构,位于应力释放层4上之活性层5,其材质 是氮化铟镓,位于活性层5上的P型层6,其成长温度介于700℃到1100℃,P型层6厚度小于
Figure PCTCN2015073459-appb-000002
本实施方式的氮化镓发光二极管结构使用衬底为Sapphire,位于衬底1上之缓冲层2,此缓冲层2通过三甲基铝的有机金属气相沉积形成,其成长温度(b)为200℃≦b≦1000℃,厚度(a)为
Figure PCTCN2015073459-appb-000003
缓冲层2成长后,需要升温至高于三甲基铝的熔点660℃,记此温度为T2(T2>T1),当升温至660℃以上可通入氨气或同时通入三甲基镓与氨气,接着在所述缓冲层2上继续形成N型层、活性层以及P型层。由于在达到660℃温度前不通氨气,可以使得三甲基铝熔解形成不规则的形状,使发光二极管可通过缓冲层的不规则铝金属产生反射与折射效应,以提高外部量子效率。
依据本发明具低电阻值P型层之氮化镓,其P型电极层包括Ni/Au,Ni/Pd,Ni/Pt,Pd/Au,Pt/Au,Ti/Au,Cr/Au,TiN,TiWNx,WSix之金属导电层或透明导电氧化层包含ITO,ZnO,NiO,CTO等等。
实施例2
本实施例与实施例1的区别在于:实施例1的金属铝薄膜层是通过三甲基铝的有机金属气相沉积形成,而本实施例的金属铝薄膜层是利用电子束蒸镀铝形成。
应当理解的是,上述具体实施方案为本发明的优选实施例,本发明的范围不限于该实施例,凡依本发明所做的任何变更,皆属本发明的保护范围之内。

Claims (10)

  1. 氮化物发光二极管,包括缓冲层、N型层、活性层以及P型层,其特征在于:所述缓冲层为金属铝,其呈不规则颗粒状,当活性层发出的光线入射至所述缓冲层时发生反射与折射效应。
  2. 根据权利要求1所述的氮化物发光二极管,其特征在于:所述金属铝缓冲层厚度为
    Figure PCTCN2015073459-appb-100001
  3. 根据权利要求1所述的氮化物发光二极管,其特征在于:还包括一应力释放层,其位于所述N型层和活性层之间。
  4. 氮化物发光二极管的制作方法,包括步骤:
    提供一衬底,
    在所述衬底之上形成一呈不规则颗粒状的金属铝薄膜层作为缓冲层;
    在所述金属铝缓冲层上依次形成N型层、活性层、P型层,当活性层发出的光线入射至所述不规则颗粒状的缓冲层时,发生反射与折射效应。
  5. 根据权利要求4所述的氮化物发光二极管的制作方法,其特征在于:将所述衬底置于一反应室里,调节所述反应室的温度为T1,仅通入三甲基铝源,使其在温度T1条件下熔融聚集在所述衬底上形成不规则颗粒状的铝薄膜层。
  6. 根据权利要求5所述的氮化物发光二极管的制作方法,其特征在于:所述温度T1小于或等于660℃。
  7. 根据权利要求6所述的氮化物发光二极管的制作方法,其特征在于:所述温度T1为200℃~660℃。
  8. 根据权利要求4所述的氮化物发光二极管的制作方法,其特征在于:当形成一定厚度的铝薄膜层后关闭三甲基铝源,调节所述反应室的温度为T2,并通入氨气或同时通入三甲基镓与氨气,在所述缓冲层上继续形成N型层、活性层以及P型层,其中T2>T1。
  9. 根据权利要求8所述的氮化物发光二极管的制作方法,其特征在于:所述温度T2大于660℃。
  10. 根据权利要求4所述的氮化物发光二极管的制作方法,其特征在于:所述金属铝薄膜层利用电子束蒸镀铝形成。
PCT/CN2015/073459 2014-08-11 2015-03-02 氮化镓发光二极管及其制作方法 WO2016023352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410391600.5A CN104103723B (zh) 2014-08-11 2014-08-11 氮化镓发光二极管及其制作方法
CN201410391600.5 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016023352A1 true WO2016023352A1 (zh) 2016-02-18

Family

ID=51671700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073459 WO2016023352A1 (zh) 2014-08-11 2015-03-02 氮化镓发光二极管及其制作方法

Country Status (2)

Country Link
CN (1) CN104103723B (zh)
WO (1) WO2016023352A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103723B (zh) * 2014-08-11 2017-09-29 安徽三安光电有限公司 氮化镓发光二极管及其制作方法
CN105514234A (zh) * 2015-12-14 2016-04-20 安徽三安光电有限公司 一种氮化物发光二极管及其生长方法
CN105514232B (zh) * 2016-01-08 2018-04-24 华灿光电股份有限公司 一种发光二极管外延片、发光二极管及外延片的制作方法
CN109192826B (zh) * 2018-07-09 2019-11-29 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009346A (zh) * 2006-01-27 2007-08-01 中国科学院物理研究所 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途
US20090057646A1 (en) * 2007-08-27 2009-03-05 Riken Optical semiconductor device and method for manufacturing the same
CN101719465A (zh) * 2009-11-27 2010-06-02 晶能光电(江西)有限公司 硅衬底GaN基半导体材料的制造方法
CN104103723A (zh) * 2014-08-11 2014-10-15 安徽三安光电有限公司 氮化镓发光二极管及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388346A (zh) * 2007-09-12 2009-03-18 中国科学院半导体研究所 在Si衬底上生长ZnO薄膜的方法
JP5167974B2 (ja) * 2008-06-16 2013-03-21 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子及びその製造方法
CN103346223B (zh) * 2013-06-06 2016-08-10 华灿光电股份有限公司 一种发光二极管的外延片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009346A (zh) * 2006-01-27 2007-08-01 中国科学院物理研究所 硅衬底上生长的非极性a面氮化物薄膜及其制法和用途
US20090057646A1 (en) * 2007-08-27 2009-03-05 Riken Optical semiconductor device and method for manufacturing the same
CN101719465A (zh) * 2009-11-27 2010-06-02 晶能光电(江西)有限公司 硅衬底GaN基半导体材料的制造方法
CN104103723A (zh) * 2014-08-11 2014-10-15 安徽三安光电有限公司 氮化镓发光二极管及其制作方法

Also Published As

Publication number Publication date
CN104103723B (zh) 2017-09-29
CN104103723A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
US8710530B2 (en) Light emitted diode
US9337406B2 (en) GaN-based light emitting diode with current spreading structure
TWI462334B (zh) 發光二極體結構與其製造方法
JP7228176B2 (ja) Iii族窒化物半導体発光素子
TW201220538A (en) Semiconductor light emitting device
TWI443865B (zh) 發光二極體晶粒及其製作方法
TWI593135B (zh) 具有含氮化銦鎵之主動區域之半導體結構,形成此等半導體結構之方法,以及應用此等半導體結構形成之發光元件
WO2016023352A1 (zh) 氮化镓发光二极管及其制作方法
TW201421734A (zh) 氮化物半導體結構及半導體發光元件
US7868348B2 (en) Light emitting device having vertical structure and method for manufacturing the same
WO2015176532A1 (zh) 一种氮化物发光二极管组件的制备方法
TW201034252A (en) Light emitting device
JP2008198876A (ja) GaN系LED素子および発光装置
CN101861662B (zh) 发光器件
US8852974B2 (en) Semiconductor light-emitting device and method for manufacturing the same
JP2006261358A (ja) 半導体発光素子
TWI441354B (zh) 發光二極體晶粒及其製造方法
JP2009152530A (ja) 窒化物半導体発光素子及びその製造方法
TWI642204B (zh) 發光二極體元件
TWI517440B (zh) Semiconductor structure with low contact resistance and its manufacturing method
JP2014183090A (ja) 透明電極構造、窒化物半導体発光ダイオード、及び透明電極成膜方法
CN109545816A (zh) 一种倒装GaN基LED微显示器件及其制作方法
Zhao et al. High-performance green flip-chip LEDs with double-layer electrode and hybrid reflector
US8247832B2 (en) Light emitting diode and manufacturing method thereof
TWI566428B (zh) 水平式氮化物發光二極體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832591

Country of ref document: EP

Kind code of ref document: A1