WO2016021418A1 - 制御装置、撮像装置、および液晶ローパスフィルタの制御方法 - Google Patents

制御装置、撮像装置、および液晶ローパスフィルタの制御方法 Download PDF

Info

Publication number
WO2016021418A1
WO2016021418A1 PCT/JP2015/070955 JP2015070955W WO2016021418A1 WO 2016021418 A1 WO2016021418 A1 WO 2016021418A1 JP 2015070955 W JP2015070955 W JP 2015070955W WO 2016021418 A1 WO2016021418 A1 WO 2016021418A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarization state
image data
crystal layer
output
Prior art date
Application number
PCT/JP2015/070955
Other languages
English (en)
French (fr)
Inventor
明 竹尾
忠幸 平野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/326,850 priority Critical patent/US10122901B2/en
Priority to JP2016540151A priority patent/JP6597618B2/ja
Publication of WO2016021418A1 publication Critical patent/WO2016021418A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/365Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals by analysis of the spatial frequency components of the image
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present technology relates to a control device including a control unit that controls a liquid crystal layer of a liquid crystal low-pass filter, and an imaging device including the control unit.
  • the present technology also relates to a liquid crystal low-pass filter driving method for controlling a liquid crystal layer of the liquid crystal low-pass filter.
  • the imaging device includes an imaging element in which a plurality of photoelectric conversion elements are two-dimensionally arranged at a predetermined interval (hereinafter referred to as “pixel pitch”), and a color filter array that is arranged on a light incident surface of the imaging element. Is provided.
  • the imaging device obtains color image data by discretely sampling subject light incident via a photographing lens by an imaging device and a color filter array.
  • the imaging device has a resolution limit (Nyquist frequency) determined by the pixel pitch of the imaging element and the color arrangement pitch of the color filter array. For this reason, when subject light having a high frequency component equal to or higher than the Nyquist frequency is incident on the imaging device, the high frequency component equal to or higher than the Nyquist frequency becomes a folded component in real space, and the striped pattern in which the color and brightness of the image data varies periodically. (Moire) occurs. For this reason, an OLPF (Optical Low Pass Filter) in which the Nyquist frequency is set to the cutoff frequency is usually provided between the photographing lens and the image sensor, and the high frequency component of light incident on the image sensor is generated by the OLPF. Removed.
  • OLPF Optical Low Pass Filter
  • the readout pitch differs between the still image mode and the movie mode, and the Nyquist frequency also differs accordingly.
  • the readout pitch is usually larger than the readout pitch in the still image mode, and the Nyquist frequency is smaller than the Nyquist frequency in the still image mode. For this reason, in the moving image mode, moire is more likely to occur from a lower frequency region than in the still image mode.
  • the cut-off frequency of the OLPF was set to the Nyquist frequency of the still image mode, giving priority to the resolution of the still image, and an optimal OLPF was not provided for both modes.
  • the cut-off frequency is a fixed value. Therefore, it cannot be changed to a cutoff frequency different from the cutoff frequency set at the beginning. As a result, for example, it has been extremely difficult to continuously shoot still images while changing the cutoff frequency.
  • an imaging device capable of continuously capturing still images while changing the cutoff frequency, and a control device and a liquid crystal low-pass filter control method that can be suitably applied to such an imaging device.
  • a control device includes a liquid crystal layer of a liquid crystal low-pass filter that has a first polarization state, a second polarization state, and polarization between the first polarization state and the second polarization state. And a control unit that performs control to set any one of the intermediate polarization states.
  • the control unit controls the polarization state of the liquid crystal layer to the first polarization state or the second polarization state when outputting the first image data when a plurality of image data is output from the image sensor.
  • the polarization state of the liquid crystal layer is controlled to the intermediate polarization state.
  • the control unit when two image data are output from the imaging device, the control unit changes the polarization state of the liquid crystal layer to the first when the first image data is output.
  • the polarization state or the second polarization state may be controlled, and when the second image data is output, the polarization state of the liquid crystal layer may be controlled to the intermediate polarization state.
  • the control unit may change the polarization state of the liquid crystal layer when the first image data is output when three or more pieces of image data are output from the imaging element. It may be configured to control to the first polarization state or the second polarization state.
  • control unit further sets the polarization state of the liquid crystal layer when the second image data is output from the first polarization state and the second polarization state when the first image data is output.
  • the polarization state of the liquid crystal layer may be controlled to be an intermediate polarization state when outputting the third and subsequent image data.
  • the first polarization state refers to, for example, a state in which light incident on the liquid crystal layer is rotated by 90 degrees
  • the second polarization state refers to, for example, a liquid crystal It refers to the state where the light incident on the layer is not rotated.
  • the first drive signal applied to the liquid crystal layer by the control unit to bring the liquid crystal layer into the first polarization state is, for example, a polarization conversion efficiency curve of the liquid crystal layer. Is a signal with a voltage or frequency near the maximum value of the polarization conversion efficiency.
  • the second drive signal applied to the liquid crystal layer by the control unit to bring the liquid crystal layer into the second polarization state is, for example, a signal having a voltage or frequency in which the polarization conversion efficiency curve of the liquid crystal layer is near the minimum value of the polarization conversion efficiency. is there.
  • An image pickup apparatus controls an image pickup device that outputs an image data, a liquid crystal low-pass filter that has a liquid crystal layer and is disposed on a light incident path with respect to the image pickup device, And a control unit for controlling the liquid crystal layer.
  • the control unit has the same components as the control unit included in the control device.
  • the control method of the liquid crystal low-pass filter according to the embodiment of the present technology is a control method of the liquid crystal low-pass filter disposed on the light incident path with respect to the imaging element.
  • the control method when a plurality of image data is output from the image sensor, the polarization state of the liquid crystal layer is controlled to the first polarization state or the second polarization state when the first image data is output. It includes controlling the polarization state of the liquid crystal layer to an intermediate polarization state when outputting at least one image data after the second.
  • the polarization state of the liquid crystal layer of the liquid crystal low-pass filter changes, so that the point image intensity distribution of the light transmitted through the liquid crystal low-pass filter
  • the peak value also changes.
  • the cutoff frequency of the liquid crystal low-pass filter also changes.
  • the cut-off frequency is changed by a method (peak value modulation method) different from the conventional method (separation width modulation method) for changing the ps separation width of transmitted light.
  • the cutoff frequency of the liquid crystal low-pass filter can be changed by changing the peak value of the point image intensity distribution of the transmitted light according to the polarization state of the liquid crystal layer of the liquid crystal low-pass filter. Therefore, it is possible to set a cut-off frequency different from the cut-off frequency initially set by simply changing the polarization state of the liquid crystal layer of the liquid crystal low-pass filter.
  • the liquid crystal when two or more pieces of image data are output from the imaging device, the liquid crystal is output when the first image data is output.
  • the polarization state of the layer is the first polarization state or the second polarization state, and when the second image data is output, the polarization state of the liquid crystal layer is the intermediate polarization state.
  • the control device, the imaging device, and the liquid crystal low-pass filter control method according to the embodiment of the present technology since the polarization state of the liquid crystal layer of the liquid crystal low-pass filter is changed, the cutoff frequency can be changed. .
  • the control device, the imaging device, and the liquid crystal low-pass filter control method according to the embodiment of the present technology the waiting time due to the response speed of the liquid crystal can be shortened. When the camera is changed, the waiting time until the start of the next shooting can be shortened. Therefore, it is possible to continuously capture still images while changing the cutoff frequency.
  • the effect of this technique is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 6 is a diagram illustrating an example of a polarization conversion efficiency curve (VT curve) of the liquid crystal layer in FIG. 5.
  • FIG. 6 is a diagram illustrating an example of a polarization conversion efficiency curve (FT curve) of the liquid crystal layer in FIG. 5.
  • FIG. 8 is a diagram illustrating an example of MTF (Modulation / Transfer / Function) of FIGS. 7A to 7D. It is a figure showing an example of the imaging procedure in the imaging device of FIG. It is a figure showing an example of the time-dependent change of the polarization conversion efficiency and applied voltage in the imaging procedure of FIG. It is a figure showing an example of the time-dependent change of the polarization conversion efficiency and applied voltage in the imaging procedure which concerns on a comparative example. It is a figure showing the modification of the polarization conversion efficiency in the imaging procedure of FIG.
  • MTF Modulation / Transfer / Function
  • FIG. 16 is a diagram illustrating a modification of applied voltage with time in the imaging procedure of FIG. 15.
  • FIG. 16 is a diagram illustrating a modification of applied voltage with time in the imaging procedure of FIG. 15.
  • FIG. 20 is a diagram illustrating a modification of the polarization conversion efficiency curve (VT curve) of the liquid crystal layer in FIGS. 4 and 19.
  • FIG. 20 is a diagram illustrating a modification of the polarization conversion efficiency curve (FT curve) of the liquid crystal layer in FIGS. 4 and 19. It is a figure showing an example of the imaging procedure in an imaging device provided with the liquid crystal layer which has the polarization conversion efficiency curve of Drawing 21A or Drawing 21B.
  • FIG. 27 is a diagram illustrating a modification of applied voltage with time in the imaging procedure of FIG. 26.
  • FIG. 27 is a diagram illustrating a modification of applied voltage with time in the imaging procedure of FIG. 26.
  • FIG. 20 is a diagram illustrating a modification of the liquid crystal low-pass filter of FIGS. 4 and 19. It is a figure showing the modification of schematic structure of the imaging device of FIG. It is a figure showing the modification of schematic structure of the imaging device of FIG. It is a figure showing the modification of schematic structure of the imaging device of FIG. 2, and a calculating part.
  • FIG. 32 is a diagram illustrating a modification of the schematic configuration of the imaging device and the calculation unit in FIG. 31.
  • FIG. 33 is a diagram illustrating a modification of the schematic configuration of the imaging device and the calculation unit in FIG. 32.
  • FIG. 1 illustrates an example of a schematic configuration of an imaging apparatus 1 according to an embodiment of the present technology.
  • the imaging device 1 includes, for example, an imaging device 10, a calculation unit 20, a display unit 30, a memory unit 40, and an input unit 50.
  • FIG. 2 illustrates an example of a schematic configuration of the imaging device 10.
  • the imaging device 10 includes, for example, a liquid crystal low-pass filter 11, an imaging element 12, a lens 13, an iris 14, and a drive circuit 15.
  • a lens 13 and an iris 14 are provided before the liquid crystal low-pass filter 11, and an imaging element 12 is provided after the liquid crystal low-pass filter 11. That is, the liquid crystal low-pass filter 11 is disposed on the light incident path with respect to the image sensor 12.
  • the liquid crystal low-pass filter 11 will be described later in detail.
  • the image sensor 12 includes, for example, a light receiving unit in which a plurality of photoelectric conversion elements are two-dimensionally arranged at a predetermined interval, and a color filter array arranged on a light incident surface of the light receiving unit.
  • the image sensor 12 obtains color image data by discretely sampling subject light incident via the lens 13, the iris 14, and the liquid crystal low-pass filter 11 using a light receiving unit and a color filter array. It has become.
  • the lens 13 collects subject light and makes it incident on the light incident surface of the image sensor 12.
  • the iris 14 adjusts the amount of subject light incident on the light incident surface of the image sensor 12.
  • the drive circuit 15 mechanically drives the lens 13 and the iris 14. For example, the drive circuit 15 adjusts the focal point by moving the position of the lens 13 on the optical axis back and forth. The drive circuit 15 further adjusts the amount of incident light on the light incident surface of the image sensor 12 by adjusting the iris amount of the iris 14, for example.
  • the drive circuit 15 further drives the liquid crystal low-pass filter 11 and the image sensor 12.
  • the drive circuit 15 adjusts the cut-off frequency fc of the liquid crystal low-pass filter 11 by applying a voltage V (constant frequency) or a voltage F (constant voltage value) between the electrodes of the liquid crystal low-pass filter 11. It has become.
  • the drive circuit 15 supplies the first voltage or the first frequency voltage, the second voltage or the second frequency voltage, and the intermediate voltage or the intermediate frequency voltage to the electrodes of the liquid crystal low-pass filter 11. It can be applied between.
  • the drive circuit 15 controls the polarization state of the liquid crystal layer 113 (described later) of the liquid crystal low-pass filter 11 to the first polarization state by applying a first voltage or a voltage of the first frequency between the electrodes of the liquid crystal low-pass filter 11. It is supposed to be.
  • the drive circuit 15 applies the second voltage or the second frequency voltage between the electrodes of the liquid crystal low-pass filter 11 so as to control the polarization state of the liquid crystal layer 113 of the liquid crystal low-pass filter 11 to the second polarization state. It has become.
  • the drive circuit 15 is configured to control the polarization state of the liquid crystal layer 113 of the liquid crystal low-pass filter 11 to the intermediate polarization state by applying an intermediate voltage or an intermediate-frequency voltage between the electrodes of the liquid crystal low-pass filter 11.
  • the drive circuit 15 drives the image sensor 12 to acquire image data with the image sensor 12 and output the image data to the outside.
  • FIG. 3 illustrates an example of a schematic configuration of the calculation unit 20.
  • the calculation unit 20 performs predetermined processing on the image data Draw output from the imaging device 10.
  • the computing unit 20 includes, for example, a preprocessing circuit 21, a control circuit 22, a display processing circuit 23, a compression / expansion circuit 24, and a memory control circuit 25.
  • the pre-processing circuit 21 performs optical correction processing such as shading correction on the image data Draw output from the imaging device 10.
  • the control circuit 22 is, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the control circuit 22 executes a program stored in a ROM or the like to perform various processes described later on the corrected image data D output from the preprocessing circuit 21.
  • the control circuit 22 is configured to output image data being exposed to the display processing circuit 23.
  • the control circuit 22 is configured to output image data being exposed and image data to be imaged to the compression / decompression circuit 24. The control circuit 22 will be described later in detail.
  • the display processing circuit 23 generates an image signal to be displayed on the display unit 30 from the image data received from the control circuit 22, and sends the image signal to the display unit 30.
  • the compression / decompression circuit 24 compresses and encodes still image data received from the control circuit 22 by a still image encoding method such as JPEG (Joint Photographic Experts Group).
  • the compression / decompression circuit 24 performs compression encoding processing on the moving image data received from the control circuit 22 by a moving image encoding method such as MPEG (Moving / Picture / Experts / Group).
  • the memory control circuit 25 controls writing and reading of image data with respect to the memory unit 40.
  • the display unit 30 includes, for example, an LCD (Liquid Crystal Display), and displays image data during exposure, image data read from the memory unit 40, and the like.
  • the memory unit 40 stores image data received from the memory control circuit 25.
  • the input unit 50 receives an instruction from the user, and includes, for example, operation buttons and a keyboard.
  • FIG. 4 illustrates an example of a schematic configuration of the liquid crystal low-pass filter 11.
  • the liquid crystal low-pass filter 11 removes high spatial frequency components contained in the subject light, and is driven by the drive circuit 20 to change the cutoff frequency fc.
  • the liquid crystal low-pass filter 11 changes the cutoff frequency fc by a method (peak value modulation method) different from the conventional method (separation width modulation method) for changing the ps separation width of transmitted light.
  • peak value modulation method will be described later in detail.
  • the liquid crystal low-pass filter 11 includes a pair of birefringent plates 111 and 115 having birefringence, and a liquid crystal layer 113 disposed between the pair of birefringent plates 111 and 115.
  • the liquid crystal low-pass filter 11 further includes electrodes 112 and 114 that apply an electric field to the liquid crystal layer 113.
  • the liquid crystal low-pass filter 11 may include, for example, an alignment film that regulates the alignment of the liquid crystal layer 113.
  • the electrodes 112 and 114 are arranged to face each other with the liquid crystal layer 113 interposed therebetween. Each of the electrodes 112 and 114 is composed of one sheet-like electrode. Note that at least one of the electrode 112 and the electrode 114 may be composed of a plurality of partial electrodes.
  • the electrodes 112 and 114 are, for example, light-transmitting conductive films such as ITO (Indium Tin Oxide).
  • the electrodes 112 and 114 may be, for example, a light-transmitting inorganic conductive film, a light-transmitting organic conductive film, or a light-transmitting metal oxide film.
  • the liquid crystal low-pass filter 11 may have a sealing material that seals the liquid crystal layer 113.
  • the sealing material may include a plurality of spacers that maintain a gap between the pair of birefringent plates 111 and 115, or may not include a plurality of spacers. Each spacer is, for example, a glass spacer.
  • Each spacer may be made of, for example, a light-transmitting inorganic material, a light-transmitting organic material, or a light-transmitting metal oxide.
  • a plurality of spacers may be provided in the liquid crystal layer 113 or may not be provided in the liquid crystal layer 113.
  • the diameter of each spacer is preferably 7 ⁇ m or less.
  • the spacer included in the sealing material may have a diameter of 7 ⁇ m or more.
  • the number of spacers is preferably 10 or less per square millimeter in the liquid crystal layer 113.
  • the birefringent plate 111 is disposed on the light incident side of the liquid crystal low-pass filter 11, and for example, the outer surface of the birefringent plate 111 is a light incident surface 110A.
  • the incident light L1 is light that enters the light incident surface 110A from the subject side.
  • the birefringent plate 111 is disposed so that the optical axis of the incident light L1 is parallel to the normal 111A of the birefringent plate 111 (or the light incident surface 110A).
  • the birefringent plate 115 is disposed on the light exit side of the liquid crystal low-pass filter 11, and for example, the outer surface of the birefringent plate 115 is a light exit surface 110B.
  • the transmitted light L2 of the liquid crystal low-pass filter 11 is light emitted to the outside from the light emitting surface 110B.
  • the birefringent plate 111, the electrode 112, the liquid crystal layer 113, the electrode 114, and the birefringent plate 115 are stacked in this order from the light incident side.
  • the normal lines of the electrode 112, the liquid crystal layer 113, the electrode 114, and the birefringent plate 115 are parallel to the normal line 111A.
  • FIG. 5 shows an example of the optical axis of the pair of birefringent plates 111 and 115 in the liquid crystal low-pass filter 11.
  • the birefringent plates 111 and 115 are birefringent and have a uniaxial crystal structure.
  • the birefringent plates 111 and 115 have a function of separating ps of circularly polarized light using birefringence.
  • the birefringent plates 111 and 115 are made of, for example, quartz, calcite, or lithium niobate.
  • the separation factor of lithium niobate is 6.4 times larger than the separation factor of quartz when the wavelength is 589.3 nm (d-line). Therefore, the thickness required for obtaining the same separation width can be made thinner in lithium niobate than in quartz.
  • the image separation directions are opposite to each other.
  • the optical axis AX1 of the birefringent plate 111 and the optical axis AX2 of the birefringent plate 115 intersect each other in a plane parallel to the normal line 111A of the light incident surface 110A.
  • An angle ⁇ 1 formed by the optical axis AX1 and the optical axis AX2 is, for example, 90 °. Further, the optical axes AX1 and AX2 obliquely intersect the normal line 111A of the incident surface 110A.
  • the angle ⁇ 2 formed by the optical axis AX1 and the normal line 111A is, for example, smaller than 90 ° counterclockwise with respect to the normal line 111A, for example, 45 °.
  • the angle ⁇ 3 formed by the optical axis AX2 and the normal 111A is, for example, greater than 90 ° and smaller than 180 ° counterclockwise with respect to the normal 111A, for example, 135 ° (180-45 °). It has become.
  • FIG. 6A shows an example of a polarization conversion efficiency curve (VT curve) of the liquid crystal layer 113.
  • FIG. 6B shows an example of the polarization conversion efficiency curve (FT curve) of the liquid crystal layer 113.
  • the horizontal axis is a voltage V (frequency constant) applied between the electrodes 112 and 114.
  • the horizontal axis represents the frequency F of the voltage applied between the electrodes 112 and 114 (constant voltage).
  • the vertical axis represents the polarization conversion efficiency T.
  • the polarization conversion efficiency T is obtained by multiplying a value obtained by dividing the phase difference given to linearly polarized light by 90 degrees by 100.
  • a polarization conversion efficiency T of 0% means that no phase difference is given to linearly polarized light. For example, it means that linearly polarized light has passed through the medium without changing its polarization direction. Yes.
  • a polarization conversion efficiency T of 100% means that a phase difference of 90 degrees is given to linearly polarized light.
  • a medium obtained by converting p-polarized light to s-polarized light or s-polarized light to p-polarized light. Indicates that it has passed through.
  • a polarization conversion efficiency T of 50% means that a phase difference of 45 degrees is given to linearly polarized light. For example, p-polarized light or s-polarized light is converted into circularly polarized light and transmitted through the medium. pointing.
  • the liquid crystal layer 113 controls polarization based on the electric field generated by the voltage between the electrodes 112 and 114.
  • the polarization conversion efficiency T becomes T2
  • the voltage V2 (V1 ⁇ V2) is applied between the electrodes 112 and 114.
  • the polarization conversion efficiency T becomes T1.
  • T2 is 100% and T1 is 0%.
  • the polarization conversion efficiency T becomes T3.
  • T3 is a value larger than 0% and smaller than 100%.
  • FIG. 6A illustrates a case where the voltage V3 is a voltage when T3 is 50%.
  • the voltage V1 is a voltage equal to or lower than the voltage (second voltage) at the falling position of the polarization conversion efficiency curve.
  • the polarization conversion efficiency is saturated near the maximum value. It indicates the voltage of the section.
  • the voltage V2 is a voltage equal to or higher than the voltage (first voltage) at the rising position of the polarization conversion efficiency curve.
  • the voltage V3 is a voltage (intermediate voltage) between the voltage at the falling position of the polarization conversion efficiency curve (first voltage) and the voltage at the rise position of the polarization conversion efficiency curve (second voltage).
  • the voltage V3 is a voltage in a section where the polarization conversion efficiency is saturated near the maximum value in the polarization conversion efficiency curve, and the polarization conversion efficiency is saturated near the minimum value in the polarization conversion efficiency curve. It is a voltage between the voltage of a section.
  • the polarization conversion efficiency T becomes T2
  • the frequency F1 F1 ⁇ F2
  • the polarization conversion efficiency T becomes T1
  • the polarization conversion efficiency T becomes T3.
  • FIG. 6B illustrates a case where the frequency F3 is a frequency when T3 is 50%.
  • the frequency F1 is a frequency equal to or lower than the frequency (first frequency) at the rising position of the polarization conversion efficiency curve. Specifically, in the polarization conversion efficiency curve, the polarization conversion efficiency is saturated near the minimum value. It indicates the frequency of the section.
  • the frequency F2 is a frequency that is equal to or higher than the frequency (second frequency) at the falling position of the polarization conversion efficiency curve. Specifically, in the polarization conversion efficiency curve, the section in which the polarization conversion efficiency is saturated near the maximum value. Refers to the frequency.
  • the frequency F3 is a frequency (intermediate frequency) between the frequency at the falling position of the polarization conversion efficiency curve (second frequency) and the frequency at the rising position of the polarization conversion efficiency curve (first frequency).
  • the frequency F3 is a frequency in a section where the polarization conversion efficiency is saturated near the maximum value in the polarization conversion efficiency curve, and the polarization conversion efficiency is saturated near the minimum value in the polarization conversion efficiency curve. It is a frequency between the frequency of a section.
  • the liquid crystal layer 113 controls polarization.
  • the liquid crystal having the polarization conversion efficiency curve as described above include a TN (TwistedistNematic) liquid crystal.
  • the TN liquid crystal is composed of a chiral nematic liquid crystal and has an optical rotation that rotates the polarization direction of light passing therethrough along with the rotation of the nematic liquid crystal.
  • FIG. 7A, 7B, and 7C show an example of the operation of the liquid crystal low-pass filter 11.
  • FIG. 7A the voltage V between the electrodes 112 and 114 is the voltage V1, or the frequency F between the electrodes 112 and 114 is the frequency F2.
  • FIG. 7B the voltage V between the electrodes 112 and 114 is the voltage V2, or the frequency F between the electrodes 112 and 114 is the frequency F1.
  • FIG. 7C the voltage V between the electrodes 112 and 114 is the voltage V3, or the frequency F between the electrodes 112 and 114 is the frequency F3.
  • the p-polarized component included in the incident light L1 vibrates in a direction orthogonal to the vibration direction of the s-polarized light, and therefore travels diagonally in the birefringent plate 111 due to the influence of birefringence, and the back surface of the birefringent plate 111 Among them, the light is refracted at a position shifted by the separation width d1 and emitted from the back surface of the birefringent plate 111. Accordingly, the birefringent plate 111 separates the incident light L1 into the p-polarized transmitted light L2 and the s-polarized transmitted light L2 with the separation width d1.
  • the p-polarized light separated by the birefringent plate 111 When the p-polarized light separated by the birefringent plate 111 is incident on the liquid crystal layer 113 having a polarization conversion efficiency of T2, the p-polarized light is converted into s-polarized light and travels straight in the liquid crystal layer 113. The light is emitted from the back surface.
  • the s-polarized light separated by the birefringent plate 111 is incident on the liquid crystal layer 113 having a polarization conversion efficiency of T2
  • the s-polarized light is converted to p-polarized light and travels straight in the liquid crystal layer 113.
  • the light is emitted from the back surface.
  • the liquid crystal layer 113 performs ps conversion on the p-polarized light and the s-polarized light separated by the birefringent plate 111 while keeping the separation width constant.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “first polarization state” of the present technology.
  • the separation width of the s-polarized light and p-polarized light changes depending on the birefringence of the birefringent plate 115.
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115. The light is emitted from the back surface.
  • the birefringent plate 115 Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is influenced by the birefringence and proceeds obliquely in a direction opposite to the image separation direction on the birefringent plate 111. . Further, the p-polarized light is refracted at a position shifted by the separation width d ⁇ b> 2 among the back surface of the birefringent plate 115 and is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 separates the s-polarized light and p-polarized light transmitted through the liquid crystal layer 113 into s-polarized transmitted light L2 and p-polarized transmitted light L2 with a separation width (d1 + d2).
  • the liquid crystal layer 113 does not have an optical effect on p-polarized light and s-polarized light separated by the birefringent plate 111.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “second polarization state” of the present technology.
  • the separation width of the s-polarized light and p-polarized light changes depending on the birefringence of the birefringent plate 115.
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115. The light is emitted from the back surface.
  • the birefringent plate 115 Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is influenced by the birefringence and proceeds obliquely in a direction opposite to the image separation direction on the birefringent plate 111. . Further, the p-polarized light is refracted at a position shifted by the separation width d ⁇ b> 2 among the back surface of the birefringent plate 115 and is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 separates the s-polarized light and the p-polarized light transmitted through the liquid crystal layer 113 into s-polarized transmitted light L2 and p-polarized transmitted light L2 with a separation width (
  • d1 d2
  • the s-polarized transmitted light L2 and the p-polarized transmitted light L2 are emitted from the same location on the back surface of the birefringent plate 115. Therefore, in this case, the birefringent plate 115 makes the light obtained by synthesizing the s-polarized light and the p-polarized light transmitted through the liquid crystal layer 113 with each other.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “intermediate polarization state” of the present technology.
  • the circularly polarized light emitted from the liquid crystal layer 113 enters the birefringent plate 115, it is separated into p-polarized light and s-polarized light with a separation width d2 due to the birefringence of the birefringent plate 115.
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115.
  • the light is emitted from the back surface.
  • the birefringent plate 115 Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is influenced by the birefringence and proceeds obliquely in a direction opposite to the image separation direction on the birefringent plate 111. . Further, the p-polarized light is refracted at a position shifted by the separation width d ⁇ b> 2 among the back surface of the birefringent plate 115 and is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 converts the circularly polarized light converted from the p-polarized light by the liquid crystal layer 113 and the circularly polarized light converted from the s-polarized light by the liquid crystal layer 113, respectively, into the s-polarized transmitted light L2 with a separation width d2. And p-polarized transmitted light L2.
  • the p-polarized light separated from the circularly polarized light converted from the p-polarized light in the liquid crystal layer 113 and the s-polarized light separated from the circularly polarized light converted from the s-polarized light in the liquid crystal layer 113 are Out of the back surface of the birefringent plate 115, the light is emitted from the same location.
  • circularly polarized transmitted light L 2 is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 separates the two circularly polarized lights emitted from the liquid crystal layer 113 into p-polarized transmitted light L2 and s-polarized transmitted light L2 with a separation width (d2 + d2).
  • the p-polarized light and the s-polarized light that have been once separated are combined with the p-polarized light and the s-polarized light at a position between the p-polarized transmitted light L2 and the s-polarized transmitted light L2.
  • FIG. 8A shows an example of the point image intensity distribution of the transmitted light in FIG. 7B together with the spread of the point image on the video.
  • FIG. 8B shows an example of the point image intensity distribution of the transmitted light in FIG. 7A.
  • FIG. 8C shows an example of the point image intensity distribution of the transmitted light in FIG. 7C.
  • FIG. 8D shows an example of a point image intensity distribution of transmitted light when d1 ⁇ d2 in FIG. 7C.
  • the liquid crystal low-pass filter 11 When the voltage V2 or the voltage F1 is applied between the electrodes 112 and 114, the liquid crystal low-pass filter 11 has a point image intensity distribution of 1 through the liquid-crystal low-pass filter 11 as shown in FIG. 8A, for example.
  • Two peaks p1 are generated.
  • the peak p1 is formed by one transmitted light L2 emitted from the birefringent plate 115, for example, as shown in FIG. 7B.
  • the liquid crystal low-pass filter 11 When the voltage V1 or the voltage F2 is applied between the electrodes 112 and 114, the liquid crystal low-pass filter 11 has a point image intensity distribution of 2 through the liquid crystal low-pass filter 11 as shown in FIG. 8B, for example.
  • Two peaks p2 and p3 are generated. The two peaks p2 and p3 are formed by two transmitted lights L2 emitted from the birefringent plate 115, for example, as shown in FIG. 7A.
  • the liquid crystal low-pass filter 11 transmits the light transmitted through the liquid crystal low-pass filter 11 as shown in FIG. 8C, for example.
  • the three peaks p1, p2, and p3 are generated in the point image intensity distribution.
  • the three peaks p1, p2, and p3 are formed by, for example, three transmitted lights L2 emitted from the birefringent plate 115 as shown in FIG. 7C.
  • the liquid crystal low-pass filter 11 transmits the light transmitted through the liquid crystal low-pass filter 11 as shown in FIG.
  • peaks p1, p2, p3, and p4 are generated in the point image intensity distribution.
  • the four peaks p1, p2, p3, and p4 are formed by, for example, four transmitted lights L2 emitted from the birefringent plate 115, although not shown.
  • the liquid crystal low-pass filter 11 has three peaks p1 to p1 in the point image intensity distribution of the transmitted light of the liquid crystal low-pass filter 11 when the voltage V3 or the frequency F3 is applied between the electrodes 112 and 114. p3 or four peaks p1 to p4 are generated.
  • the values of the three peaks p1 to p3 or the four peaks p1 to p4 change. . That is, in the liquid crystal low-pass filter 11, when the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114 changes, the point image intensity distribution of the transmitted light changes.
  • the liquid crystal low-pass filter 11 changes the point image intensity distribution of the transmitted light by changing the magnitude of the voltage V or the frequency F applied between the electrodes 112 and 114.
  • the peak value (peak height) of the three peaks p1 to p3 and the peak value (peak height) of the four peaks p1 to p4 are the voltage V or the frequency F applied between the electrodes 112 and 114, respectively. Varies depending on the size of On the other hand, the peak positions of the three peaks p1 to p3 and the peak positions of the four peaks p1 to p4 are determined by the separation widths d1 and d2.
  • the separation widths d1 and d2 are constant regardless of the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114. Accordingly, the peak positions of the three peaks p1 to p3 and the peak positions of the four peaks p1 to p4 are constant regardless of the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114.
  • FIG. 9 shows an example of the MTF shown in FIGS. 8A to 8D.
  • the horizontal axis is the spatial frequency
  • the vertical axis is the normalized contrast.
  • the MTF in FIG. 8A matches the MTF of a lens (for example, the lens 30) disposed in front of the liquid crystal low-pass filter 11.
  • the cutoff frequency fc1 of the MTF in FIG. 8B is smaller than the cutoff frequency fc2 of the MTF in FIGS. 8C and 8D.
  • the separation width is equal to the separation width in FIG. 8B, but the number of peaks is larger than the number of peaks in FIG. 8B, and the peak-to-peak distance is as shown in FIG. 8B. It is narrower than the peak-to-peak distance. Therefore, in FIGS. 8C and 8D, since the light separation effect is weaker than the light separation effect in FIG. 8B, the cutoff frequency fc2 of the MTF in FIGS. 8C and 8D is the cutoff frequency fc1 of the MTF in FIG. 8B. Is bigger than.
  • the cut-off frequency fc2 of the MTF in FIG. 8C and FIG. 8D varies depending on the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114, and an arbitrary frequency larger than the cut-off frequency fc1 of the MTF in FIG. Can be taken. Therefore, the liquid crystal low-pass filter 11 changes the magnitude of the voltage V or the frequency F applied between the electrodes 112 and 114 to change the cutoff frequency fc to be equal to or higher than the cutoff frequency when the light beam separation effect is maximized. It can be set to any value.
  • FIG. 10 shows an example of an imaging procedure in the imaging apparatus 1, and specifically shows an example of a procedure for performing stepwise exposure while variably controlling the amount of blur of an image.
  • FIG. 10 illustrates an example of a stepwise exposure procedure when three image data Draw are sequentially output from the image sensor 12.
  • FIG. 11 shows an example of changes over time in polarization conversion efficiency and applied voltage in the imaging procedure of FIG.
  • fc cut-off frequency
  • the imaging apparatus 1 prepares for operation (step S101).
  • the operation preparation refers to preparations required when the image data Draw is output from the image pickup device 12, for example, setting AF (autofocus) conditions and iris 14 conditions.
  • the control circuit 22 instructs the imaging device 10 to prepare for operation such as AF.
  • the drive circuit 15 performs operation preparation for one or a plurality of optical components (for example, the lens 13 and the iris 14) before outputting the first image data Draw according to an instruction from the control circuit 22.
  • the drive circuit 15 sets the focus condition of the lens 13 and the condition of the iris 14 to predetermined values.
  • the drive circuit 15 causes the imaging device 10 to perform an operation preparation such as AF while preventing the liquid crystal low-pass filter 11 from acting optically.
  • the drive circuit 15 applies a drive signal (first drive signal) having a voltage V2 or a frequency F1 between the electrodes 112 and 114, for example, in accordance with an instruction from the control circuit 22.
  • the first drive signal is a signal that the drive circuit 15 applies to the liquid crystal layer 113 in order to set the liquid crystal layer 113 to the first polarization state.
  • the imaging apparatus 1 acquires the image data D1 under the condition A1 (step S102).
  • the condition A1 is the same signal as the preparation voltage applied between the electrodes 112 and 114 when the operation preparation is performed on one or a plurality of optical components (for example, the lens 13 or the like) before the output of the first image data Draw. Alternatively, it means setting a signal having a voltage closest to the preparation voltage to a voltage applied between the electrodes 112 and 114.
  • the condition A1 is the same as the preparation frequency applied between the electrodes 112 and 114 when the operation preparation is performed on one or a plurality of optical components (for example, the lens 13) before the output of the first image data Draw.
  • a signal having a frequency closest to the preparation frequency is set to a frequency applied between the electrodes 112 and 114.
  • the condition A1 indicates that the voltage V or the frequency F applied between the electrodes 112 and 114 is set to a drive signal (first drive signal) having the voltage V2 or the frequency F1.
  • the control circuit 22 instructs the imaging device 10 to set the condition A1.
  • the drive circuit 15 applies a drive signal (first drive signal) having a voltage V2 or a frequency F1 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22.
  • the polarization conversion efficiency of the liquid crystal layer 113 becomes T1
  • the polarization state of the liquid crystal layer 113 becomes the first polarization state.
  • the control circuit 22 instructs the image pickup device 12 to take an image.
  • the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T1.
  • the control circuit 22 acquires the image data D1 under the condition A1 via the preprocessing circuit 21.
  • the imaging apparatus 1 stores the image data D1 (step S103).
  • the control circuit 22 stores the image data D1 in the memory unit 40.
  • the imaging device 1 acquires the image data D2 under the condition A2 (Step S104).
  • the condition A2 indicates that a signal different from a signal (condition A1) when the first image data Draw is output from the image sensor 12 is set to a voltage or a frequency applied between the electrodes 112 and 114.
  • the condition A2 indicates that the drive signal (second drive signal) having the voltage V1 or the frequency F2 is set to the voltage or frequency applied between the electrodes 112 and 114. That is, the condition A2 indicates that the second drive signal of the first drive signal and the second drive signal is set to a voltage or frequency applied between the electrodes 112 and 114.
  • the second drive signal is a signal that the drive circuit 15 applies to the liquid crystal layer 113 in order to set the liquid crystal layer 113 to the second polarization state.
  • the control circuit 22 instructs the imaging device 10 to set the condition A2. Then, the drive circuit 15 applies a drive signal (second drive signal) having a voltage V1 or a frequency F2 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22. As a result, the polarization conversion efficiency of the liquid crystal layer 113 changes from T1 to T2, and the polarization state of the liquid crystal layer 113 changes from the first polarization state to the second polarization state. Further, the control circuit 22 instructs the image pickup device 12 to take an image. Specifically, the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T2.
  • the control circuit 22 acquires the image data D2 under the condition A2 via the preprocessing circuit 21. Thereafter, the imaging device 1 stores the image data D2 (step S105). Specifically, the control circuit 22 stores the image data D2 in the memory unit 40.
  • Condition A3 indicates that the intermediate voltage or intermediate frequency is set to the voltage or frequency applied between the electrodes 112 and 114.
  • the condition A3 indicates that the drive signal (third drive signal) having the voltage V3 or the frequency F3 is set to the voltage or frequency applied between the electrodes 112 and 114.
  • the third drive signal is a signal that the drive circuit 15 applies to the liquid crystal layer 113 in order to place the liquid crystal layer 113 in an intermediate polarization state.
  • the control circuit 22 instructs the imaging device 10 to set the condition A3. Then, the drive circuit 15 applies a drive signal (third drive signal) having the voltage V3 or the frequency F3 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22. As a result, the polarization conversion efficiency of the liquid crystal layer 113 changes from T2 to T3, and the polarization state of the liquid crystal layer 113 changes from the second polarization state to the intermediate polarization state. Further, the control circuit 22 instructs the image pickup device 12 to take an image. Specifically, the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T3.
  • the control circuit 22 acquires the image data D3 under the condition A3 via the preprocessing circuit 21. Thereafter, the imaging apparatus 1 stores the image data D3 (step S107). Specifically, the control circuit 22 stores the image data D3 in the memory unit 40. Finally, the control circuit 22 outputs the acquired image data D1, D2, and D3 to the display processing circuit 23, and displays them on the display unit 30 (step S108). Note that the control circuit 22 may output the image data D1 to the display processing circuit 23 and display the image data D1 on the display unit 30 after saving the image data D1 and before acquiring the image data D2.
  • the control circuit 22 may output the image data D2 to the display processing circuit 23 and display it on the display unit 30 before acquiring the image data D3.
  • stepwise exposure in the imaging apparatus 1 is executed.
  • the imaging apparatus 1 may perform the above-described stepwise exposure as bracket photography that is automatically performed by a single instruction from the user (for example, pressing a shutter button). Further, the imaging apparatus 1 may perform the above-described step exposure as continuous shooting performed by a manual operation by a user.
  • FIG. 12 illustrates an example of the change over time in the polarization conversion efficiency and the applied voltage in the imaging procedure according to the comparative example.
  • the imaging device 1 when the pair of birefringent plates 111 and 115 and the liquid crystal layer 113 are applied with the voltage V 3 or the voltage F 3 between the electrodes 112 and 114, there are three point image intensity distributions of transmitted light. Peaks p1-p3 or four peaks p1-p4 are produced.
  • the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114 is changed, the polarization conversion efficiency of the liquid crystal layer 113 changes, so that the peak value of the point image intensity distribution also changes.
  • the cutoff frequency fc of the liquid crystal low-pass filter 11 changes.
  • the cut-off frequency fc changes by a method (peak value modulation method) different from the conventional method (separation width modulation method) for changing the ps separation width of transmitted light.
  • the values of the three peaks p1 to p3 or the four peaks p1 to p4 generated in the point image intensity distribution of the transmitted light are set to the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114.
  • the cut-off frequency fc of the liquid crystal low-pass filter 11 can be changed. Therefore, it is possible to set a cut-off frequency different from the cut-off frequency set initially by simply changing the magnitude of the voltage V3 or the frequency F3 applied to the electrodes 112 and 114. Therefore, the liquid crystal low-pass filter 11 has a configuration capable of changing the cutoff frequency fc without preparing new optical components.
  • the third drive signal is applied after the application of the first drive signal and the second drive signal to the electrodes 112 and 114 is finished. Is applied to the electrodes 112 and 114.
  • the waiting time caused by the response speed of the liquid crystal. Time can be shortened.
  • the shooting time ⁇ T1 shown in FIG. 11 can be made significantly shorter than the shooting time ⁇ T2 shown in FIG. Therefore, it is possible to easily continuously capture still images while changing the cutoff frequency fc.
  • FIG. 13 shows a variation of the polarization conversion efficiency and the applied voltage with time in the imaging procedure of FIG.
  • three or more third drive signals are applied to the electrodes 112 and 114. That is, in this modification, three or more image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 has the highest voltage or frequency of the signal applied to the electrodes 112 and 114 when the second image data Draw is output from the image sensor 12 among the plurality of third drive signals.
  • a close third drive signal is applied to the electrodes 112 and 114 when the third image data Draw is output from the image sensor 12.
  • the drive circuit 15 outputs the third drive signal (V3a or F3a) closest to the voltage V1 or the frequency F2 to 3
  • the second image data Draw is output from the image sensor 12, it is applied to the electrodes 112 and 114.
  • the drive circuit 15 converts the plurality of third drive signals into the electrodes 112, in order from the voltage or frequency of the signal applied to the electrodes 112, 114 when the second image data Draw is output from the image sensor 12. 114 is applied.
  • the drive circuit 15 applies a plurality of third drive signals (V3a or F3a, V3b or F3b, or V3c or F3c) to the electrodes 112 and 114 in the order of the voltage V1 or the frequency F2.
  • FIG. 14 shows a modification of the polarization conversion efficiency and the applied voltage with time in the imaging procedure of FIG.
  • two image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 applies the first drive signal to the electrodes 112 and 114, and when the second image data Draw is output from the image sensor 12.
  • the third drive signal is applied to the electrodes 112 and 114.
  • the time required for the stepwise exposure is significantly shortened as compared with the case where the first drive signal is applied to the electrodes 112 and 114 after the application of the third drive signal to the electrodes 112 and 114 is completed. be able to.
  • the drive circuit 15 applies the first drive signal or the second drive signal to the electrodes 112 and 114 when the first image data Draw is output from the image sensor 12, and the second When the image data Draw is output from the image sensor 12, a signal different from the signal applied when the first image data Draw is output from the image sensor 12 among the first drive signal and the second drive signal. May be applied to the electrodes 112 and 114.
  • FIG. 15 shows an example of an imaging procedure in the imaging apparatus 1 of FIG. 1, and specifically shows an example of a procedure for performing stepwise exposure while variably controlling the amount of blur of an image.
  • FIG. 15 shows a modified example of the procedure of stepwise exposure when three image data Draw are sequentially output from the image sensor 12.
  • FIG. 16 shows an example of the change over time of the applied voltage in the imaging procedure of FIG.
  • fc cut-off frequency
  • the control circuit 22 instructs the imaging device 10 to prepare for operation such as AF before outputting each image data Draw (steps S101, S109, and S110). Therefore, the drive circuit 15 performs operation preparation for one or a plurality of optical components (for example, the lens 13 and the iris 14) before outputting each image data Draw in accordance with an instruction from the control circuit 22. At this time, the drive circuit 15 causes the imaging device 10 to perform an operation preparation such as AF while preventing the liquid crystal low-pass filter 11 from acting optically.
  • the drive circuit 15 applies a drive signal (first drive signal) having a voltage V2 or a frequency F1 between the electrodes 112 and 114, for example, in accordance with an instruction from the control circuit 22.
  • the application of the first drive signal and the second drive signal to the electrodes 112 and 114 is completed.
  • the third drive signal is applied to the electrodes 112 and 114.
  • FIG. 17 shows a modification of the applied voltage with time in the imaging procedure of FIG.
  • the application of the first drive signal and the second drive signal to the electrodes 112 and 114 is completed, the application of a plurality of third drive signals to the electrodes 112 and 114 is performed. That is, in FIG. 17, three or more image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 outputs, from the image sensor 12, the third image data Draw, which is the same signal as the preparation voltage among the plurality of third drive signals or a signal having the voltage closest to the preparation voltage. When applied, it is applied to the electrodes 112 and 114. In addition, when the third image data Draw is output from the image sensor 12, the drive circuit 15 outputs a signal having the same frequency as the preparation frequency or a frequency closest to the preparation frequency among the plurality of third drive signals. Are applied to the electrodes 112 and 114.
  • the drive circuit 15 outputs a third drive signal (V3c or F3c) that is closest to the voltage V2 or the frequency F1 to 3 When the second image data Draw is output from the image sensor 12, it is applied to the electrodes 112 and 114. Furthermore, the drive circuit 15 converts the plurality of third drive signals into the electrodes 112, in order from the voltage or frequency of the signal applied to the electrodes 112, 114 when the second image data Draw is output from the image sensor 12. 114 is applied.
  • the drive circuit 15 applies a plurality of third drive signals (V3a or F3a, V3b or F3b, or V3c or F3c) to the electrodes 112 and 114 in the order closer to the voltage V2 or the frequency F1.
  • V3a or F3a, V3b or F3b, or V3c or F3c third drive signals
  • FIG. 18 shows a modification of the applied voltage with time in the imaging procedure of FIG.
  • two image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 applies the first drive signal to the electrodes 112 and 114, and when the second image data Draw is output from the image sensor 12.
  • the third drive signal is applied to the electrodes 112 and 114.
  • the time required for the stepwise exposure is significantly shortened as compared with the case where the first drive signal is applied to the electrodes 112 and 114 after the application of the third drive signal to the electrodes 112 and 114 is completed. be able to.
  • the drive circuit 15 allows the first image data Draw to be output from the image sensor 12 when three or more image data Draw are output from the image sensor 12.
  • the first drive signal is applied to the electrodes 112 and 114. May be.
  • the drive circuit 15 receives the third and subsequent image data Draw from the image sensor 12 in the voltage range that can be selected as the third drive signal.
  • a signal having a voltage close to a voltage that can be selected as the second drive signal as compared with the voltage output from the drive circuit 15 when being output may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the first image data Draw from the image sensor 12 when three or more image data Draw are output from the image sensor 12.
  • the first drive is compared with the frequency output from the drive circuit 15 when the third and subsequent image data Draw is output from the image sensor 12 in the frequency range that can be selected as the third drive signal.
  • a signal having a frequency close to a frequency that can be selected as a signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 receives the third and subsequent image data Draw from the image sensor 12 in the frequency range that can be selected as the third drive signal.
  • a signal having a frequency close to the frequency that can be selected as the second drive signal as compared with the frequency output from the drive circuit 15 when output may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the third image data Draw when the first image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • a signal having a voltage close to may be applied between the electrodes 112 and 114.
  • the drive circuit 15 receives the third and subsequent image data Draw from the image sensor 12 in the voltage range that can be selected as the third drive signal.
  • a signal having a voltage close to the voltage that can be selected as the first drive signal as compared with the voltage output from the drive circuit 15 when being output may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the third image data Draw when the first image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • the frequency that can be selected as the second drive signal compared to the frequency that is output from the drive circuit 15 when the third and subsequent image data Draw is output from the image sensor 12.
  • a signal having a frequency close to may be applied between the electrodes 112 and 114.
  • the drive circuit 15 receives the third and subsequent image data Draw from the image sensor 12 in the frequency range that can be selected as the third drive signal.
  • a signal having a frequency close to the frequency that can be selected as the first drive signal as compared with the frequency output from the drive circuit 15 when being output may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the second image data Draw from the image sensor 12 when three or more image data Draw are output from the image sensor 12.
  • the second drive compared to the voltage output from the drive circuit 15 when the third and subsequent image data Draw is output from the image sensor 12 in the voltage range that can be selected as the third drive signal.
  • a signal having a voltage close to a voltage that can be selected as a signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the second image data Draw from the image sensor 12 when three or more image data Draw are output from the image sensor 12.
  • the second drive compared to the frequency output from the drive circuit 15 when the third and subsequent image data Draw is output from the image sensor 12 in the range of frequencies that can be selected as the third drive signal.
  • a signal having a frequency close to a frequency that can be selected as a signal may be applied between the electrodes 112 and 114.
  • the driving circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • a signal having a voltage close to may be applied between the electrodes 112 and 114.
  • the driving circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • the frequency that can be selected as the first drive signal compared to the frequency that is output from the drive circuit 15 when the third and subsequent image data Draw is output from the image sensor 12.
  • a signal having a frequency close to may be applied between the electrodes 112 and 114.
  • the drive circuit 15 when the two image data Draw is output from the image sensor 12, the drive circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12. Compared to the voltage output from the drive circuit 15 when the first image data Draw is output from the image sensor 12 in the voltage range that can be selected as the drive signal, the voltage can be selected as the second drive signal. A signal having a close voltage may be applied between the electrodes 112 and 114. That is, in the modified examples B and C, when the two image data Draw is output from the image sensor 12, the driving circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12. Of the voltage range that can be selected as the drive signal, a signal having a voltage relatively close to the voltage that can be selected as the second drive signal may be applied between the electrodes 112 and 114.
  • the driving circuit 15 performs the third operation when the first image data Draw is output from the image sensor 12.
  • the frequency can be selected as the first drive signal.
  • a signal having a close frequency may be applied between the electrodes 112 and 114. That is, in the modified examples B and C, when the two image data Draw is output from the image sensor 12, the drive circuit 15 performs the third operation when the first image data Draw is output from the image sensor 12.
  • a signal having a frequency relatively close to a frequency that can be selected as the first drive signal in a range of frequencies that can be selected as the drive signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 when the two image data Draw is output from the image sensor 12, the drive circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12. Compared with the frequency output from the drive circuit 15 when the first image data Draw is output from the image sensor 12 in the range of frequencies that can be selected as the drive signal, the frequency can be selected as the second drive signal. A signal having a close frequency may be applied between the electrodes 112 and 114. That is, in the modified examples B and C, when the two image data Draw is output from the image sensor 12, the driving circuit 15 performs the third operation when the second image data Draw is output from the image sensor 12. A signal having a frequency relatively close to a frequency that can be selected as the second drive signal in a range of frequencies that can be selected as the drive signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12.
  • the voltage close to the voltage that can be selected as the second drive signal in comparison with the voltage that is output from the drive circuit 15 when the second image data Draw is output from the image sensor 12 in the voltage range that can be selected as These signals may be applied between the electrodes 112 and 114. That is, in the modification D, when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12.
  • a signal having a voltage relatively close to a voltage that can be selected as the second drive signal in the range of voltages that can be selected as the second driving signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the third drive signal when the second image data Draw is output from the image sensor 12 when the two image data Draw is output from the image sensor 12.
  • the voltage close to the voltage that can be selected as the first drive signal as compared with the voltage that is output from the drive circuit 15 when the first image data Draw is output from the image sensor 12 in the voltage range that can be selected as These signals may be applied between the electrodes 112 and 114. That is, in the modification D, when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the second image data Draw is output from the image sensor 12.
  • a signal having a voltage relatively close to the voltage that can be selected as the first drive signal in the voltage range that can be selected as the first driving signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12.
  • the frequency close to the frequency that can be selected as the second drive signal in comparison with the frequency that is output from the drive circuit 15 when the second image data Draw is output from the image sensor 12 in the range of frequencies that can be selected as These signals may be applied between the electrodes 112 and 114. That is, in the modification D, when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12.
  • a signal having a frequency relatively close to a frequency that can be selected as the second drive signal in a range of frequencies that can be selected as the second driving signal may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the third drive signal when the second image data Draw is output from the image sensor 12 when the two image data Draw is output from the image sensor 12.
  • the frequency close to the frequency that can be selected as the first drive signal in comparison with the frequency that is output from the drive circuit 15 when the first image data Draw is output from the image sensor 12 in the range of frequencies that can be selected as These signals may be applied between the electrodes 112 and 114. That is, in the modification D, when the two image data Draw is output from the image sensor 12, the drive circuit 15 outputs the third drive signal when the second image data Draw is output from the image sensor 12.
  • a signal having a frequency relatively close to a frequency that can be selected as the first drive signal in a range of frequencies that can be selected as the first drive signal may be applied between the electrodes 112 and 114.
  • FIG. 19 shows a modification of the optical axes AX1 and AX2 of the birefringent plates 11 and 15.
  • the image separation directions are in the same direction.
  • the optical axis AX1 of the birefringent plate 111 and the optical axis AX2 of the birefringent plate 115 are parallel to each other in a plane parallel to the normal line 111A of the light incident surface 110A.
  • the optical axes AX1 and AX2 obliquely intersect the normal line 111A of the incident surface 110A.
  • the angle ⁇ 2 formed by the optical axis AX1 and the normal line 11A is, for example, smaller than 90 ° counterclockwise with respect to the normal line 111A, and is, for example, 45 °.
  • the angle ⁇ 3 formed by the optical axis AX2 and the normal line 111A is, for example, less than 90 ° counterclockwise with respect to the normal line 111A, for example, 45 °.
  • FIG. 20A, 20B, and 20C show an example of the operation of the liquid crystal low-pass filter 11 according to the present modification.
  • the voltage V between the electrodes 112 and 114 is the voltage V1, or the frequency F between the electrodes 112 and 114 is the frequency F2.
  • the voltage V between the electrodes 112 and 114 is the voltage V2, or the frequency F between the electrodes 112 and 114 is the frequency F1.
  • the voltage V between the electrodes 112 and 114 is the voltage V3, or the frequency F between the electrodes 112 and 114 is the frequency F3.
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115.
  • the light is emitted from the back surface. Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is affected by the birefringence and proceeds obliquely in the same direction as the image separation direction on the birefringent plate 111.
  • the birefringent plate 115 separates the s-polarized light and p-polarized light transmitted through the liquid crystal layer 113 into s-polarized transmitted light L2 and p-polarized transmitted light L2 with a separation width (d1-d2).
  • d1 d2
  • the s-polarized transmitted light L2 and the p-polarized transmitted light L2 are emitted from the same location on the back surface of the birefringent plate 115. Therefore, in this case, the birefringent plate 115 makes the light obtained by synthesizing the s-polarized light and the p-polarized light transmitted through the liquid crystal layer 113 with each other.
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115.
  • the light is emitted from the back surface. Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is affected by the birefringence and proceeds obliquely in the same direction as the image separation direction on the birefringent plate 111.
  • the birefringent plate 115 separates the s-polarized light and p-polarized light transmitted through the liquid crystal layer 113 into s-polarized transmitted light L2 and p-polarized transmitted light L2 with a separation width (d1 + d2).
  • the polarization component that vibrates perpendicularly to the optical axis AX2 of the birefringent plate 115 is s-polarized light
  • the s-polarized light travels straight in the birefringent plate 115 without being affected by birefringence, and the birefringent plate 115.
  • the light is emitted from the back surface. Since the p-polarized light vibrates in a direction orthogonal to the vibration direction of the s-polarized light, the birefringent plate 115 is affected by the birefringence and proceeds obliquely in the same direction as the image separation direction on the birefringent plate 111.
  • the p-polarized light is refracted at a position shifted by the separation width d ⁇ b> 2 among the back surface of the birefringent plate 115 and is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 converts the circularly polarized light converted from the p-polarized light by the liquid crystal layer 113 and the circularly polarized light converted from the s-polarized light by the liquid crystal layer 113, respectively, into the s-polarized transmitted light L2 with a separation width d2.
  • p-polarized transmitted light L2 is a position shifted by the separation width d ⁇ b> 2 among the back surface of the birefringent plate 115 and is emitted from the back surface of the birefringent plate 115.
  • the p-polarized light separated from the circularly polarized light converted from the p-polarized light in the liquid crystal layer 113 and the s-polarized light separated from the circularly polarized light converted from the s-polarized light in the liquid crystal layer 113 are Out of the back surface of the birefringent plate 115, the light is emitted from the same location.
  • circularly polarized transmitted light L 2 is emitted from the back surface of the birefringent plate 115.
  • the birefringent plate 115 separates the two circularly polarized lights emitted from the liquid crystal layer 113 into p-polarized transmitted light L2 and s-polarized transmitted light L2 with a separation width (d2 + d2). At the same time, the separated p-polarized light and s-polarized light are combined with each other at a position between the p-polarized transmitted light L2 and the s-polarized transmitted light L2.
  • the cut-off frequency fc changes by a method (peak value modulation method) different from the conventional method (separation width modulation method) for changing the ps separation width of transmitted light.
  • the values of the three peaks p1 to p3 or the four peaks p1 to p4 generated in the point image intensity distribution of the transmitted light are set to the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114.
  • the cut-off frequency fc can be changed. Therefore, it is possible to set a cut-off frequency different from the cut-off frequency set initially by simply changing the magnitude of the voltage V3 or the frequency F3 applied to the electrodes 112 and 114. Therefore, the liquid crystal low-pass filter 11 according to the present modification has a configuration capable of changing the cutoff frequency fc without preparing a new optical component.
  • FIG. 21A shows a modification of the polarization conversion efficiency curve (VT curve) of the liquid crystal layer 113.
  • FIG. 21B shows a modification of the polarization conversion efficiency curve (FT curve) of the liquid crystal layer 113.
  • the horizontal axis represents the voltage V (frequency constant) applied between the electrodes 112 and 114.
  • the horizontal axis represents the frequency F of the voltage applied between the electrodes 112 and 114 (constant voltage).
  • the vertical axis represents the polarization conversion efficiency T.
  • the polarization conversion efficiency T becomes T1.
  • T1 is 0%.
  • the p-polarized light and the s-polarized light travel straight through the liquid crystal layer 113 without being subjected to polarization conversion by the liquid crystal layer 113.
  • the light is emitted from the back surface of 113. Therefore, the liquid crystal layer 113 does not have an optical effect on p-polarized light and s-polarized light.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “second polarization state” of the present technology.
  • the polarization conversion efficiency T becomes T2.
  • T2 is 100%.
  • the s-polarized light separated by the birefringent plate 111 is incident on the liquid crystal layer 113 having a polarization conversion efficiency of T2
  • the s-polarized light is converted to p-polarized light and travels straight in the liquid crystal layer 113.
  • the light is emitted from the back surface. Therefore, the liquid crystal layer 113 performs ps conversion on the p-polarized light and the s-polarized light separated by the birefringent plate 111.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “first polarization state” of the present technology.
  • first polarization state the present technology.
  • FIG. 21A illustrates a case where the voltage V3 is a voltage when T3 is 50%.
  • the polarization state of the liquid crystal layer 113 at this time corresponds to a specific example of “third polarization state” of the present technology.
  • the voltage V1 is a voltage equal to or lower than the voltage at the rising position of the polarization conversion efficiency curve, and specifically refers to a voltage in a section where the polarization conversion efficiency is saturated near the minimum value in the polarization conversion efficiency curve.
  • the voltage V2 is equal to or higher than the voltage at the falling position of the polarization conversion efficiency curve. Specifically, the voltage V2 indicates a voltage in a section where the polarization conversion efficiency is saturated near the maximum value in the polarization conversion efficiency curve.
  • the voltage V3 is a voltage that is larger than the voltage at the rising position of the polarization conversion efficiency curve and smaller than the voltage at the falling position of the polarization conversion efficiency curve.
  • the voltage V3 is a voltage (that is, an intermediate voltage) between the rising edge and the falling edge of the polarization conversion efficiency curve.
  • the polarization conversion efficiency T becomes T1
  • the frequency F1 F1 ⁇ F2
  • the polarization conversion efficiency T becomes T2.
  • FIG. 21B illustrates a case where the frequency F3 is a frequency when T3 is 50%.
  • the frequency F1 is a frequency equal to or lower than the frequency at the falling position of the polarization conversion efficiency curve. Specifically, in the polarization conversion efficiency curve, the frequency in the section where the polarization conversion efficiency is saturated near the minimum value is obtained. pointing.
  • the frequency F2 is a frequency equal to or higher than the frequency at the rising position of the polarization conversion efficiency curve. Specifically, the frequency F2 indicates a frequency in a section where the polarization conversion efficiency is saturated near the minimum value in the polarization conversion efficiency curve.
  • the frequency F3 is a frequency that is larger than the frequency at the falling position of the polarization conversion efficiency curve and smaller than the frequency at the rising position of the polarization conversion efficiency curve.
  • the frequency F3 is a frequency (that is, an intermediate frequency) between the rising edge and the falling edge of the polarization conversion efficiency curve.
  • the liquid crystal layer 113 controls polarization.
  • the liquid crystal having the polarization conversion efficiency curve as described above include VA (Vertical Alignment) liquid crystal.
  • VA liquid crystal is composed of a negative nematic liquid crystal, and the polarization direction of the light passing therethrough can be changed by changing the phase of the light passing through the birefringence of the nematic liquid crystal.
  • the liquid crystal low-pass filter 11 may have, for example, an alignment film that is made of an inorganic material typified by silicon oxide as an alignment film that regulates the alignment of the liquid crystal layer 113.
  • FIG. 22 shows an example of an imaging procedure in the imaging apparatus 1 according to this modification, and specifically shows an example of a procedure for performing stepwise exposure while variably controlling the amount of blur of an image. is there.
  • FIG. 22 illustrates an example of a stepwise exposure procedure when three image data Draw are sequentially output from the image sensor 12.
  • FIG. 23 shows an example of the change over time in polarization conversion efficiency and applied voltage in the imaging procedure of FIG.
  • the image data D1, D2, and D3 described in the figure and in the following paragraphs are image data generated by the preprocessing circuit 21 and correspond to three image data D having different image blur amounts. To do.
  • the imaging device 1 prepares for operation (step S201). Specifically, the control circuit 22 instructs the imaging device 10 to prepare for operation such as AF. Then, the drive circuit 15 performs operation preparation for one or a plurality of optical components (for example, the lens 13 and the iris 14) before outputting the first image data Draw according to an instruction from the control circuit 22. For example, the drive circuit 15 sets the focus condition of the lens 13 and the condition of the iris 14 to predetermined values. At this time, the drive circuit 15 causes the imaging device 10 to perform an operation preparation such as AF while preventing the liquid crystal low-pass filter 11 from acting optically. The drive circuit 15 applies a drive signal (second drive signal) having a voltage V1 or a frequency F2 between the electrodes 112 and 114, for example, in accordance with an instruction from the control circuit 22.
  • a drive signal (second drive signal) having a voltage V1 or a frequency F2 between the electrodes 112 and 114, for example, in accordance with an instruction from the control circuit 22.
  • Condition A1 includes a preparation voltage or a preparation frequency applied between the electrodes 112 and 114 when the operation preparation is performed on one or a plurality of optical components (for example, the lens 13 or the like) before the output of the first image data Draw. This means that the same signal or a signal having a voltage or frequency closest to the preparation voltage or the preparation frequency is set to the voltage or frequency applied between the electrodes 112 and 114.
  • the condition A1 indicates that the voltage V or the frequency F applied between the electrodes 112 and 114 is set to a drive signal (second drive signal) having the voltage V1 or the frequency F2.
  • the control circuit 22 instructs the imaging device 10 to set the condition A1.
  • the drive circuit 15 applies a drive signal (second drive signal) having a voltage V1 or a frequency F2 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22.
  • the polarization conversion efficiency of the liquid crystal layer 113 becomes T1.
  • the control circuit 22 instructs the image pickup device 12 to take an image.
  • the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T1.
  • the control circuit 22 acquires the image data D1 under the condition A1 via the preprocessing circuit 21.
  • the imaging apparatus 1 stores the image data D1 (step S203).
  • the control circuit 22 stores the image data D1 in the memory unit 40.
  • the imaging apparatus 1 acquires image data D2 under the condition A2 (step S204).
  • the condition A2 indicates that a signal different from a signal (condition A1) when the first image data Draw is output from the image sensor 12 is set to a voltage or a frequency applied between the electrodes 112 and 114.
  • the condition A2 indicates that the drive signal (first drive signal) having the voltage V2 or the frequency F1 is set to the voltage or frequency applied between the electrodes 112 and 114. That is, the condition A2 indicates that the first drive signal of the first drive signal and the second drive signal is set to a voltage or frequency applied between the electrodes 112 and 114.
  • the control circuit 22 instructs the imaging device 10 to set the condition A2. Then, the drive circuit 15 applies a drive signal (first drive signal) having a voltage V2 or a frequency F1 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22. As a result, the polarization conversion efficiency of the liquid crystal layer 113 changes from T1 to T2. Further, the control circuit 22 instructs the image pickup device 12 to take an image. Specifically, the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T2. As a result, the control circuit 22 acquires the image data D2 under the condition A2 via the preprocessing circuit 21. Thereafter, the imaging apparatus 1 stores the image data D2 (step S205). Specifically, the control circuit 22 stores the image data D2 in the memory unit 40.
  • the imaging apparatus 1 acquires image data D3 under the condition A3 (step S206).
  • Condition A3 indicates that the intermediate voltage or intermediate frequency is set to the voltage or frequency applied between the electrodes 112 and 114.
  • the condition A3 indicates that the drive signal (third drive signal) having the voltage V3 or the frequency F3 is set to the voltage or frequency applied between the electrodes 112 and 114.
  • the control circuit 22 instructs the imaging device 10 to set the condition A3. Then, the drive circuit 15 applies a drive signal (third drive signal) having the voltage V3 or the frequency F3 between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22. Thereby, the polarization conversion efficiency of the liquid crystal layer 113 changes from T2 to T3. Further, the control circuit 22 instructs the image pickup device 12 to take an image. Specifically, the control circuit 22 instructs the imaging device 12 to perform imaging when the polarization conversion efficiency of the liquid crystal layer 113 reaches T3. As a result, the control circuit 22 acquires the image data D3 under the condition A3 via the preprocessing circuit 21. Thereafter, the imaging apparatus 1 stores the image data D3 (step S207).
  • the control circuit 22 stores the image data D3 in the memory unit 40. Finally, the control circuit 22 outputs the acquired image data D1, D2, and D3 to the display processing circuit 23 and displays them on the display unit 30 (step S208). In this way, stepwise exposure in the imaging apparatus 1 is executed.
  • the imaging apparatus 1 may perform the above-described stepwise exposure as bracket photography that is automatically performed by a single instruction from the user (for example, pressing a shutter button). Further, the imaging apparatus 1 may perform the above-described step exposure as continuous shooting performed by a manual operation by a user.
  • the cut-off frequency fc is changed by a method (peak value modulation method) different from the conventional method (separation width modulation method) for changing the ps separation width of transmitted light.
  • the values of the three peaks p1 to p3 or the four peaks p1 to p4 generated in the point image intensity distribution of the transmitted light are set to the magnitude of the voltage V3 or the frequency F3 applied between the electrodes 112 and 114. By changing it accordingly, the cut-off frequency fc can be changed.
  • the liquid crystal low-pass filter 11 has a configuration capable of changing the cutoff frequency fc without preparing a new optical component.
  • FIG. 24 shows a modification of the polarization conversion efficiency and applied voltage change with time in the imaging procedure of FIG.
  • the application of a plurality of third drive signals to the electrodes 112 and 114 is performed. That is, in FIG. 24, three or more image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 has the highest voltage or frequency of the signal applied to the electrodes 112 and 114 when the second image data Draw is output from the image sensor 12 among the plurality of third drive signals.
  • a close third drive signal is applied to the electrodes 112 and 114 when the third image data Draw is output from the image sensor 12.
  • the drive circuit 15 outputs a third drive signal (V3c or F3c) that is closest to the voltage V2 or the frequency F1 to 3
  • the second image data Draw is output from the image sensor 12, it is applied to the electrodes 112 and 114.
  • the drive circuit 15 converts the plurality of third drive signals into the electrodes 112, in order from the voltage or frequency of the signal applied to the electrodes 112, 114 when the second image data Draw is output from the image sensor 12. 114 is applied.
  • the drive circuit 15 applies a plurality of third drive signals (V3a or F3a, V3b or F3b, or V3c or F3c) to the electrodes 112 and 114 in the order closer to the voltage V2 or the frequency F1.
  • V3a or F3a, V3b or F3b, or V3c or F3c V3a or F3a, V3b or F3b, or V3c or F3c
  • FIG. 25 shows a modification of the polarization conversion efficiency and the applied voltage with time in the imaging procedure of FIG.
  • two image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 applies the second drive signal to the electrodes 112 and 114, and when the second image data Draw is output from the image sensor 12.
  • the third drive signal is applied to the electrodes 112 and 114.
  • the time required for the stepwise exposure is significantly shortened as compared with the case where the second drive signal is applied to the electrodes 112 and 114 after the third drive signal is applied to the electrodes 112 and 114. be able to.
  • FIG. 26 shows a modification of the imaging procedure in the imaging apparatus including the liquid crystal layer having the polarization conversion efficiency curve of FIG. 21A or 21B.
  • the blur amount of the image is variably controlled.
  • 2 shows an example of a procedure for performing stepwise exposure.
  • FIG. 26 shows a modified example of the stepwise exposure procedure when three image data Draw are sequentially output from the image sensor 12.
  • FIG. 27 shows an example of the change over time of the applied voltage in the imaging procedure of FIG.
  • fc which is one of the parameters that define the image blur amount
  • the control circuit 22 instructs the imaging device 10 to prepare for operation such as AF before outputting each image data Draw (steps S201, S209, and S210). Therefore, the drive circuit 15 performs operation preparation for one or a plurality of optical components (for example, the lens 13 and the iris 14) before outputting each image data Draw in accordance with an instruction from the control circuit 22. At this time, the drive circuit 15 causes the imaging device 10 to perform an operation preparation such as AF while preventing the liquid crystal low-pass filter 11 from acting optically.
  • the drive circuit 15 applies a drive signal (second drive signal) having a voltage V1 or a frequency F2 between the electrodes 112 and 114, for example, in accordance with an instruction from the control circuit 22.
  • the application of the first drive signal and the second drive signal to the electrodes 112 and 114 is completed.
  • the third drive signal is applied to the electrodes 112 and 114.
  • FIG. 28 shows a variation of the applied voltage with time in the imaging procedure of FIG.
  • the application of a plurality of third drive signals to the electrodes 112 and 114 is performed. That is, in FIG. 28, three or more image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 outputs a signal having the same voltage or frequency as the preparation voltage or the preparation frequency, or a signal having a voltage or frequency closest to the preparation voltage or the preparation frequency, among the plurality of third drive signals.
  • data Draw is output from the image sensor 12, it is applied to the electrodes 112 and 114.
  • the drive circuit 15 outputs the third drive signal (V3a or F3a) closest to the voltage V1 or the frequency F2 to 3
  • the second image data Draw is output from the image sensor 12, it is applied to the electrodes 112 and 114.
  • the drive circuit 15 converts the plurality of third drive signals into the electrodes 112, in order from the voltage or frequency of the signal applied to the electrodes 112, 114 when the second image data Draw is output from the image sensor 12. 114 is applied.
  • the drive circuit 15 applies a plurality of third drive signals (V3a or F3a, V3b or F3b, or V3c or F3c) to the electrodes 112 and 114 in the order of the voltage V1 or the frequency F2.
  • FIG. 29 shows a variation of the applied voltage with time in the imaging procedure of FIG.
  • two image data Draw are sequentially output from the image sensor 12.
  • the drive circuit 15 applies the second drive signal to the electrodes 112 and 114, and when the second image data Draw is output from the image sensor 12.
  • the third drive signal is applied to the electrodes 112 and 114.
  • the time required for the stepwise exposure is significantly shortened as compared with the case where the second drive signal is applied to the electrodes 112 and 114 after the third drive signal is applied to the electrodes 112 and 114. be able to.
  • the driving circuit 15 outputs the third image data Draw when the first image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • the voltage or the voltage that can be selected as the drive signal is the frequency or the voltage that is output from the drive circuit 15 when the third or later image data Draw is output from the image sensor 12 in the frequency range.
  • a voltage that can be selected as the two drive signals, or a voltage close to frequency or a signal having a frequency may be applied between the electrodes 112 and 114.
  • the drive circuit 15 determines whether the third or subsequent image data Draw is within a voltage or frequency range that can be selected as the third drive signal.
  • the voltage or voltage that can be selected as the first drive signal compared to the frequency or the frequency that is output from the drive circuit 15 when being output from the image sensor 12 is a voltage close to the frequency or a signal having a frequency close to the electrodes 112 and 114. You may apply between.
  • the driving circuit 15 outputs the third image data Draw when the second image data Draw is output from the image sensor 12 when three or more image data Draw is output from the image sensor 12.
  • the voltage or the voltage that can be selected as the drive signal is the frequency or the voltage that is output from the drive circuit 15 when the third or later image data Draw is output from the image sensor 12 in the frequency range.
  • a voltage that can be selected as one drive signal or a voltage close to frequency or a signal having a frequency may be applied between the electrodes 112 and 114.
  • the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12 when the two image data Draw is output from the image sensor 12. Can be selected as a second drive signal compared to the voltage or the frequency output from the drive circuit 15 when the second image data Draw is output from the image sensor 12 in the frequency range. A voltage or a signal having a frequency close to the frequency or a signal having a frequency may be applied between the electrodes 112 and 114. In Modification I, the drive circuit 15 outputs the third drive signal when the first image data Draw is output from the image sensor 12 when the two image data Draw is output from the image sensor 12.
  • the voltage or the voltage that can be selected as the first driving signal is compared with the voltage or the voltage that is output from the driving circuit 15 when the second image data Draw is output from the image sensor 12 in the frequency range.
  • a voltage or a signal having a frequency close to the frequency or a signal having a frequency may be applied between the electrodes 112 and 114.
  • FIG. 30 shows a modification of the liquid crystal low-pass filter 11 shown in FIGS.
  • the liquid crystal low-pass filter 11 according to this modification may include, for example, an AR (Anti Reflection) layer 116 on the light incident side of the birefringent plate 11. At this time, the outer surface of the AR layer 116 becomes the light incident surface 110A. The AR layer 116 reduces reflection at the light incident surface 110A and improves the transmittance.
  • the liquid crystal low-pass filter 11 according to this modification may include, for example, a low reflection layer 117 between the birefringent plate 111 and the electrode 112. The low reflection layer 117 reduces reflection at the interface.
  • the low reflection layer 117 is, for example, a dielectric multilayer film such as SiO 2 or TiO 2 .
  • the liquid crystal low-pass filter 11 may include an IR cut layer instead of the AR layer 116, for example.
  • the IR cut layer reflects infrared rays and transmits visible light. By providing the IR cut layer, it is possible to remove infrared rays with high sensitivity in the image sensor provided at the subsequent stage of the liquid crystal low-pass filter 11.
  • FIG. 31 illustrates a modification of the schematic configuration of the imaging device 10.
  • the imaging device 10 further includes one liquid crystal low-pass filter 11 and a phase canceling plate 16.
  • two liquid crystal low-pass filters 11 are provided in front of the image sensor 60, and a phase cancellation plate 16 is provided between the two liquid crystal low-pass filters 11.
  • the drive circuit 15 drives these two liquid crystal low-pass filters 11.
  • the phase canceling plate 16 converts the transmitted light L2 from the liquid crystal low-pass filter 11 at the previous stage into circularly polarized light.
  • the phase cancellation plate 16 is, for example, a ⁇ / 4 retardation film.
  • the front-stage liquid crystal low-pass filter 11 is disposed so as to perform image separation in the vertical direction, for example. Further, the latter-stage liquid crystal low-pass filter 11 is arranged so as to perform image separation in the horizontal direction, for example.
  • the two liquid crystal low-pass filters 11 and the phase canceling plate 16 separate the image in the vertical direction and the horizontal direction.
  • the cutoff frequency is different from the conventional method (separation width modulation method) that changes the ps separation width of the transmitted light L2 (peak value modulation method). fc changes. Further, by changing the value of the three or four peaks generated in the point image intensity distribution of the transmitted light L2 in accordance with the magnitude of the voltage V3 or the intermediate frequency F3 applied between the electrodes 112 and 114, each liquid crystal low-pass The cutoff frequency fc of the filter 11 can be changed. Therefore, it is possible to set a cut-off frequency different from the cut-off frequency set initially by simply changing the magnitude of the intermediate voltage V3 or the frequency F3 applied between the electrodes 112 and 114. Accordingly, each liquid crystal low-pass filter 11 has a configuration capable of changing the cut-off frequency fc without preparing a new optical component.
  • a birefringent plate 17 may be provided instead of the phase canceling plate 16.
  • the birefringent plate 17 has birefringence and has a uniaxial crystal structure.
  • the birefringent plate 17 is made of, for example, quartz, calcite, or lithium niobate.
  • the birefringent plate 17 separates the image in a direction inclined 45 degrees from the image separating direction in the birefringent plates 111 and 115. Even when the birefringent plate 17 is provided instead of the phase canceling plate 16, the image separation in the vertical direction and the horizontal direction can be performed by the two liquid crystal low-pass filters 11 and the birefringent plate 17.
  • the rise response time when the signal applied to the electrodes 112 and 114 is changed from the first drive signal to the third drive signal is the signal applied to the electrodes 112 and 114. It is assumed that it is shorter than the falling response time when the second drive signal is changed to the third drive signal. When the temperature of the liquid crystal layer 113 is relatively low, the rise response time tends to be shorter than the fall response time. At this time, when three or more image data Draw are sequentially output from the image sensor, the drive circuit 15 applies the second drive signal, the first drive signal, and the third drive signal to the electrodes 112 and 114 in this order ( (See FIGS. 11, 13, 16, and 17).
  • the input unit 50 may include a temperature element that measures the temperature of the liquid crystal layer 113 or a temperature corresponding to the temperature of the liquid crystal layer 113.
  • the control circuit 22 instructs the drive circuit 15 to apply the second drive signal, the first drive signal, and the third drive signal to the electrodes 112 and 114 in this order based on the output of the temperature element. May be.
  • the fall response time when the signal applied to the electrodes 112, 114 is changed from the second drive signal to the third drive signal is the signal applied to the electrodes 112, 114. It is assumed that the rise response time is shorter than when the first drive signal is changed to the third drive signal. When the temperature of the liquid crystal layer 113 is relatively warm, the falling response time tends to be shorter than the rising response time. At this time, when three or more image data Draw are sequentially output from the image sensor, the drive circuit 15 applies the first drive signal, the second drive signal, and the third drive signal to the electrodes in this order (FIG. 23). 24, 27, and 28).
  • the input unit 50 may include a temperature element that measures the temperature of the liquid crystal layer 113 or a temperature corresponding to the temperature of the liquid crystal layer 113.
  • the control circuit 22 instructs the drive circuit 15 to apply the first drive signal, the second drive signal, and the third drive signal to the electrodes 112 and 114 in this order based on the output of the temperature element. May be.
  • the drive circuit 15 applies an overdrive signal to the electrodes 112 and 114 when the signal applied to the electrodes 112 and 114 is displaced from the first drive signal to the second drive signal. May be.
  • the overdrive signal is a signal having a high voltage in the range that can be taken as the voltage V2, or a signal having a low frequency in the range that can be taken as the frequency F1.
  • the drive circuit 15 transmits the overdrive signal to the electrodes 112 and 114 when the signal applied to the electrodes 112 and 114 is displaced from the second drive signal to the first drive signal. You may apply to.
  • the overdrive signal is a signal having a low voltage in the range that can be taken as the voltage V1, or a signal having a high frequency in the range that can be taken as the frequency F2. Accordingly, the polarization conversion efficiency T is hardly changed between when the overdrive signal is applied and when it is not applied (that is, the image quality is not affected), and the waiting time due to the response speed of the liquid crystal 113 is reduced. It can be shortened. As a result, the time required for the stepwise exposure can be significantly shortened compared to the case where no overdrive signal is used.
  • the drive circuit 15 may be separated into a drive circuit 15A and a drive circuit 15B as shown in FIGS. 33, 34, and 35, for example.
  • the drive circuit 15A drives the liquid crystal low-pass filter 11, the lens 13, and the iris 14.
  • the drive circuit 15B drives the image sensor 12 and generates image data D by performing predetermined processing on the image data Draw output from the image sensor 12.
  • the arithmetic unit 20 controls the control circuit 22A that controls the drive circuit 15A and the drive circuit 15B as shown in FIGS. 33, 34, and 35, for example. May be separated from the arithmetic unit 20 ′.
  • the control circuit 22A operates according to a control signal from the arithmetic unit 20 ′.
  • the driving circuit 15A can apply, for example, a first voltage or a first frequency voltage, a second voltage or a second frequency voltage, and an intermediate voltage or an intermediate frequency voltage between the electrodes 112 and 114.
  • the drive circuit 15A applies, for example, the first drive signal, the second drive signal, or the third drive signal between the electrodes 112 and 114 in accordance with an instruction from the control circuit 22A.
  • the control circuit 22A instructs the drive circuit 15A to output the first drive signal, the second drive signal, or the third drive signal to the electrodes 112 and 114.
  • one or a plurality of liquid crystal low-pass filters 11, the lens 13, the iris 14, the drive circuit 15A, and the control circuit 22A constitute the optical device 100.
  • the optical device 100 is configured to be detachable from the imaging device 1.
  • the present technology has been described with the embodiment and its modifications.
  • the present technology is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the effect described in this specification is an illustration to the last.
  • the effect of this technique is not limited to the effect described in this specification.
  • the present technology may have effects other than those described in the present specification.
  • the liquid crystal layer of the liquid crystal low-pass filter is any one of a first polarization state, a second polarization state, and an intermediate polarization state that is a polarization state between the first polarization state and the second polarization state.
  • a control unit for controlling the polarization state of The controller is configured to change the polarization state of the liquid crystal layer to the first polarization state or the second polarization state when outputting the first image data when a plurality of image data is output from the imaging device.
  • a control device that controls and sets the polarization state of the liquid crystal layer to the intermediate polarization state when outputting at least one of the second and subsequent image data.
  • the control unit changes the polarization state of the liquid crystal layer to the first polarization state or the second polarization state when outputting the first image data. And controlling the polarization state of the liquid crystal layer to the intermediate polarization state when outputting the second image data.
  • the control unit changes the polarization state of the liquid crystal layer to the first polarization state or the second polarization state when outputting the first image data. And when the second image data is output, the polarization state of the liquid crystal layer is changed between the first polarization state and the second polarization state when the first image data is output.
  • the control device wherein the control unit controls the polarization state of the liquid crystal layer to the intermediate polarization state when outputting the third and subsequent image data.
  • the first polarization state refers to a state in which incident light to the liquid crystal layer is rotated by 90 degrees
  • the control device according to any one of (1) to (3), wherein the second polarization state refers to a state in which incident light to the liquid crystal layer is not rotated.
  • the first drive signal applied to the liquid crystal layer by the control unit to bring the liquid crystal layer into the first polarization state is that the polarization conversion efficiency curve of the liquid crystal layer is either the maximum value or the minimum value of the polarization conversion efficiency.
  • the second drive signal applied to the liquid crystal layer by the control unit to bring the liquid crystal layer into the second polarization state has a polarization conversion efficiency curve of the liquid crystal layer out of a maximum value and a minimum value of polarization conversion efficiency.
  • the control unit prepares an operation preparation required when the image data is output from the image sensor on one or a plurality of optical components provided before the first liquid crystal low-pass filter before outputting the first image data.
  • a signal having the same voltage or frequency as the preparation voltage or the preparation frequency applied to the liquid crystal layer when being applied to the liquid crystal layer.
  • the control device according to any one of (7) to (7), which is applied to the liquid crystal layer when it is output.
  • the control unit moves the liquid crystal layer to the intermediate polarization state when the third and subsequent image data are output from the image sensor.
  • the controller is configured to output a plurality of images applied to the liquid crystal layer when the third and subsequent image data are output from the image sensor.
  • the third drive signal is applied to the liquid crystal layer in the order close to the voltage or frequency of the signal applied to the liquid crystal layer when the second image data is output from the image sensor.
  • the control unit performs the operation preparation on one or a plurality of the optical components before outputting the image data, In the case where three or more pieces of image data are sequentially output from the image sensor, the control unit moves the liquid crystal layer to the intermediate polarization state when the third and subsequent image data are output from the image sensor.
  • the plurality of third drive signals applied to the liquid crystal layer a signal having the same voltage as the preparation voltage or the preparation frequency, or a signal having a voltage or frequency closest to the preparation voltage or the preparation frequency.
  • the controller When three or more pieces of image data are sequentially output from the image sensor, the controller is configured to output a plurality of images applied to the liquid crystal layer when the third and subsequent image data are output from the image sensor.
  • the third drive signal is applied to the liquid crystal layer in the order close to the voltage or frequency of the signal applied to the liquid crystal layer when the second image data is output from the image sensor.
  • Control device (13) The control unit is a case where three or more pieces of image data are sequentially output from the imaging device, and the polarization state of the liquid crystal layer is changed from the first polarization state to the intermediate polarization state.
  • the polarization state of the liquid crystal layer is changed to the second polarization state.
  • the control device according to any one of (1) to (12), wherein the first polarization state and the intermediate polarization state are changed in order.
  • the control unit is a case where three or more image data are sequentially output from the image sensor, and the polarization state of the liquid crystal layer is changed from the second polarization state to the intermediate polarization state.
  • the polarization state of the liquid crystal layer is changed to the first polarization state.
  • the control device according to any one of (1) to (12), wherein the second polarization state and the intermediate polarization state are changed in order.
  • An image sensor that outputs image data
  • a liquid crystal low-pass filter having a liquid crystal layer and disposed on an incident path of light to the image sensor;
  • a control unit for controlling the imaging element and controlling the liquid crystal layer;
  • the control unit includes: a first polarization state; a second polarization state; and an intermediate polarization state that is a polarization state between the first polarization state and the second polarization state. Control to make any polarization state, In the case where a plurality of the image data are output from the image sensor, the control unit changes the polarization state of the liquid crystal layer to the first polarization state or the second polarization state when outputting the first image data.
  • An imaging apparatus that controls the state of the liquid crystal layer to the intermediate polarization state when outputting at least one of the second and subsequent image data.
  • a method of controlling a liquid crystal low-pass filter that includes a liquid crystal layer and is disposed on a light incident path with respect to an imaging device, When a plurality of image data is output from the image sensor, the polarization state of the liquid crystal layer is controlled to the first polarization state or the second polarization state when the first image data is output.
  • a method of controlling a liquid crystal low-pass filter comprising: setting the polarization state of the liquid crystal layer to the intermediate polarization state when outputting at least one of the image data after the first.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Blocking Light For Cameras (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Studio Devices (AREA)

Abstract

 制御装置は、液晶ローパスフィルタの液晶層を、第1の偏光状態、第2の偏光状態、および第1の偏光状態と第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行う制御部を備えている。制御部は、撮像素子から複数の画像データが出力される場合に、1番目の画像データの出力に際して、液晶層の偏光状態を第1の偏光状態または第2の偏光状態に制御し、2番目以降の少なくとも1つの画像データの出力に際して、液晶層の偏光状態を中間偏光状態に制御する。

Description

制御装置、撮像装置、および液晶ローパスフィルタの制御方法
 本技術は、液晶ローパスフィルタの液晶層を制御する制御部を有する制御装置、上記制御部を備えた撮像装置に関する。また、本技術は、液晶ローパスフィルタの液晶層を制御する液晶ローパスフィルタの駆動方法に関する。
 撮影装置の一つであるデジタルカメラやビデオカメラには、撮影デバイスとして、CCD(charge Coupled Device)イメージセンサや、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサが広く用いられている。撮像デバイスには、複数の光電変換素子が所定の間隔(以下、「画素ピッチ」と称する。)で2次元配置された撮像素子と、撮像素子の光入射面に配置されたカラーフィルタアレイとが設けられている。撮像デバイスは、撮影レンズを経由して入射してきた被写体光を、撮像素子およびカラーフィルタアレイで離散的にサンプリングすることによりカラーの画像データを得る。
 撮像デバイスは、撮像素子の画素ピッチやカラーフィルタアレイの色配列ピッチによって定まる解像限界(ナイキスト周波数)を有している。そのため、ナイキスト周波数以上の高周波成分を有する被写体光が撮像デバイスに入射すると、ナイキスト周波数以上の高周波成分が実空間での折り返し成分となり、画像データの色や輝度が周期的に変動する縞状の模様(モアレ)が発生する。そのため、通常では、ナイキスト周波数をカットオフ周波数に設定したOLPF(Optical Low Pass Filter;液晶ローパスフィルタ)が撮影レンズと撮像素子との間に設けられ、撮像素子に入射する光の高周波成分がOLPFによって除去される。
 1台のカメラで静止画と動画の双方を撮影できるカメラでは、静止画モードと動画モードで読み出しピッチが互いに異なり、それに伴い、ナイキスト周波数も互いに異なる。動画モードでは、通常、読み出しピッチが静止画モードの読み出しピッチよりも大きくなっており、ナイキスト周波数が静止画モードのナイキスト周波数よりも小さくなっている。そのため、動画モードでは、静止画モードよりも、より低周波領域からモアレが発生しやすい。しかし、以前では、静止画の解像度を優先して、OLPFのカットオフ周波数が静止画モードのナイキスト周波数に設定され、両モードに対して最適なOLPFが提供されていなかった。
 この問題に対して、最適なカットオフ周波数を有するOLPFをモードごとに設け、モードに応じて切り替えることが提案されている(特許文献1参照)。また、TN液晶を、複屈折性を有する一対の液晶板で挟み込んだOLPFにおいて、TN液晶をオンオフ駆動することにより、OLPFの透過光のps分離幅を2種類に可変することが提案されている(特許文献2,3参照)。なお、ps分離幅を変えることにより、カットオフ周波数を変えることができる。
特開2000-333049号公報 WO2007/083783号公報 特開2007-94276号公報
 ところで、上記の方法では、カットオフ周波数は、固定値となっている。そのため、当初に設定されたカットオフ周波数とは異なるカットオフ周波数に変更することができない。その結果、例えば、カットオフ周波数を変更しながら静止画を連続撮影することが極めて困難であった。
 したがって、カットオフ周波数を変更しながら静止画の連続撮影を行うことの可能な撮像装置、ならびにそのような撮像装置に好適に適用可能な制御装置および液晶ローパスフィルタの制御方法を提供することが望ましい。
 本技術の一実施の形態に係る制御装置は、液晶ローパスフィルタの液晶層を、第1の偏光状態、第2の偏光状態、および第1の偏光状態と第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行う制御部を備えている。制御部は、撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、液晶層の偏光状態を第1の偏光状態または第2の偏光状態に制御し、2番目以降の少なくとも1つの画像データの出力に際して、液晶層の偏光状態を中間偏光状態に制御するようになっている。
 本技術の一実施の形態に係る制御装置において、制御部は、撮像素子から2つの画像データが出力される場合に、1番目の前記画像データの出力に際して、液晶層の偏光状態を第1の偏光状態または第2の偏光状態に制御し、2番目の前記画像データの出力に際して、液晶層の偏光状態を中間偏光状態に制御するようになっていてもよい。また、本技術の一実施の形態に係る制御装置において、制御部は、撮像素子から3以上の画像データが出力される場合に、1番目の画像データの出力に際して、液晶層の偏光状態を第1の偏光状態または第2の偏光状態に制御するようになっていてもよい。このとき、制御部は、さらに、2番目の画像データの出力に際して、液晶層の偏光状態を、第1の偏光状態および第2の偏光状態のうち、1番目の画像データの出力の際とは異なる偏光状態に制御し、3番目以降の画像データの出力に際して、液晶層の偏光状態を中間偏光状態に制御するようになっていてもよい。
 本技術の一実施の形態に係る制御装置において、第1偏光状態とは、例えば、液晶層への入射光を90度、旋光させる状態を指しており、第2偏光状態とは、例えば、液晶層への入射光を旋光させない状態を指している。また、本技術の一実施の形態に係る制御装置において、制御部が液晶層を第1の偏光状態とするために液晶層に印加する第1駆動信号は、例えば、液晶層の偏光変換効率曲線が偏光変換効率の最大値付近の電圧もしくは周波数の信号である。制御部が液晶層を第2の偏光状態とするために液晶層に印加する第2駆動信号は、例えば、液晶層の偏光変換効率曲線が偏光変換効率の最小値付近の電圧もしくは周波数の信号である。
 本技術の一実施の形態に係る撮像装置は、画像データを出力する撮像素子と、液晶層を有し、撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタと、撮像素子を制御すると共に、液晶層を制御する制御部とを備えている。本技術の一実施の形態に係る撮像装置において、制御部は、上記制御装置に含まれる制御部と同一の構成要素を有している。
 本技術の一実施の形態に係る液晶ローパスフィルタの制御方法は、撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタの制御方法である。この制御方法は、撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、液晶層の偏光状態を第1の偏光状態または第2の偏光状態に制御し、2番目以降の少なくとも1つの画像データの出力に際して、液晶層の偏光状態を中間偏光状態に制御することを含んでいる。
 本技術の一実施の形態に係る制御装置、撮像装置および液晶ローパスフィルタの制御方法では、液晶ローパスフィルタの液晶層の偏光状態が変化するので、液晶ローパスフィルタを透過した光の点像強度分布のピーク値も変化する。点像強度分布のピーク値が変化すると、液晶ローパスフィルタのカットオフ周波数も変化する。このように、本技術では、透過光のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数が変化する。また、本技術では、透過光の点像強度分布のピーク値を、液晶ローパスフィルタの液晶層の偏光状態に応じて変えることで、液晶ローパスフィルタのカットオフ周波数を変化させることができる。従って、液晶ローパスフィルタの液晶層の偏光状態を変えるだけで、当初に設定したカットオフ周波数とは異なるカットオフ周波数を設定することができる。
 さらに、本技術の一実施の形態に係る制御装置、撮像装置および液晶ローパスフィルタの制御方法では、撮像素子から2以上の画像データが出力される場合に、1番目の画像データの出力に際して、液晶層の偏光状態が第1の偏光状態または第2の偏光状態となり、2番目の前記画像データの出力に際して、液晶層の偏光状態が中間偏光状態となる。これにより、液晶の応答速度に起因する待ち時間を短縮することができる。
 本技術の一実施の形態に係る制御装置、撮像装置および液晶ローパスフィルタの制御方法によれば、液晶ローパスフィルタの液晶層の偏光状態を変えるようにしたので、カットオフ周波数を変化させることができる。また、本技術の一実施の形態に係る制御装置、撮像装置および液晶ローパスフィルタの制御方法によれば、液晶の応答速度に起因する待ち時間を短縮することができるようにしたので、カットオフ周波数を変更した際に次の撮影開始までの待ち時間を短くすることができる。従って、カットオフ周波数を変更しながら静止画の連続撮影を行うことができる。なお、本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本技術の一実施の形態に係る撮像装置の概略構成の一例を表す図である。 図1の撮像デバイスの概略構成の一例を表す図である。 図1の演算部の概略構成の一例を表す図である。 図1の液晶ローパスフィルタの概略構成の一例を表す図である。 図4の一対の複屈折板の光学軸の一例を表す図である。 図5の液晶層の偏光変換効率曲線(V-T曲線)の一例を表す図である。 図5の液晶層の偏光変換効率曲線(F-T曲線)の一例を表す図である。 図5の液晶ローパスフィルタの作用の一例を表す図である。 図5の液晶ローパスフィルタの作用の一例を表す図である。 図5の液晶ローパスフィルタの作用の一例を表す図である。 図7Bの透過光の点像強度分布の一例を、映像上での点像の広がりとともに表す図である。 図7Aの透過光の点像強度分布の一例を、映像上での点像の広がりとともに表す図である。 図7Cの透過光の点像強度分布の一例を、映像上での点像の広がりとともに表す図である。 図7Cの透過光の点像強度分布の一例を、映像上での点像の広がりとともに表す図である。 図7A~図7DのMTF(Modulation Transfer Function)の一例を表す図である。 図1の撮像装置における撮像手順の一例を表す図である。 図10の撮像手順における偏光変換効率および印加電圧の経時変化の一例を表す図である。 比較例に係る撮像手順における偏光変換効率および印加電圧の経時変化の一例を表す図である。 図10の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表す図である。 図10の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表す図である。 図1の撮像装置における撮像手順の一変形例を表す図である。 図15の撮像手順における印加電圧の経時変化の一例を表す図である。 図15の撮像手順における印加電圧の経時変化の一変形例を表す図である。 図15の撮像手順における印加電圧の経時変化の一変形例を表す図である。 図1の一対の複屈折板の光学軸の一変形例を表す図である。 図19の液晶ローパスフィルタの作用の一例を表す図である。 図19の液晶ローパスフィルタの作用の一例を表す図である。 図19の液晶ローパスフィルタの作用の一例を表す図である。 図4、図19の液晶層の偏光変換効率曲線(V-T曲線)の一変形例を表す図である。 図4、図19の液晶層の偏光変換効率曲線(F-T曲線)の一変形例を表す図である。 図21Aまたは図21Bの偏光変換効率曲線を有する液晶層を備えた撮像装置における撮像手順の一例を表す図である。 図22の撮像手順における偏光変換効率および印加電圧の経時変化の一例を表す図である。 図22の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表す図である。 図22の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表す図である。 図21Aまたは図21Bの偏光変換効率曲線を有する液晶層を備えた撮像装置における撮像手順の一変形例を表す図である。 図26の撮像手順における印加電圧の経時変化の一例を表す図である。 図26の撮像手順における印加電圧の経時変化の一変形例を表す図である。 図26の撮像手順における印加電圧の経時変化の一変形例を表す図である。 図4、図19の液晶ローパスフィルタの一変形例を表す図である。 図2の撮像デバイスの概略構成の一変形例を表す図である。 図2の撮像デバイスの概略構成の一変形例を表す図である。 図2の撮像デバイスおよび演算部の概略構成の一変形例を表す図である。 図31の撮像デバイスおよび演算部の概略構成の一変形例を表す図である。 図32の撮像デバイスおよび演算部の概略構成の一変形例を表す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は、以下の順序で行う。
 
  1.実施の形態(撮像装置)
     2つの複屈折板における像の分離方向を互いに反対方向にした例
     TN液晶を用いた例
     1つの液晶ローパスフィルタを用いた例
     1番目の露光前に動作準備を設けた例
     露光回数を3回にした例
  2.変形例
   2.1 変形例A:露光回数を5回以上にした例
   2.2 変形例B:露光回数を2回にした例
   2.3 変形例C:各露光前に動作準備を設けた例
   2.4 変形例D:最初の動作状態を引き継がない例
   2.5 変形例E:3枚以上の撮影において全て第3駆動信号を
       用いた例
   2.6 変形例F:3枚以上の撮影において2番目にも
       第3駆動信号を用いた例
   2.7 変形例G:2枚の撮影において1番目にも第3駆動信号を
       用いた例
   2.8 変形例H:2枚の複屈折板における像の分離方向を
       互いに揃えた例
   2.9 変形例I:VA液晶を用いた例
   2.10 変形例J:最初の動作状態を引き継がない例
   2.11 変形例K:3枚以上の撮影において全て第3駆動信号を
        用いた例
   2.12 変形例L:3枚以上の撮影において2番目にも
        第3駆動信号を用いた例
   2.13 変形例M:2枚の撮影において1番目にも
        第3駆動信号を用いた例
   2.14 変形例N:AR層などを付加した例
   2.15 変形例O:2つの液晶ローパスフィルタを用いた例
   2.16 変形例P:液晶の立ち上がり応答時間が早い例
   2.17 変形例Q:液晶の立ち下がり応答時間が早い例
   2.18 変形例R:オーバードライブ信号を用いた例
   2.19 変形例S:光学装置が撮像装置に対して着脱可能に
        構成されている例
 
<1.実施の形態>
[構成]
 図1は、本技術の一実施の形態に係る撮像装置1の概略構成の一例を表したものである。撮像装置1は、例えば、撮像デバイス10、演算部20、表示部30、メモリ部40および入力部50を備えている。
(撮像デバイス10)
 図2は、撮像デバイス10の概略構成の一例を表したものである。撮像デバイス10は、例えば、液晶ローパスフィルタ11、撮像素子12、レンズ13、アイリス14および駆動回路15を有している。液晶ローパスフィルタ11の前段にレンズ13およびアイリス14が設けられており、液晶ローパスフィルタ11の後段に撮像素子12が設けられている。つまり、液晶ローパスフィルタ11は、撮像素子12に対する光の入射経路上に配置されている。液晶ローパスフィルタ11についての説明は、後に詳述するものとする。
 撮像素子12は、例えば、複数の光電変換素子が所定の間隔で2次元配置された受光部と、受光部の光入射面に配置されたカラーフィルタアレイとを有している。撮像素子12は、例えば、レンズ13、アイリス14および液晶ローパスフィルタ11を経由して入射してきた被写体光を、受光部およびカラーフィルタアレイで離散的にサンプリングすることによりカラーの画像データを得るようになっている。レンズ13は、被写体光を集光して、撮像素子12の光入射面に入射させるものである。アイリス14は、被写体光の、撮像素子12の光入射面への入射量を調整するものである。
 駆動回路15は、レンズ13およびアイリス14を機械的に駆動するものである。駆動回路15は、例えば、レンズ13の光軸上の位置を前後させることにより、焦点を調整するようになっている。駆動回路15は、さらに、例えば、アイリス14の絞り量を調整することにより、撮像素子12の光入射面への入射量を調整するようになっている。
 駆動回路15は、さらに、液晶ローパスフィルタ11および撮像素子12を駆動するものである。駆動回路15は、液晶ローパスフィルタ11の電極間に、電圧V(周波数一定)または周波数Fの電圧(電圧値一定)を印加することにより、液晶ローパスフィルタ11のカットオフ周波数fcを調整するようになっている。具体的には、駆動回路15は、後述するように、第1電圧もしくは第1周波数の電圧、第2電圧もしくは第2周波数の電圧、および中間電圧もしくは中間周波数の電圧を液晶ローパスフィルタ11の電極間に印加可能となっている。駆動回路15は、第1電圧もしくは第1周波数の電圧を液晶ローパスフィルタ11の電極間に印加することにより、液晶ローパスフィルタ11の液晶層113(後述)の偏光状態を第1の偏光状態に制御するようになっている。駆動回路15は、第2電圧もしくは第2周波数の電圧を液晶ローパスフィルタ11の電極間に印加することにより、液晶ローパスフィルタ11の液晶層113の偏光状態を第2の偏光状態に制御するようになっている。駆動回路15は、中間電圧もしくは中間周波数の電圧を液晶ローパスフィルタ11の電極間に印加することにより、液晶ローパスフィルタ11の液晶層113の偏光状態を中間偏光状態に制御するようになっている。駆動回路15は、撮像素子12を駆動することにより、撮像素子12で画像データを取得すると共に、その画像データを外部に出力させるようになっている。
(演算部20)
 図3は、演算部20の概略構成の一例を表したものである。演算部20は、撮像デバイス10から出力された画像データDrawに対して所定の処理を行うものである。演算部20は、例えば、前処理回路21、制御回路22、表示処理回路23、圧縮伸長回路24およびメモリ制御回路25を有している。
 前処理回路21は、撮像デバイス10から出力された画像データDrawに対して、シェーディング補正などの光学的な補正処理を行うものである。制御回路22は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含んで構成されたマイクロコンピュータである。制御回路22は、例えば、ROMなどに記憶されたプログラムを実行することにより、前処理回路21から出力された補正後の画像データDに対して、後述する種々の処理を行うようになっている。制御回路22は、例えば、露光中の画像データを、表示処理回路23に出力するようになっている。制御回路22は、例えば、露光中の画像データであって、かつ撮像対象となった画像データを圧縮伸長回路24に出力するようになっている。制御回路22についての説明は、後に詳述するものとする。
 表示処理回路23は、制御回路22から受け取った画像データから、表示部30に表示させる画像信号を生成して、その画像信号を表示部30に送るものである。圧縮伸長回路24は、制御回路22から受け取った静止画の画像データに対して、例えば、JPEG(Joint Photographic Experts Group)などの静止画像の符号化方式で圧縮符号化処理を行うものである。また、圧縮伸長回路24は、制御回路22から受け取った動画の画像データに対して、例えば、MPEG(Moving Picture Experts Group)などの動画像の符号化方式で圧縮符号化処理を行うものである。メモリ制御回路25は、メモリ部40に対する画像データの書き込みおよび読み出しを制御するものである。
(表示部30、メモリ部40および入力部50)
 表示部30は、例えば、LCD(Liquid Crystal Display)からなり、露光中の画像データや、メモリ部40から読み出した画像データなどを表示するものである。メモリ部40は、メモリ制御回路25から受け取った画像データを保存するものである。入力部50は、ユーザからの指示を受け付けるものであり、例えば、操作ボタンや、キーボードなどで構成されている。
(液晶ローパスフィルタ11)
 次に、液晶ローパスフィルタ11について詳述する。図4は、液晶ローパスフィルタ11の概略構成の一例を表したものである。液晶ローパスフィルタ11は、被写体光に含まれる高い空間周波数の成分を除去するものであり、駆動回路20によって駆動されることによりカットオフ周波数fcを変化させる。液晶ローパスフィルタ11は、透過光のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数fcを変化させる。なお、ピーク値変調方式については、後に詳述するものとする。
 液晶ローパスフィルタ11は、複屈折性を有する一対の複屈折板111,115と、一対の複屈折板111,115の間に配置された液晶層113とを備えている。液晶ローパスフィルタ11は、さらに、液晶層113に電界を印加する電極112,114を備えている。なお、液晶ローパスフィルタ11は、例えば、液晶層113の配向を規制する配向膜を備えていてもよい。電極112,114は、液晶層113を介して互いに対向配置されている。電極112,114は、それぞれ、1枚のシート状電極からなる。なお、電極112および電極114の少なくとも一方が、複数の部分電極で構成されていてもよい。
 電極112,114は、例えば、ITO (Indium Tin Oxide)などの透光性の導電膜である。電極112,114は、例えば、透光性を有する無機導電膜、透光性を有する有機導電膜、または、透光性を有する金属酸化膜であってもよい。液晶ローパスフィルタ11は、液晶層113を封止するシール材を有していてもよい。シール材は、一対の複屈折板111,115の間の間隙を維持する複数のスペーサを含んでいてもよいし、複数のスペーサを含んでいなくてもよい。各スペーサは、例えば、ガラススペーサである。各スペーサは、例えば、透光性を有する無機物、透光性を有する有機物、または、透光性を有する金属酸化物で構成されていてもよい。複数のスペーサが、液晶層113中にも設けられていてもよいし、液晶層113中に設けられていなくてもよい。液晶層113中では、各スペーサの直径が7μm以下となっていることが好ましい。なお、シール材にスペーサが含まれている場合、シール材に含まれるスペーサの直径は7μm以上となっていてもよい。また、各スペーサの個数が、液晶層113中において、1平方ミリメートルあたり10個以下となっていることが好ましい。
 複屈折板111は、液晶ローパスフィルタ11の光入射側に配置されており、例えば、複屈折板111の外側の表面が光入射面110Aとなっている。入射光L1は、被写体側から光入射面110Aに入射する光である。複屈折板111は、例えば、入射光L1の光軸が複屈折板111(または光入射面110A)の法線111Aと平行となるように配置される。複屈折板115は、液晶ローパスフィルタ11の光出射側に配置されており、例えば、複屈折板115の外側の表面が光出射面110Bとなっている。液晶ローパスフィルタ11の透過光L2は、光出射面110Bから外部に出射された光である。複屈折板111、電極112、液晶層113、電極114および複屈折板115は、光入射側からこの順に積層されている。電極112、液晶層113、電極114および複屈折板115のそれぞれの法線は、法線111Aと平行となっている。
 図5は、液晶ローパスフィルタ11における一対の複屈折板111,115の光学軸(optic axis)の一例を表したものである。複屈折板111,115は、複屈折性を有しており、1軸性結晶の構造を有している。複屈折板111,115は、複屈折性を利用して円偏光の光をps分離する機能を有している。複屈折板111,115は、例えば、水晶、方解石またはニオブ酸リチウムによって構成されている。ここで、ニオブ酸リチウムの分離係数は、波長が589.3nm(d線)のときに、水晶の分離係数よりも、6.4倍も大きい。そのため、ニオブ酸リチウムの方が、水晶よりも、同じ分離幅を得るのに必要な厚さを薄くすることができる。
 複屈折板111,115では、像の分離方向が互いに反対方向を向いている。複屈折板111の光学軸AX1および複屈折板115の光学軸AX2は、光入射面110Aの法線111Aと平行な面内において互いに交差している。光学軸AX1と光学軸AX2とのなす角θ1は、例えば、90°となっている。さらに、光学軸AX1,AX2が入射面110Aの法線111Aと斜めに交差している。光学軸AX1と法線111Aとのなす角θ2は、例えば、法線111Aを基準として反時計回りに90°よりも小さくなっており、例えば、45°となっている。光学軸AX2と法線111Aとのなす角θ3は、例えば、法線111Aを基準として反時計回りに90°よりも大きく180°よりも小さくなっており、例えば、135°(180-45°)となっている。
 図6Aは、液晶層113の偏光変換効率曲線(V-T曲線)の一例を表したものである。図6Bは、液晶層113の偏光変換効率曲線(F-T曲線)の一例を表したものである。図6Aにおいて、横軸は電極112,114間に印加される電圧V(周波数一定)である。図6Bにおいて、横軸は電極112,114間に印加される電圧の周波数F(電圧一定)である。図6A、図6Bにおいて、縦軸は、偏光変換効率Tである。偏光変換効率Tとは、直線偏光の光に与えられた位相差を90度で割ることにより得られた値に100を掛けたものである。偏光変換効率Tがゼロ%とは、直線偏光に対して何らの位相差も与えられていないことを指しており、例えば、直線偏光が偏光方向を変えられずに媒体を透過したことを指している。偏光変換効率Tが100%とは、直線偏光に対して90度の位相差が与えられたことを指しており、例えば、p偏光がs偏光に、またはs偏光がp偏光に変換されて媒体を透過したことを指している。偏光変換効率Tが50%とは、直線偏光に対して45度の位相差が与えられたことを指しており、例えば、p偏光またはs偏光が円偏光に変換されて媒体を透過したことを指している。
 液晶層113は、電極112,114間の電圧によって生成される電界に基づいて、偏光を制御するものである。液晶層113では、図6Aに示したように、電極112,114間に電圧V1が印加されると、偏光変換効率TがT2となり、電極112,114間に電圧V2(V1<V2)が印加されると、偏光変換効率TがT1となる。T2は100%であり、T1は0%である。液晶層113では、さらに、図6Aに示したように、電極112,114間に電圧V3(V1<V3<V2)が印加されると、偏光変換効率TがT3となる。T3は0%よりも大きく、100%よりも小さな値である。図6Aには、電圧V3が、T3が50%となるときの電圧となっている場合が例示されている。ここで、電圧V1は、偏光変換効率曲線の立ち下がり位置の電圧(第2電圧)以下の電圧であり、具体的には、偏光変換効率曲線において、偏光変換効率が最大値付近で飽和している区間の電圧を指している。電圧V2は、偏光変換効率曲線の立ち上がり位置の電圧(第1電圧)以上の電圧であり、具体的には、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の電圧を指している。電圧V3は、偏光変換効率曲線の立ち下がり位置の電圧(第1電圧)と、偏光変換効率曲線の立ち上がり位置の電圧(第2電圧)との間の電圧(中間電圧)である。電圧V3は、具体的には、偏光変換効率曲線において、偏光変換効率が最大値付近で飽和している区間の電圧と、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の電圧との間の電圧である。
 液晶層113では、図6Bに示したように、電極112,114間に周波数F2の電圧が印加されると、偏光変換効率TがT2となり、電極112,114間に周波数F1(F1<F2)の電圧が印加されると、偏光変換効率TがT1となる。液晶層113では、さらに、図6Bに示したように、電極112,114間に周波数F3(F1<F3<F2)の電圧が印加されると、偏光変換効率TがT3となる。図6Bには、周波数F3が、T3が50%となるときの周波数となっている場合が例示されている。ここで、周波数F1は、偏光変換効率曲線の立ち上がり位置の周波数(第1周波数)以下の周波数であり、具体的には、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の周波数を指している。周波数F2は、偏光変換効率曲線の立ち下がり位置の周波数(第2周波数)以上の周波数であり、具体的には、偏光変換効率曲線において、偏光変換効率が最大値付近で飽和している区間の周波数を指している。周波数F3は、偏光変換効率曲線の立ち下がり位置の周波数(第2周波数)と、偏光変換効率曲線の立ち上がり位置の周波数(第1周波数)との間の周波数(中間周波数)である。周波数F3は、具体的には、偏光変換効率曲線において、偏光変換効率が最大値付近で飽和している区間の周波数と、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の周波数との間の周波数である。
 上述したように、液晶層113は、偏光を制御するものである。上述したような偏光変換効率曲線を有する液晶としては、例えば、TN(Twisted Nematic)液晶が挙げられる。TN液晶は、カイラルなネマティック液晶によって構成されており、通過する光の偏光方向をネマティック液晶の回転に沿って回転させる旋光性を有している。
 次に、液晶ローパスフィルタ11(具体的には、一対の複屈折板111,115および液晶層113)の光学的な作用について説明する。図7A、図7B、図7Cは、液晶ローパスフィルタ11の作用の一例を表したものである。図7Aでは、電極112,114間の電圧Vが電圧V1となっているか、または電極112,114間の周波数Fが周波数F2となっている。図7Bでは、電極112,114間の電圧Vが電圧V2となっているか、または電極112,114間の周波数Fが周波数F1となっている。図7Cでは、電極112,114間の電圧Vが電圧V3となっているか、または電極112,114間の周波数Fが周波数F3となっている。
(V=V1、F=F2の場合(図7A))
 円偏光の入射光L1が複屈折板111に入射すると、入射光L1は、複屈折板111の複屈折性により、分離幅d1でp偏光とs偏光とに分離される。複屈折板111の光学軸AX1に対して垂直に振動する偏光成分が、入射光L1に含まれるs偏光の成分である場合、分離されたs偏光は、複屈折板111内を、複屈折の影響を受けずに直進し、複屈折板111の裏面から出射する。入射光L1に含まれるp偏光の成分は、s偏光の振動方向と直交する方向に振動するので、複屈折板111内を、複屈折の影響を受けて斜めに進み、複屈折板111の裏面のうち、分離幅d1だけシフトした位置で屈折して、複屈折板111の裏面から出射する。従って、複屈折板111は、入射光L1を、分離幅d1で、p偏光の透過光L2と、s偏光の透過光L2とに分離する。
 複屈折板111で分離されたp偏光が、偏光変換効率がT2となっている液晶層113に入射すると、p偏光はs偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。複屈折板111で分離されたs偏光が、偏光変換効率がT2となっている液晶層113に入射すると、s偏光はp偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、複屈折板111で分離されたp偏光およびs偏光に対して、分離幅を一定に保ったままで、ps変換を行う。このときの液晶層113の偏光状態(液晶層113への入射光を90度、旋光させる状態)が、本技術の「第1の偏光状態」の一具体例に相当する。
 液晶層113を透過してきたs偏光およびp偏光が複屈折板115に入射すると、s偏光およびp偏光の分離幅が、複屈折板115の複屈折性により、変化する。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向とは反対方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を、分離幅(d1+d2)で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。
(V=V2、F=F1の場合(図7B))
 複屈折板111の、入射光L1に対する作用は、上記と同じである。そこで、以下では、液晶層113と複屈折板115の作用について説明する。複屈折板111で分離されたp偏光およびs偏光が、偏光変換効率がT1となっている液晶層113に入射すると、p偏光およびs偏光は、液晶層113によって偏光変換されずに、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、複屈折板111で分離されたp偏光およびs偏光に対して、光学的な作用を有していない。このときの液晶層113の偏光状態(液晶層113への入射光を旋光させない状態)が、本技術の「第2の偏光状態」の一具体例に相当する。
 液晶層113を透過してきたs偏光およびp偏光が複屈折板115に入射すると、s偏光およびp偏光の分離幅が、複屈折板115の複屈折性により、変化する。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向とは反対方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を、分離幅(|d1-d2|)で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。ここで、d1=d2の場合、s偏光の透過光L2と、p偏光の透過光L2とは、複屈折板115の裏面のうち、互いに同じ場所から出射される。従って、この場合は、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を互いに合成した光にする。
(V=V3、F=F3の場合(図7C))
 複屈折板111の、入射光L1に対する作用は、上記と同じである。そこで、以下では、液晶層113と複屈折板115の作用について説明する。複屈折板111で分離されたp偏光が、偏光変換効率がT3(=50%)となっている液晶層113に入射すると、p偏光は円偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。複屈折板111で分離されたs偏光が、偏光変換効率がT3(=50%)となっている液晶層113に入射すると、s偏光も円偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、複屈折板111で分離されたp偏光およびs偏光を、分離幅を一定に保ったままで、円偏光に変換する。このときの液晶層113の偏光状態が、本技術の「中間偏光状態」の一具体例に相当する。
 液晶層113から出射されてきた円偏光が複屈折板115に入射すると、複屈折板115の複屈折性により、分離幅d2でp偏光とs偏光とに分離される。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向とは反対方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113でp偏光から変換された円偏光と、液晶層113でs偏光から変換された円偏光とを、それぞれ、分離幅d2で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。
 ここで、d1=d2の場合、液晶層113でp偏光から変換された円偏光から分離されたp偏光と、液晶層113でs偏光から変換された円偏光から分離されたs偏光とが、複屈折板115の裏面のうち、互いに同じ場所から出射される。この場合、円偏光の透過光L2が複屈折板115の裏面から出射される。従って、この場合は、複屈折板115は、液晶層113から出射されてきた2つの円偏光を、分離幅(d2+d2)でp偏光の透過光L2と、s偏光の透過光L2とに分離すると共に、一旦分離したp偏光とs偏光とをp偏光の透過光L2とs偏光の透過光L2との間の位置で、p偏光とs偏光とを合成した光にする。
 次に、液晶ローパスフィルタ11の透過光の点像強度分布について説明する。図8Aは、図7Bの透過光の点像強度分布の一例を、映像上での点像の広がりとともに表したものである。図8Bは、図7Aの透過光の点像強度分布の一例を表したものである。図8Cは、図7Cの透過光の点像強度分布の一例を表したものである。図8Dは、図7Cにおいてd1≠d2のときの透過光の点像強度分布の一例を表したものである。
 液晶ローパスフィルタ11は、電極112,114間に電圧V2または周波数F1の電圧が印加されているときには、例えば、図8Aに示したように、液晶ローパスフィルタ11の透過光の点像強度分布に1つのピークp1を生じさせる。ピークp1は、例えば、図7Bに示したように、複屈折板115から出射される1つの透過光L2によって形成されたものである。液晶ローパスフィルタ11は、電極112,114間に電圧V1または周波数F2の電圧が印加されているときには、例えば、図8Bに示したように、液晶ローパスフィルタ11の透過光の点像強度分布に2つのピークp2,p3を生じさせる。2つのピークp2,p3は、例えば、図7Aに示したように、複屈折板115から出射される2つの透過光L2によって形成されたものである。
 液晶ローパスフィルタ11は、電極112,114間に電圧V3または周波数F3の電圧が印加され、かつd1=d2となっているときには、例えば、図8Cに示したように、液晶ローパスフィルタ11の透過光の点像強度分布に3つのピークp1,p2,p3を生じさせる。3つのピークp1,p2,p3は、例えば、図7Cに示したように、複屈折板115から出射される3つの透過光L2によって形成されたものである。液晶ローパスフィルタ11は、電極112,114間に電圧V3または周波数F3の電圧が印加され、かつd1≠d2となっているときには、例えば、図8Dに示したように、液晶ローパスフィルタ11の透過光の点像強度分布に4つのピークp1,p2,p3,p4を生じさせる。4つのピークp1,p2,p3,p4は、例えば、図示しないが、複屈折板115から出射される4つの透過光L2によって形成されたものである。
 上述したように、液晶ローパスフィルタ11は、電極112,114間に電圧V3または周波数F3の電圧が印加されているときに、液晶ローパスフィルタ11の透過光の点像強度分布に3つのピークp1~p3または、4つのピークp1~p4を生じさせる。ここで、液晶ローパスフィルタ11では、電極112,114間に印加する電圧V3または周波数F3の大きさが変化すると、上記3つのピークp1~p3の値または、上記4つのピークp1~p4が変化する。つまり、液晶ローパスフィルタ11では、電極112,114間に印加する電圧V3または周波数F3の大きさが変化すると、透過光の点像強度分布が変化する。
 このように、液晶ローパスフィルタ11は、電極112,114間に印加する電圧Vまたは周波数Fの大きさを変化させることにより透過光の点像強度分布を変化させる。ここで、上記3つのピークp1~p3のピーク値(ピーク高さ)や、上記4つのピークp1~p4のピーク値(ピーク高さ)は、電極112,114間に印加する電圧Vまたは周波数Fの大きさによって変化する。一方、上記3つのピークp1~p3のピーク位置や、上記4つのピークp1~p4のピーク位置は、分離幅d1,d2によって定まる。分離幅d1,d2は、電極112,114間に印加する電圧V3または周波数F3の大きさに依らず、一定である。従って、上記3つのピークp1~p3のピーク位置や、上記4つのピークp1~p4のピーク位置は、電極112,114間に印加する電圧V3または周波数F3の大きさに依らず、一定である。
 次に、透過光の点像強度分布とカットオフ周波数fcとの関係について説明する。図9は、図8A~図8DのMTFの一例を表したものである。横軸は空間周波数であり、縦軸は規格化されたコントラストである。図8Aでは、液晶ローパスフィルタ11が光線分離効果を有していないので、図8AのMTFは、液晶ローパスフィルタ11の前段に配置するレンズ(例えば、レンズ30など)のMTFと一致している。図8Bでは、ピーク間距離が、図8C,図8Dでのピーク間距離よりも広く、光線分離効果が最も大きくなっている。そのため、図8BのMTFのカットオフ周波数fc1が、図8C,図8DのMTFのカットオフ周波数fc2よりも小さくなっている。
 図8C,図8Dでは、分離幅は、図8Bでの分離幅と等しくなっているが、ピーク数が、図8Bでのピーク数よりも多くなっており、ピーク間距離が、図8Bでのピーク間距離よりも狭くなっている。そのため、図8C,図8Dでは、光線分離効果が図8Bの光線分離効果よりも弱くなっているので、図8C,図8DのMTFのカットオフ周波数fc2が、図8BのMTFのカットオフ周波数fc1よりも大きくなっている。
 図8C,図8DのMTFのカットオフ周波数fc2は、電極112,114間に印加する電圧V3または周波数F3の大きさによって変化し、図8BのMTFのカットオフ周波数fc1よりも大きな任意の周波数を採りうる。従って、液晶ローパスフィルタ11は、電極112,114間に印加する電圧Vまたは周波数Fの大きさを変化させることにより、カットオフ周波数fcを、光線分離効果が最大となるときのカットオフ周波数以上の任意の値に設定することができる。
 次に、撮像装置1における段階露光について説明する。
 図10は、撮像装置1における撮像手順の一例を表したものであり、具体的には、像のボケ量を可変制御しながら段階露光を行う手順の一例を表したものである。図10は、撮像素子12から3つの画像データDrawが順次出力される場合の段階露光の手順の一例を表したものである。図11は、図10の撮像手順における偏光変換効率および印加電圧の経時変化の一例を表したものである。以下では、像のボケ量を規定するパラメータの1つであるカットオフ周波数fcを可変制御しながら段階露光を行う手順の一例について説明する。なお、図中や以下の段落に記載した画像データD1、D2、D3は、前処理回路21によって生成された画像データであって、かつ、像のボケ量の互いに異なる3つの画像データDに相当する。
 まず、撮像装置1は動作準備を行う(ステップS101)。動作準備とは、画像データDrawが撮像素子12から出力されるにあたって必要となる準備を指しており、例えば、AF(オートフォーカス)の条件や、アイリス14の条件を設定することを指している。具体的には、制御回路22がAF等の動作準備を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、動作準備を1番目の画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13やアイリス14等)に対して行う。駆動回路15は、例えば、レンズ13のフォーカスの条件や、アイリス14の条件を所定の値に設定する。このとき、駆動回路15は、液晶ローパスフィルタ11が光学的に作用しないようにした上でAF等の動作準備を撮像デバイス10に実行させる。駆動回路15は、制御回路22からの指示に従って、例えば、電極112,114間に電圧V2若しくは周波数F1である駆動信号(第1駆動信号)を印加する。第1駆動信号は、駆動回路15が液晶層113を第1の偏光状態とするために液晶層113に印加する信号である。
 次に、撮像装置1は条件A1で画像データD1を取得する(ステップS102)。条件A1は、動作準備を1番目の画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13等)に対して行う際に電極112,114間に印加する準備電圧と同一の信号か、または準備電圧に最も近い電圧の信号を電極112,114間に印加する電圧に設定することを指している。また、条件A1は、動作準備を1番目の画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13等)に対して行う際に電極112,114間に印加する準備周波数と同一の信号か、または準備周波数に最も近い周波数の信号を電極112,114間に印加する周波数に設定することを指している。本実施の形態において、条件A1は、電極112,114間に印加する電圧Vもしくは周波数Fを電圧V2もしくは周波数F1である駆動信号(第1駆動信号)に設定することを指している。
 具体的には、制御回路22は、条件A1の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V2もしくは周波数F1である駆動信号(第1駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT1になり、液晶層113の偏光状態が第1の偏光状態となる。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT1となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A1で画像データD1を取得する。その後、撮像装置1は画像データD1を保存する(ステップS103)。具体的には、制御回路22は、画像データD1をメモリ部40に保存する。
 続いて、撮像装置1は条件A2で画像データD2を取得する(ステップS104)。条件A2は、1番目の画像データDrawが撮像素子12から出力されるときの信号(条件A1)とは異なる信号を電極112,114間に印加する電圧若しくは周波数に設定することを指している。本実施の形態において、条件A2は、電圧V1若しくは周波数F2である駆動信号(第2駆動信号)を電極112,114間に印加する電圧若しくは周波数に設定することを指している。つまり、条件A2は、第1駆動信号および第2駆動信号のうち、第2駆動信号を電極112,114間に印加する電圧若しくは周波数に設定することを指している。第2駆動信号は、駆動回路15が液晶層113を第2の偏光状態とするために液晶層113に印加する信号である。
 具体的には、制御回路22は、条件A2の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V1若しくは周波数F2である駆動信号(第2駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT1からT2に変化し、液晶層113の偏光状態が第1の偏光状態から第2の偏光状態となる。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT2となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A2で画像データD2を取得する。その後、撮像装置1は画像データD2を保存する(ステップS105)。具体的には、制御回路22は、画像データD2をメモリ部40に保存する。
 最後に、撮像装置1は条件A3で画像データD3を取得する(ステップS106)。条件A3は、中間電圧若しくは中間周波数を電極112,114間に印加する電圧若しくは周波数に設定することを指している。本実施の形態において、条件A3は、電圧V3若しくは周波数F3である駆動信号(第3駆動信号)を電極112,114間に印加する電圧若しくは周波数に設定することを指している。第3駆動信号は、駆動回路15が液晶層113を中間偏光状態とするために液晶層113に印加する信号である。
 具体的には、制御回路22は、条件A3の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V3または周波数F3である駆動信号(第3駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT2からT3に変化し、液晶層113の偏光状態が第2の偏光状態から中間偏光状態となる。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT3となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A3で画像データD3を取得する。その後、撮像装置1は画像データD3を保存する(ステップS107)。具体的には、制御回路22は、画像データD3をメモリ部40に保存する。最後に、制御回路22は、取得した画像データD1,D2,D3を表示処理回路23に出力し、表示部30に表示させる(ステップS108)。なお、制御回路22は、画像データD1を保存した後、画像データD2を取得する前に、画像データD1を表示処理回路23に出力し、表示部30に表示させてもよい。同様に、制御回路22は、画像データD2を保存した後、画像データD3を取得する前に、画像データD2を表示処理回路23に出力し、表示部30に表示させてもよい。このようにして、撮像装置1における段階露光が実行される。なお、撮像装置1は、上記の段階露光を、ユーザからの1回の指示(例えば、シャッターボタンの押下げ)によって自動で行うブラケット撮影として行ってもよい。また、撮像装置1は、上記の段階露光を、ユーザによる手動操作によって行う連続撮影として行ってもよい。
[効果] 
 次に、図7C、図8C、図8D、図9、図11、図12を参照しつつ、撮像装置1の効果について説明する。図12は、比較例に係る撮像手順における偏光変換効率および印加電圧の経時変化の一例を表したものである。
 撮像装置1では、一対の複屈折板111,115および液晶層113が、電圧V3若しくは周波数F3の電圧が電極112,114間に印加されているときに、透過光の点像強度分布に3つのピークp1~p3または4つのピークp1~p4を生じさせる。電極112,114間に印加する電圧V3若しくは周波数F3の大きさを変えた場合、液晶層113の偏光変換効率が変化するので、点像強度分布のピーク値も変化する。点像強度分布のピーク値が変化すると、液晶ローパスフィルタ11のカットオフ周波数fcも変化する。このように、液晶ローパスフィルタ11では、透過光のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数fcが変化する。
 また、撮像装置1では、透過光の点像強度分布に生じる3つのピークp1~p3または4つのピークp1~p4の値を、電極112,114間に印加する電圧V3若しくは周波数F3の大きさに応じて変えることで、液晶ローパスフィルタ11のカットオフ周波数fcを変化させることができる。従って、電極112,114に印加する電圧V3若しくは周波数F3の大きさを変えるだけで、当初に設定したカットオフ周波数とは異なるカットオフ周波数を設定することができる。従って、液晶ローパスフィルタ11は、新たな光学部品を用意しなくてもカットオフ周波数fcを変更することの可能な構成となっている。
 また、撮像装置1では、撮像素子12から3つの画像データDrawが順次出力される場合に、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、第3駆動信号の電極112,114への印加が行われる。これにより、例えば、電極112,114への電圧印加を第1駆動信号、第3駆動信号および第2駆動信号の順に行った場合(図12参照)と比べて、液晶の応答速度に起因する待ち時間を短縮することができる。その結果、図11に示した撮影時間ΔT1を、図12に示した撮影時間ΔT2よりも大幅に短くすることができる。従って、カットオフ周波数fcを変更しながら静止画の連続撮影を容易に行うことができる。
<2.変形例>
 次に、上記実施の形態に係る撮像装置1の各種変形例について説明する。
<2.1 変形例A>
(第1駆動信号+第2駆動信号+3つ以上の第3駆動信号)
 図13は、図10の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表したものである。本変形例では、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、3つ以上の第3駆動信号の電極112,114への印加が行われる。つまり、本変形例では、撮像素子12から3つ以上の画像データDrawが順次出力される。
 具体的には、駆動回路15は、複数の第3駆動信号のうち、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に最も近い第3駆動信号を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)のうち、電圧V1若しくは周波数F2に最も近い第3駆動信号(V3a若しくはF3a)を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。さらに、駆動回路15は、複数の第3駆動信号を、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に近い順に電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)を、電圧V1若しくは周波数F2に近い順に電極112,114に印加する。これにより、段階露光に要する時間を大幅に短くすることができる。
<2.2 変形例B>
(第1駆動信号+第3駆動信号)
図14は、図10の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表したものである。本変形例では、撮像素子12から2つの画像データDrawが順次出力される。駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号を電極112,114に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号を電極112,114に印加する。これにより、第3駆動信号の電極112,114への印加が終わった後に、第1駆動信号の電極112,114への印加を行った場合と比べて、段階露光に要する時間を大幅に短くすることができる。
(第1駆動信号+第2駆動信号)
(第2駆動信号+第1駆動信号)
なお、本変形例において、駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号または第2駆動信号を電極112,114に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号および第2駆動信号のうち、1番目の画像データDrawが撮像素子12から出力されるときに印加された信号とは異なる信号を電極112,114に印加してもよい。
<2.3 変形例C>
(第1駆動信号+第2駆動信号+第3駆動信号)
 図15は、図1の撮像装置1における撮像手順の一例を表したものであり、具体的には、像のボケ量を可変制御しながら段階露光を行う手順の一例を表したものである。図15は、撮像素子12から3つの画像データDrawが順次出力される場合の段階露光の手順の一変形例を表したものである。図16は、図15の撮像手順における印加電圧の経時変化の一例を表したものである。以下では、像のボケ量を規定するパラメータの1つであるカットオフ周波数fcを可変制御しながら段階露光を行う手順の一変形例について説明する。
 本変形例では、図10に記載の撮像手順において、制御回路22は、AF等の動作準備を、各画像データDrawの出力前に撮像デバイス10に指示する(ステップS101,S109,S110)。そのため、駆動回路15は、制御回路22からの指示に従って、動作準備を各画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13やアイリス14等)に対して行う。このとき、駆動回路15は、液晶ローパスフィルタ11が光学的に作用しないようにした上でAF等の動作準備を撮像デバイス10に実行させる。駆動回路15は、制御回路22からの指示に従って、例えば、電極112,114間に電圧V2若しくは周波数F1である駆動信号(第1駆動信号)を印加する。
 本変形例では、上記実施の形態と同様、撮像素子12から3つの画像データDrawが順次出力される場合に、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、第3駆動信号の電極112,114への印加が行われる。これにより、例えば、電極112,114への電圧印加を第1駆動信号、第3駆動信号および第2駆動信号の順に行った場合(図12参照)と比べて、液晶の応答速度に起因する待ち時間を短縮することができる。その結果、図16に示した撮影時間ΔT1を大幅に短くすることができる。従って、カットオフ周波数fcを変更しながら静止画の連続撮影を容易に行うことができる。
(第1駆動信号+第2駆動信号+3つ以上の第3駆動信号)
 図17は、図16の撮像手順における印加電圧の経時変化の一変形例を表したものである。図17では、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、複数の第3駆動信号の電極112,114への印加が行われる。つまり、図17では、撮像素子12から3つ以上の画像データDrawが順次出力される。
 具体的には、駆動回路15は、複数の第3駆動信号のうち、準備電圧と同一の信号か、または準備電圧に最も近い電圧の信号を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。また、駆動回路15は、複数の第3駆動信号のうち、準備周波数と同一の信号か、または準備周波数に最も近い周波数の信号を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)のうち、電圧V2若しくは周波数F1に最も近い第3駆動信号(V3c若しくはF3c)を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。さらに、駆動回路15は、複数の第3駆動信号を、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に近い順に電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)を、電圧V2若しくは周波数F1に近い順に電極112,114に印加する。これにより、段階露光に要する時間を大幅に短くすることができる。
(第1駆動信号+第3駆動信号)
 図18は、図16の撮像手順における印加電圧の経時変化の一変形例を表したものである。図18では、撮像素子12から2つの画像データDrawが順次出力される。駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号を電極112,114に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号を電極112,114に印加する。これにより、第3駆動信号の電極112,114への印加が終わった後に、第1駆動信号の電極112,114への印加を行った場合と比べて、段階露光に要する時間を大幅に短くすることができる。
<2.4 変形例D>
(第2駆動信号+第1駆動信号+第3駆動信号)
 上記実施の形態およびその変形例(変形例A~C)において、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第2駆動信号を電極112,114間に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号を電極112,114に印加してもよい。
(第2駆動信号+第3駆動信号)
 また、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第2駆動信号を電極112,114間に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号を電極112,114に印加してもよい。
<2.5 変形例E>
(第3駆動信号(第1駆動信号寄り)+第3駆動信号(第2駆動信号寄り)+~)
 また、上記実施の形態および変形例A,Cにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第1駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。さらに、駆動回路15は、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第2駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。
(第3駆動信号(第1駆動信号寄り)+第3駆動信号(第2駆動信号寄り)+~)
 また、上記実施の形態および変形例A,Cにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第1駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。さらに、駆動回路15は、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第2駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。
(第3駆動信号(第2駆動信号寄り)+第3駆動信号(第1駆動信号寄り)+~)
 また、上記変形例Dにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第2駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。さらに、駆動回路15は、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第1駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。
(第3駆動信号(第2駆動信号寄り)+第3駆動信号(第1駆動信号寄り)+~)
 また、上記変形例Dにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第2駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。さらに、駆動回路15は、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第1駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。
<2.6 変形例F>
(第1駆動信号+第3駆動信号(第2駆動信号寄り)+~)
 また、上記実施の形態および変形例A,Cにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第2駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。また、上記実施の形態および変形例A,Cにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第2駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。
(第2駆動信号+第3駆動信号(第1駆動信号寄り)+~)
 また、上記変形例Dにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第1駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。また、上記変形例Dにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第1駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。
<2.7 変形例G>
(第3駆動信号(第1駆動信号寄り)+第3駆動信号(第2駆動信号寄り))
 また、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第1駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。つまり、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、第1駆動信号として選択され得る電圧に相対的に近い電圧の信号を電極112,114間に印加してもよい。
 さらに、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、1番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第2駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。つまり、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、第2駆動信号として選択され得る電圧に相対的に近い電圧の信号を電極112,114間に印加してもよい。
(第3駆動信号(第1駆動信号寄り)+第3駆動信号(第2駆動信号寄り))
 また、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第1駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。つまり、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、第1駆動信号として選択され得る周波数に相対的に近い周波数の信号を電極112,114間に印加してもよい。
 さらに、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、1番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第2駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。つまり、上記変形例B,Cにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、第2駆動信号として選択され得る周波数に相対的に近い周波数の信号を電極112,114間に印加してもよい。
(第3駆動信号(第2駆動信号寄り)+第3駆動信号(第1駆動信号寄り))
 また、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第2駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。つまり、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、第2駆動信号として選択され得る電圧に相対的に近い電圧の信号を電極112,114間に印加してもよい。
 さらに、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、1番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧と比べて、第1駆動信号として選択され得る電圧に近い電圧の信号を電極112,114間に印加してもよい。つまり、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧の範囲のうち、第1駆動信号として選択され得る電圧に相対的に近い電圧の信号を電極112,114間に印加してもよい。
(第3駆動信号(第2駆動信号寄り)+第3駆動信号(第1駆動信号寄り))
 また、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第2駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。つまり、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、第2駆動信号として選択され得る周波数に相対的に近い周波数の信号を電極112,114間に印加してもよい。
 さらに、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、1番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される周波数と比べて、第1駆動信号として選択され得る周波数に近い周波数の信号を電極112,114間に印加してもよい。つまり、上記変形例Dにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る周波数の範囲のうち、第1駆動信号として選択され得る周波数に相対的に近い周波数の信号を電極112,114間に印加してもよい。
<2.8 変形例H>
 図19は、複屈折板11,15の光学軸AX1,AX2の一変形例を表したものである。本変形例の複屈折板111,115では、像の分離方向が互いに同じ方向を向いている。複屈折板111の光学軸AX1および複屈折板115の光学軸AX2は、光入射面110Aの法線111Aと平行な面内において互いに平行となっている。光学軸AX1,AX2が入射面110Aの法線111Aと斜めに交差している。光学軸AX1と法線11Aとのなす角θ2は、例えば、法線111Aを基準として反時計回りに90°よりも小さくなっており、例えば、45°となっている。光学軸AX2と法線111Aとのなす角θ3は、例えば、法線111Aを基準として反時計回りに90°よりも小さくなっており、例えば、45°となっている。
 次に、本変形例に係る液晶ローパスフィルタ11(具体的には、一対の複屈折板111,115および液晶層113)の光学的な作用について説明する。図20A、図20B、図20Cは、本変形例に係る液晶ローパスフィルタ11の作用の一例を表したものである。図20Aでは、電極112,114間の電圧Vが電圧V1となっているか、または電極112,114間の周波数Fが周波数F2となっている。図20Bでは、電極112,114間の電圧Vが電圧V2となっているか、または電極112,114間の周波数Fが周波数F1となっている。図20Cでは、電極112,114間の電圧Vが電圧V3となっているか、または電極112,114間の周波数Fが周波数F3となっている。
(V=V1、F=F2の場合(図20A))
 複屈折板111の、入射光L1に対する作用と、複屈折板111で分離されたp偏光およびs偏光に対する作用とは、上記実施の形態において記述した作用と同じである。そこで、以下では、複屈折板115の作用について説明する。液晶層113を透過してきたs偏光およびp偏光が複屈折板115に入射すると、s偏光およびp偏光の分離幅が、複屈折板115の複屈折性により、変化する。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向と同じ方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を、分離幅(d1-d2)で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。ここで、d1=d2の場合、s偏光の透過光L2と、p偏光の透過光L2とは、複屈折板115の裏面のうち、互いに同じ場所から出射される。従って、この場合は、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を互いに合成した光にする。
(V=V2、F=F1の場合(図20B))
 複屈折板111の、入射光L1に対する作用と、複屈折板111で分離されたp偏光およびs偏光に対する作用とは、上記実施の形態において記述した作用と同じである。そこで、以下では、複屈折板115の作用について説明する。液晶層113を透過してきたs偏光およびp偏光が複屈折板115に入射すると、s偏光およびp偏光の分離幅が、複屈折板115の複屈折性により、変化する。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向と同じ方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113を透過してきたs偏光およびp偏光を、分離幅(d1+d2)で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。
(V=V3、F=F3の場合(図20C))
 複屈折板111の、入射光L1に対する作用と、複屈折板111で分離されたp偏光およびs偏光に対する作用とは、上記実施の形態において記述した作用と同じである。そこで、以下では、複屈折板115の作用について説明する。液晶層113から出射されてきた円偏光が複屈折板115に入射すると、円偏光は、複屈折板115の複屈折性により、分離幅d2でp偏光とs偏光とに分離される。複屈折板115の光学軸AX2に対して垂直に振動する偏光成分がs偏光である場合、s偏光は、複屈折板115内を、複屈折の影響を受けずに直進し、複屈折板115の裏面から出射する。p偏光は、s偏光の振動方向と直交する方向に振動するので、複屈折板115内を、複屈折の影響を受けて、複屈折板111における像の分離方向と同じ方向に斜めに進む。さらに、p偏光は、複屈折板115の裏面のうち、分離幅d2だけシフトした位置で屈折して、複屈折板115の裏面から出射する。従って、複屈折板115は、液晶層113でp偏光から変換された円偏光と、液晶層113でs偏光から変換された円偏光とを、それぞれ、分離幅d2で、s偏光の透過光L2と、p偏光の透過光L2とに分離する。
 ここで、d1=d2の場合、液晶層113でp偏光から変換された円偏光から分離されたp偏光と、液晶層113でs偏光から変換された円偏光から分離されたs偏光とが、複屈折板115の裏面のうち、互いに同じ場所から出射される。この場合、円偏光の透過光L2が複屈折板115の裏面から出射される。従って、この場合は、複屈折板115は、液晶層113から出射されてきた2つの円偏光を、分離幅(d2+d2)でp偏光の透過光L2と、s偏光の透過光L2とに分離すると共に、一旦分離したp偏光とs偏光とをp偏光の透過光L2とs偏光の透過光L2との間の位置で互いに合成した光にする。
 本変形例でも、透過光のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数fcが変化する。さらに、本変形例でも、透過光の点像強度分布に生じる3つのピークp1~p3または4つのピークp1~p4の値を、電極112,114間に印加する電圧V3若しくは周波数F3の大きさに応じて変えることで、カットオフ周波数fcを変化させることができる。従って、電極112,114に印加する電圧V3若しくは周波数F3の大きさを変えるだけで、当初に設定したカットオフ周波数とは異なるカットオフ周波数を設定することができる。従って、本変形例に係る液晶ローパスフィルタ11は、新たな光学部品を用意しなくてもカットオフ周波数fcを変更することの可能な構成となっている。
<2.9 変形例I>
 図21Aは、液晶層113の偏光変換効率曲線(V-T曲線)の一変形例を表したものである。図21Bは、液晶層113の偏光変換効率曲線(F-T曲線)の一変形例を表したものである。図21Aにおいて、横軸は電極112,114間に印加される電圧V(周波数一定)である。図21Bにおいて、横軸は電極112,114間に印加される電圧の周波数F(電圧一定)である。図21A、図21Bにおいて、縦軸は、偏光変換効率Tである。
 本変形例に係る液晶層113では、図21Aに示したように、電極112,114間に電圧V1が印加されると、偏光変換効率TがT1となる。T1は0%である。p偏光およびs偏光が、偏光変換効率がT1となっている液晶層113に入射すると、p偏光およびs偏光は、液晶層113によって偏光変換されずに、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、p偏光およびs偏光に対して、光学的な作用を有していない。このときの液晶層113の偏光状態(液晶層113への入射光を旋光させない状態)が、本技術の「第2偏光状態」の一具体例に相当する。本変形例に係る液晶層113では、図21Aに示したように、電極112,114間に電圧V2(V1<V2)が印加されると、偏光変換効率TがT2となる。T2は100%である。p偏光が、偏光変換効率がT2となっている液晶層113に入射すると、p偏光はs偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。複屈折板111で分離されたs偏光が、偏光変換効率がT2となっている液晶層113に入射すると、s偏光はp偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、複屈折板111で分離されたp偏光およびs偏光に対して、ps変換を行う。このときの液晶層113の偏光状態(液晶層113への入射光を90度、旋光させる状態)が、本技術の「第1偏光状態」の一具体例に相当する。液晶層113では、さらに、図21Aに示したように、電極112,114間に電圧V3(V1<V3<V2)が印加されると、偏光変換効率TがT3となる。T3は0%よりも大きく、100%よりも小さな値である。図21Aには、電圧V3が、T3が50%となるときの電圧となっている場合が例示されている。p偏光が、偏光変換効率がT3(=50%)となっている液晶層113に入射すると、p偏光は円偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。複屈折板111で分離されたs偏光が、偏光変換効率がT3(=50%)となっている液晶層113に入射すると、s偏光も円偏光に変換されると共に、液晶層113内を直進し、液晶層113の裏面から出射する。従って、液晶層113は、p偏光およびs偏光を、円偏光に変換する。このときの液晶層113の偏光状態が、本技術の「第3偏光状態」の一具体例に相当する。ここで、電圧V1は、偏光変換効率曲線の立ち上がり位置の電圧以下の電圧であり、具体的には、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の電圧を指している。電圧V2は、偏光変換効率曲線の立ち下がり位置の電圧以上の電圧であり、具体的には、偏光変換効率曲線において、偏光変換効率が最大値付近で飽和している区間の電圧を指している。電圧V3は、偏光変換効率曲線の立ち上がり位置の電圧よりも大きな電圧であって、かつ偏光変換効率曲線の立ち下がり位置の電圧よりも小さな電圧である。電圧V3は、偏光変換効率曲線の立ち上がりと立ち下がりとの間の電圧(つまり、中間電圧)である。
 液晶層113では、図21Bに示したように、電極112,114間に周波数F2の電圧が印加されると、偏光変換効率TがT1となり、電極112,114間に周波数F1(F1<F2)の電圧が印加されると、偏光変換効率TがT2となる。液晶層113では、さらに、図21Bに示したように、電極112,114間に周波数F3(F1<F3<F2)の電圧が印加されると、偏光変換効率TがT3となる。図21Bには、周波数F3が、T3が50%となるときの周波数となっている場合が例示されている。ここで、周波数F1は、偏光変換効率曲線の立ち下がり位置の周波数以下の周波数であり、具体的には、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の周波数を指している。周波数F2は、偏光変換効率曲線の立ち上がり位置の周波数以上の周波数であり、具体的には、偏光変換効率曲線において、偏光変換効率が最小値付近で飽和している区間の周波数を指している。周波数F3は、偏光変換効率曲線の立ち下がり位置の周波数よりも大きな周波数であって、かつ偏光変換効率曲線の立ち上がり位置の周波数よりも小さな周波数である。周波数F3は、偏光変換効率曲線の立ち上がりと立ち下がりとの間の周波数(つまり、中間周波数)である。
 上述したように、液晶層113は、偏光を制御するものである。上述したような偏光変換効率曲線を有する液晶としては、例えば、VA(Vertical Alignment)液晶が挙げられる。VA液晶は、ネガ型のネマティック液晶によって構成されており、通過する光の位相をネマティック液晶の複屈折性を利用して変化させることにより、通過する光の偏光方向を変えることができる。液晶ローパスフィルタ11は、液晶層113の配向を規制する配向膜として、例えば、ケイ素酸化物に代表される無機物で構成されたものを有していてもよい。
 次に、本変形例に係る撮像装置1における段階露光について説明する。
 図22は、本変形例に係る撮像装置1における撮像手順の一例を表したものであり、具体的には、像のボケ量を可変制御しながら段階露光を行う手順の一例を表したものである。図22は、撮像素子12から3つの画像データDrawが順次出力される場合の段階露光の手順の一例を表したものである。図23は、図22の撮像手順における偏光変換効率および印加電圧の経時変化の一例を表したものである。以下では、像のボケ量を規定するパラメータの1つであるカットオフ周波数fcを可変制御しながら段階露光を行う手順の一例について説明する。なお、図中や以下の段落に記載した画像データD1、D2、D3は、前処理回路21によって生成された画像データであって、かつ、像のボケ量の互いに異なる3つの画像データDに相当する。
 まず、本変形例に係る撮像装置1は動作準備を行う(ステップS201)。具体的には、制御回路22がAF等の動作準備を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、動作準備を1番目の画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13やアイリス14等)に対して行う。駆動回路15は、例えば、レンズ13のフォーカスの条件や、アイリス14の条件を所定の値に設定する。このとき、駆動回路15は、液晶ローパスフィルタ11が光学的に作用しないようにした上でAF等の動作準備を撮像デバイス10に実行させる。駆動回路15は、制御回路22からの指示に従って、例えば、電極112,114間に電圧V1若しくは周波数F2である駆動信号(第2駆動信号)を印加する。
 次に、本変形例に係る撮像装置1は条件A1で画像データD1を取得する(ステップS202)。条件A1は、動作準備を1番目の画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13等)に対して行う際に電極112,114間に印加する準備電圧若しくは準備周波数と同一の信号か、または準備電圧若しくは準備周波数に最も近い電圧若しくは周波数の信号を電極112,114間に印加する電圧若しくは周波数に設定することを指している。本実施の形態において、条件A1は、電極112,114間に印加する電圧Vもしくは周波数Fを電圧V1もしくは周波数F2である駆動信号(第2駆動信号)に設定することを指している。
 具体的には、制御回路22は、条件A1の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V1もしくは周波数F2である駆動信号(第2駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT1になる。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT1となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A1で画像データD1を取得する。その後、撮像装置1は画像データD1を保存する(ステップS203)。具体的には、制御回路22は、画像データD1をメモリ部40に保存する。
 続いて、本変形例に係る撮像装置1は条件A2で画像データD2を取得する(ステップS204)。条件A2は、1番目の画像データDrawが撮像素子12から出力されるときの信号(条件A1)とは異なる信号を電極112,114間に印加する電圧若しくは周波数に設定することを指している。本実施の形態において、条件A2は、電圧V2若しくは周波数F1である駆動信号(第1駆動信号)を電極112,114間に印加する電圧若しくは周波数に設定することを指している。つまり、条件A2は、第1駆動信号および第2駆動信号のうち、第1駆動信号を電極112,114間に印加する電圧若しくは周波数に設定することを指している。
 具体的には、制御回路22は、条件A2の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V2若しくは周波数F1である駆動信号(第1駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT1からT2に変化する。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT2となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A2で画像データD2を取得する。その後、撮像装置1は画像データD2を保存する(ステップS205)。具体的には、制御回路22は、画像データD2をメモリ部40に保存する。
 最後に、本変形例に係る撮像装置1は条件A3で画像データD3を取得する(ステップS206)。条件A3は、中間電圧若しくは中間周波数を電極112,114間に印加する電圧若しくは周波数に設定することを指している。本実施の形態において、条件A3は、電圧V3若しくは周波数F3である駆動信号(第3駆動信号)を電極112,114間に印加する電圧若しくは周波数に設定することを指している。
 具体的には、制御回路22は、条件A3の設定を撮像デバイス10に指示する。すると、駆動回路15は、制御回路22からの指示に従って、電極112,114間に電圧V3または周波数F3である駆動信号(第3駆動信号)を印加する。これにより、液晶層113の偏光変換効率がT2からT3に変化する。さらに、制御回路22は、撮像素子12に対して撮像を指示する。具体的には、制御回路22は、液晶層113の偏光変換効率がT3となった段階で、撮像素子12に対して撮像を指示する。その結果、制御回路22は、前処理回路21を介して、条件A3で画像データD3を取得する。その後、撮像装置1は画像データD3を保存する(ステップS207)。具体的には、制御回路22は、画像データD3をメモリ部40に保存する。最後に、制御回路22は、取得した画像データD1,D2,D3を表示処理回路23に出力し、表示部30に表示させる(ステップS208)。このようにして、撮像装置1における段階露光が実行される。なお、撮像装置1は、上記の段階露光を、ユーザからの1回の指示(例えば、シャッターボタンの押下げ)によって自動で行うブラケット撮影として行ってもよい。また、撮像装置1は、上記の段階露光を、ユーザによる手動操作によって行う連続撮影として行ってもよい。
 次に、本変形例に係る撮像装置1の効果について説明する。本変形例でも、透過光のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数fcが変化する。さらに、本変形例でも、透過光の点像強度分布に生じる3つのピークp1~p3または4つのピークp1~p4の値を、電極112,114間に印加する電圧V3若しくは周波数F3の大きさに応じて変えることで、カットオフ周波数fcを変化させることができる。従って、電極112,114に印加する電圧V3若しくは周波数F3の大きさを変えるだけで、当初に設定したカットオフ周波数とは異なるカットオフ周波数を設定することができる。従って、本変形例に係る液晶ローパスフィルタ11は、新たな光学部品を用意しなくてもカットオフ周波数fcを変更することの可能な構成となっている。
 図24は、図22の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表したものである。図24では、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、複数の第3駆動信号の電極112,114への印加が行われる。つまり、図24では、撮像素子12から3つ以上の画像データDrawが順次出力される。
 具体的には、駆動回路15は、複数の第3駆動信号のうち、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に最も近い第3駆動信号を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)のうち、電圧V2若しくは周波数F1に最も近い第3駆動信号(V3c若しくはF3c)を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。さらに、駆動回路15は、複数の第3駆動信号を、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に近い順に電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)を、電圧V2若しくは周波数F1に近い順に電極112,114に印加する。これにより、段階露光に要する時間を大幅に短くすることができる。
 図25は、図22の撮像手順における偏光変換効率および印加電圧の経時変化の一変形例を表したものである。図25では、撮像素子12から2つの画像データDrawが順次出力される。駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第2駆動信号を電極112,114に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号を電極112,114に印加する。これにより、第3駆動信号の電極112,114への印加が終わった後に、第2駆動信号の電極112,114への印加を行った場合と比べて、段階露光に要する時間を大幅に短くすることができる。
 図26は、図21Aまたは図21Bの偏光変換効率曲線を有する液晶層を備えた撮像装置における撮像手順の一変形例を表したものであり、具体的には、像のボケ量を可変制御しながら段階露光を行う手順の一例を表したものである。図26は、撮像素子12から3つの画像データDrawが順次出力される場合の段階露光の手順の一変形例を表したものである。図27は、図26の撮像手順における印加電圧の経時変化の一例を表したものである。以下では、像のボケ量を規定するパラメータの1つであるカットオフ周波数fcを可変制御しながら段階露光を行う手順の一変形例について説明する。
 本変形例では、図26に記載の撮像手順において、制御回路22は、AF等の動作準備を、各画像データDrawの出力前に撮像デバイス10に指示する(ステップS201,S209,S210)。そのため、駆動回路15は、制御回路22からの指示に従って、動作準備を各画像データDrawの出力前に1または複数の光学部品(例えば、レンズ13やアイリス14等)に対して行う。このとき、駆動回路15は、液晶ローパスフィルタ11が光学的に作用しないようにした上でAF等の動作準備を撮像デバイス10に実行させる。駆動回路15は、制御回路22からの指示に従って、例えば、電極112,114間に電圧V1若しくは周波数F2である駆動信号(第2駆動信号)を印加する。
 本変形例では、上記実施の形態と同様、撮像素子12から3つの画像データDrawが順次出力される場合に、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、第3駆動信号の電極112,114への印加が行われる。これにより、例えば、電極112,114への電圧印加を第1駆動信号、第3駆動信号および第2駆動信号の順に行った場合(図12参照)と比べて、液晶の応答速度に起因する待ち時間を短縮することができる。その結果、図27に示した撮影時間ΔT1を大幅に短くすることができる。従って、カットオフ周波数fcを変更しながら静止画の連続撮影を容易に行うことができる。
 図28は、図26の撮像手順における印加電圧の経時変化の一変形例を表したものである。図28では、第1駆動信号および第2駆動信号の電極112,114への印加が終わった後に、複数の第3駆動信号の電極112,114への印加が行われる。つまり、図28では、撮像素子12から3つ以上の画像データDrawが順次出力される。
 具体的には、駆動回路15は、複数の第3駆動信号のうち、準備電圧若しくは準備周波数と同一の信号か、または準備電圧若しくは準備周波数に最も近い電圧若しくは周波数の信号を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)のうち、電圧V1若しくは周波数F2に最も近い第3駆動信号(V3a若しくはF3a)を、3番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加する。さらに、駆動回路15は、複数の第3駆動信号を、2番目の画像データDrawが撮像素子12から出力されるときに電極112,114に印加される信号の電圧若しくは周波数に近い順に電極112,114に印加する。駆動回路15は、例えば、複数の第3駆動信号(V3a若しくはF3a、V3b若しくはF3b、またはV3c若しくはF3c)を、電圧V1若しくは周波数F2に近い順に電極112,114に印加する。これにより、段階露光に要する時間を大幅に短くすることができる。
 図29は、図26の撮像手順における印加電圧の経時変化の一変形例を表したものである。図29では、撮像素子12から2つの画像データDrawが順次出力される。駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第2駆動信号を電極112,114に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号を電極112,114に印加する。これにより、第3駆動信号の電極112,114への印加が終わった後に、第2駆動信号の電極112,114への印加を行った場合と比べて、段階露光に要する時間を大幅に短くすることができる。
<2.10 変形例J>
 上記変形例Hにおいて、駆動回路15は、1番目の画像データDrawが撮像素子12から出力されるときに、第1駆動信号を電極112,114間に印加し、2番目の画像データDrawが撮像素子12から出力されるときに、第2駆動信号を電極112,114に印加してもよい。
<2.11 変形例K>
 また、上記変形例Iにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧もくしは周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧もくしは周波数と比べて、第2駆動信号として選択され得る電圧もくしは周波数に近い電圧もしくは周波数の信号を電極112,114間に印加してもよい。さらに、駆動回路15は、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧もくしは周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧もくしは周波数と比べて、第1駆動信号として選択され得る電圧もくしは周波数に近い電圧もしくは周波数の信号を電極112,114間に印加してもよい。
<2.12 変形例L>
 また、上記変形例Iにおいて、駆動回路15は、3つ以上の画像データDrawが撮像素子12から出力される場合に、2番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧もくしは周波数の範囲のうち、3番目以降の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧もくしは周波数と比べて、第1駆動信号として選択され得る電圧もくしは周波数に近い電圧もしくは周波数の信号を電極112,114間に印加してもよい。
<2.13 変形例M>
 また、上記変形例Iにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧もくしは周波数の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧もくしは周波数と比べて、第2駆動信号として選択され得る電圧もくしは周波数に近い電圧もしくは周波数の信号を電極112,114間に印加してもよい。また、上記変形例Iにおいて、駆動回路15は、2つの画像データDrawが撮像素子12から出力される場合に、1番目の画像データDrawが撮像素子12から出力されるときに、第3駆動信号として選択され得る電圧もくしは周波数の範囲のうち、2番目の画像データDrawが撮像素子12から出力されるときに駆動回路15から出力される電圧もくしは周波数と比べて、第1駆動信号として選択され得る電圧もくしは周波数に近い電圧もしくは周波数の信号を電極112,114間に印加してもよい。
<2.14 変形例N>
 図30は、図4、図19の液晶ローパスフィルタ11の一変形例を表したものである。本変形例に係る液晶ローパスフィルタ11は、例えば、複屈折板11の光入射側にAR(Anti Reflection)層116を備えていてもよい。このとき、AR層116の外側の表面が、光入射面110Aとなる。AR層116は、光入射面110Aでの反射を減少させ、透過率を向上させるものである。本変形例に係る液晶ローパスフィルタ11は、例えば、複屈折板111と電極112との間に、低反射層117を備えていてもよい。低反射層117は、界面での反射を低減させるものである。AR層116や低反射層117を設けることにより、液晶ローパスフィルタ11の後段に設ける撮像素子の光取り込み率を向上させることができる。低反射層117は、例えば、SiOまたはTiO等の誘電体多層膜である。
 本変形例に係る液晶ローパスフィルタ11は、例えば、AR層116の代わりに、IRカット層を備えていてもよい。IRカット層は、赤外線を反射し、可視光を透過させるものである。IRカット層を設けることにより、液晶ローパスフィルタ11の後段に設ける撮像素子において感度の高い赤外線を除去することができる。
<2.15 変形例O>
 図31は、撮像デバイス10の概略構成の一変形例を表したものである。本変形例では、撮像デバイス10は、さらに、1つの液晶ローパスフィルタ11と、位相解消板16とを備えている。本変形例では、2つの液晶ローパスフィルタ11が撮像素子60の前段に設けられており、これら2つの液晶ローパスフィルタ11の間に位相解消板16が設けられている。駆動回路15は、これら2つの液晶ローパスフィルタ11を駆動するようになっている。位相解消板16は、前段の液晶ローパスフィルタ11の透過光L2を円偏光に変換するものである。位相解消板16は、例えば、λ/4位相差フィルムである。
 前段の液晶ローパスフィルタ11は、例えば、垂直方向に像分離を行うように配置されている。さらに、後段の液晶ローパスフィルタ11は、例えば、水平方向に像分離を行うように配置されている。これら2つの液晶ローパスフィルタ11と位相解消板16とによって、垂直方向と水平方向への像分離がなされる。
 本変形例に係る撮像デバイス10でも、上記実施の形態と同様、透過光L2のps分離幅を変更する従来の方式(分離幅変調方式)とは異なる方式(ピーク値変調方式)でカットオフ周波数fcが変化する。また、透過光L2の点像強度分布に生じる3つまたは4つのピークの値を、電極112,114間に印加する電圧V3若しくは中間周波数F3の大きさに応じて変えることで、個々の液晶ローパスフィルタ11のカットオフ周波数fcを変化させることができる。従って、電極112,114間に印加する中間電圧V3若しくは周波数F3の大きさを変えるだけで、当初に設定したカットオフ周波数とは異なるカットオフ周波数を設定することができる。従って、個々の液晶ローパスフィルタ11は、新たな光学部品を用意しなくてもカットオフ周波数fcを変更することの可能な構成となっている。
 本変形例において、例えば、図32に示したように、位相解消板16の代わりに、複屈折板17が設けられていてもよい。複屈折板17は、複屈折性を有しており、1軸性結晶の構造を有している。複屈折板17は、例えば、水晶、方解石またはニオブ酸リチウムによって構成されている。複屈折板17は、複屈折板111,115における像の分離方向から45度傾けた方向に像を分離するようになっている。位相解消板16の代わりに、複屈折板17を設けた場合であっても、2つの液晶ローパスフィルタ11と複屈折板17とによって、垂直方向と水平方向への像分離を行うことができる。
<2.16 変形例P>
 上記各実施の形態およびそれらの変形例において、電極112,114に印加する信号を第1駆動信号から第3駆動信号に変えたときの立ち上がり応答時間が、電極112,114に印加する信号を第2駆動信号から第3駆動信号に変えたときの立ち下がり応答時間よりも短いとする。液晶層113の温度が比較的、低くなっている場合に、立ち上がり応答時間が、立ち下がり応答時間よりも短くなりやすい。このとき、駆動回路15は、撮像素子から3つ以上の画像データDrawが順次出力されるときには、第2駆動信号、第1駆動信号および第3駆動信号をこの順に電極112,114に印加する(図11、図13、図16、図17参照)。本変形例において、入力部50が、液晶層113の温度、または液晶層113の温度に対応する温度を計測する温度素子を備えていてもよい。この場合、制御回路22が、温度素子の出力に基づいて、駆動回路15に対して、第2駆動信号、第1駆動信号および第3駆動信号をこの順に電極112,114に印加するよう指示してもよい。
<2.17 変形例Q>
 上記各実施の形態およびそれらの変形例において、電極112,114に印加する信号を第2駆動信号から第3駆動信号に変えたときの立ち下がり応答時間が、電極112,114に印加する信号を第1駆動信号から第3駆動信号に変えたときの立ち上がり応答時間よりも短いとする。液晶層113の温度が比較的、暖かくなっている場合に、立ち下がり応答時間が、立ち上がり応答時間よりも短くなりやすい。このとき、駆動回路15は、撮像素子から3つ以上の画像データDrawが順次出力されるときには、第1駆動信号、第2駆動信号および第3駆動信号をこの順に前記電極に印加する(図23、図24、図27、図28参照)。本変形例において、入力部50が、液晶層113の温度、または液晶層113の温度に対応する温度を計測する温度素子を備えていてもよい。この場合、制御回路22が、温度素子の出力に基づいて、駆動回路15に対して、第1駆動信号、第2駆動信号および第3駆動信号をこの順に電極112,114に印加するよう指示してもよい。
<2.18 変形例R>
 上記実施の形態およびそれらの変形例において、駆動回路15は、電極112,114に印加する信号を第1駆動信号から第2駆動信号に変位させる際に、オーバードライブ信号を電極112,114に印加してもよい。このとき、オーバードライブ信号は、電圧V2として採り得る範囲の中で高い電圧の信号であるか、または、周波数F1として採り得る範囲の中で低い周波数の信号である。また、上記実施の形態およびそれらの変形例において、駆動回路15は、電極112,114に印加する信号を第2駆動信号から第1駆動信号に変位させる際に、オーバードライブ信号を電極112,114に印加してもよい。このとき、オーバードライブ信号は、電圧V1として採り得る範囲の中で低い電圧の信号であるか、または、周波数F2として採り得る範囲の中で高い周波数の信号である。これにより、オーバードライブ信号を印加したときと印加していないときとで偏光変換効率Tをほとんど変動させることなく(つまり、画質に影響を与えず)、液晶113の応答速度に起因する待ち時間を短縮することができる。その結果、オーバードライブ信号を用いない場合と比べて、段階露光に要する時間を大幅に短くすることができる。
<2.19 変形例S>
 上記実施の形態およびそれらの変形例において、駆動回路15が、例えば、図33、図34、図35に示したように、駆動回路15Aと、駆動回路15Bとに分離していてもよい。駆動回路15Aは、液晶ローパスフィルタ11、レンズ13およびアイリス14を駆動する。駆動回路15Bは、撮像素子12を駆動するともに撮像素子12から出力された画像データDrawに対して所定の処理を行うことにより画像データDを生成する。さらに、上記実施の形態およびそれらの変形例において、演算部20が、例えば、図33、図34、図35に示したように、駆動回路15Aを制御する制御回路22Aと、駆動回路15Bを制御する演算部20’とに分離していてもよい。制御回路22Aは、演算部20’からの制御信号に応じて動作する。
 駆動回路15Aは、例えば、第1電圧もしくは第1周波数の電圧、第2電圧もしくは第2周波数の電圧、および中間電圧もしくは中間周波数の電圧を電極112,114間に印加可能となっている。駆動回路15Aは、制御回路22Aからの指示に従って、例えば、第1駆動信号、第2駆動信号、または、第3駆動信号を電極112,114間に印加する。制御回路22Aは、例えば、駆動回路15Aに対して、第1駆動信号、第2駆動信号、または、第3駆動信号の電極112,114への出力を指示する。
 上記実施の形態およびそれらの変形例において、1または複数の液晶ローパスフィルタ11、レンズ13、アイリス14、駆動回路15Aおよび制御回路22Aが、光学装置100を構成している。光学装置100は、例えば、撮像装置1に対して着脱可能に構成されている。
 以上、実施の形態およびその変形例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本技術の効果は、本明細書中に記載された効果に限定されるものではない。本技術が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本技術は以下のような構成を取ることができる。
(1)
 液晶ローパスフィルタの液晶層を、第1の偏光状態、第2の偏光状態、および前記第1の偏光状態と前記第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行う制御部を備え、
 前記制御部は、撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態とする
 制御装置。
(2)
 前記制御部は、前記撮像素子から2つの画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
 (1)に記載の制御装置。
(3)
 前記制御部は、前記撮像素子から3以上の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目の前記画像データの出力に際して、前記液晶層の偏光状態を、前記第1の偏光状態および前記第2の偏光状態のうち、1番目の前記画像データの出力の際とは異なる偏光状態に制御し、3番目以降の前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
 (1)に記載の制御装置。
(4)
 前記第1の偏光状態とは、前記液晶層への入射光を90度、旋光させる状態を指しており、
 前記第2の偏光状態とは、前記液晶層への入射光を旋光させない状態を指している
 (1)ないし(3)のいずれか1つに記載の制御装置。
(5)
 前記制御部が前記液晶層を前記第1の偏光状態とするために前記液晶層に印加する第1駆動信号は、前記液晶層の偏光変換効率曲線が偏光変換効率の最大値および最小値のいずれか一方の付近で飽和している区間の電圧もしくは周波数の信号であり、
 前記制御部が前記液晶層を前記第2の偏光状態とするために前記液晶層に印加する第2駆動信号は、前記液晶層の偏光変換効率曲線が偏光変換効率の最大値および最小値のうち前記第1駆動信号のときとは異なる方の付近で飽和している区間の電圧もしくは周波数の信号である
 (4)に記載の制御装置。
(6)
 複数の前記画像データの出力とは、連続撮影である
 (1)ないし(5)のいずれか1つに記載の制御装置。
(7)
 複数の前記画像データの出力は、ブラケット撮影に用いられる
 (1)ないし(5)のいずれか1つに記載の制御装置。
(8)
 前記制御部は、前記撮像素子から前記画像データが出力されるにあたって必要となる動作準備を1番目の前記画像データの出力前に、前記液晶ローパスフィルタの前段に設けられる1または複数の光学部品に対して行う際に前記液晶層に印加する準備電圧若しくは準備周波数と同一の信号か、または前記準備電圧若しくは前記準備周波数に最も近い電圧若しくは周波数の信号を、前記撮像素子から1番目の前記画像データが出力されるときに前記液晶層に印加する
 (1)ないし(7)のいずれか1つに記載の制御装置。
(9)
 前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに、前記液晶層を前記中間偏光状態とするために前記液晶層に印加される複数の第3駆動信号のうち、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に最も近い前記第3駆動信号を、前記撮像素子から3番目の前記画像データが出力されるときに前記液晶層に印加する
 (8)に記載の制御装置。
(10)
 前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合に
は、前記撮像素子から3番目以降の前記画像データが出力されるときに前記液晶層に印加される複数の前記第3駆動信号を、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に近い順に前記液晶層に印加する
 (9)に記載の制御装置。
(11)
 前記制御部は、前記動作準備を各前記画像データの出力前に1または複数の前記光学部品に対して行い、
前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに、前記液晶層を前記中間偏光状態とするために前記液晶層に印加される複数の第3駆動信号のうち、前記準備電圧若しくは前記準備周波数と同一の信号か、または前記準備電圧若しくは前記準備周波数に最も近い電圧若しくは周波数の信号を、前記撮像素子から3番目の前記画像データが出力されるときに前記液晶層に印加する
 (8)に記載の制御装置。
(12)
 前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに前記液晶層に印加される複数の前記第3駆動信号を、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に近い順に前記液晶層に印加する
 (11)に記載の制御装置。
(13)
 前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合であって、かつ、前記液晶層の偏光状態を前記第1の偏光状態から前記中間偏光状態に変えたときの立ち上がり応答時間が、前記液晶層の偏光状態を前記第2の偏光状態から前記中間偏光状態に変えたときの立ち下がり応答時間よりも短いときには、前記液晶層の偏光状態を前記第2の偏光状態、前記第1の偏光状態および前記中間偏光状態の順に変える
 (1)ないし(12)のいずれか1つに記載の制御装置。
(14)
 前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合であって、かつ、前記液晶層の偏光状態を前記第2の偏光状態から前記中間偏光状態に変えたときの立ち下がり応答時間が、前記液晶層の偏光状態を前記第1の偏光状態から前記中間偏光状態に変えたときの立ち上がり応答時間よりも短いときには、前記液晶層の偏光状態を前記第1の偏光状態、前記第2の偏光状態および前記中間偏光状態の順に変える
 (1)ないし(12)のいずれか1つに記載の制御装置。
(15)
 画像データを出力する撮像素子と、
 液晶層を有し、前記撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタと、
 前記撮像素子を制御すると共に、前記液晶層を制御する制御部と
 を備え、
 前記制御部は、前記液晶層を、第1の偏光状態、第2の偏光状態、および前記第1の偏光状態と前記第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行い、
 前記制御部は、前記撮像素子から複数の前記画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
 撮像装置。
(16)
 液晶層を備え、撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタの制御方法であって、
 前記撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態とすること
 を含む
 液晶ローパスフィルタの制御方法。
 本出願は、日本国特許庁において2014年8月7日に出願された日本特許出願番号第2014-161126号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (16)

  1.  液晶ローパスフィルタの液晶層を、第1の偏光状態、第2の偏光状態、および前記第1の偏光状態と前記第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行う制御部を備え、
     前記制御部は、撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態とする
     制御装置。
  2.  前記制御部は、前記撮像素子から2つの画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
     請求項1に記載の制御装置。
  3.  前記制御部は、前記撮像素子から3以上の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目の前記画像データの出力に際して、前記液晶層の偏光状態を、前記第1の偏光状態および前記第2の偏光状態のうち、1番目の前記画像データの出力の際とは異なる偏光状態に制御し、3番目以降の前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
     請求項1に記載の制御装置。
  4.  前記第1の偏光状態とは、前記液晶層への入射光を90度、旋光させる状態を指しており、
     前記第2の偏光状態とは、前記液晶層への入射光を旋光させない状態を指している
     請求項1に記載の制御装置。
  5.  前記制御部が前記液晶層を前記第1の偏光状態とするために前記液晶層に印加する第1駆動信号は、前記液晶層の偏光変換効率曲線が偏光変換効率の最大値および最小値のいずれか一方の付近で飽和している区間の電圧もしくは周波数の信号であり、
     前記制御部が前記液晶層を前記第2の偏光状態とするために前記液晶層に印加する第2駆動信号は、前記液晶層の偏光変換効率曲線が偏光変換効率の最大値および最小値のうち前記第1駆動信号のときとは異なる方の付近で飽和している区間の電圧もしくは周波数の信号である
     請求項4に記載の制御装置。
  6.  複数の前記画像データの出力とは、連続撮影である
     請求項1に記載の制御装置。
  7.  複数の前記画像データの出力は、ブラケット撮影に用いられる
     請求項1に記載の制御装置。
  8.  前記制御部は、前記撮像素子から前記画像データが出力されるにあたって必要となる動作準備を1番目の前記画像データの出力前に、前記液晶ローパスフィルタの前段に設けられる1または複数の光学部品に対して行う際に前記液晶層に印加する準備電圧若しくは準備周波数と同一の信号か、または前記準備電圧若しくは前記準備周波数に最も近い電圧若しくは周波数の信号を、前記撮像素子から1番目の前記画像データが出力されるときに前記液晶層に印加する
     請求項1に記載の制御装置。
  9.  前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに、前記液晶層を前記中間偏光状態とするために前記液晶層に印加される複数の第3駆動信号のうち、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に最も近い前記第3駆動信号を、前記撮像素子から3番目の前記画像データが出力されるときに前記液晶層に印加する
     請求項8に記載の制御装置。
  10.  前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合に
    は、前記撮像素子から3番目以降の前記画像データが出力されるときに前記液晶層に印加される複数の前記第3駆動信号を、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に近い順に前記液晶層に印加する
     請求項9に記載の制御装置。
  11.  前記制御部は、前記動作準備を各前記画像データの出力前に1または複数の前記光学部品に対して行い、
    前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに、前記液晶層を前記中間偏光状態とするために前記液晶層に印加される複数の第3駆動信号のうち、前記準備電圧若しくは前記準備周波数と同一の信号か、または前記準備電圧若しくは前記準備周波数に最も近い電圧若しくは周波数の信号を、前記撮像素子から3番目の前記画像データが出力されるときに前記液晶層に印加する
     請求項8に記載の制御装置。
  12.  前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合には、前記撮像素子から3番目以降の前記画像データが出力されるときに前記液晶層に印加される複数の前記第3駆動信号を、前記撮像素子から2番目の前記画像データが出力されるときに前記液晶層に印加される信号の電圧若しくは周波数に近い順に前記液晶層に印加する
     請求項11に記載の制御装置。
  13.  前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合であって、かつ、前記液晶層の偏光状態を前記第1の偏光状態から前記中間偏光状態に変えたときの立ち上がり応答時間が、前記液晶層の偏光状態を前記第2の偏光状態から前記中間偏光状態に変えたときの立ち下がり応答時間よりも短いときには、前記液晶層の偏光状態を前記第2の偏光状態、前記第1の偏光状態および前記中間偏光状態の順に変える
     請求項1に記載の制御装置。
  14.  前記制御部は、前記撮像素子から3以上の前記画像データが順次出力される場合であって、かつ、前記液晶層の偏光状態を前記第2の偏光状態から前記中間偏光状態に変えたときの立ち下がり応答時間が、前記液晶層の偏光状態を前記第1の偏光状態から前記中間偏光状態に変えたときの立ち上がり応答時間よりも短いときには、前記液晶層の偏光状態を前記第1の偏光状態、前記第2の偏光状態および前記中間偏光状態の順に変える
     請求項1に記載の制御装置。
  15.  画像データを出力する撮像素子と、
     液晶層を有し、前記撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタと、
     前記撮像素子を制御すると共に、前記液晶層を制御する制御部と
     を備え、
     前記制御部は、前記液晶層を、第1の偏光状態、第2の偏光状態、および前記第1の偏光状態と前記第2の偏光状態との間の偏光状態である中間偏光状態のうちのいずれかの偏光状態とする制御を行い、
     前記制御部は、前記撮像素子から複数の前記画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態に制御する
     撮像装置。
  16.  液晶層を備え、撮像素子に対する光の入射経路上に配置された液晶ローパスフィルタの制御方法であって、
     前記撮像素子から複数の画像データが出力される場合に、1番目の前記画像データの出力に際して、前記液晶層の偏光状態を前記第1の偏光状態または前記第2の偏光状態に制御し、2番目以降の少なくとも1つの前記画像データの出力に際して、前記液晶層の偏光状態を前記中間偏光状態とすること
     を含む
     液晶ローパスフィルタの制御方法。
PCT/JP2015/070955 2014-08-07 2015-07-23 制御装置、撮像装置、および液晶ローパスフィルタの制御方法 WO2016021418A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/326,850 US10122901B2 (en) 2014-08-07 2015-07-23 Control unit, imaging unit, and method of controlling liquid-crystal low pass filter
JP2016540151A JP6597618B2 (ja) 2014-08-07 2015-07-23 制御装置、撮像装置、および液晶ローパスフィルタの制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161126 2014-08-07
JP2014161126 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021418A1 true WO2016021418A1 (ja) 2016-02-11

Family

ID=55263690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070955 WO2016021418A1 (ja) 2014-08-07 2015-07-23 制御装置、撮像装置、および液晶ローパスフィルタの制御方法

Country Status (3)

Country Link
US (1) US10122901B2 (ja)
JP (1) JP6597618B2 (ja)
WO (1) WO2016021418A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663835B2 (en) * 2018-01-26 2020-05-26 Red Hat, Inc. Dynamic privacy glasses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915535A (ja) * 1995-06-27 1997-01-17 Olympus Optical Co Ltd 光学的ローパスフィルタ
JP2013217971A (ja) * 2012-04-04 2013-10-24 Ortus Technology Co Ltd 光学ローパスフィルター及びカメラモジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080089601A (ko) * 2006-01-20 2008-10-07 어큐트로직 가부시키가이샤 광학적 저대역 통과 필터 및 이것을 사용한 촬상 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915535A (ja) * 1995-06-27 1997-01-17 Olympus Optical Co Ltd 光学的ローパスフィルタ
JP2013217971A (ja) * 2012-04-04 2013-10-24 Ortus Technology Co Ltd 光学ローパスフィルター及びカメラモジュール

Also Published As

Publication number Publication date
JP6597618B2 (ja) 2019-10-30
US20170208228A1 (en) 2017-07-20
US10122901B2 (en) 2018-11-06
JPWO2016021418A1 (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
KR102124832B1 (ko) 카메라의 오토 포커스 시스템과 이를 이용한 카메라 장치
US10386649B2 (en) Optical apparatus and image pickup apparatus
JPWO2007083783A1 (ja) 撮像装置
US10104273B2 (en) Optical low pass filter, image pickup device, and image pickup apparatus
US7720373B2 (en) Image pickup apparatus having, disposed between an image pickup optical system and an image pickup unit, a birefringent crystal optical member, a phase-difference-changing crystal optical member, and a birefringent organic film
JP2014137378A (ja) 撮像装置用液晶素子および光学ローパスフィルタ
US9560279B2 (en) Camera device and projector device having protective lens
US10911681B2 (en) Display control apparatus and imaging apparatus
JP6597618B2 (ja) 制御装置、撮像装置、および液晶ローパスフィルタの制御方法
US8885086B2 (en) Camera device and projector device having protective lens
JP6746404B2 (ja) 偏光情報取得装置、偏光情報取得方法、プログラムおよび記録媒体
JP2007081544A (ja) 撮影装置
JP4947946B2 (ja) 撮影装置
JP4533088B2 (ja) 光学フィルタ及びそれを有する撮像装置
WO2016002447A1 (ja) フィルタ制御装置およびフィルタ制御方法、ならびに撮像装置
TWI486632B (zh) 具有保護鏡之取像裝置以及投影裝置
JP2013257408A (ja) 光学ローパスフィルタおよび撮像機器
US10972710B2 (en) Control apparatus and imaging apparatus
JP2013190603A (ja) 光学ローパスフィルタ装置及びこれを用いた撮像装置
JP2006154395A (ja) 光学フィルタ及びそれを有する撮像装置
JP2015106051A (ja) 撮像装置および電子シャッタ装置
JP2013156379A (ja) 光分離ユニットおよび撮像ユニット
JP2007086340A (ja) 光学ユニット
JP2016029424A (ja) 偏光フィルターを有する撮像装置
JPH04316011A (ja) 位相格子内蔵型撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540151

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830488

Country of ref document: EP

Kind code of ref document: A1