WO2016021939A1 - P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자 - Google Patents

P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자 Download PDF

Info

Publication number
WO2016021939A1
WO2016021939A1 PCT/KR2015/008214 KR2015008214W WO2016021939A1 WO 2016021939 A1 WO2016021939 A1 WO 2016021939A1 KR 2015008214 W KR2015008214 W KR 2015008214W WO 2016021939 A1 WO2016021939 A1 WO 2016021939A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated polymer
polymer electrolyte
pfp
layer
group
Prior art date
Application number
PCT/KR2015/008214
Other languages
English (en)
French (fr)
Inventor
이광희
이성호
이병훈
이종훈
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2016021939A1 publication Critical patent/WO2016021939A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/06Polythioethers from cyclic thioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources

Definitions

  • the present invention relates to a P-doped conjugated polymer electrolyte and an organic electronic device using the same.
  • OLEDs Organic light emitting devices
  • OSCs organic solar cells
  • PEDOT PSS polymer
  • CPEs conjugated polyelectrolytes
  • non-CPEs non-conjugated polyelectrolytes
  • One aspect of the present invention is to provide a p-doped conjugated polymer electrolyte that can be used as a hole transporting material of the organic electronic device because it has a water-soluble and neutral properties that can be a solution process and there is no fear of oxidizing the anode.
  • Another aspect of the present invention is to propose an organic electronic device having improved lifetime and efficiency by using the p-doped conjugated polymer electrolyte as a hole transport material.
  • one aspect of the present invention provides a p-doped conjugated polymer electrolyte containing a compound represented by the following formula (1).
  • Ar 1 is any one selected from the following Group 1a compound,
  • Ar 2 is any one selected from the following 1b compound group or any one selected from the following second compound group,
  • n is an integer of 1 to 1,000,000.
  • At least one Y independently for each compound selected from the compound group is -C n H 2n -P - and (n is an integer from 1 to 20, P - is a SO 3 -, PO 3 2-, and - CO 2 -.
  • R 1 R 2 R 3 R 4 which is selected from one or R 1 , R 2 , R 3 , and R 4 are any one selected from alkyl groups of C1 to C11 irrespective of each other.
  • Q + (n is an integer from 1 to 20, P - - every Y is -C n H 2n -P independently for each compound selected from the compound group of claim 1b is SO 3 -, PO 3 2-, and CO 2 - and any one is selected from, Q + is one selected from the group consisting of H +, Li + Na +, K +, Rb +, Cs +, N + H 4, and N + R 1 R 2 R 3 R 4.
  • R 1 , R 2 , R 3 , and R 4 are any one selected from alkyl groups of C1 to C11 irrespective of each other), or
  • At least one Y is -C n H 2n -P - (wherein n is an integer from 1 to 20, P - is a SO 3 -, PO 3 2- and -CO 2 -. Which is one selected from a), and the remaining and Q + (n is an integer from 1 to 20, P - - Y is -C n H 2n -P is SO 3 -, PO 3 2-, and CO 2 - and any one is selected from, Q + is H +, Li + .Na + , K + , Rb + , Cs + , N + H 4 , and N + R 1 R 2 R 3 R 4 and any one selected from R 1 , R 2 , R 3 , and R 4 Is any one selected from C1 to C11 alkyl groups irrespective of each other).
  • the first electrode A layer comprising the p-doped conjugated polymer electrolyte positioned on the first electrode; An organic active layer positioned on the polymer electrolyte layer; And it provides an organic electronic device comprising a second electrode positioned on the organic active layer.
  • the doping intensity is controlled by varying the kinds of functional groups and oxidizing agents introduced into the p-type conjugated polymer by controlling the electron density, and consequently, finely controlling the work function change, thereby making high efficiency solar cells or high performance.
  • An OLED having a light emitting characteristic of can be manufactured.
  • FIG. 1 is a schematic view showing an organic electronic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a dipole change and a work function change of an electrode before and after P-doping of a P-doped conjugated polymer electrolyte according to an exemplary embodiment of the present invention.
  • Figure 3 is a case of different types of functional groups introduced into the p-type conjugated polymer according to an embodiment of the present invention (a), the case of different types of oxidizing agent (b), and the case of not treating the oxidizing agent (c) A graph comparing doping intensity for each.
  • FIG. 4 shows doping evidence comparing the absorption peaks when different kinds of functional groups are introduced into the p-type conjugated polymer under the same type of oxidizing agent.
  • FIG. 5 is a diagram illustrating the intramolecular and intermolecular doping mechanism of the p-type conjugated polymer according to one embodiment of the present invention.
  • FIG. 6 is a graph comparing the size distribution of p-type conjugated polymers with different oxidants.
  • FIG. 8 is a graph comparing the work function of an ITO electrode employing an undoped conjugated polymer and a conjugated polymer doped with ammonium ion as an interface layer.
  • 9 is a graph comparing work functions of various electrodes using conjugated polymers doped with different oxidants.
  • FIG. 10 is an energy diagram of a solar cell according to an embodiment of the present invention.
  • FIG. 11 is a current density-voltage curve of a solar cell employing a conjugated polymer doped with different oxidants according to an embodiment of the present invention.
  • FIG 13 is an energy diagram for an OLED in accordance with an embodiment of the present invention.
  • FIG. 14 is a luminance-voltage curve of an OLED employing a P-type conjugated polymer, PEDOT: PSS, and commercialized Plexcore as a hole transport layer according to an embodiment of the present invention.
  • FIG. 15 is a light emission efficiency-luminance curve of an OLED employing a P-type conjugated polymer, PEDOT: PSS, and commercialized Plexcore as a hole transport layer according to an embodiment of the present invention.
  • FIG. 16 is a graph illustrating a life evaluation of an OLED employing a P-type conjugated polymer, a PEDOT: PSS, and a commercialized Plexcore as a hole transport layer according to an embodiment of the present invention.
  • the present invention relates to a P-doped conjugated polymer electrolyte and an organic electronic device using the same.
  • CPEs n-type conjugated polyelectrolytes
  • Chemical Formula 3 which have been used only as an electron transport layer (ETL)
  • ETL electron transport layer
  • the n-type conjugated polymer electrolyte can be utilized as a p-type conjugated polymer electrolyte that operates as a hole transport layer (HTL) by treating the oxidizing agent.
  • the p-type conjugated polyelectrolyte thus formed forms dipoles in opposite directions to the n-type, and can not only "increase” or “decrease” the work function of the metal electrode by more than 1 eV in the electronic device. Since the change of the work function can be finely controlled by the degree of doping, the anode in the organic electronic device enables effective ohmic contact with the organic material. (See Figure 2)
  • the p-doped conjugated polymer electrolyte of the present invention contains a compound represented by the following Chemical Formula 1.
  • Ar 1 is any one selected from the following Group 1a compound,
  • Ar 2 is any one selected from the following 1b compound group or any one selected from the following second compound group,
  • n is an integer of 1 to 1,000,000.
  • At least one Y independently for each compound selected from the compound group is -C n H 2n -P - and (n is an integer from 1 to 20, P - is a SO 3 -, PO 3 2-, and - CO 2 -.
  • R 1 R 2 R 3 R 4 which is selected from one or R 1 , R 2 , R 3 , and R 4 are any one selected from alkyl groups of C1 to C11 irrespective of each other.
  • Q + (n is an integer from 1 to 20, P - - every Y is -C n H 2n -P independently for each compound selected from the compound group of claim 1b is SO 3 -, PO 3 2-, and CO 2 - and any one is selected from, Q + is one selected from the group consisting of H +, Li + Na +, K +, Rb +, Cs +, N + H 4, and N + R 1 R 2 R 3 R 4.
  • R 1 , R 2 , R 3 , and R 4 are any one selected from alkyl groups of C1 to C11 irrespective of each other), or
  • At least one Y is -C n H 2n -P - (wherein n is an integer from 1 to 20, P - is a SO 3 -, PO 3 2- and -CO 2 -. Which is one selected from a), and the remaining and Q + (n is an integer from 1 to 20, P - - Y is -C n H 2n -P is SO 3 -, PO 3 2-, and CO 2 - and any one is selected from, Q + is H +, Li + .Na + , K + , Rb + , Cs + , N + H 4 , and N + R 1 R 2 R 3 R 4 and any one selected from R 1 , R 2 , R 3 , and R 4 Is any one selected from C1 to C11 alkyl groups irrespective of each other).
  • the p-doped conjugated polymer electrolyte has an oxidized portion in the main chain, the side chain may have a charge, and may have a charge opposite to that of the side chain as a counterion.
  • at least one side chain is SO 3 -, PO 3 2-, and CO 2 - which has one anion, said p- doped conjugated polymer electrolyte is selected from may have additional side chain.
  • Additional side-chain is SO 3 -, PO 3 2-, and CO 2 - one of the anion and H +, Li + is selected from the.
  • R 1 , R 2 , R 3 , and R 4 may be any one selected from alkyl groups of C 1 to C 11 irrespective of each other.
  • the p-doped conjugated polymer electrolyte may include an electron donating group.
  • Electrode donor group means a C1-C24 alkyl, alkoxy, thioalkoxy, amine group, imine group, carboxyl group, phosphoric acid group, sulfonic acid group or combinations thereof, which may be substituted or unsubstituted, and "substituted” for a chemical species Means substituted by groups that do not interfere with the desired product or method, for example the substituents may be alkyl, alkoxy and the like.
  • These electron donor groups can be expected to serve to enrich electron density by providing electrons to the main chain of the conjugated polymer.
  • the p-doped conjugated polymer electrolyte may include an electron withdrawing group.
  • These electron acceptor groups can be expected to play a role in reducing electron density of the main chain by receiving electrons from the main chain of the conjugated polymer.
  • the P-doped conjugated polymer electrolyte may be prepared by the oxidation reaction of the conjugated polymer electrolyte containing a compound represented by the following formula (4).
  • Ar 3 is any one selected from the following third compound group,
  • Ar 2 is any one selected from the following third compound group or any one selected from the following second compound group,
  • n is an integer of 1 to 1,000,000.
  • X are each independently selected from -C n H 2n -P - and Q + (n is an integer from 1 to 20), P - is a SO 3 -, PO 3 2-, and CO 2 - is selected from Which is either Q + is H + , Li + . Na + , K + , Rb + , Cs + , N + H 4 , and N + R 1 R 2 R 3 R 4 is any one selected from R 1 , R 2 , R 3 , and R 4 are related to each other. Irrespective of the C1-C11 alkyl group, it is either selected.
  • the oxidation reaction of the conjugated polymer electrolyte represented by Chemical Formula 3 is not particularly limited, and for example, an acid or an oxidizing agent is added to the conjugated polymer electrolyte to induce oxidation, or the conjugated polymer electrolyte is coated to form a polymer electrolyte membrane. Cyclic voltammetry (CV) can be used to induce oxidation of the polymer electrolyte.
  • CV Cyclic voltammetry
  • X in SO 3 - X + in Scheme 1 may be Li, K, NH 4 , or Na.
  • R 1 and R 2 may be each independently a halogen group such as -F, -Cl, -Br, -I or an electron donor group such as -OMe, but is not limited thereto.
  • the p-doped conjugated polymer electrolyte may be a compound represented by the following formula (2).
  • FIG. 1 is a schematic diagram illustrating an organic electronic device 100 according to an embodiment of the present invention.
  • the first electrode 120, an electrolyte layer 130 including a p-doped conjugated polymer electrolyte, an organic active layer 140, an electron transport layer 150, and a second electrode on a substrate 110. 160 may be sequentially formed.
  • the electron transport layer 150 may be omitted.
  • the substrate 110 is used to support the organic electronic device, a transparent inorganic substrate selected from glass, quartz, Al 2 O 3 and SiC or polyethylene terephthalate (PET), polyethersulfone (PES), polystyrene (PS), PC It may be a light transmissive plastic substrate selected from (polycarbonate), polyimide (PI), polyethylene naphthalate (PEN) and polyarylate (PAR).
  • a transparent inorganic substrate selected from glass, quartz, Al 2 O 3 and SiC or polyethylene terephthalate (PET), polyethersulfone (PES), polystyrene (PS), PC It may be a light transmissive plastic substrate selected from (polycarbonate), polyimide (PI), polyethylene naphthalate (PEN) and polyarylate (PAR).
  • the first electrode 120 may be a light transmitting electrode.
  • the first electrode 120 may be formed of an indium tin oxide (ITO) film, a fluorinated tin oxide (FTO) film, an indium zinc oxide (IZO) film, an Al-doped zinc oxide (AZO) film, zinc oxide (ZnO), or IZTO (IZTO). Indium Zinc Tin Oxide) film.
  • ITO indium tin oxide
  • FTO fluorinated tin oxide
  • IZO indium zinc oxide
  • AZO Al-doped zinc oxide
  • ZnO zinc oxide
  • IZTO IZTO
  • the p-doped conjugated polymer electrolyte layer 130 has an oxidized portion of the main chain, has a charge in the side chain, and has a counterion with a charge opposite to that of the side chain.
  • the side chain is SO 3 -, PO 3 2-, and CO 2 - may have any of the anions selected from, H +, Li +. It may have a cation selected from Na + , K + , Rb + , Cs + , N + H 4 , and N + R 1 R 2 R 3 R 4 as a counterion (wherein R 1 , R 2 , R 3 , and R 4 are any one selected from alkyl groups of C1 to C11 irrespective of each other).
  • the p-doped conjugated polymer electrolyte layer 130 easily transports holes supplied through an external circuit from the first electrode 120 to the organic active layer 140 (in the case of an organic light emitting device), or the organic It may serve as a hole transport layer for easily transporting holes generated in the active layer 140 to the first electrode 120 (in the case of an organic solar cell).
  • the p-doped polymer electrolyte layer 130 may serve as a buffer layer to alleviate the surface roughness of the first electrode 120.
  • the Low Unoccupied Molecular Orbital (LUMO) level of the p-doped polymer electrolyte layer 130 is higher than the LUMO level of the organic active layer 140, and electrons are introduced from the organic active layer 140 to the first electrode 120. It can also serve as an electronic blocking layer that prevents it.
  • LUMO Low Unoccupied Molecular Orbital
  • the p-doped conjugated polymer electrolyte layer 130 may contain a compound represented by Chemical Formula 1 described above.
  • the p-doped conjugated polymer electrolyte layer 130 may contain a compound represented by Formula 2 described above.
  • the organic active layer 140 may be a light emitting layer or a photoelectric conversion layer.
  • the light emitting layer refers to a layer that generates light by combining electrons and holes supplied from the outside
  • the photoelectric conversion layer refers to the generation of electron-hole pairs (excitons) by the light supplied from the outside and to each charge. Refers to the layer where the separation takes place.
  • the organic active layer 140 is configured as a light emitting layer or a photoelectric conversion layer
  • the organic electronic device 100 may be manufactured as an organic light emitting device or an organic solar cell, respectively.
  • the material of the light emitting layer and the photoelectric conversion layer is not particularly limited, and various polymers or low molecular weight organic materials may be used.
  • the light emitting layer may be made of polyaniline, polypyrrole, polyacetylene, polyethylenedioxylthiophene, poly (3,4-ethylenedioxythiophene, PEDOT), polyphenylene Polyphenylenevinylene (PPV), polyfluorene, polyparaphenylene, PPP, polyalkylthiophene, polypyridine, PPy, polyvinylcarbazole (polyvinylcarbazole) -based or copolymers thereof, or may be selected from a suitable host / dopant-based material.
  • the electron donor material is poly (3-hexylthiophene, P3HT), which is a type of the polythiophene, or PCPDTBT (poly [2,6-) which is a copolymer of the polymers.
  • the electron acceptor material of the photoelectric conversion layer may be C 60 to C 84 fullerene or a derivative thereof, perylene, a polymer, or a quantum dot.
  • the fullerene derivative may be PCBM, for example, PCBM (C 60 ) ([6,6] -phenyl-C 61 -butyric acid methyl ester) or PCBM (C 70 ) ([6,6]- phenyl-C 71 -butyric acid methyl ester).
  • the electron transport layer 150 easily transports electrons supplied through an external circuit from the second electrode 160 to the organic active layer 140 (when the organic light emitting device), or occurs in the organic active layer 140. It may serve to easily transport electrons to the second electrode 160 (in the case of an organic solar cell). In addition, the electron transport layer 150 may serve as a hole blocking layer that prevents holes generated in the organic active layer 140 from flowing into the second electrode 150.
  • the electron transport layer 150 may be, for example, a titanium oxide layer.
  • the titanium oxide layer may prevent degradation of the device due to penetration of oxygen, water vapor, or the like into the organic active layer 140, and may include an optical spacer for increasing the amount of light introduced into the organic active layer 140. Along with its role as a spacer), it can also play a role of increasing the lifespan of the organic electronic device.
  • the titanium oxide layer may be formed using a sol-gel method.
  • the second electrode 160 is an electrode having a smaller work function than the first electrode 120 and may be a metal or a conductive polymer electrode.
  • the second electrode 160 may be formed of Li, Mg, Ca, Ba, Al, Cu, Ag, Au, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, Cs, and alloys thereof. It may be any one metal electrode selected.
  • the second electrode 160 is a metal electrode, the second electrode 160 may be formed by thermal image deposition, electron beam deposition, sputtering, or chemical vapor deposition, or may be formed by applying an electrode forming paste including a metal and then heat treatment. But it is not limited thereto.
  • the NMR chemical shift of the obtained monomer is as follows.
  • ESR Electron Spin Resonance
  • ESR analysis was carried out by treating electrolytes with different functional groups with the same persulfate (NH 4 ) 2 S 2 O 8 , followed by NH 4 -PFP-O> NH 4 -PFP> NH 4 -PFP-F. It was confirmed that the intensity of the signal is reduced (FIG. 3). This suggests that the high potential density of oxidative potential in NH 4 -PFP-O backbone was generated, indicating the increase of ESR signal intensity. Higher oxidation potentials produce more radical cations in the CPEs backbone, effectively producing polaron-induced dipoles. Sulfonate anions stabilize the positively charged (oxidized) backbone as counterion, and can interact within or between molecules to produce polymeric aggregates as shown in FIG. 5.
  • the dipole intensity can be controlled by combining an electron withdrawing group and an electron donating group to the CPE backbone.
  • the increase in the effective work function was observed to be large in the ITO electrode employing an electrolyte having a main chain with a high electron density such as NH 4 -PFP-O (FIG. 8). This is presumed to form stronger dipoles because NH 4 -PFP-O with low ionization potential can be easily oxidized. This showed the same result even if the electrode type was changed to Ag, graphene (GR), Au, Cu (Fig. 9).
  • PC 71 BM of the photoelectric conversion layer means [6,6] -phenyl C 71 -butyric acid methyl ester as a polymer
  • the photoelectric conversion layer contains two donor polymers PTB7 or PTB7-Th (FIG. 10).
  • Sol-gel based titanium oxide (TiOx) or PFN was used as the electron transport layer (ETL).
  • a methanol solution of X-CPEs (0.02 wt%) was applied to the ITO / glass substrate by a spin casting method to form a 2 nm thick thin film.
  • PEDOT: PSS (Clevios AI 4083) aqueous solution was applied to an ITO / glass substrate by spin casting instead of X-CPEs, and baked in air at 150 ° C. for 10 minutes to prepare a PEDOT: PSS thin film.
  • the solar cell was manufactured under the same conditions as in Example 2.
  • the effective work function for the solar cell employing various conjugated polymer electrolytes as HTL and parameters indicating the performance of the solar cell are summarized in Table 1 below.
  • PCE photoelectric conversion efficiency
  • the PCE of the p-undoped conjugated polymer (PFP) was low at about 0.1%.
  • FIG. 11 shows the current density-voltage characteristics of a device employing p-doped CPEs and non-p-doped CPEs as HTL, respectively.
  • NH 4 -PFP>Na-PFP>K-PFP> PFP was found in order of NH 4 -PFP among the p-doped CPEs. The case was the worst.
  • the NH 4 -PFP showed an excellent PCE value of 7.8%, which means that the good matching of the HOMO level and work function of PTB7 in the photoactive layer is important for improving the performance of the BHJ solar cell.
  • FIG. 11 shows the current density-voltage characteristics of a device employing p-doped CPEs and non-p-doped CPEs as HTL, respectively.
  • NH 4 -PFP>Na-PFP>K-PFP> PFP was found in order of NH 4 -PFP among the p-doped CPEs. The case was the worst.
  • FIG. 12 shows the current density-voltage characteristics of a device employing NH 4 -PFP-O and PEDOT: PSS as the HTL and PFN as the ETL, respectively, showing the largest effective work function (5.6eV).
  • the current density is 16.7mA / cm2 compared to PEDOT: PSS, which is approximately 1mA / cm2 more than PEDOT: PSS (15.8mA / cm2), and PCE is 9.4% PEDOT: PSS 0.5% was larger than that of 8.9%.
  • the hole transport layer HTL
  • an OLED having an ITO / NH 4 -PFP-O / Super Yellow / Ca / Al structure was manufactured.
  • the light emitting layer was a poly ( p -phenylene vinylene) derivative (Super Yellow, SY).
  • a methanol solution (0.5 wt%) of NH 4 -PFP-O was applied to the ITO / glass substrate by spin casting to form a thin film.
  • a light emitting layer was formed by spin casting an aryl-substituted poly ( p- phenylenevinylene) derivative (Super Yellow, Merck, Inc.) toluene solution (0.5 wt%) on a NH 4 -PFP-O thin film. It was then baked for 10 minutes at 80 ° C. in the glove box. Finally, Al (100 nm) -capped Ca (20 nm) electrodes were deposited by thermal evaporation under high vacuum (5 ⁇ 10 ⁇ 7 Torr).
  • Plexcore ® thin film OLED was prepared under the same conditions as in example 3 except that move in a glove box in order to dry after forming the light emitting layer for 10 minutes in a 160 °C air.
  • FIG. 14 and FIG. 15 is a HTL PEDOT: PSS, Plexcore ® NH 4 and the case of using the O--PFP luminance (L) for each-represents the luminance (L) - voltage (V), luminous efficiency (LE).
  • L L to 46,000 cd m -2
  • the maximum L ( L to 46,000 cd m -2 ) of NH 4 -PFP-O is slightly less than for devices with PEDOT: PSS ( L to 44,000 cd m -2 ) or Plexcore ® ( L to 28,000 cd m -2 ) High.
  • LE ( LE to 7.1 cd A -1 ) of NH 4 -PFP-O devices is significantly higher than that of PEDOT: PSS ( LE to 5.1 cd A -1 ) and Plexcore ® ( LE to 6.4 cd A -1 ). appear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자에 관한 것으로, 본 발명에 따르면, p형 공액 고분자에 도입하는 작용기의 종류, 산화제의 종류를 다양화하여 전자밀도를 조절함으로써 도핑 세기를 조절하고, 결과적으로 일함수 변화를 미세하게 조절하여 고효율의 태양전지 및 고성능의 발광특성을 가진 OLED를 제조할 수 있다.

Description

P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
본 발명은 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자에 관한 것이다.
유기발광소자(organic light emitting device, OLED) 및 유기태양전지(organic solar cell, OSC)는 박막형으로 그 구조가 간단하고, 가벼워 휴대하기 편하고, 저비용의 공정으로 제작 가능하며, 휘어질 수 있는 특성을 갖는 등의 장점으로 인해 최근 활발히 연구되고 있다. 그러나, 유기물 전자소자의 구조적 특성상 금속전극과 유기물질 사이에 에너지 레벨의 조절이 필요하다. 지금까지 이를 위하여 금속 전극과 유기 물질 사이에 다양한 "계면층(Interfacial Layer)"을 도입시켜왔다. 이러한 계면층은 전극의 일함수(Work Function)를 효과적으로 조절하여 금속전극과 유기물질 사이에 옴 접촉(Ohmic Contact)을 이루도록 한다. 현재까지 개발된 계면물질들은 복잡한 증착 공정을 통해서만 특성을 나타내기 때문에 실질적으로 인쇄기법이 요구되는 유기물 전자소자에는 적합하지 않다. 다만, 대표적인 정공 수송물질로 사용되는 PEDOT:PSS 고분자는 용액 공정이 가능하지만 활성층과의 계면에서 여기자(exciton)의 퀀칭(quenching)이 심하게 일어난다는 보고가 있으며, 강한 산성을 띠기 때문에 양극(anode)을 산화시켜 소자의 수명 및 효율에 악영향을 미칠 수 있는 문제가 있다. 또한, 지금까지 금속 음극(cathode)과 유기물질 사이의 전자주입 효율성을 높이기 위하여 사용되어 왔던 공액 고분자 전해질(Conjugated Polyelectrolytes: CPEs)과 비공액 고분자 전해질(Non-conjugated Polyelectrolytes: non-CPEs)은 모두 금속의 일함수를 "감소"시키기 때문에 금속의 일함수를 "증가"시킴으로써 양전하의 흐름을 원활하게 하는 양극(anode) 계면물질로는 사용할 수 없다는 문제점이 있다.
본 발명의 일 측면은 수용성 및 중성의 성질을 가져서 용액공정이 가능하고 양극을 산화시킬 염려가 없으므로 유기전자소자의 정공수송재료로 활용이 가능한 p-도핑된 공액 고분자 전해질을 제시하고자 한다.
본 발명의 다른 측면은 상기 p-도핑된 공액 고분자 전해질을 정공수송재료로 이용하여 수명 및 효율이 향상된 유기전자소자를 제시하고자 한다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 하기 화학식 1로 표시되는 화합물을 함유하는 p-도핑된 공액 고분자 전해질을 제공한다.
<화학식 1>
Figure PCTKR2015008214-appb-I000001
상기 식에서, Ar1은 하기 제1a 화합물군에서 선택되는 어느 하나이고,
Ar2는 하기 제1b 화합물군에서 선택되는 어느 하나 또는 하기 제2 화합물군에서 선택되는 어느 하나이고,
대괄호의 위 첨자 +는 고분자 주쇄 중 산화된 부분을 나타내고,
m은 1 내지 1,000,000의 정수이다.
<제1a 화합물군>
Figure PCTKR2015008214-appb-I000002
상기 제1a 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.
<제1b 화합물군>
Figure PCTKR2015008214-appb-I000003
상기 제1b 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 모든 Y가 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이거나,
적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.
<제2 화합물군>
Figure PCTKR2015008214-appb-I000004
상기 제2 화합물군에서 A는 각각 독립적으로 -H, -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이고, B는 각각 독립적으로 -H, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이며, Z는 각각 독립적으로 -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I, -C(=O)R, -C(=O)OR, -C(=O)NR1R2에서 선택되는 어느 하나이며, W는 각각 독립적으로 -H, 및 -R에서 선택되는 어느 하나이며, R, R1 및 R2는 독립적으로 H 또는 C1~C20의 알킬기이다.
본 발명의 다른 측면은, 제1 전극; 상기 제1 전극 상에 위치하는 상기 p-도핑된 공액 고분자 전해질을 포함하는 층; 상기 고분자 전해질층 상에 위치하는 유기 활성층; 및 상기 유기 활성층 상에 위치하는 제2 전극을 포함하는 유기전자소자를 제공한다.
본 발명에 의하면, p형 공액 고분자에 도입하는 작용기의 종류, 산화제의 종류를 다양화하여 전자밀도를 조절함으로써 도핑 세기를 조절하고, 결과적으로 일함수 변화를 미세하게 조절하여 고효율의 태양전지 또는 고성능의 발광특성을 가진 OLED를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 유기전자소자를 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 따른 P-도핑된 공액 고분자 전해질의 P-도핑 전후의 쌍극자 변화와 전극의 일함수 변화를 설명하는 모식도이다.
도 3은 본 발명의 일 실시예에 따른 p형 공액 고분자에 도입하는 작용기의 종류를 달리한 경우(a), 산화제의 종류를 달리한 경우(b), 및 산화제를 처리하지 않은 경우(c) 각각에 대한 도핑세기를 비교한 그래프이다.
도 4는 산화제의 종류가 동일한 조건에서 p형 공액 고분자에 도입하는 작용기의 종류를 달리한 경우의 흡수 피크를 비교한 도핑증거 자료이다.
도 5는 본 발명의 일 실시예에 따른 p형 공액 고분자의 분자내 및 분자 사이의 도핑 메커니즘을 도식화한 그림이다.
도 6은 산화제를 달리한 경우의 p형 공액 고분자의 크기 분포를 비교한 그래프이다.
도 7은 ITO 전극에 형성된 K-PFP (a), NH4-PFP (b), 및 Na-PFP (c) 박막의 AFM 이미지이다.
도 8은 도핑되지 않은 공액 고분자와 암모늄이온으로 도핑된 공액 고분자를 계면층으로 채용한 ITO 전극의 일함수를 비교한 그래프이다.
도 9은 산화제를 달리하여 도핑된 공액 고분자를 채용한 다양한 전극의 일함수를 비교한 그래프이다.
도 10는 본 발명의 일 실시예에 따른 태양전지에 대한 에너지 다이어그램이다.
도 11은 본 발명의 일 실시예에 따른 산화제를 달리하여 도핑된 공액 고분자를 채용한 태양전지의 전류밀도-전압 곡선이다.
도 12은 본 발명의 일 실시예에 따른 p형 공액 고분자를 정공수송층으로 채용한 경우와 종래의 PEDOT:PSS를 정공수송층으로 채용한 경우의 전류밀도-전압 곡선이다.
도 13는 본 발명의 일 실시예에 따른 OLED에 대한 에너지 다이어그램이다.
도 14은 본 발명의 일 실시예에 따른 P형 공액 고분자와 PEDOT:PSS, 상용화된 Plexcore를 정공수송층으로 채용한 OLED의 휘도-전압 곡선이다.
도 15는 본 발명의 일 실시예에 따른 P형 공액 고분자와 PEDOT:PSS, 상용화된 Plexcore를 정공수송층으로 채용한 OLED의 발광효율-휘도 곡선이다.
도 16는 본 발명의 일 실시예에 따른 P형 공액 고분자와 PEDOT:PSS, 상용화된 Plexcore를 정공수송층으로 채용한 OLED의 수명 평가 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본 발명은 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자에 관한 것이다.
본 발명의 연구자들은 전극의 부식 염려가 없는 중성물질로서 정공수송층으로 활용하기 어려웠던 기존의 공액 고분자를 채택하여 간단한 조작을 통해 일함수를 조절함으로써 새로운 정공수송물질로 활용하고자 본 발명을 고안하기에 이르렀다.
특히, 그 동안 전자 수송층(Electron Transport Layer: ETL)으로만 이용되어 왔던 하기 화학식 3에 예시적으로 표현된 n형 공액 고분자 전해질(Conjugated Polyelectrolytes: CPEs)은 금속의 일함수를 감소시키기 때문에 음극(cathode) 계면층으로만 사용되어 왔다.
<화학식 3>
Figure PCTKR2015008214-appb-I000005
그러나, 이들 n형 공액 고분자 전해질을 산화제 처리함으로써 정공 수송층(Hole Transport Layer: HTL)으로 작동하는 p형 공액 고분자 전해질로 활용할 수 있음을 확인하였다. 이렇게 형성된 p형 공액 고분자 전해질은 n형과 서로 반대 방향의 쌍극자를 형성하게 되며, 전자 소자에서 금속 전극의 일함수(work function)를 1eV 이상 "증가" 또는 "감소"시킬 수 있을 뿐만 아니라, 이러한 일함수의 변화는 도핑 정도에 의해 미세하게 조절할 수 있기 때문에 유기물 전자 소자에서 양극(Anode)이 유기 물질과 효과적으로 옴 접촉(Ohmic Contact)을 할 수 있게 한다. (도 2 참조)
본 발명의 p-도핑된 공액 고분자 전해질은 하기 화학식 1로 표시되는 화합물을 함유한다.
<화학식 1>
Figure PCTKR2015008214-appb-I000006
상기 식에서, Ar1은 하기 제1a 화합물군에서 선택되는 어느 하나이고,
Ar2는 하기 제1b 화합물군에서 선택되는 어느 하나 또는 하기 제2 화합물군에서 선택되는 어느 하나이고,
대괄호의 위 첨자 +는 고분자 주쇄 중 산화된 부분을 나타내고,
m은 1 내지 1,000,000의 정수이다.
<제1a 화합물군>
Figure PCTKR2015008214-appb-I000007
상기 제1a 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.
<제1b 화합물군>
Figure PCTKR2015008214-appb-I000008
상기 제1b 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 모든 Y가 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이거나,
적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.
<제2 화합물군>
Figure PCTKR2015008214-appb-I000009
상기 제2 화합물군에서 A는 각각 독립적으로 -H, -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이고, B는 각각 독립적으로 -H, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이며, Z는 각각 독립적으로 -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I, -C(=O)R, -C(=O)OR, -C(=O)NR1R2에서 선택되는 어느 하나이며, W는 각각 독립적으로 -H, 및 -R에서 선택되는 어느 하나이며, R, R1 및 R2는 독립적으로 H 또는 C1~C20의 알킬기이다.
상기 p-도핑된 공액 고분자 전해질은 주쇄에 산화된 부분이 있고, 측쇄는 전하를 가질 수 있으며, 측쇄의 전하와 반대되는 전하를 상대이온으로 가질 수 있다. 구체적으로, 적어도 하나의 측쇄는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나의 음이온을 가지며, 상기 p-도핑된 공액 고분자 전해질은 추가적인 측쇄를 가질 수도 있다. 추가적인 측쇄는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나의 음이온 및 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나의 양이온을 상대이온으로 가질 수 있다. 또한 여기서, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나일 수 있다.
또한, 상기 p-도핑된 공액 고분자 전해질은 전자 주개 그룹(electron donating group)을 포함할 수 있다. "전자 주개 그룹"은 치환되거나 비치환될 수 있는 C1-C24 알킬, 알콕시, 티오알콕시, 아민기, 이민기, 카르복실기, 인산기, 술폰산기 또는 이들의 조합을 의미하고, 화학 종에 대해 "치환된"은 바람직한 생성물 또는 방법을 방해하지 않는 기에 의해 치환된 것을 의미하며, 예를 들어 치환기는 알킬, 알콕시 등일 수 있다.
구체적으로 상기 전자 주개 그룹은, -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CH2 및 -CH=CR2에서 선택되는 어느 하나를 들 수 있으나 이에 제한되는 것은 아니다. 이들 전자 주개 그룹은 상기 공액 고분자의 주쇄에 전자를 제공하여 전자밀도를 풍부하게 하는 역할을 기대할 수 있다.
또한, 상기 p-도핑된 공액 고분자 전해질은 전자 받개 그룹(electron withdrawing group)을 포함할 수 있다. 상기 전자 받개 그룹에는 아릴, 페닐, 할로 (F, Cl, Br, I), -C(=O)R, -C(=O)OR, -C(=O)NR1R2 (R, R1 및 R2는 독립적으로 H 또는 C1~C20의 알킬기임.) 등이 있을 수 있으나, 이에 제한되는 것은 아니다. 이들 전자 받개 그룹은 상기 공액 고분자의 주쇄로부터 전자를 받아 주쇄의 전자밀도를 감소시키는 역할을 기대할 수 있다.
이들 전자 주개 그룹과 전자 받개 그룹에 포함되는 관능기를 적절히 조합하여 포함함으로써 상기 p-도핑된 공액 고분자 전해질의 도핑 정도를 조절하여 일함수 변화를 미세하게 조절할 수 있을 것이다.
한편, 상기 P-도핑된 공액 고분자 전해질은 하기 화학식 4로 표시되는 화합물을 함유하는 공액 고분자 전해질의 산화반응에 의하여 제조할 수 있다.
<화학식 4>
Figure PCTKR2015008214-appb-I000010
상기 식에서, Ar3은 하기 제3 화합물군에서 선택되는 어느 하나이고,
Ar2는 하기 제3화합물군에서 선택되는 어느 하나 또는 하기 제2 화합물군에서 선택되는 어느 하나이고,
m은 1 내지 1,000,000의 정수이다.
<제3 화합물군>
Figure PCTKR2015008214-appb-I000011
상기 제3 화합물군에서 X는 각각 독립적으로 -CnH2n-P-Q+ (n은 1 내지 20의 정수)이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나이다.
<제2 화합물군>
Figure PCTKR2015008214-appb-I000012
상기 제2 화합물군에서 A는 각각 독립적으로 -H, -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이고, B는 각각 독립적으로 -H, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이며, Z는 각각 독립적으로 -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I, -C(=O)R, -C(=O)OR, -C(=O)NR1R2에서 선택되는 어느 하나이며, W는 각각 독립적으로 -H, 및 -R에서 선택되는 어느 하나이며, R, R1 및 R2는 독립적으로 H 또는 C1~C20의 알킬기이다.
상기 화학식 3로 표시되는 공액 고분자 전해질의 산화반응은 특별히 제한되지는 않으며, 예를 들어, 공액 고분자 전해질에 산 또는 산화제를 첨가하여 산화를 유도하거나, 공액 고분자 전해질을 코팅하여 고분자 전해질막을 형성한 후 CV((cyclo voltammetry)를 이용하여 고분자 전해질의 산화를 유도할 수 있다.
가령, n형 공액 고분자 전해질(n-CPEs)의 일종인 폴리(9,9-비스(4'-술포나토부틸)플루오렌-alt-co-1,4-페닐렌(PFP; poly(9,9-bis(4'-sulfonatobutyl)(fluorine-alt-co-1,4-phenylene)을 산화제인 과황산염으로 처리하면 p-도핑된 공액 고분자 전해질(p-CPEs)이 얻어지며, 그 반응은 하기 반응식 1로 표현될 수 있다.
[반응식 1]
Figure PCTKR2015008214-appb-I000013
상기 반응식 1 중 SO3 -X+ 중 X는 Li, K, NH4, 또는 Na일 수 있다. 또한, 상기 반응식 1 중, 과황산염은 XHSO5 (여기서, X=K); X2S2O8 (여기서, X=Na, K, Li, Rb, Cs, 또는 NH4); XS2O8 (여기서, X=Ba, Zn, Ca, Be, Mg, Sr, Ti, 또는 Fe); X2(S2O8)3 (여기서, X=Sb, Al, 또는 V); X(S2O8)2 (여기서, X=Ti); X2(S2O8)5 (여기서, X= V) 등일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 반응식 1 중, R1 및 R2는 각각 독립적으로 -F, -Cl, -Br, -I 등의 할로겐기 또는 -OMe 등의 전자 주개 그룹일 수 있으나, 이에 제한되는 것은 아니다. 편의상, 상기 반응식 1의 우측에 생성된 p-도핑된 공액 고분자 전해질은 R1=-H 및 R2=-H인 경우 X-PFP로 나타낼 수 있으며, R1=-H 및 R2=-F인 경우는 X-PFP-F로, R1=-H 및 R2=-OMe(메톡시기)인 경우는 X-PFP-OMe로, R1=-OMe 및 R2=-OMe인 경우는 X-PFP-O로 나타내기로 한다.
바람직한 실시예로서, 상기 p-도핑된 공액 고분자 전해질은 하기 화학식 2로 표시되는 화합물일 수 있다.
<화학식 2>
Figure PCTKR2015008214-appb-I000014
(상기 식에서, X는 Li, Na, K, Rb, Cs, 및 NH4 중 어느 하나이고, 대괄호의 위 첨자 +는 고분자 주쇄 중 산화된 부분을 나타내고, m은 1 내지 1,000,000의 정수이다.)
도 1은 본 발명의 일 실시예에 따른 유기전자소자(100)를 나타낸 개략도이다.
도 1을 참조하면, 기판(110) 상에 제1 전극(120), p-도핑된 공액 고분자 전해질을 포함하는 전해질층(130), 유기 활성층(140), 전자수송층(150) 및 제2 전극(160)을 차례로 형성할 수 있다. 여기서, 상기 전자수송층(150)은 생략될 수 있다.
상기 기판(110)은 유기전자소자를 지지하기 위해 사용되는 것으로 유리, 석영, Al2O3 및 SiC 등에서 선택된 광투과성 무기물 기판 또는 PET(polyethylene terephthalate), PES(polyethersulfone), PS(polystyrene), PC(polycarbonate), PI(polyimide), PEN(polyethylene naphthalate) 및 PAR(polyarylate) 등에서 선택된 광투과성 프라스틱 기판일 수 있다.
상기 제1 전극(120)은 광투과 전극일 수 있다. 이러한 제1 전극(120)은 ITO(Indium Tin Oxide)막, FTO(Fluorinated Tin Oxide)막, IZO(Indium Zinc Oxide)막, AZO(Al-doped Zinc Oxide)막, ZnO(Zinc Oxide) 또는 IZTO(Indium Zinc Tin Oxide)막일 수 있다.
상기 p-도핑된 공액 고분자 전해질층(130)은 주쇄 중 산화된 부분을 가지고 측쇄에 전하를 가지며 측쇄의 전하와 반대되는 전하를 상대이온을 구비하여 공액 고분자를 구비하여 전해질의 특성을 나타낸다.
구체적으로 측쇄는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나의 음이온을 가질 수 있고, H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나의 양이온을 상대이온으로 가질 수 있다(여기서, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나이다.).
상기 p-도핑된 공액 고분자 전해질층(130)은 외부 회로를 통해 공급받은 정공을 상기 제1 전극(120)으로부터 상기 유기 활성층(140)으로 용이하게 수송하거나(유기발광소자인 경우), 상기 유기 활성층(140)에서 발생한 정공을 상기 제1 전극(120)으로 용이하게 수송하기 위한(유기태양전지인 경우) 정공수송층의 역할을 수행할 수 있다. 이와 더불어, 상기 p-도핑된 고분자 전해질층(130)은 상기 제1 전극(120)의 표면 거칠기를 완화시키는 완충층의 역할을 수행할 수 있다. 또한, 상기 p-도핑된 고분자 전해질층(130)의 LUMO(Lowest Unoccupied Molecular Orbital) 준위는 유기 활성층(140)의 LUMO 준위보다 높아 전자가 유기 활성층(140)으로부터 제1 전극(120)으로 유입되는 것을 막는 전자저지층으로서의 역할을 수행할 수도 있다.
이러한 p-도핑된 공액 고분자 전해질층(130)은 상술한 화학식 1으로 표시되는 화합물을 함유할 수 있다.
또한, 바람직한 실시예로서, 상기 p-도핑된 공액 고분자 전해질층(130)은 상술한 화학식 2로 표시되는 화합물을 함유할 수 있다.
상기 유기 활성층(140)은 발광층(light emitting layer) 또는 광전변환층(photoelectric conversion layer)일 수 있다. 여기서, 발광층이란 외부에서 공급받은 전자와 정공의 결합에 의해 빛을 생성하는 층을 말하며, 광전변환층이란 외부에서 공급받은 빛에 의해 전자-정공쌍(exciton, 여기자)의 생성 및 각각의 전하로의 분리가 일어나는 층을 말한다. 상기 유기 활성층(140)을 발광층 또는 광전변환층으로 구성하는 경우, 상기 유기전자소자(100)는 각각 유기발광소자(organic light emitting device) 또는 유기태양전지(organic solar cell)로 제조할 수 있다.
상기 발광층 및 상기 광전변환층의 재료는 특별히 제한되지 않으며, 다양한 고분자 또는 저분자계 유기물을 사용할 수 있다.
예를 들어, 상기 발광층의 재료는 폴리아닐린(polyaniline)계, 폴리피롤(polypyrrole)계, 폴리아세틸렌(polyacetylene)계, 폴리에틸렌다이옥실티오펜(poly(3,4-ethylenedioxythiophene), PEDOT)계, 폴리페닐렌비닐렌(polyphenylenevinylene, PPV)계, 폴리플루오렌(polyfluorene)계, 폴리파라페닐렌(polyparaphenylene, PPP)계, 폴리알킬티오펜(polyalkylthiophene)계, 폴리피리딘(polypyridine, PPy)계, 폴리비닐카바졸(polyvinylcarbazole)계 또는 이들의 공중합체 중에서 선택되거나, 적절한 호스트/도판트계 물질로부터 선택될 수 있다.
예를 들어, 상기 광전변환층의 전자 주개 물질의 재료로는 폴리티오펜(polythiophene)계, 폴리플루오렌(polyfluorene)계, 폴리아닐린(polyaniline)계, 폴리카바졸(polycarbazole)계, 폴리비닐카바졸(polyvinylcarbazole)계, 폴리페닐렌(polyphenylene)계, 폴리페닐비닐렌(polyphenylvinylene)계, 폴리실란(polysilane)계, 폴리이소티아나프타넨(polyisothianaphthanene)계, 폴리티아졸(polythiazole)계, 폴리벤조티아졸(polybenzothiazole)계, 폴리티오펜옥사이드(polythiopheneoxide)계, 또는 이들의 공중합체일 수 있다. 일예로서, 상기 전자 주개 물질은 상기 폴리티오펜계의 한 종류인 폴리(3-헥실티오펜)(poly(3-hexylthiophene), P3HT)이거나, 상기 고분자들의 공중합체인 PCPDTBT(poly [2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)], PCDTBT(poly[N-9″-heptadecanyl-2,7-carbazolealt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) 또는 PFDTBT(poly(2,7-(9-(2'-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)))일 수 있다. 또한, 예를 들어, 상기 광전변환층의 전자 받개 물질은 C60 내지 C84의 플러렌(fullerene) 또는 그 유도체, 페릴렌(perylene), 고분자 또는 양자점(quantum dot)일 수 있다. 상기 플러렌 유도체는 PCBM, 일 예로서, PCBM(C60)([6,6]-phenyl-C61-butyric acid methyl ester) 또는 PCBM(C70)([6,6]-phenyl-C71-butyric acid methyl ester)일 수 있다.
상기 전자수송층(150)은 외부 회로를 통해 공급받은 전자를 상기 제2 전극(160)으로부터 상기 유기 활성층(140)으로 용이하게 수송하거나(유기발광소자인 경우), 상기 유기 활성층(140)에서 발생한 전자를 상기 제2 전극(160)으로 용이하게 수송하기 위한(유기태양전지인 경우) 역할을 할 수 있다. 이와 더불어, 상기 전자수송층(150)은 상기 유기 활성층(140)에서 발생한 정공이 상기 제2 전극(150)으로 유입되는 것을 막는 정공저지층으로서의 역할을 수행할 수도 있다. 이러한 전자수송층(150)은 일 예로, 티타늄 산화물층일 수 있다. 상기 티타늄 산화물층은 산소나 수증기 등이 상기 유기 활성층(140)에 침투함으로 인한 소자의 열화(degradation)를 방지할 수 있고, 상기 유기 활성층(140)에 도입되는 광량을 증대시키기 위한 광학 스페이서(optical spacer)로서의 역할과 함께 유기전자소자의 수명을 증대시켜 주는 수명증대층의 역할도 수행할 수 있다. 상기 티타늄 산화물층은 졸-겔법을 사용하여 형성될 수 있다.
상기 제2 전극(160)은 상기 제1 전극(120)에 비해 일함수가 작은 전극으로서, 금속 또는 전도성 고분자 전극일 수 있다. 일 예로서, 상기 제2 전극(160)은 Li, Mg, Ca, Ba, Al, Cu, Ag, Au, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd, Cs 및 이들의 합금 중에서 선택되는 어느 하나의 금속 전극일 수 있다. 상기 제2 전극(160)이 금속 전극인 경우 열기상증착, 전자빔증착, 스퍼터링 또는 화학적 증착에 의해 형성하거나, 금속을 포함한 전극 형성용 페이스트를 도포한 후 열처리하여 형성할 수 있다. 하지만 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예일 뿐, 본 발명의 권리범위를 제한하지는 않는다.
[실시예]
제조예1: 공액 고분자 전해질(Conjugated Polyelectrolytes; CPEs)의 합성
[반응식 2]
Figure PCTKR2015008214-appb-I000015
<실시예 1-1> 중간생성물(모노머) 합성
2,7-다이브로모-9H-플루오렌(2,7-dibromo-9H-fluorene) (2.0g, 15.4mmol)과 소량의 트라이에틸벤질암모늄 클로라이드(triethylbenzylammonium chloride)를 30ml의 DMSO에 녹인 후, NaOH 수용액(H2O(4mL) + NaOH(2.0g, 50.0mmol))을 첨가하였다. 30분 동안 교반한 후, 반응 혼합물에 1,4-부테인술톤(1,4-butanesultone) (2.1g, 15.4mmol)을 첨가하였다. 아르곤(Ar) 가스 하에서 100℃에서 12시간 동안 격렬하게 교반한 후 상온으로 냉각시키고 100 mL의 아세톤에 혼합하였다. 침전물을 여과하고 아세톤으로 세척하여 엷은 황색 고체(수율 80~90%)인 소듐 4-(2,7-다이브로모-9(4-술포나토부틸)-9H-플루오렌-9일)부틸 설페이트 (Sodium 4-(2,7-dibromo-9(4-sulfonatobutyl)-9H-fluoren-9yl)butyl sulfate) 모노머를 수득하였다.
얻어진 모노머의 NMR 화학적 이동(chemical shift)은 다음과 같다.
1H NMR (400 MHz, DMSO-d 6 , δppm): 7.73-7.71 (d, 2H, J = 8.00 Hz), 7.66-7.65 (d, 2H, J = 1.70 Hz), 7.47-7.44 (dd, 2H, J = 8.00 Hz, J = 1.70 Hz), 2.10-2.05 (m, 4H), 2.00-1.95 (m, 4H), 1.31-1.23 (m, 4H), 0.40-0.30 (m, 4H).
<실시예 1-2> 모노머의 중합을 통한 n형 CPEs 합성
상기 모노머(1.28g, 2.0mmol)와 보로닉에스테르 유도체(1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene, 2,2'-(2-fluoro-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane), 또는 2,2'-(2,5-dimethoxy-1,4-phenylene)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane))(2.0mmol)을 54mL의 DMF/0/2M NaCO3(aq)(4/5, v/v)에 녹인 D액을 15분 동안 아르곤으로 산소를 제거하였다. 그리고 나서, 아르곤 하에서 상기 용액에 Pd(OAc)2(22.5mg, 0.05mol%)을 첨가하였다. 반응 혼합물을 100℃로 가열하고 12 시간 동안 교반하였다. 점성의 용액을 300mL의 아세톤에 혼합하였다. 침전물은 물에 녹이고 12kD 분획분자량 재생 셀룰로오즈막을 사용하여 투석에 의하여 정제하였다. 투석 후에, 저온 건조법을 사용하여 물을 제거하였다. 수용성의 CPEs로서 각각 연한 황색(PFP), 연한 오렌지색(PFP-F), 및 연한 분홍색(PFP-O)의 고체가 40%의 수율로 각각 수득되었다.
각 물질의 NMR 화학적 이동(chemical shift)은 다음과 같다.
PFP. 1H NMR (400 MHz; DMSO-d 6 , δppm): 7.97-7.36 (m, 10H), 2.33-2.08 (m, 8H), 1.42 (br, 4H), 0.69 (br, 4H).
PFP-F. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.30-7.19 (m, 9H), 2.28 (br, 4H), 2.13 (br, 4H), 1.43 (br, 4H), 0.69 (br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 163.7, 160.6, 158.9, 151.5, 150.9, 143.0, 141.8, 140.1, 139.9, 137.8, 134.0, 131.3, 128.0, 127.2, 125.9, 125.0, 123.4, 121.2, 116.1, 116.0, 114.3, 114.2, 55.2, 55.0, 54.8, 51.4, 34.5, 25.5, 23.2.
PFP-O. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.28-6.90 (m, 8H), 2.30 (br, 4H), 2.02 (br, 4H), 1.43 (br, 4H), 0.76 (br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 153.5, 151.1, 150.5, 150.4, 150.1, 150.0, 149.8, 139.1, 139.0, 136.9, 136.7, 131.2, 129.9, 128.0, 127.0, 124.2, 124.1, 119.5, 119.4, 116.0, 115.8, 114.8, 113.4, 113.3, 56.4, 56.2, 55.5, 55.4, 54.4, 51.3, 51.2, 34.3, 25.3, 23.2.
<실시예 1-3> P형 CPEs 합성
위에서 수득된 CPEs(PFP, PFP-F, 또는 PFP-O) 0.005g을 물 1.0mL에 녹인 수용액에 산화제 X2S2O8(X=K, Na, 또는 NH4 3.0mol과 물 1.0mL의 혼합용액을 섞은 뒤 실온에서 2시간 동안 교반하였다. 오렌지색 침전물을 취합하여 진공여과하고 차가운 탈이온수 100mL로 세척하였다. 후드 내에서 밤새 건조시켜 다소 황색의 p-도핑된 CPEs(X-PFP, X-PFP-F, X-PFP-O)를 90-100%의 수율로 수득하였다.
각 물질의 NMR 화학적 이동(chemical shift)은 다음과 같다.
K-PFP. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.10-7.38 (m, 10H), 2.20 (br, 8H), 1.39 (br, 4H), 0.66 (br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 151.5, 139.7, 139.4, 138.9, 129.1, 127.5, 127.0, 125.8, 121.2, 120.6, 55.0, 51.4, 25.5, 23.3.
NH 4 -PFP. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.10-7.48 (m, 10H), 2.27 (br, 8H), 1.44 (br, 4H) 0.71(br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 151.5, 139.4, 138.9, 129.1, 127.5, 127.2, 127.0, 125.8, 121.3, 120.7, 51.4, 25.4, 23.2.
Na-PFP. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.20-7.40 (m, 10H), 2.21 (br, 8H), 1.40 (br, 4H), 0.56 (br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 174.6, 173.4, 168.7, 163.4, 130.2, 129.7, 129.5, 128.8, 127.2, 124.4, 72.2, 69.9, 51.2, 51.0, 50.5, 34.6, 32.8, 29.2, 20.8.
NH 4 -PFP-F. 1H NMR (600 MHz, DMSO-d 6 , δppm): 7.99-7.64 (m, 9H), 2.27 (br, 4H), 2.09 (br, 4H), 1.42 (br, 4H) 0.68(br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 162.3, 160.4, 158.8, 157.6, 151.6, 150.9, 148.2, 146.3, 141.4, 131.4, 127.0, 125.9, 123.6, 123.4, 121.5, 120.4, 114.4, 113.5, 51.2, 35.8, 25.5, 23.2.
NH 4 -PFP-O. 1H NMR (600 MHz, DMSO-d 6 , δppm): 8.14-7.57 (m, 8H), 2.29 (br, 4H), 2.04 (br, 4H), 1.43 (br, 4H) 0.70(br, 4H); 13C NMR (150 MHz, DMSO-d 6 , δppm): 186.9, 162.4, 150.5, 150.1, 124.3, 120.2, 114.8, 79.2, 79.0, 56.5, 56.3, 55.5, 54.7, 54.4, 51.3, 35.8, 34.4, 30.8, 25.3, 24.9, 23.1.
분석예1: CPEs의 특성 분석
도 3은 전자스핀공명(ESR; Electron Spin Resonance) 분석 결과이다. 산화처리되지 않은 CPEs(PFP, PFP-F, PFP-O)에서는 아무런 신호도 나타나지 않으나, 과황산염 X2S2O8(X=K, Na, NH4)으로 처리하여 p-도핑된 CPEs(X-PFP, X-PFP-F, X-PFP-O)에서는 신호가 관찰되었다. ESR 신호의 세기는 과황산염의 상대 양이온 상의 홀 스핀 밀도(unpaired spin density)에 비례하며, 신호의 세기는 Na+ >NH4 + >K+ 의 순으로 감소함을 확인할 수 있다. 이는 Na+를 함유하는 전해질의 산화 퍼텐셜이 더 높을 것이라는 것을 의미한다. 또한, 각각 다른 작용기가 부착된 전해질을 동일한 과황산염 (NH4)2S2O8으로 처리하여 ESR 분석을 한 결과 NH4-PFP-O > NH4-PFP > NH4-PFP-F의 순으로 신호의 세기가 감소함을 확인하였다(도 3). 이는 NH4-PFP-O 주쇄에서의 고전자밀도가 높은 산화 퍼텐셜을 발생시켜 ESR 신호의 세기 증가로 나타난 것으로 사료된다. 높은 산화 퍼텐셜은 CPEs 주쇄에 더 많은 라디컬 양이온을 생성시켜 폴라론-유도 쌍극자를 효과적으로 생성시킨다. 술포네이트 음이온이 상대이온으로서 양으로 하전된(산화된) 주쇄를 안정화시키며, 도 5에 도시한 바와 같이 분자 내 또는 분자 사이에 상호작용하여 고분자 응집체를 생성할 수 있다.
도 4는 기존의 n형 CPEs와 p-도핑된 CPEs의 흡수 스펙트럼을 보여준다. 산화가 진행됨에 따라, 낮은 에너지(400-600nm)에서의 폴라론 밴드 흡수가 증가하고, 354nm에서의 π-π* 전이가 더 높은 에너지로 약간 이동하였다. 이러한 변화는 공명하는 주쇄에서의 전자 밀도가 증가하였음을 의미한다.
쌍극자의 세기는 CPE 주쇄에 전자 받개 그룹(electron withdrawing group)과 전자 주개 그룹(electron donating group; 전자 공여기)을 조합하여 결합시킴으로써 조절할 수 있다. NH4-PFP-O와 같이 전자 밀도가 큰 주쇄를 가진 전해질을 채용한 ITO 전극에서 유효 일함수의 증가폭이 큰 것으로 관찰되었다(도 8). 이는 낮은 이온화 퍼텐셜을 가진 NH4-PFP-O이 쉽게 산화될 수 있기 때문에 더 강한 쌍극자를 형성하는 것으로 추측된다. 이는 전극의 종류가 Ag, 그래핀(GR), Au, Cu로 달라져도 동일한 결과를 보여주었다(도 9).
제조예2: 태양전지의 제조
<실시예 2>
p-도핑된 CPEs를 정공수송층(HTL)으로 채용한 금속 전극의 일함수 변화를 확인하기 위하여 ITO/HTL/PTB7 (or PTB7-Th):PC71BM/ETL/Al 구조의 BHJ(Bulk Hetero Junction) 태양전지를 제조하였다. 여기서 광전변환층의 PC71BM은 고분자로서 [6,6]-phenyl C71-butyric acid methyl ester을 의미하며 상기 광전변환층은 두 가지 도너 고분자 PTB7 또는 PTB7-Th을 함유하고 있다(도 10). 졸-겔 기반의 티타늄 산화물(TiOx) 또는 PFN을 전자수송층(ETL)로 사용하였다.
X-CPEs의 메탄올 용액(0.02wt%)을 스핀 캐스팅 방법에 의하여 ITO/glass 기판에 도포하여 2nm 두께의 박막을 형성하였다.
클로로벤젠/1,8-다이이오도옥탄(97:3 부피비) 혼합용액에 도너 PTB7 또는 PTB7-Th (1-Material, Inc.)와 억셉터 PC71BM (Solenne B.V.)의 혼합물(1:1.5의 중량비)을 첨가하여 전체 농도가 25mg/ml가 되도록 하여 X-CPEs 박막 상에 스핀 캐스팅하여 광전변환층을 형성하였다. 공기 중에서 TiOx의 메탄올 용액(TiOx:메탄올 = 1:300 부피비) 또는 PFN 메탄올 용액(0.1wt%의 PFN과 소량의 아세트산 함유)을 상기 광전변환층 상에 스핀 캐스팅하고, 80℃의 공기 중에서 10분 동안 베이킹하였다. 마지막으로, 고진공(5 × 10-7 Torr) 하에서 열증착에 의하여 Al(100nm)을 증착하였다.
<비교예 2>
비교를 위하여 X-CPEs 대신에 PEDOT:PSS (Clevios AI 4083) 수용액을 스핀 캐스팅 방법에 의하여 ITO/glass 기판에 도포하여 150℃의 공기 중에서 10분 동안 베이킹하여 PEDOT:PSS 박막을 제조한 것을 제외하고는 실시예 2와 동일한 조건으로 태양전지를 제조하였다.
분석예2: 태양전지의 특성 분석
다양한 공액 고분자 전해질을 HTL로 채용한 태양전지에 대한 유효 일함수와 태양전지의 성능을 나타내는 파라미터를 하기 표 1에 요약하였다. P-도핑된 공액 고분자(X-PFP 또는 NH4-PFP-O, 여기서, X=K, NH4, Na)를 HTL로 채용한 경우 광전변환효율(PCE)이 4-7% 향상된 것으로 나타났으나, p-도핑되지 않은 공액 고분자(PFP)의 PCE는 약 0.1%로 저조하게 나타났다.
도 11에는 p-도핑된 CPEs와 p-도핑되지 않은 CPEs를 각각 HTL로 채용한 소자의 전류밀도-전압 특성을 보여준다. NH4-PFP>Na-PFP>K-PFP>PFP의 순으로 나타났으며, p-도핑된 CPEs 중 NH4-PFP 경우가 특성이 가장 좋은 것으로 확인되었고, p-도핑되지 않은 CPEs인 PFP의 경우가 가장 저조하였다. 표 1에서도 NH4-PFP의 경우 PCE 값이 7.8%로 우수하게 나타났으며, 이는 광활성층의 PTB7의 HOMO 준위와 일함수가 잘 매칭되는 것이 BHJ 태양전지의 성능 향상에 중요함을 의미한다. 또한, Na-PFP는 산화 퍼텐셜이 높게 나타났음에도 불구하고(도 3), 입자 크기가 대략 10000nm에 이르고, 박막의 표면도 거칠게 나타났다(도 7). 이에 반하여, NH4-PFP은 입자의 크기가 5000nm 이하로 양호하고(도 6), 박막은 상대적으로 매끈한 표면을 가지며(도 7), 산화 퍼텐셜도 양호하게 나타나므로(도 3), 우수한 소자 성능을 보여준 것으로 사료된다.
도 12은 가장 큰 유효 일함수(5.6eV)를 보여주는 NH4-PFP-O와 PEDOT:PSS를 각각 HTL로 채용하고 PFN을 ETL로 채용한 소자의 전류밀도-전압 특성을 보여준다. PEDOT:PSS에 비하여 전극을 부식시킬 염려가 없다는 장점에 더하여 전류밀도가 16.7mA/㎠로 PEDOT:PSS의 경우(15.8mA/㎠)보다 대략 1mA/㎠ 더 향상되었으며 PCE는 9.4%로 PEDOT:PSS의 경우(8.9%)보다 0.5% 정도 더 크게 나타났다.
표 1
HTL Effective WF (eV) Solar cell parameters
KP UPS ETL Donor Material V oc (V) J sc (mA cm-2) FF(%) PCE (%)
ITO Ag Au Cu GR ITO Best Average
4.80 4.68 5.00 4.70 4.76 4.82 TiOx PTB7 0.67 14.1 53 4.9 4.7
PFP 4.37 TiOx PTB7 0.27 2.3 13 0.1
K-PFP 5.04 4.86 5.14 4.89 4.93 4.99 TiOx PTB7 0.64 14.9 42 4.0 3.7
NH4-PFP 5.18 4.95 5.21 4.92 5.01 5.05 TiOx PTB7 0.75 15.3 68 7.8 7.6
Na-PFP 5.35 5.03 5.26 4.95 5.08 5.14 TiOx PTB7 0.72 15.3 65 7.2 6.9
NH4-PFP-O 5.56 5.26 TiOx PTB7-Th 0.79 15.8 70 8.7 8.5
PFN PTB7-Th 0.79 16.7 71 9.4 9.2
PEDOT:PSS 5.05 5.03 5.07 5.01 5.03 5.10 TiOx PTB7-Th 0.79 15.5 70 8.5 8.4
PFN PTB7-Th 0.79 15.8 72 8.9 8.8
제조예3: 유기발광다이오드(OLED)의 제조
<실시예 3>
p-도핑된 CPEs를 정공수송층(HTL)으로 채용한 OLED의 성능평가를 위하여 ITO/NH4-PFP-O/Super Yellow/Ca/Al 구조의 OLED를 제조하였다. 여기서 발광층으로는 poly(p-phenylene vinylene) derivative (Super Yellow, SY)를 사용하였다.
NH4-PFP-O의 메탄올 용액(0.5wt%)을 스핀 캐스팅 방법에 의하여 ITO/glass 기판에 도포하여 박막을 형성하였다.
aryl-substituted poly(p-phenylenevinylene) derivative (Super Yellow, Merck, Inc.) 톨루엔 용액(0.5wt%)를 NH4-PFP-O 박막 상에 스핀 캐스팅하여 발광층을 형성하였다. 그리고 나서 글러브 박스 내에서 80℃ 온도로 10분 동안 베이킹하였다. 마지막으로, 고진공(5 × 10-7 Torr) 하에서 열증착에 의하여 Al(100nm)-capped Ca(20nm) 전극을 증착하였다.
<비교예 3>
비교를 위하여 NH4-PFP-O 대신에 PEDOT:PSS (Clevios AI 4083) 수용액 또는 Plexcore®RG-1200 (Sigma Aldrich, Inc.) 수용액을 스핀 캐스팅 방법에 의하여 ITO/glass 기판에 도포하여 PEDOT:PSS 박막은 150℃의 공기 중에서, Plexcore® 박막은 160℃의 공기 중에서 10분 동안 건조한 뒤 발광층 형성을 위하여 글러브 박스로 옮기는 것을 제외하고는 실시예 3과 동일한 조건으로 OLED를 제조하였다.
분석예3: OLED의 특성 분석
도 14과 도 15는 HTL로서 PEDOT:PSS, Plexcore® 및 NH4-PFP-O을 사용한 경우 각각에 대하여 휘도(L)-전압(V), 발광효율(LE)-휘도(L)를 나타낸다. NH4-PFP-O의 최대 L(L ~ 46,000 cd m-2)은 PEDOT:PSS (L ~ 44,000 cd m-2) 또는 Plexcore® (L ~ 28,000 cd m-2)를 사용한 소자의 경우보다 약간 높게 나타났다. 그러나, NH4-PFP-O 소자의 LE(LE ~ 7.1 cd A-1)는 PEDOT:PSS (LE ~ 5.1 cd A-1) 및 Plexcore® (LE ~ 6.4 cd A-1)의 경우보다 상당히 높게 나타났다.
또한 소자의 수명을 평가하기 위하여 휘도(L)가 최초의 휘도(L 0) 대비 반(1/2)으로 되는 시점까지의 소자의 동작시간(t 1/2 )을 측정하였다(도 16). NH4-PFP-O 소자의 경우 272 min으로 계산되었으며 이는 PEDOT:PSS (136 min) 또는 Plexcore® (46 min)의 경우에 비하여 2 내지 5배 더 긴 시간이다. 이는 PEDOT:PSS 및 Plexcore®의 pH값(PEDOT:PSS : 1.2~2.2, Plexcore®: 2.2~2.6)이 산성영역으로서 ITO 전극의 부식에 따라 소자의 열화를 가져온 결과 인듐이 발광층으로 확산되기 때문에 나타난 현상이다. 이에 반해 본 발명의 NH4-PFP-O 용액은 중성 pH (6.7~7.0) 으로 확인되어 이러한 문제에서 자유롭다.

Claims (6)

  1. 하기 화학식 1로 표시되는 화합물을 함유하는 p-도핑된 공액 고분자 전해질:
    <화학식 1>
    Figure PCTKR2015008214-appb-I000016
    상기 식에서, Ar1은 하기 제1a 화합물군에서 선택되는 어느 하나이고,
    Ar2는 하기 제1b 화합물군에서 선택되는 어느 하나 또는 하기 제2 화합물군에서 선택되는 어느 하나이고,
    대괄호의 위 첨자 +는 고분자 주쇄 중 산화된 부분을 나타내고,
    m은 1 내지 1,000,000의 정수이다.
    <제1a 화합물군>
    Figure PCTKR2015008214-appb-I000017
    (상기 제1a 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.)
    <제1b 화합물군>
    Figure PCTKR2015008214-appb-I000018
    (상기 제1b 화합물군에서 선택되는 각 화합물에 대하여 독립적으로 모든 Y가 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이거나,
    적어도 하나의 Y는 -CnH2n-P- (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 -CO2 - 중에서 선택되는 어느 하나임.)이고, 그 나머지 Y는 -CnH2n-P-Q+ (n은 1 내지 20의 정수이고, P-는 SO3 -, PO3 2- 및 CO2 - 중에서 선택되는 어느 하나이고, Q+는 H+, Li+. Na+, K+, Rb+, Cs+, N+H4, 및 N+R1R2R3R4 중에서 선택되는 어느 하나이며, R1, R2, R3, 및 R4는 서로에 관계없이 C1~C11의 알킬기 중에서 선택되는 어느 하나임)이다.)
    <제2 화합물군>
    Figure PCTKR2015008214-appb-I000019
    (상기 제2 화합물군에서 A는 각각 독립적으로 -H, -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이고, B는 각각 독립적으로 -H, -R, -CH=CR2, F, Cl, Br, 및 I에서 선택되는 어느 하나이며, Z는 각각 독립적으로 -NR2, -NH2, -OH, -OR, -NHC(=O)R, -OC(=O)R, -R, -CH=CR2, F, Cl, Br, 및 I, -C(=O)R, -C(=O)OR, -C(=O)NR1R2에서 선택되는 어느 하나이며, W는 각각 독립적으로 -H, 및 -R에서 선택되는 어느 하나이며, R, R1 및 R2는 독립적으로 H 또는 C1~C20의 알킬기이다.)
  2. 제 1항에 있어서,
    상기 p-도핑된 공액 고분자 전해질은 하기 화학식 2로 표시되는 화합물인, p-도핑된 공액 고분자 전해질:
    <화학식 2>
    Figure PCTKR2015008214-appb-I000020
    (상기 식에서, X는 Li, Na, K, Rb, Cs, 및 NH4 중 어느 하나이고, 대괄호의 위 첨자 +는 고분자 주쇄 중 산화된 부분을 나타내고, m은 1 내지 1,000,000의 정수이다.)
  3. 제1 전극;
    상기 제1 전극 상에 위치하는 제1항 내지 제2항 중 어느 한 항에 따른 p-도핑된 공액 고분자 전해질을 포함하는 층;
    상기 고분자 전해질층 상에 위치하는 유기 활성층; 및
    상기 유기 활성층 상에 위치하는 제2 전극을 포함하는 유기전자소자.
  4. 제3항에 있어서,
    상기 유기 활성층은 발광층(light emitting layer) 또는 광전변환층(photoelectric conversion layer)인 유기전자소자.
  5. 제3항에 있어서,
    상기 유기 활성층과 제2 전극 사이에 위치하는 전자수송층을 더 포함하는 유기전자소자.
  6. 제3항에 있어서,
    상기 전자수송층은 티타늄 산화물층인 유기전자소자.
PCT/KR2015/008214 2014-08-07 2015-08-05 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자 WO2016021939A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140101846A KR101684636B1 (ko) 2014-08-07 2014-08-07 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
KR10-2014-0101846 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021939A1 true WO2016021939A1 (ko) 2016-02-11

Family

ID=55264138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008214 WO2016021939A1 (ko) 2014-08-07 2015-08-05 P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자

Country Status (2)

Country Link
KR (1) KR101684636B1 (ko)
WO (1) WO2016021939A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470837A (zh) * 2018-04-11 2018-08-31 南昌航空大学 一种聚合物太阳能电池阳极修饰层材料及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209384A1 (ko) 2016-06-03 2017-12-07 주식회사 엘지화학 유기 전자 소자 및 이의 제조 방법
KR102350862B1 (ko) * 2020-08-26 2022-01-14 동국대학교 산학협력단 공액 고분자 전해질이 도핑된 유기 반도체 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073199A (ko) * 2007-02-05 2008-08-08 광주과학기술원 금속 이온이 결합된 수용성 공액 고분자 및 그 응용
US20090152531A1 (en) * 2004-10-11 2009-06-18 Cambridge Display Technology Ltd Polar semiconductor hole transporting material
KR20100044484A (ko) * 2008-10-22 2010-04-30 경성대학교 산학협력단 고분자 유기 전계 발광 소자 및 그 제조방법
KR20110129754A (ko) * 2010-05-26 2011-12-02 광주과학기술원 P―도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
KR20130126785A (ko) * 2012-04-17 2013-11-21 국성폴리텍 주식회사 N형 수용성 공액 고분자 화합물 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152531A1 (en) * 2004-10-11 2009-06-18 Cambridge Display Technology Ltd Polar semiconductor hole transporting material
KR20080073199A (ko) * 2007-02-05 2008-08-08 광주과학기술원 금속 이온이 결합된 수용성 공액 고분자 및 그 응용
KR20100044484A (ko) * 2008-10-22 2010-04-30 경성대학교 산학협력단 고분자 유기 전계 발광 소자 및 그 제조방법
KR20110129754A (ko) * 2010-05-26 2011-12-02 광주과학기술원 P―도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
KR20130126785A (ko) * 2012-04-17 2013-11-21 국성폴리텍 주식회사 N형 수용성 공액 고분자 화합물 및 이의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470837A (zh) * 2018-04-11 2018-08-31 南昌航空大学 一种聚合物太阳能电池阳极修饰层材料及制备方法

Also Published As

Publication number Publication date
KR101684636B1 (ko) 2016-12-08
KR20160018008A (ko) 2016-02-17

Similar Documents

Publication Publication Date Title
Bian et al. Recent progress in the design of narrow bandgap conjugated polymers for high-efficiency organic solar cells
KR101777779B1 (ko) P-도핑된 공액 저분자 전해질 및 이를 이용한 유기전자소자
KR101612609B1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2011149172A1 (ko) 피-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
WO2014051182A1 (ko) 광 활성층, 이를 포함한 유기 태양 전지 및 이의 제조 방법
EP3332432B1 (en) Organic electronic device and the production of organic electronic devices
WO2017209384A1 (ko) 유기 전자 소자 및 이의 제조 방법
WO2015167285A1 (ko) 태양 전지 및 이의 제조 방법
WO2015122722A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2014119962A1 (ko) 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지
WO2021025519A1 (ko) 페로브스카이트 광전소자 및 이의 제조방법
WO2015167284A1 (ko) 유기 태양 전지 및 이의 제조방법
Patra et al. Selenium‐containing π‐conjugated polymers for organic solar cells
WO2016021939A1 (ko) P-도핑된 공액 고분자 전해질 및 이를 이용한 유기전자소자
KR20180104398A (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2019004605A1 (ko) 유기 태양 전지
WO2015016626A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지
WO2019221386A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2014092408A1 (ko) 공중합체 및 이를 이용한 유기 태양 전지
KR20180059011A (ko) 첨가제를 함유하는 인쇄공정용 광활성 잉크 및 이를 이용한 광활성층의 제조방법
WO2021107645A1 (ko) 페로브스카이트 광전소자 및 이의 제조방법
WO2023234601A1 (ko) 대면적 페로브스카이트 박막 형성용 코팅제 및 이를 이용한 대면적 페로브스카이트 박막 형성 방법
KR20180126814A (ko) 유기 태양 전지
WO2015182973A1 (ko) 포스핀 옥사이드기를 포함하는 유기 반도체 화합물 및 이를 이용한 유기태양전지
WO2017131376A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15830290

Country of ref document: EP

Kind code of ref document: A1