WO2016021164A1 - 有機発光デバイスの製造方法、その製造システム、およびその製造装置 - Google Patents

有機発光デバイスの製造方法、その製造システム、およびその製造装置 Download PDF

Info

Publication number
WO2016021164A1
WO2016021164A1 PCT/JP2015/003865 JP2015003865W WO2016021164A1 WO 2016021164 A1 WO2016021164 A1 WO 2016021164A1 JP 2015003865 W JP2015003865 W JP 2015003865W WO 2016021164 A1 WO2016021164 A1 WO 2016021164A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
ink
manufacturing
emitting device
organic light
Prior art date
Application number
PCT/JP2015/003865
Other languages
English (en)
French (fr)
Inventor
裕隆 南野
西村 征起
聖史 小松
吉田 完
Original Assignee
株式会社Joled
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled, 住友化学株式会社 filed Critical 株式会社Joled
Priority to CN201580041937.6A priority Critical patent/CN106576411B/zh
Priority to US15/501,705 priority patent/US10158099B2/en
Priority to JP2016539839A priority patent/JP6446680B2/ja
Publication of WO2016021164A1 publication Critical patent/WO2016021164A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/50Arrangements for cleaning; Arrangements for preventing deposits, drying-out or blockage; Arrangements for detecting improper discharge caused by the presence of foreign matter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17506Refilling of the cartridge
    • B41J2/17509Whilst mounted in the printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method of manufacturing an organic light emitting device, a manufacturing system thereof, and a manufacturing apparatus thereof, and more particularly to quality control of a material at the time of manufacturing.
  • organic light-emitting devices such as organic EL (Electroluminescence) panels having a light-emitting layer using an organic light-emitting material and organic EL lighting have been actively developed.
  • Patent Document 1 discloses a method of forming an organic layer including a light emitting layer by a wet method in an environment where light (500 nm or less) shorter than the absorption maximum wavelength of the light emitting material is shielded.
  • the present invention is suitable for the ink quality when a tube made of a light-transmitting material is used as an ink carrying tube in an environment where light shorter than the absorption maximum wavelength of the light emitting material is shielded. It is an object of the present invention to provide a managed organic light emitting device manufacturing method, an organic light emitting device manufacturing system and a manufacturing apparatus in which such a manufacturing method is executed.
  • An organic light-emitting device manufacturing method includes an ink that includes an organic light-emitting material and is installed in an environment where an illumination device that irradiates light having a wavelength component of 500 nm or more is disposed.
  • a manufacturing apparatus comprising: a manufacturing apparatus main body having an ink discharge section that discharges ink; and a translucent tube that forms at least a part of an ink transport path between the ink storage tank and the ink discharge section.
  • a method for manufacturing an organic light-emitting device using a light source comprising: an illuminance E (lux) of the light applied to the translucent tube; and a length T (time) of the time irradiated with the light.
  • ink deterioration due to light can be managed by the integrated illuminance ET.
  • the value of the integrated illuminance ET which is the allowable maximum value of ink deterioration
  • ⁇ ⁇ 17500 [lux ⁇ hrs] (constant ⁇ ⁇ 1) the ink in the ink transport path is taken out.
  • (A) is a figure which shows an example of the light absorption spectrum of the ink for R emission colors.
  • (B) is a figure which shows an example of the light absorption spectrum of the ink for G luminescent colors.
  • (C) is a figure which shows the light emission distribution of the light of a yellow lamp. It is an external appearance perspective view which shows typically the structure of the manufacturing apparatus of the organic light emitting device which concerns on Embodiment 1 of this invention.
  • 1 is a functional block diagram of an organic light emitting device manufacturing apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the result of the luminous efficiency test and lifetime test which were performed changing illumination intensity and irradiation time.
  • (A) is the figure which plotted the result of the luminous efficiency test of FIG.
  • FIG. 4 is a flowchart illustrating processing contents of ink quality management control in the method for manufacturing an organic light emitting device according to Embodiment 1.
  • 10 is a flowchart showing processing contents of ink quality management control in the method for manufacturing an organic light emitting device according to Embodiment 2.
  • It is an external appearance perspective view which shows typically the structure of the manufacturing system of the organic light emitting device which concerns on the modification 1, Comprising: It is a perspective view which shows the state in which the light-shielding member is located in an open position.
  • FIG. 10 is a flowchart showing processing contents of light shielding member control in an organic device manufacturing method according to Modification 1; 10 is a flowchart showing processing contents of light shielding member control in an organic device manufacturing method according to Modification 2. 10 is a side view schematically showing a schematic configuration of an organic device manufacturing system according to Modification 6. FIG. 10 is a flowchart showing processing contents of illuminance control in an organic device manufacturing method according to Modification 9;
  • An organic light-emitting device manufacturing method includes an ink that includes an organic light-emitting material and is installed in an environment where an illumination device that irradiates light having a wavelength component of 500 nm or more is disposed.
  • a manufacturing apparatus comprising: a manufacturing apparatus main body having an ink discharge section that discharges ink; and a translucent tube that forms at least a part of an ink transport path between the ink storage tank and the ink discharge section.
  • a method for manufacturing an organic light-emitting device using a light source comprising: an illuminance E (lux) of the light applied to the translucent tube; and a length T (time) of the time irradiated with the light.
  • E illuminance
  • T time
  • ink deterioration due to light can be managed by the integrated illuminance ET.
  • the value of the integrated illuminance ET which is an allowable maximum value of ink deterioration
  • the ink in the ink transport path is taken out.
  • 1 may be used.
  • the strict value is 17500 or more, the ink in the ink transport path is taken out. Thereby, it is possible to most reliably prevent a situation where ink whose deterioration exceeds an allowable range is used for manufacturing an organic light emitting device, and to maintain good quality of the organic light emitting device.
  • the light irradiated when the ink accommodated in the ink conveyance path does not exist in the translucent tube does not irradiate the ink and thus does not affect the ink deterioration.
  • the degree of ink deterioration has exceeded the allowable range, and is taken out and discarded wastefully even though it does not actually exceed the allowable range. There is a fear.
  • the ink is deteriorated by using a more realistic integrated illuminance ET value corresponding to a value obtained by integrating only the light irradiated when the ink is present in the translucent tube. Can be managed.
  • the manufacturing apparatus main body may be selectively driven in a manufacturing mode for manufacturing an organic light emitting device and a maintenance mode in which maintenance is performed.
  • a light shielding member may be disposed between the lighting device and the translucent tube.
  • the light shielding member may be disposed at a position other than between the illumination apparatus and the light transmitting tube.
  • the illumination device when the light having a wavelength component of 500 nm or more is the first light and the light having a wavelength component of 650 nm or more is the second light, the first light and the second light
  • the second light When the manufacturing apparatus main body is driven in the manufacturing mode, the second light is irradiated without irradiating the first light, and the manufacturing apparatus main body
  • the first light When driving in the maintenance mode, the first light may be irradiated without irradiating the second light.
  • the second light composed of the wavelength component that hardly causes the ink deterioration is irradiated, so that the ink deterioration can be suppressed.
  • the lighting device can be selectively lit at a plurality of brightness levels including a first brightness level and a second brightness level brighter than the first brightness level, and ⁇ ⁇
  • a predetermined value smaller than 17500 is D
  • the integrated illuminance ET satisfies the relationship ET ⁇ D (lux ⁇ time)
  • the light is lit at the second brightness level
  • the integrated illuminance ET is When the relationship of D ⁇ ET ⁇ ⁇ 17500 (lux ⁇ time) is satisfied, the light may be lit at the first brightness level.
  • the lighting device can be turned on with the brightest brightness, and the user's convenience can be given priority.
  • the speed of ink deterioration can be reduced by reducing the brightness of the illumination device.
  • an organic light emitting device manufacturing system includes an illumination device that is installed in an environment where external light is shielded and that emits light having a wavelength component of 500 nm or more, and an organic light emitting material.
  • Ink supply having a manufacturing apparatus main body having an ink ejection part for ejecting ink, and a translucent tube that forms at least a part of an ink transport path between the ink containing tank and the ink ejection part A unit, an illuminance sensor that detects the illuminance of the light applied to the translucent tube, a display unit that displays information for a user, and an illuminance E (of the light applied to the translucent tube
  • ET which is the product of the lux
  • T time
  • the integrated illuminance ET which is an allowable maximum value of ink deterioration
  • the ink in the ink transport path is taken out.
  • Information prompting the user is displayed on the display unit. Then, when the user who sees the displayed information takes out the ink in the ink conveyance path, the ink whose deterioration exceeds the allowable range is not used for the manufacture of the organic light emitting device, so that the quality of the organic light emitting device is improved. Can be maintained.
  • 1 may be used.
  • the manufacturing apparatus main body may be selectively driven in a manufacturing mode for manufacturing an organic light emitting device and a maintenance mode in which maintenance is performed.
  • the light shielding member may be held at the light shielding position, and when the manufacturing apparatus main body is driven in the manufacturing mode, the light shielding member holding portion may hold the light shielding member at the open position.
  • the light shielding member is held at the light shielding position, so that the light from the illumination device is prevented from being applied to the light transmitting tube, and the deterioration of the ink can be suppressed.
  • the manufacturing mode even if the light-transmitting tube moves during the manufacture of the organic light-emitting device, the light-transmitting tube and the light-blocking member do not interfere with each other because the light-blocking member is held in the open position.
  • the first light source that emits the first light when the light having the wavelength component of 500 nm or more is the first light and the light having the wavelength component of 650 nm or more is the second light.
  • a second light source that emits the second light, and the first light source and the second light source can be selectively turned on, and the control unit is configured such that the manufacturing apparatus body is the manufacturing unit.
  • the lighting device When driven in the mode, the lighting device is turned on without turning on the first light source, and when the manufacturing apparatus body is driven in the maintenance mode, the lighting device is turned on.
  • the first light source may be turned on without turning on the two light sources.
  • the second light composed of the wavelength component that does not easily cause the deterioration of the ink is irradiated, so that the ink deterioration due to the light being irradiated to the ink during the maintenance work can be suppressed.
  • the lighting device can be selectively lit at a plurality of brightness levels including a first brightness level and a second brightness level brighter than the first brightness level, and ⁇ ⁇
  • the control unit sets the lighting device to the second brightness level when the integrated illuminance ET satisfies the relationship ET ⁇ D (lux ⁇ time).
  • the lighting device may be lit at the first brightness level.
  • the lighting device can be turned on with the brightest brightness, and the user's convenience can be given priority.
  • the speed of ink deterioration can be reduced by reducing the brightness of the illumination device.
  • An organic light-emitting device manufacturing apparatus is installed in an environment in which an illumination device that irradiates light having a wavelength component of 500 nm or more is shielded from outside light,
  • a manufacturing apparatus main body having an ink discharge portion that discharges ink containing a light emitting material, and a translucent tube that forms at least a part of an ink transport path between the ink containing tank and the ink discharge portion.
  • the integrated illuminance ET which is the product of the illuminance E (lux) and the length of time T (time) during which the light is irradiated, satisfies the relationship ET ⁇ ⁇ ⁇ 17500 (lux ⁇ time) (constant ⁇ ⁇ 1).
  • the organic light emitting device manufacturing apparatus when the value of the integrated illuminance ET, which is an allowable maximum value of ink deterioration, is ⁇ ⁇ 17500 or more, the ink in the ink transport path is removed. Take out. Thereby, since the ink whose deterioration has exceeded the allowable range is not used for the manufacture of the organic light emitting device, the quality of the organic light emitting device can be favorably maintained.
  • the value of the integrated illuminance ET which is an allowable maximum value of ink deterioration
  • 1 may be used.
  • the illumination device has to be turned on for maintenance work, the light irradiated to the translucent tube can be reduced and ink deterioration can be suppressed.
  • an organic light emitting device manufacturing apparatus includes a tube in which an ink containing an organic light emitting material is conveyed, and an organic light emitting layer formed using the ink.
  • the tube may have a first layer formed of a light-transmitting material and a second layer formed of a light-blocking material that covers the outside of the first layer.
  • a material having a high solvent resistance and a low impurity content can be used for the first layer that is in direct contact with the ink, and the light irradiated to the ink is shielded by the second layer, so that the ink by the light can be used. Deterioration can be suppressed.
  • the first layer may be made of a fluororesin.
  • FIG. 1A is an example of a light absorption spectrum of R (red) ink
  • FIG. 1B is an example of a light absorption spectrum of G (green) ink.
  • both R and G have large absorption with respect to light having a wavelength of 500 nm or less, and particularly absorption in the range of 280 to 450 nm.
  • the light of the yellow lamp is composed of a wavelength component of 500 nm or more and does not include light composed of a wavelength component of less than 500 nm.
  • An organic light emitting device manufacturing apparatus in which a light emitting layer is formed by applying ink using an ink jet method has a tube for transporting ink contained in a tank to an ink jet head. Since the tube must move as the inkjet head moves from end to end of a large substrate, the tube material must be flexible. In addition, properties such as solvent resistance and few impurities are also required.
  • PFA copolymer of tetrafluoroethylene and perfluoroalkoxyethylene
  • ETFE copolymer of tetrafluoroethylene and ethylene
  • THV tetrafluoroethylene, hexafluoropropylene, vinylideneflour
  • fluororesins such as thermoplastic fluororesin (made of three types of ride monomers), PVDF (polyvinylidene fluoride, polyfluoride), etc., but these resins are translucent, so the yellow irradiated from the outside of the tube It is considered that the light passes through the tube and reaches the ink in the tube, causing the ink to deteriorate.
  • the inventors of the present application managed the quality of the ink so that defective products of the organic light-emitting device could be suppressed while using a tube made of a light-transmitting material such as a fluororesin. Invented a method of manufacturing an organic light emitting device.
  • Embodiment 1 [1. Schematic configuration of organic light emitting device manufacturing apparatus] The schematic configuration of the organic light-emitting device manufacturing apparatus according to Embodiment 1, which is an aspect of the present invention, will be described with reference to FIGS. In addition, when providing the same kind of component about each R, G, and B luminescent color, either R, G, or B is attached
  • FIG. 2 is an external perspective view showing a schematic configuration of an organic light emitting device manufacturing apparatus 100 (hereinafter simply referred to as “manufacturing apparatus 100”) according to the first embodiment.
  • FIG. 3 is a functional block diagram of the manufacturing apparatus 100.
  • the manufacturing apparatus 100 includes a control unit 10, a work table 20, an ink discharge unit 30, an ink supply unit 40, an illuminance sensor 50, and an observation unit 60 as main components.
  • a portion of the manufacturing apparatus 100 excluding the ink supply unit 40 is referred to as a manufacturing apparatus main body 101.
  • the observation unit 60 is not essential for the manufacturing apparatus 100 and may be a separate unit from the manufacturing apparatus 100.
  • the control unit 10 includes a control unit 11, a storage unit 12 (including a large-capacity storage unit such as an HDD), a display unit (display) 13, an input unit 14, and a timer 15 as main components.
  • the control unit 11 is a CPU that executes various control processes. Specifically, a personal computer (PC) can be used as the control unit 10.
  • PC personal computer
  • the storage unit 12 is a ROM (Read Only Memory) in which various control programs are stored, and a RAM (Random Access Memory) that temporarily reads data of various control parameter values that are read from the ROM and used for control processing.
  • the storage unit 12 may include a large-capacity storage unit such as an HDD (Hard Disk Drive).
  • the storage unit 12 stores a work program 20 connected to the control unit 10, an ink discharge unit 30, an ink supply unit 40, a control program for driving the observation unit 60, and the like.
  • the control unit 11 performs predetermined control based on an instruction input by a user or an administrator through the input unit 14 and each control program stored in the storage unit 12.
  • the display unit 13 is a display device for displaying various types of information related to the operation of the manufacturing apparatus 100. Specifically, a display device such as a liquid crystal display or an organic EL display can be used.
  • the input unit 14 is a device for a user or administrator to input information for instructing the control unit 11 to execute or change various controls.
  • the input unit 14 is a keyboard or a mouse.
  • the timer 15 is for measuring time, and may be a part of the function of the control unit 11.
  • the work table 20 is a so-called gantry-type work table, and includes a base 21, stands 22 a, 22 b, 22 c, 22 d erected at the four corners of the upper surface of the base 21, and the base 21.
  • a stage ST for placing a substrate to be coated in the center, and an ink pan (dish-like container) IP used for stabilizing the ejection characteristics by ejecting ink immediately before coating are provided.
  • a guide shaft 23a is pivotally supported on the stands 22a and 22b along the longitudinal direction (X-axis direction) of the base 21.
  • a guide shaft 23b is supported on the stands 22c and 22d along the longitudinal direction (X-axis direction) of the base 21 in parallel with the guide shaft 23a.
  • Linear motors 24a and 24b are inserted through the guide shafts 23a and 23b, respectively.
  • a gantry unit 25 is mounted so as to straddle the stage ST. When the linear motors 24a and 24b are driven in the same direction at a constant speed, the gantry unit 25 slides in the longitudinal direction (X-axis direction) of the guide shafts 23a and 23b.
  • a moving body (carriage) 20 made of an L-shaped pedestal is disposed in the gantry section 25, a moving body (carriage) 20 made of an L-shaped pedestal is disposed.
  • the moving body 26 is provided with a servo motor (moving body motor) 26a, and a gear (not shown) is arranged at the tip of the shaft of each motor.
  • the gear is fitted in a guide groove 25 a formed along the longitudinal direction (Y-axis direction) of the gantry portion 25. Inside the guide groove 25a, a fine rack is formed along the longitudinal direction (Y-axis direction). Since the gear meshes with the rack, when the servo motor 26a is driven, the moving body 26 moves precisely in a reciprocating manner along the Y-axis direction by a so-called pinion rack mechanism.
  • the ink ejection unit 30 is mounted on the moving body 26, and the scanning of the ink ejection unit 30 with respect to the application target substrate can be performed by combining the following two movements.
  • One is a movement of moving the gantry 25 along the longitudinal direction of the guide shafts 23a and 23b in a state where the moving body 26 is fixed to the gantry 25.
  • the other is a movement of moving the moving body 26 along the longitudinal direction (Y-axis direction) of the gantry 25 while the gantry 25 is stopped.
  • the main scanning direction of the ink discharge unit 30 is the row direction (X-axis direction), and the sub-scanning direction is the column direction (Y-axis direction).
  • the linear motors 24 a and 24 b and the servo motor 26 a are each connected to a motor control unit 27 for directly controlling driving, and the motor control unit 27 is connected to the control unit 11 of the control unit 10.
  • the drive of the linear motors 24a and 24b and the servo motor 26a is controlled by the control unit 11 that has read the control program via the motor control unit 27.
  • the ink ejection unit 30 includes an inkjet head 31 in which a plurality of nozzles employing a known piezo method are arranged in a line.
  • a plurality of inkjet heads 31 are held as a set by a single holder 32.
  • a set of inkjet heads 31 held by the holder 32 is fixed to the moving body 26 via an arm 33.
  • one R, G, and B ink jet heads 31 are held by one holder 32 as a set of three, and the four ink jet heads 31 are respectively attached to the moving body 26 via the arms 33. It is fixed.
  • the discharge controller 34 is, for example, a microcomputer.
  • the ink supply unit 40 includes ink supply units 40R, 40G, and 40B for R, G, and B, respectively.
  • Each ink supply unit has the same basic configuration except that the ink emission color is different, and therefore, the configuration of the ink supply unit 40R will be described below as a representative.
  • the ink supply unit 40R includes a supply tank 41R, an IN tank 42R, an OUT tank 43R, and a distribution tank 44R as containers for storing ink therein.
  • the distribution tank 44R is attached to the moving body 26 and is connected to the ink ejection unit 30R via the arm 33.
  • the supply tank 41R and the IN tank 42R are connected by a tube 45aR.
  • the IN tank 42R and the OUT tank 43R are connected by a tube 45bR.
  • the IN tank 42R and the distribution tank 44R are connected by a tube 45cR.
  • the OUT tank 43R and the distribution tank 44R are connected by a tube 45dR.
  • Tubes 45aR, 45bR, 45cR, and 45dR are made of fluororesin.
  • a supply pump 46aR and a filter 47 are connected to the tube 45aR along the way.
  • An I / O pump 46bR is connected to the tube 45bR in the middle thereof.
  • the pressure sensor 48aR is connected to the IN tank 42R and detects the pressure of the ink in the IN tank 42R.
  • a pressure sensor 48bR is connected to the OUT tank 43R and detects the pressure of ink in the OUT tank 43R.
  • the pressure sensor 48aR, the pressure sensor 48bR, and the I / O pump 46bR are respectively connected to the ink supply control unit 49R.
  • the ink supply control unit 49R is composed of, for example, a microcomputer.
  • the ink supply controller 49R drives and controls the I / O pump 46bR based on the ink pressure inside the IN tank 42R detected by the pressure sensor 48aR and the ink pressure inside the OUT tank 43R detected by the pressure sensor 48bR. Ink is conveyed from the OUT tank 43R to the IN tank 42R through the tube 45bR, and a pressure difference is generated between the ink in the IN tank 42R and the ink in the OUT tank 43R.
  • ink flows from the IN tank 42R through the tube 45cR to the distribution tank 44R, and returns from the distribution tank 44R through the tube 45dR to the OUT tank 43R.
  • the ink transport path 450R is formed by the IN tank 42R, the OUT tank 43R, the distribution tank 44R, and the tubes 45bR, 45cR, and 45dR, and the ink constantly circulates in the ink transport path 450R. .
  • the organic light emitting device At the time of manufacturing the organic light emitting device, a part of the ink is discharged from the inkjet head 31 of the ink discharge unit 30 and consumed from the distribution tank 44R, and the consumed amount passes through the tube 45aR from the supply tank 41R by the supply pump 46aR. And supplied to the IN tank 42R. At that time, impurities such as dust are removed from the newly supplied ink by the filter 47R.
  • Ink is circulated in the ink transport path 450R for the purpose of preventing ink sticking even during standby when the organic light emitting device is not manufactured, such as when maintenance is being performed.
  • ink since ink is not ejected from the nozzles of the inkjet head 31, if the ink is left as it is for a long time, the ink may solidify and the nozzles may be clogged. Therefore, in order to prevent nozzle clogging, in the standby state, in addition to ink circulation, the ink is caused to vibrate meniscus at the nozzle outlet.
  • the illuminance sensor 50 is a photoelectric conversion element that converts received light into electricity, and in the present embodiment, an SMD type photodiode is used.
  • the illuminance sensor 50 is attached to an end portion on the side where the tube 45 (45a, 45b, 45c, 45d) in the longitudinal direction (Y-axis direction) of the gantry unit 25 is disposed. ing.
  • the position where the illuminance sensor 50 is arranged is not limited to the above position, but the illuminance sensor 50 is in the vicinity of the tube 45 in order to measure the illuminance of light irradiated to the tube 45 which is a translucent tube. It is good to be arranged.
  • the tubes 45c and 45d move as the ink discharge unit 30 is moved during the manufacture of the organic light emitting device, the tubes 45c and 45d collide with each other, or the tubes 45c and 45d are covered from above to prevent light reception. It is necessary to arrange the illuminance sensor 50 at a position where it will not be received.
  • the observation unit 60 includes a camera control unit 61, linear motors 62a and 62b, a servo motor 63, and a camera 64, as shown in FIG.
  • the camera 64 is a known CCD camera and is used for inspecting defective nozzles of the inkjet head 31.
  • Linear motors 62a and 62b are inserted through guide shafts 23a and 23b, respectively.
  • a gantry unit 65 is mounted so as to straddle the stage ST.
  • a guide groove 65a is formed in the gantry portion 65.
  • Linear motors 62a and 62b have the same basic configuration as linear motors 24a and 24b, and servo motor 63 has the same basic configuration as servo motor 26a.
  • the basic configuration of the gantry portion 65 and the guide groove 65a is the same as that of the gantry portion 25 and the guide groove 25a, respectively.
  • the gantry unit 65 is provided with a moving body (carriage) 66 made of an L-shaped pedestal.
  • the moving body 66 is provided with a servo motor (moving body motor) 63.
  • the moving body 66 has the same basic configuration as the moving body 26 except that the width in the Y-axis direction is different.
  • a camera 64 is attached to the moving body 66, and the linear motors 62a and 62b and the servo motor 63 are driven and controlled by the camera control unit 61 to move the camera 64 to a desired position on the stage ST. it can.
  • Inspection of defective nozzles is performed by ejecting ink from the inkjet head 31 onto a water-repellent substrate for inspection and photographing the ink droplets that have landed on the substrate with a camera.
  • the inspection of the defective nozzle is performed every time a predetermined number (for example, 100) of organic light emitting devices are manufactured.
  • the camera control unit 61 is connected to the control unit 11, and the control unit 11 instructs the camera control unit 61 to perform shooting at a predetermined timing.
  • observation unit 60 may be included in the manufacturing apparatus main body 101 or may be a separate member from the manufacturing apparatus main body 101.
  • the illumination device 1 is an illumination device that emits light having a wavelength component of 500 nm or more, and specifically, for example, is a fluorescent lamp that emits yellow light.
  • the lighting device 1 is not included in the manufacturing device 100.
  • the inventors of the present application conducted an experiment on how much the organic light-emitting device deteriorates by changing the brightness of illumination and the irradiation time.
  • five types of test bodies having different combinations of illuminance and irradiation time (Example 1, Example 2, Example 3, Comparative Example 1 and Comparative Example 2) were evaluated with respect to two items of luminous efficiency and LT75. Went.
  • LT75 is one of life tests, where voltage is continuously applied to an organic light-emitting device to emit light, and when the initial luminance is 100, the lifetime is the time until the luminance reaches 75%. It is a method to evaluate.
  • the test specimen was created as follows. Of the tubes 45a, 45b, 45c, and 45d, ink is accommodated in a translucent tube made of at least the same material as the tubes 45c and 45d (in this embodiment, a fluororesin), and has a wavelength component of 500 nm or more. Light was irradiated from the outside of the tube at a predetermined illuminance for a predetermined time. At that time, the ink did not circulate in the tube and was irradiated with light in a stationary state. The ink after irradiation was set in the manufacturing apparatus 100, and the ink was applied onto the substrate from the ink ejection unit 30 to produce an organic light emitting device.
  • a translucent tube made of at least the same material as the tubes 45c and 45d (in this embodiment, a fluororesin), and has a wavelength component of 500 nm or more.
  • Light was irradiated from the outside of the tube at a predetermined illuminance for a predetermined time
  • luminous efficiency was performed by applying a current of 10 [mA / cm 2 ].
  • LT75 was evaluated by applying a constant current with an initial luminance of 8000 cd / m 2 to cause the device to emit light continuously, and measuring the time until the luminance reached 75% of the initial luminance (6000 cd / m 2 ). .
  • FIG. 4 shows the results of illuminance E [lux], irradiation time T [hrs], integrated illuminance ET [lux ⁇ hrs], luminous efficiency [cd / A], and LT75 [hrs] for each of the five types of test specimens.
  • the luminous efficiency of Example 1 was 37.9 [cd / A], and LT75 was 24.1 [hrs].
  • the luminous efficiency of Example 2 was 36.8 [cd / A], and LT75 was 23.5 [hrs].
  • the luminous efficiency of Example 3 was 36.5 [cd / A], and LT75 was 23.3 [hrs].
  • the luminous efficiency of Comparative Example 1 was 28.4 [cd / A], and LT75 was 7.4 [hrs].
  • the luminous efficiency of Comparative Example 2 was 20.4 [cd / A], and LT75 was 2.2 [hrs].
  • FIG. 5 (a) is a graph in which the luminous efficiency and integrated illuminance of the above five types of test specimens are plotted on a graph.
  • FIG. 5B is a diagram in which LT75 and integrated illuminance of the above five types of test specimens are plotted on a graph.
  • 5 (a) and 5 (b) the solid curve is an approximate curve that connects the plotted points.
  • the illuminance E detected by the illuminance sensor 50 is integrated, and when the integrated illuminance ET becomes a predetermined value or more, it is determined that the ink deterioration has exceeded the allowable range. . Then, the user or administrator takes out the old ink in the ink transport path and replaces it with new ink. Specifically, a message (ink replacement warning) for prompting ink removal is displayed on the display unit 13. Then, the user or administrator who sees the message takes out the old ink stored in the ink conveyance path 450 and replaces it with new ink.
  • replacement of the ink means that the old ink stored in the ink conveyance path 450 is taken out and the ink conveyance path 450 is filled with new ink.
  • the “old ink” means ink that is contained in the ink transport path 450 at the time of ink replacement and has been determined that the degree of deterioration has exceeded an allowable range.
  • “New ink” It means ink that has been stored in the supply tank 41 until then. (The above-mentioned “new ink” may be the supply tank 41 of the same batch as the old ink or may be the supply tank 41 of another new batch. There are cases of filling and batch exchange.) Hereinafter, the same applies to each embodiment and each modification.
  • the integrated illuminance ET ⁇ 18000 [lux ⁇ hrs] was an allowable range of ink deterioration.
  • the integrated illuminance ET ⁇ 17500 [lux ⁇ hrs] was an allowable range of ink deterioration. Therefore, in the present embodiment, the range satisfying both is the integrated illuminance ET ⁇ 17500 [lux ⁇ hrs] as the allowable range of ink deterioration.
  • FIG. 6 is a flowchart showing the processing contents of ink quality management control by the control unit 11 in the method for manufacturing the organic light emitting device according to the first embodiment.
  • main routine for controlling the entire manufacturing apparatus 100.
  • main routine is executed by turning on the power of the manufacturing apparatus 100, the ink quality management control subroutine is called at a predetermined timing. Executed.
  • step S1 when the power of the manufacturing apparatus 100 is turned on and the flow of the ink quality management control is started, the value of the integrated illuminance ET stored in the storage unit 12 is reset (step S1), and the timer is started. (Step S2). In the case of the first use, since the integrated illuminance ET is not stored in the storage unit 12, step S1 is omitted.
  • step S3 the illuminance E detected by the illuminance sensor 50 is acquired (step S3), and the time ⁇ t measured by the timer is acquired (step S4).
  • the integrated illuminance E ⁇ ⁇ t is calculated (step S6).
  • the illuminance sensor 50 detects the instantaneous illuminance by sampling the current value of the photoelectric element at intervals of a minute time ⁇ t (for example, 100 [msec]). Therefore, by setting ⁇ t to be the same as the sampling interval of the illuminance sensor 50, all the illuminance information detected by the illuminance sensor 50 can be used for integration, and more accurate integrated illuminance can be obtained.
  • the time interval for sampling the current value of the photoelectric element is set to 100 [msec].
  • the time interval is not limited to this, and the time interval is shorter than 100 [msec] (for example, several [msec] to several tens [msec]. ] Or a long time interval (for example, several hundred [msec] to several thousand [msec]).
  • step S6 the integrated illuminance E ⁇ ⁇ t calculated in step S6 is added to the accumulated value of the integrated illuminance E ⁇ ⁇ t until the previous time stored in the storage unit 12 to calculate the integrated illuminance ET, and the calculated integrated illuminance ET Is stored in the storage unit 12 (step S7).
  • the integrated illuminance E ⁇ ⁇ t calculated in step S6 is stored in the storage unit 12 as the integrated illuminance ET.
  • step S8 it is determined whether or not the integrated illuminance ET is 17500 [lux ⁇ hrs] or more.
  • the control unit 11 determines that the ink deterioration has exceeded the allowable range, and issues an ink replacement alarm, that is, a message prompting the user or administrator to remove old ink. It is displayed on the display unit 13 (step S8: YES, step S9).
  • step S10 the ink quality management control flow ends.
  • step S8 if the integrated illuminance ET is not 17500 [lux ⁇ hrs] or more, that is, less than 17500 [lux ⁇ hrs], the process returns to step S3 to acquire the illuminance E again (step S8: NO, step S3). ).
  • Step S3 to Step S8 are repeated until it is determined in Step S8 that the integrated illuminance ET is 17500 [lux ⁇ hrs] or more.
  • the integrated illuminance ET in the above flow can be expressed by the following formula 1.
  • the plurality of lighting devices 1 or the plurality of lighting devices 1 have The illuminance differs between when all the light sources are turned on and when only some of them are turned on. Even in such a case, the integrated illuminance ET can be accurately calculated by integrating the illuminance E in the minute time ⁇ t.
  • the manufacturing method which performs ink quality management control of this embodiment can also be performed as a manufacturing system of the organic light-emitting device which added the illuminating device 1 to the manufacturing apparatus 100 of the organic light-emitting device.
  • Embodiment 2 >> In the first embodiment, the case where the ink replacement alarm is displayed when the integrated illuminance ET ⁇ 17500 [lux ⁇ hrs] has been described. However, it is not limited to this.
  • the ink irradiated with light in a stationary state without being circulated in the tube was used for the experiment.
  • the ink is constantly circulated in the ink conveyance path 450. Therefore, in the actual manufacturing apparatus 100, it is considered that it is not practical to manage the ink quality with the integrated illuminance ET value of 17500 [lux ⁇ hrs].
  • Embodiment 2 a manufacturing method for performing more realistic ink quality management in the manufacturing apparatus 100 will be described.
  • symbol is attached
  • the ink constantly circulates in the ink conveyance path 450.
  • the tubes 45b, 45c, and 45d are made of a translucent resin material, while the IN tank 42, the OUT tank 43, and the distribution tank 44 are made of a light-shielding member such as metal. Therefore, when light is irradiated when the ink is present in the tubes 45b, 45c, 45d, the ink is deteriorated by the light, but the ink exists in the IN tank 42, the OUT tank 43, and the distribution tank 44. The ink is not affected by light even if it is irradiated with light.
  • the ink in the ink transport path 450 is 45b
  • FIG. 7 is a flowchart showing the processing contents of the ink quality management control by the control unit 11 in the method for manufacturing the organic light emitting device according to the second embodiment.
  • the ink quality management control subroutine is executed at a predetermined timing. Called and executed.
  • steps S11 to S17 are the same as steps S1 to S7 in the flowchart of the ink quality management control according to the first embodiment shown in FIG.
  • step S18 After calculating the integrated illuminance ET in step S17 and storing the value in the storage unit 12, it is determined whether or not the integrated illuminance ET is equal to or greater than 17500 ⁇ Cw / Ct [lux ⁇ hrs] (step S18).
  • the control unit 11 determines that the ink deterioration has exceeded the allowable range, and issues an ink replacement alarm, that is, removal of old ink, to the user or administrator. Is displayed on the display unit 13 (step S18: YES, step S19).
  • step S20 the flow of the ink quality management control is ended.
  • step S18 if the integrated illuminance ET is not 17500 ⁇ Cw / Ct [lux ⁇ hrs] or more, that is, less than 17500 ⁇ Cw / Ct [lux ⁇ hrs], the process returns to step S13 to acquire the illuminance E again. (Step S18: NO, Step S13). Thereafter, step S13 to step S18 are repeated until it is determined in step S18 that the integrated illuminance ET is 17500 ⁇ Cw / Ct [lux ⁇ hrs] or more.
  • an ink replacement alarm is displayed on the display unit 13.
  • the ink circulating in the ink transport path 450 is present in the translucent tube, not the total time during which the lighting device 1 is turned on.
  • the time that is actually affected by the light from the lighting device 1 can be reflected in the integrated illuminance ET. Therefore, it is possible to perform ink quality control that is more realistic, and in actuality, even though the deterioration does not exceed the allowable range, the waste of ink that is taken out and discarded is suppressed, thereby contributing to cost reduction. be able to.
  • a manufacturing method for performing ink quality management control according to the present embodiment can also be executed.
  • step S8 in FIG. 6 and step S18 in FIG. 7 the condition (step S8 in FIG. 6 and step S18 in FIG. 7) that the ink replacement warning is displayed on the display unit is expressed as integrated illuminance ET ⁇ ⁇ ⁇ 17500 [lux ⁇ hrs] using a constant ⁇ , it is implemented.
  • Cw / Ct> 1 ⁇ ⁇ 1.
  • the manufacturing apparatus 100 is used in an environment where there is no light shielding between the lighting device 1 and the tubes 45a, 45b, 45c, and 45d.
  • the present invention is not limited to this, and a light shielding member may be disposed.
  • the manufacturing apparatus 100 When the manufacturing apparatus 100 is in operation (manufacturing an organic light-emitting device) at a site (a factory or the like) where the manufacturing apparatus 100 is installed, basically an operator (user, administrator) is not on the site.
  • the lighting device 1 is turned off without entering. The following cases are conceivable as situations for lighting the lighting device 1.
  • the maintenance work includes work such as inspection of defective nozzles of the ink jet head, wiping of the ink jet head, ink replacement, and maintenance inspection and repair of the manufacturing apparatus.
  • the ink discharge unit 30 is basically stationary except when the operation of the linear motors 24a and 24b is checked. Even during maintenance, the ink circulates in the ink conveyance path 450 to prevent the ink from sticking, and the power of the manufacturing apparatus 100 is not turned off.
  • the state in which the manufacturing apparatus 100 is driven in the standby mode without performing the manufacturing operation in this way is referred to as “maintenance mode”.
  • the ink ejection unit 30 When the manufacturing apparatus 100 is in the maintenance mode, the ink ejection unit 30 is basically stationary, but when in the manufacturing mode, the ink ejection unit 30 moves on the stage ST along the X-axis direction. Accordingly, the tubes 45a, 45b, 45c, 45d are also moved in the X-axis direction. For this reason, the light shielding member needs to prevent the movement of the tubes 45a, 45b, 45c, and 45d. Further, since the lighting device 1 is turned on when the user needs to perform some work on the manufacturing device 100, it is desirable to prevent the tubes 45a, 45b, 45c, and 45d from being irradiated with light as much as possible. However, it is necessary to prevent the other portions from being shielded as much as possible so that the user can easily work. In the present modification, the configuration as a manufacturing system including a light shielding member will be described below in consideration of these points.
  • the organic light emitting device manufacturing system 1000 includes a manufacturing apparatus 100 and a light shielding unit 70.
  • the light shielding unit 70 includes a light shielding member holding portion 71 and a light shielding member 72.
  • the light shielding member holding portion 71 includes a guide rail 71a and a moving body 71b installed so as to be movable along the guide rail 71a while holding a part of the light shielding member 72.
  • the guide rail 71a is made of a long metal material, and is disposed at a higher position than the lighting device 1, and includes a tank group (supply tank 41, IN tank 42, OUT tank 43) of the manufacturing apparatus main body 101 and the ink supply unit 40. Is provided substantially parallel to the X axis.
  • the moving body 71b has a motor (not shown) inside and is connected to the control unit 11 by a cable (not shown). The motor is driven under the control of the control unit 11 and moves along the guide rail 71a. To do.
  • the moving body 71b is composed of a pair of moving body portions 71b1 and 71b2, each having the motor. In FIG. 8, the moving body portion 71b2 is located outside the range of the drawing and is not shown.
  • the light shielding member 72 is a cloth-like or plate-like member having a light shielding property.
  • the light blocking member 72 is specifically a light blocking curtain, and includes a light blocking member portion 72a held by the moving body portion 71b1 and a light blocking member portion 72b held by the moving body portion 71b2.
  • the light shielding member 72 is configured by a plate-shaped member, it is preferable that the plurality of plate-shaped members held so as to be capable of sliding are slightly shifted from each other and overlapped like a vertical blind. By setting it as such a structure, irradiation of the light with respect to these tubes can be suppressed, accept
  • the material for the plate member wood, metal, ceramic, light-shielding resin, or the like can be used.
  • the light shielding property may be realized by a method of applying a light shielding paint to the surface of a plate-shaped member made of a light transmitting resin or the like, or a method of applying a light shielding cloth or paper.
  • FIG. 8 shows a manufacturing system in which the light blocking member 72 is not interposed between the lighting device 1 and the tubes 45a, 45b, 45c, 45d, that is, the light from the lighting device 1 is not blocked by the light blocking member 72. 1000.
  • the position of the light shielding member 72 where the light from the illumination device 1 to the tubes 45a, 45b, 45c, and 45d is not shielded is referred to as an “open position”.
  • the light shielding member 72 is interposed between the lighting device 1 and the tubes 45 a, 45 b, 45 c, 45 d, that is, the light from the lighting device 1 is blocked by the light shielding member 72.
  • a manufacturing system 1000 is shown.
  • the position of the light shielding member 72 where the light from the lighting device 1 to the tubes 45a, 45b, 45c, and 45d is shielded is referred to as a “light shielding position”.
  • the light shielding member 72 when the light shielding member 72 is located at the light shielding position, the vicinity of the end of the tubes 45c and 45d connected to the distribution tank 44 is formed by the light shielding member portion 72a and the light shielding member portion 72b. It is sandwiched.
  • the light shielding member portions 72a and 72b are deformable cloth curtains, the portions near the end portions are not damaged.
  • FIG. 10 is a flowchart showing the processing content of the light shielding member control by the control unit 11 in the manufacturing method executed by the organic light emitting device manufacturing system 1000 according to the first modification.
  • the light shielding member control flow according to the present modification is also performed at a predetermined timing of a main routine (not shown) that controls the entire manufacturing apparatus 100.
  • a subroutine is called and executed.
  • the driving mode of the manufacturing apparatus 100 is determined, that is, whether the manufacturing apparatus 100 is driven in the maintenance mode or manufacturing. It is determined whether or not it is driven in the mode (step S31). Note that although it is actually the manufacturing apparatus 100 that is driven in the maintenance mode or the manufacturing mode here, the manufacturing apparatus main body 101 is driven in the maintenance mode or in the manufacturing mode. It is enough to determine whether Therefore, the driving mode of the manufacturing apparatus 100 may be expressed as the driving mode of the manufacturing apparatus main body 101.
  • the control unit 11 moves the moving body portions 71b1 and 71b2 (moving body 71b) to positions where the light shielding member 72 is held in a state where the light shielding member 72 is located at the light shielding position.
  • the moving body 71b remains as it is.
  • step S24 it is determined whether or not the lighting device 1 is turned on.
  • the ink ejection unit 30 is moving. Therefore, when the light shielding member 72 is located at the light shielding position, the tubes 45c and 45d and the light shielding member 72 collide with each other, and the tubes 45c and 45d are detached from the distribution tank 44, or the movement of the ink discharge unit 30 is hindered. There is a risk of doing. Therefore, when it is determined in step S21 that the manufacturing apparatus 100 is driven in the manufacturing mode, the light shielding member 72 is positioned in the open position (step S21: manufacturing mode, step S23). In other words, the control unit 11 moves the moving body portions 71b1 and 71b2 (moving body 71b) to positions where the light shielding member 72 is held in the open position. When the light blocking member 72 is already in the open position, the moving body 71b remains as it is.
  • step S24 it is determined whether or not the lighting device 1 is turned on.
  • step S24 If it is not determined in step S24 that the lighting device 1 is turned on, that is, if it is determined that the lighting device 1 is turned off, the determination of lighting device lighting is repeated (step S24: NO, Step S24).
  • step S24 If it is determined in step S24 that the lighting device 1 is turned on, the drive mode of the manufacturing apparatus 100 is subsequently determined (step S24: YES, step S25).
  • the light shielding member 72 is positioned at the light shielding position (step S25: maintenance mode, step S26).
  • step S29 it is determined whether or not the lighting device 1 is turned off.
  • step S25 If it is determined in step S25 that the drive mode is the manufacturing mode, the light blocking member 72 is positioned in the open position (step S25: manufacturing mode, step S27).
  • the lighting device 1 since the lighting device 1 is turned on and the light shielding member 72 is located at the open position, the light from the lighting device 1 is irradiated to the tube 45 (45a, 45b, 45c, 45d).
  • the movement of the ink discharge unit 30 is hindered or the tubes 45c and 45d are detached from the distribution tank 44, defective products are generated or the manufacture of the organic light emitting device is interrupted. Therefore, in the case of the manufacturing mode, priority is given to avoiding such a problem over light shielding.
  • the illuminance is detected by the illuminance sensor 50 and the ink quality management control shown in FIG. 6 or FIG. 7 is performed, ink whose degree of deterioration exceeds the allowable range is not used.
  • step S27 it is determined whether or not the lighting device 1 is turned off (step S29).
  • step S28 If it is not determined in step S28 that the lighting device 1 is turned off, that is, if it is determined that the lighting device 1 is turned on, the process returns to step S25 to determine the drive mode of the manufacturing apparatus 100. Perform (step S28: NO, step S25). Hereinafter, step S25 to step S28 are repeated until it is determined in step S28 that the lighting device 1 is turned off.
  • Step S28 when it is determined that the lighting device 1 is turned off, the light shielding member 72 is positioned in the open position (Step S298: YES, Step S29), and the process returns.
  • the light from the lighting device 1 is irradiated onto the tube 45 only when it is the minimum necessary, so that the ink can be further prevented from deteriorating, and the integrated illuminance.
  • the time until the ET reaches the maximum allowable value can be made longer. Thereby, the frequency of ink replacement due to deterioration can be reduced, which can contribute to cost reduction and workability improvement.
  • the lighting device 1 may or may not be included in the manufacturing system 1000.
  • Modification 2 In the first modified example, when the lighting device 1 is turned on when the manufacturing device 100 is driven in the manufacturing mode, the light shielding member 72 is located at the open position, so that the tube 45 is connected to the tube 45 from the lighting device 1. Light is irradiated.
  • the illumination device further includes a light source that emits light and can selectively turn on one of the light sources.
  • the light source that emits the first light is the first light source
  • the light source that emits the second light is the second light source.
  • the manufacturing system according to this modification includes an illumination device, and the control unit 11 (see FIG. 3) of the production apparatus main body 101 and the illumination device are connected. And the control part 11 performs control which selectively lights a 1st light source or a 2nd light source with respect to an illuminating device.
  • the second light is light having a wavelength component of 650 nm or more, specifically, for example, red light.
  • the second light is not limited to this, for example, , Light composed of a wavelength component of 620 nm or more, or infrared light.
  • FIG. 11 is a flowchart showing the processing contents of the light shielding member control by the control unit 11 in the manufacturing method executed in the organic light emitting device manufacturing system according to Modification 2.
  • the manufacturing system of the organic light emitting device according to Modification 2 includes a lighting device, and the lighting device includes a first light source and a second light source that can be selectively turned on, and is connected to the lighting device. Except for the point that the control part 11 performs lighting control of an illuminating device, it is the same as the manufacturing system 1000 which concerns on the modification 1.
  • FIG. The basic external configuration is the same as that of the manufacturing system 1000 shown in FIGS. Therefore, the lighting apparatus according to this modification will be described below with the same reference numeral 1 as that of the lighting apparatus according to modification 1.
  • the light shielding member control flow according to this modification is also a main routine (not shown) that controls the entire manufacturing apparatus 100.
  • the light blocking member control subroutine is called and executed at a predetermined timing.
  • step S31 to step S33 are the same as step S21 to step S23 in the light shielding member control flow according to the first modification shown in FIG. 10, the description thereof is omitted here.
  • the illumination switch is a so-called wall switch that is installed on a wall or the like and is operated by a user to turn on or off the illumination device.
  • the lighting switch is not limited to a wall switch, and may be a remote controller or the like.
  • step S34 If it is not determined that the lighting switch is turned on, that is, if the lighting switch is OFF, the determination as to whether the lighting switch is turned on is repeated (step S34: NO, step S34).
  • step S34 the drive mode of the manufacturing apparatus 100 is determined (step S34: YES, step S35).
  • step S35 maintenance mode, step S36.
  • step S35 manufacturing mode, step S37.
  • step S36 or step S37 it is determined whether or not the illumination switch is turned off (step S38).
  • step S38 determines the drive mode of the manufacturing apparatus 100 (step S38: NO, step S35). Thereafter, steps S35 to S38 are repeated until it is determined in step S38 that the illumination switch is turned off.
  • step S38 If it is determined in step S38 that the illumination switch has been turned OFF, the light shielding member 72 is positioned in the open position, and the illumination device 1 is turned off (step S38: YES, step S39). If the flow from step S36 to step S38 and step S39 is followed, the first light source is turned on and the second light source is not turned on, so in step S39 the first light source is turned off. When the flow from step S37 to step S38 and step S39 is followed, the second light source is turned on and the first light source is not turned on. Therefore, in step S39, the second light source is turned off. Finally, return.
  • the first light emitting the first light is emitted.
  • a second light source that emits second light having a wavelength component longer than the first light (that is, light having a wavelength component in a range in which the light absorption peak of ink does not exist or hardly exists) is turned on. To do. Thereby, even if the light irradiated to the tube 45 reaches the ink through the tube 45, the ink is not easily deteriorated.
  • the deterioration of the ink can be suppressed as compared with the case where the first light is irradiated.
  • the user when it is necessary to perform some work while the manufacturing device is driven in the manufacturing mode, the user can easily work compared to the case of using the flashlight without turning on the lighting device. It can be carried out.
  • the light shielding curtain is used as the light shielding member 72, but the present invention is not limited to this.
  • a light-shielding plate member that can move on the floor, or the like may be used.
  • a material for the plate member wood, metal, cement, ceramic, light shielding resin, or the like can be used.
  • the light shielding property may be realized by a method of applying a light shielding paint to the surface of a plate-shaped member made of a light transmitting resin or the like, or a method of applying a light shielding cloth or paper.
  • the tube 45 (45a, 45b, 45c, 45d) is made of fluororesin, but is not limited thereto. Other materials may be used as long as the material has sufficient flexibility and solvent resistance and has a sufficiently low impurity content that does not adversely affect the ink.
  • the tubes 45 are all made of translucent resin, but are not limited thereto.
  • the tubes 45 a and 45 b connect between the supply tank 41 and the IN tank 42 and between the IN tank 42 and the OUT tank 43, both of which are connected to the distribution tank 44. Absent. Since these tanks are stationary and the tubes 45a and 45b do not move, flexibility as high as the tubes 45c and 45d is not required.
  • a tube made of a light-shielding material can be used as the tubes 45a and 45b.
  • the light-shielding material for example, resins such as vinyl chloride resin, polystyrene, butyl rubber, urethane, or rubber can be used.
  • a metal material such as SUS may be used.
  • a tube made of a fluororesin and coated with a resin such as vinyl or a metal thin film may be used.
  • a tube made of two or more layers in which a light-shielding resin or rubber is laminated on the outside of the tube made of fluororesin may be used.
  • a fluororesin mixed with a black pigment or filler may be used, or another kind of resin or rubber may be used.
  • the light shielding member 72 is movable, but is not limited thereto.
  • a fixed light shielding member may be used.
  • FIG. 12 is a side view showing a schematic configuration of a manufacturing system 2000 according to Modification 6.
  • the manufacturing system 2000 includes a manufacturing apparatus 100, a lighting apparatus 1, and a light shielding unit 2070 as main components.
  • the light shielding unit 2070 in the manufacturing system 2000 includes a wall-shaped light shielding member holding portion 2071 erected on the floor and a light shielding member 2072 fixed to the upper end of the light shielding member holding portion 2071. ing.
  • the light shielding unit 2070 has an inverted L-shaped cross section, and the light shielding member 2072 functions as a roof that covers the upper side of the ink supply unit 40.
  • a material for forming the light shielding member 2072 wood, metal, cement, ceramic, cloth, resin, or the like can be used, and is not particularly limited as long as it has light shielding properties.
  • the lighting device 1 is disposed above the light shielding member 2072.
  • the illuminating device 1 is disposed on the side opposite to the manufacturing apparatus main body 101 with respect to the end of the light shielding member 2072 that is not connected to the light shielding member holding portion 2071. Therefore, the light emitted from the illumination device 1 is shielded by the light shielding member 2072 and is not directly irradiated to the ink supply unit 40, but at least the portion of the manufacturing apparatus main body 101 opposite to the ink supply unit 40 is directly applied. Irradiated.
  • FIG. 12 the light shielding unit 2070 and the floor are shown in cross section. Further, in FIG. 12, illustration of the control unit 10 in the manufacturing apparatus 100 is omitted.
  • the light shielding member 2072 is not limited to the configuration fixed to the upper end of the light shielding member holding portion 2071, and may be fixed at any position of the light shielding member holding portion 2071 as long as it can cover the upper side of the ink supply unit 40. .
  • the light shielding member 2072 may be fixed to the wall with the wall of the room in which the manufacturing apparatus 100 is disposed as the light shielding member holding portion 2071. Furthermore, the light shielding member 2072 may be hung from the ceiling, for example.
  • the light shielding member 2072 is not limited to the case where the light shielding member 2072 is held in a substantially parallel posture with respect to the floor surface, and even if the light shielding member 2072 is fixed to the light shielding member holding portion 2071 in a posture inclined with respect to the floor surface. Good.
  • Modification 7 In the inspection of defective nozzles, when the appearance of ink droplets ejected from the inkjet head 31 is observed by the observation unit 60, it is not particularly necessary to distinguish between the RGB colors, so infrared illumination and an infrared camera are used. May be observed. Even when a normal CCD camera is used, a red lamp may be used for illumination. In this way, ink deterioration can be further suppressed by using light having a wavelength component having a longer wavelength than that of the yellow lamp.
  • the control method for selectively irradiating light having different wavelength components has been described.
  • the lighting device may have a configuration in which the brightness can be adjusted stepwise, and the control unit may perform control to change the brightness of light emitted from the lighting device.
  • the structure of this modification is applied to the structure of Embodiment 1 is demonstrated below.
  • FIG. 13 is a flowchart showing the processing contents of illuminance control by the control unit 11 in the manufacturing method executed using the organic light emitting device manufacturing system according to the modified example 9.
  • the manufacturing system of the organic light emitting device according to the modified example 9 has the basic configuration except that the lighting device connected to the control unit 11 is capable of adjusting the brightness in stages. These are the same as the manufacturing system 1000 according to Modification 1 shown in FIGS.
  • the lighting apparatus according to this modification is also described below with the same reference numeral 1 as that of the lighting apparatus according to modification 1.
  • the lighting device is configured to be able to be lit at three levels of brightness of level 1, level 2, and level 3, and the brightness is level 1 ⁇ level 2 ⁇ level 3.
  • the light shielding member control flow according to this modification is also a main routine (not shown) that controls the entire manufacturing apparatus 100.
  • the light blocking member control subroutine is called and executed at a predetermined timing.
  • the illumination switch is a so-called wall switch that is installed on a wall or the like and is operated by a user to turn on or off the illumination device.
  • the lighting switch is not limited to a wall switch, and may be a remote controller or the like.
  • step S41 If it is not determined that the illumination switch is turned on, that is, if the illumination switch is OFF, the determination as to whether the illumination switch is turned on is repeated (step S41: NO, step S41).
  • step S41 If it is determined that the illumination switch has been turned ON, it is then determined whether or not the integrated illuminance ET is less than 15500 [lux ⁇ hrs] (step S41: YES, step S42).
  • step S42 When it is determined that the integrated illuminance ET is less than 15500 [lux ⁇ hrs], the control unit 11 turns on the lighting device 1 at the brightest level 3 (step S42: YES, step S43). In this case, there is still a margin until the integrated illuminance ET reaches 17500 [lux ⁇ hrs], which is the maximum value within the allowable range of ink deterioration, and thus the brightness of the lighting device does not have to be particularly reduced.
  • step S44 it is determined whether or not the illumination switch is turned off.
  • step S44 If the illumination switch is not turned off, it is determined whether or not the illumination switch is subsequently turned off (step S44: NO, step S44).
  • control unit 11 turns off the illumination device 1 (step S44: YES, step S45) and returns.
  • step S42 If it is not determined in step S42 that the integrated illuminance ET is less than 15500 [lux ⁇ hrs], that is, if it is determined that the integrated illuminance ET is 15500 [lux ⁇ hrs] or more, then the integrated illuminance ET Is less than 16500 [lux ⁇ hrs] (step S42: NO, step S46).
  • the control unit 11 lights the lighting device 1 at the second brightest level 2.
  • the integrated illuminance ET is still slightly marginal up to 17500 [lux ⁇ hrs], which is the maximum value within the allowable range of ink deterioration, but exceeds 15500 [lux ⁇ hrs], and is a little closer to the maximum value. Therefore, control for reducing the brightness of the lighting device is performed, and control for suppressing ink deterioration is performed.
  • Step S44 After lighting the lighting device 1 at level 2 in step S47, the process proceeds to step S44.
  • Steps S44 and S45 are the same as already described, so the description thereof is omitted here.
  • step S46 If it is not determined in step S46 that the integrated illumination ET is less than 16500 [lux ⁇ hrs], that is, if it is determined that the integrated illumination ET is greater than or equal to 16500 [lux ⁇ hrs], then the integrated illumination ET Is less than 17500 [lux ⁇ hrs] (step S46: NO, step S48).
  • the control unit 11 When the integrated illuminance ET is less than 17500 [lux ⁇ hrs], the control unit 11 turns on the lighting device 1 at the darkest level 1. In this case, since the integrated illuminance ET is much closer to 17500 [lux ⁇ hrs], which is the maximum value within the allowable range of ink deterioration, control is performed to further reduce the brightness of the lighting device, and ink deterioration is reduced. Control is further suppressed.
  • Step S44 After lighting the lighting device 1 at level 1 in step S49, the process proceeds to step S44.
  • Steps S44 and S45 are the same as already described, so the description thereof is omitted here.
  • step S48 If it is not determined in step S48 that the integrated illuminance ET is less than 17500 [lux ⁇ hrs], that is, if it is determined that the integrated illuminance ET is 17500 [lux ⁇ hrs] or more, ink deterioration is allowed. Since the range is exceeded, the control unit 11 causes the display unit 13 to display a replacement alarm, that is, a message prompting the user to remove old ink (step S48: NO, step S50), and the flow of the illuminance control is displayed. finish.
  • a replacement alarm that is, a message prompting the user to remove old ink
  • the brightness of the lighting device 1 is always reduced regardless of the value of the integrated illuminance ET, the user must work in a dark environment, which impairs the user's convenience.
  • the brightness of the illumination device is gradually reduced as the integrated illuminance ET value approaches 17500 [lux ⁇ hrs], which is the maximum allowable value, and the translucent tube 45 is irradiated.
  • the illuminance of light from the lighting device 1 is reduced.
  • the lighting device can be turned on with the brightest brightness to give priority to user convenience.
  • the speed of ink deterioration can be reduced by reducing the brightness of the illumination device. That is, it is possible to lengthen the time until the value of the integrated illuminance ET reaches the maximum allowable value and reduce the frequency of ink replacement. Furthermore, it is possible to increase the possibility that all the ink in the batch in use is consumed before the value of the integrated illuminance ET reaches the maximum allowable value, so that the ink can be used most effectively.
  • the determination in step S42 is ET ⁇ ⁇ 15500
  • the determination in step S46 is ET ⁇ ⁇ 16500
  • the determination in step S48 is ET ⁇ ⁇ 17500. It can be expressed whether or not there is.
  • 1
  • Cw / Ct> 1 ⁇ ⁇ 1.
  • the values used for the discrimination in step S42 and step S46 are not limited to 15500 and 16500 [lux ⁇ hrs], respectively, and any value may be used. If the integrated illuminance value used as a reference for determining the brightness of the lighting device is D, any value less than 17500 can be used for D. In that case, assuming that the lighting device has a configuration that can be selectively lit at a plurality of levels of brightness including at least the first brightness and the second brightness that is brighter than the first brightness, the control of this modification example is as follows. Can be said as follows. That is, when ET ⁇ D [lux ⁇ hrs], the lighting device is turned on with the second brightness.
  • the brightness of the lighting device is not limited to three levels, and may be two levels or four or more levels.
  • the integrated illuminance value used as a reference for determining the brightness of the lighting device is not limited to three types, and may be two types or four or more types.
  • the brightness of both the first light and the second light can be adjusted stepwise. Illuminance control in a modification may be performed.
  • Modification 10 Although the organic light emitting device manufacturing system according to Modification 9 has the configuration including the light shielding unit 70, the organic light emitting device manufacturing system may be configured without the light shielding unit 70.
  • Modification 11 It is determined that the degree of deterioration has exceeded the allowable range, and the old ink taken out from the ink conveyance path 450 is not limited to being discarded after that, and may be used again for manufacturing an organic light emitting device through some regeneration process. However, it may be reused as a material for another product.
  • the integrated illuminance ET ⁇ ⁇ 17500 [lux ⁇ hrs] (constant ⁇ ⁇ 1) is set as the allowable maximum value of ink deterioration, but is not limited thereto.
  • a value lower than ⁇ ⁇ 17500 [lux ⁇ hrs] (for example, ⁇ ⁇ 15000 [lux ⁇ hrs]) may be set as the allowable maximum value for ink deterioration in order to more strictly avoid the risk of defective products.
  • a value higher than ⁇ ⁇ 17500 [lux ⁇ hrs] may be set to a maximum allowable value of ink deterioration depending on a case where cost reduction is prioritized or an intended quality level. It is good.
  • the organic EL device manufacturing method and the like according to the present invention include, for example, organic EL elements and organic ELs used as home or public facilities, various display devices for business use, television devices, displays for portable electronic devices, and the like. It can be suitably used for a manufacturing method of a display panel.
  • Illumination device 11. Control unit 13. Display unit 40. Ink supply units 45a, 45b, 45c, 45d. Tube (Translucent tube) 50. Illuminance sensor 71. Light shielding member holding portion 72, 2072. Light shielding member 100. Manufacturing apparatus 101. Manufacturing apparatus body 450. Ink transport path 1000, 2000. Manufacturing system

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Coating Apparatus (AREA)

Abstract

 外光が遮光され、500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブと、を有する製造装置を用いた有機発光デバイスの製造方法である。当該有機発光デバイスの製造方法において、透光性のチューブに対して照射される光の照度E(ルクス)と光が照射される時間の長さT(時間)との積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすとき、インク搬送路内のインクを取り出す。

Description

有機発光デバイスの製造方法、その製造システム、およびその製造装置
 本発明は、有機発光デバイスの製造方法、その製造システム、およびその製造装置に関し、特に、製造時における材料の品質管理に関する。
 近年、有機発光材料を用いた発光層を有する有機EL(Electroluminescence)パネルや有機EL照明等の有機発光デバイスの開発が盛んに行われている。
 湿式法(ウェットプロセス)の場合、有機発光材料と溶媒とを含有するインク(溶液)を用いて発光層が形成されるが、インクは光により劣化することが従来知られている。そこで、発光材料の吸収極大波長より短波な光(500nm以下)を遮光した環境で、発光層を含む有機層を湿式法により形成する方法が特許文献1に開示されている。
特開2004-55333号公報
 しかしながら、特許文献1のように発光材料の吸収極大波長より短波な光を遮光した環境にてインクを使用した場合であっても、インクの劣化を完全に防止することはできない。特に、容器内に密閉された状態でインクが保管されている状態と比較して、インクの容器が製造装置にセットされてインクが製造装置内に充填された状態でのインクの劣化が大きいという問題がある。これは、インクが収容されたタンクから製造装置へとインクを搬送するためのチューブに、透光性を有する樹脂材料から成るチューブが使用されており、当該チューブ内に存在するインクに光が照射されるとインクの劣化が発生するためである。
 そのような劣化したインクが有機発光デバイスの製造に用いられると不良品の発生に繋がるため、有機発光デバイスの製造方法においては、インクの品質が適正に管理されることが重要である。
 ここで、上記チューブとして遮光性の材料から成るチューブを用いることが考えられる。しかし、インク搬送用のチューブとしての使用に適した柔軟性や耐溶媒性、不純物含有率の低さといった性質と遮光性とを兼ね備えた材料を、現在市場で一般的に入手できる遮光性の材料の中から採用するのは、事実上困難である。
 本発明は、上記問題に鑑み、発光材料の吸収極大波長より短波な光を遮光した環境で透光性の材料から成るチューブをインク搬送用のチューブに用いた場合において、インクの品質が適正に管理された有機発光デバイスの製造方法、そのような製造方法が実行される有機発光デバイスの製造システムおよび製造装置を提供することを目的とする。
 本発明の一態様に係る有機発光デバイスの製造方法は、外光が遮光され、500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブと、を有する製造装置を用いた有機発光デバイスの製造方法であって、前記透光性のチューブに対して照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積で与えられる積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすとき、前記インク搬送路内の前記インクを取り出すことを特徴とする。
 本発明の一態様に係る有機発光デバイスの製造方法によると、光によるインクの劣化を積算照度ETにより管理することができる。そして、インク劣化の許容最大値である積算照度ETの値がα×17500〔lux×hrs〕(定数α≧1)以上となった場合に、インク搬送路内のインクを取り出す。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用されないため、有機発光デバイスの品質を良好に維持することができる。
(a)は、Rの発光色用のインクの光吸収スペクトルの一例を示す図である。(b)は、Gの発光色用のインクの光吸収スペクトルの一例を示す図である。(c)は、黄色灯の光の発光分布を示す図である。 本発明の実施形態1に係る有機発光デバイスの製造装置の構成を模式的に示す外観斜視図である。 実施形態1に係る有機発光デバイスの製造装置の機能ブロック図である。 照度と照射時間を変えて行った発光効率試験および寿命試験の結果を示す図である。 (a)は、図4の発光効率試験の結果をグラフ上にプロットした図である。(b)は、図4の寿命試験の結果をグラフ上にプロットした図である。 実施形態1に係る有機発光デバイスの製造方法におけるインク品質管理制御の処理内容を示すフローチャートである。 実施形態2に係る有機発光デバイスの製造方法におけるインク品質管理制御の処理内容を示すフローチャートである。 変形例1に係る有機発光デバイスの製造システムの構成を模式的に示す外観斜視図であって、遮光部材が開放位置に位置している状態を示す斜視図である。 変形例1に係る有機発光デバイスの製造システムの構成を模式的に示す外観斜視図であって、遮光部材が遮光位置に位置している状態を示す斜視図である。 変形例1に係る有機デバイスの製造方法における遮光部材制御の処理内容を示すフローチャートである。 変形例2に係る有機デバイスの製造方法における遮光部材制御の処理内容を示すフローチャートである。 変形例6に係る有機デバイスの製造システムの概略構成を模式的に示す側面図である。 変形例9に係る有機デバイスの製造方法における照度制御の処理内容を示すフローチャートである。
 ≪本発明の一態様の概要≫
 本発明の一態様に係る有機発光デバイスの製造方法は、外光が遮光され、500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブと、を有する製造装置を用いた有機発光デバイスの製造方法であって、前記透光性のチューブに対して照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積で与えられる積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすとき、前記インク搬送路内の前記インクを取り出すことを特徴とする。
 本発明の一態様に係る有機発光デバイスの製造方法によると、光によるインクの劣化を積算照度ETにより管理することができる。そして、インク劣化の許容最大値である積算照度ETの値がα×17500以上となった場合に、インク搬送路内のインクを取り出す。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用されないため、有機発光デバイスの品質を良好に維持することができる。
 また、α=1であってもよい。
 これは即ち、α≧1であるので、α=1のときの積算照度ETの値がインク劣化の許容最大値として最も厳しい値(α≧1において最も劣化を許容しない値)であり、その最も厳しい値である17500以上となった場合に、インク搬送路内のインクを取り出すこととなる。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用される事態を最も確実に防ぐことができ、有機発光デバイスの品質を良好に維持することができる。
 また、前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctであってもよい。
 インク搬送路内に収容されているインクが透光性チューブ内に存在していない時に照射された光は、インクには照射されないため、インク劣化に影響を与えない。このような光までも積算照度にカウントされると、実際には許容範囲を超えていないにもかかわらず、インクの劣化程度が許容範囲を超えたと判断されて取り出され、無駄に廃棄されてしまう虞がある。しかし、上記の方法によると、インクが透光性チューブ内に存在している時に照射された光のみを積算した値に相当する、より現実的な積算照度ETの値を用いてインクの劣化を管理することができる。従って、まだ劣化の程度が許容範囲内のインクを取り出して無駄に廃棄したり、古いインクを取り出して新しいインクと交換する頻度が必要以上に高くなったりといった事態を回避して、コスト削減および生産性向上に資することができる。
 また、前記製造装置本体は、有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動されてもよい。
 そして、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を配置してもよい。
 これにより、メンテナンス作業を行うために照明装置を点灯しなくてはならない場合であっても、照明装置からの光が遮光部材により遮光され、透光性チューブに照射される光が低減されるため、インク劣化を抑制することができる。
 また、前記製造装置本体が前記製造モードで駆動されているときには、前記照明装置と前記透光性のチューブとの間以外の位置に前記遮光部材を配置してもよい。
 これにより、製造モードのときに、製造に伴って透光性チューブが移動する場合に、透光性チューブと遮光部材とがぶつかったりする危険性を低減することができる。
 また、前記照明装置は、前記500nm以上の波長成分から成る光を第1の光とし、650nm以上の波長成分から成る光を第2の光とする場合、前記第1の光と前記第2の光とを選択的に照射可能であって、前記製造装置本体が前記製造モードで駆動されているときには、前記第1の光を照射せずに前記第2の光を照射し、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記第2の光を照射せずに前記第1の光を照射してもよい。
 これにより、メンテナンス作業時には、インクの劣化を引き起こしにくい波長成分から成る第2の光が照射されるので、インク劣化を抑制することができる。
 また、前記照明装置は、第1の明るさレベルと前記第1の明るさレベルよりも明るい第2の明るさレベルとを含む複数の明るさレベルで選択的に点灯可能であって、α×17500よりも小さい所定の値をDとした場合、前記積算照度ETが、ET<D(ルクス×時間)の関係を満たすときに、前記第2の明るさレベルで点灯し、前記積算照度ETが、D≦ET<α×17500(ルクス×時間)の関係を満たすときに、前記第1の明るさレベルで点灯してもよい。
 これにより、積算照度ETの値が許容最大値までまだ余裕がある場合には、照明装置を最も明るい明るさで点灯させて、ユーザの利便性を優先させることができる。積算照度ETの値が許容最大値に近づいてきた場合には、照明装置の明るさを低下させることによりインク劣化の速度を遅くすることができる。
 また、本発明の別の一態様に係る有機発光デバイスの製造システムは、外光が遮光された環境下に設置され、500nm以上の波長成分から成る光を照射する照明装置と、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブを有するインク供給ユニットと、前記透光性のチューブに照射される前記光の照度を検出する照度センサと、ユーザに対する情報を表示する表示部と、前記透光性のチューブに照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積である積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすときに、前記インク搬送路内の前記インクの取り出しを促す情報を前記表示部に表示させる制御部と、を有することを特徴とする。
 本発明の別の一態様に係る有機発光デバイスの製造システムによっても、インク劣化の許容最大値である積算照度ETの値がα×17500以上となった場合に、インク搬送路内のインクを取り出すことを促す情報が表示部に表示される。そして、当該表示された情報を見たユーザがインク搬送路内のインクを取り出すことにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用されないため、有機発光デバイスの品質を良好に維持することができる。
 また、α=1であってもよい。
 これは即ち、積算照度ETの値が、インク劣化の許容最大値として最も厳しい値である17500以上となった場合に、インク搬送路内のインクを取り出すこととなる。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用される事態を最も確実に防ぐことができ、有機発光デバイスの品質を良好に維持することができる。
 また、前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctであってもよい。
 これにより、インクが透光性チューブ内に存在している時に照射された光のみを積算した値に相当する、より現実的な積算照度ETの値を用いてインクの劣化を管理することができる。従って、まだ劣化の程度が許容範囲内のインクを取り出して無駄に廃棄したり、古いインクを取り出して新しいインクと交換する頻度が必要以上に高くなったりといった事態を回避して、コスト削減および生産性向上に資することができる。
 また、前記製造装置本体は、有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動されてもよい。
 そして、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を有してもよい。
 これにより、メンテナンス作業を行うために照明装置を点灯しなくてはならない場合であっても、遮光部材により透光性チューブに照射される光を低減することができ、インクの劣化を抑制することができる。
 また、前記遮光部材が前記透光性のチューブと前記照明装置との間に介在する遮光位置と、前記遮光部材が前記透光性のチューブと前記照明装置との間に介在しない開放位置との間で、前記遮光部材を移動可能に保持する遮光部材保持部を有し、前記制御部は、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記遮光部材保持部に前記遮光部材を前記遮光位置で保持させ、前記製造装置本体が前記製造モードで駆動されているときには、前記遮光部材保持部に前記遮光部材を前記開放位置で保持させてもよい。
 これにより、メンテナンスモードのときには、遮光部材を遮光位置で保持するため、照明装置からの光が透光性チューブに照射されるのを防いで、インクの劣化を抑制することができる。製造モードのときには、有機発光デバイスの製造の際に透光性チューブが移動する場合であっても、遮光部材が開放位置で保持されているため、透光性チューブと遮光部材とが干渉しない。
 また、前記照明装置は、前記500nm以上の波長成分から成る光を第1の光とし、650nm以上の波長成分から成る光を第2の光とする場合、前記第1の光を発する第1光源と前記第2の光を発する第2光源とを有し、前記第1光源と前記第2光源とを選択的に点灯可能に構成されており、前記制御部は、前記製造装置本体が前記製造モードで駆動されているときには、前記照明装置に前記第1光源を点灯させずに前記第2光源を点灯させ、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置に前記第2光源を点灯させずに前記第1光源を点灯させてもよい。
 これにより、メンテナンスモードのときには、インクの劣化を引き起こしにくい波長成分から成る第2の光が照射されるので、メンテナンス作業の際にインクに光が照射されることによるインク劣化を抑制することができる。
 また、前記照明装置は、第1の明るさレベルと前記第1の明るさレベルよりも明るい第2の明るさレベルとを含む複数の明るさレベルで選択的に点灯可能であって、α×17500よりも小さい所定の値をDとした場合、前記制御部は、前記積算照度ETが、ET<D(ルクス×時間)の関係を満たすときに、前記照明装置を前記第2の明るさレベルで点灯させ、前記積算照度ETが、D≦ET<α×17500(ルクス×時間)の関係を満たすときに、前記照明装置を前記第1の明るさレベルで点灯させてもよい。
 これにより、積算照度ETの値が許容最大値までまだ余裕がある場合には、照明装置を最も明るい明るさで点灯させて、ユーザの利便性を優先させることができる。積算照度ETの値が許容最大値に近づいてきた場合には、照明装置の明るさを低下させることによりインク劣化の速度を遅くすることができる。
 また、本発明のさらに別の一態様に係る有機発光デバイスの製造装置は、外光が遮光されて500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブを有するインク供給ユニットと、前記透光性のチューブに照射される前記光の照度を検出する照度センサと、ユーザに対する情報を表示する表示部と、前記透光性のチューブに照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積である積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすときに、前記インク搬送路内の前記インクの取り出しを促す情報を前記表示部に表示させる制御部と、を有することを特徴とする。
 本発明のさらに別の一態様に係る有機発光デバイスの製造装置によっても、インク劣化の許容最大値である積算照度ETの値がα×17500以上となった場合に、インク搬送路内のインクを取り出す。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用されないため、有機発光デバイスの品質を良好に維持することができる。
 また、α=1であってもよい。
 これは即ち、積算照度ETの値が、インク劣化の許容最大値として最も厳しい値である17500以上となった場合に、インク搬送路内のインクを取り出すこととなる。これにより、劣化が許容範囲を超えたインクが有機発光デバイスの製造に使用される事態を最も確実に防ぐことができ、有機発光デバイスの品質を良好に維持することができる。
 また、前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctであってもよい。
 これにより、インクが透光性チューブ内に存在している時に照射された光のみを積算した値に相当する、より現実的な積算照度ETの値を用いてインクの劣化を管理することができる。従って、まだ劣化の程度が許容範囲内のインクを取り出して無駄に廃棄したり、古いインクを取り出して新しいインクと交換する頻度が必要以上に高くなったりといった事態を回避して、コスト削減および生産性向上に資することができる。
 また、有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動され、前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を有してもよい。
 これにより、メンテナンス作業を行うために照明装置を点灯しなくてはならない場合であっても、透光性チューブに照射される光を低減して、インク劣化を抑制することができる。
 また、本発明のさらに別の一態様に係る有機発光デバイスの製造装置は、有機発光材料を含むインクが内部を搬送されるチューブを有し、前記インクを用いて形成された発光層を有する有機発光デバイスを製造する製造装置であって、前記チューブは、遮光性を有することを特徴とする。
 これにより、製造装置内に充填されたインクの光による劣化を抑制することができる。
 また、前記チューブは、透光性の材料から形成された第1層と、前記第1層の外側を覆い遮光性の材料から形成された第2層とを有してもよい。
 これにより、インクと直接接触する第1層に、耐溶媒性が高く不純物含有率の低い材料を用いることができるとともに、第2層によりインクに照射される光を遮光して、光によるインクの劣化を抑制することができる。
 また、前記第1層は、フッ素樹脂から形成されていてもよい。
 これにより、フッ素樹脂という耐溶媒性が高く不純物含有率が低い材料を第1層に用いることができるため、インクの溶媒によりチューブが劣化しにくく、また、不純物によりインクが受ける悪影響を低減することができる。
 以下、本発明の実施形態および変形例について具体例を示し、構成および作用・効果を説明する。
 なお、以下の説明で用いる実施形態および変形例は、本発明の一態様に係る構成および作用・効果を分かりやすく説明するために用いる例示であって、本発明は、その本質的部分以外に何ら以下の実施形態および変形例に限定を受けるものではない。
 <本発明を実施するための形態に至った経緯>
 有機発光デバイスの製造に用いられる有機発光材料を含んだインクには、光により劣化するものがあることが従来知られている。そのため、このようなインクを用いる場合には、外光が遮光された環境下に製造装置を設置して、照明を消して暗くした環境で有機発光デバイスの製造が行われる。しかしながら、製造装置のメンテナンス時やトラブルに対処する時などには、作業員が作業するために、照明を点灯する必要がある。
 ここで、インクには特定の波長の光を吸収する性質があり、その波長を有する光が照射されることにより、劣化が起こることが知られている。例えば、図1(a)は、R(赤)用のインクの光吸収スペクトルの一例であり、図1(b)は、G(緑)用のインクの光吸収スペクトルの一例である。図1(a),(b)に示す吸収スペクトルでは、R,Gともに、500nm以下の波長の光に対する吸収が大きく、特に、280~450nmの範囲の吸収が大きい。
 そこで、メンテナンス時やトラブル対処時に点灯させる照明に、通常の白色蛍光灯に代えて黄色灯を用いることが従来から行われている。黄色灯の光は、図1(c)にその発光分布を示すように、500nm以上の波長成分から成り、500nm未満の波長成分から成る光を含まない。
 しかしながら、黄色光のみが照射される環境下であっても、インクの劣化を完全に防止することができず、劣化が発生するという問題があった。これは、図1(a),(b)に示す吸収スペクトルにおいても観察されるように、500nm以上の波長領域に小さいながら吸収スペクトルのピークが存在するためである。
 インクジェット法を用いてインクが塗布され発光層が形成される有機発光デバイスの製造装置においては、タンク内に収容されたインクをインクジェットヘッドへと搬送するためのチューブを有する。インクジェットヘッドが大型の基板の端から端まで移動するのに伴いチューブも移動しなくてはならないため、チューブの材料には、柔軟性が求められる。また、耐溶媒性や不純物の少なさ等の性質も求められる。これらの性質を満たす材料としてPFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体),ETFE(テトラフルオロエチレンとエチレンの共重合体),THV(テトラフルオロエチレン、ヘキサフルオロプロピレン、ビニリデンフロライドの3種類のモノマーからなる熱可塑性フッ素樹脂),PVDF(ポリフッ化ビニリデン、PolyVinylidene DiFluoride)等のフッ素樹脂があるが、これらの樹脂は透光性を有するため、チューブの外側から照射された黄色光がチューブを透過してチューブ内のインクに到達し、インクの劣化を引き起こすと考えられる。
 しかしながら、これらの樹脂材料から成るチューブの代わりに遮光性の高い金属管を用いると、金属管は柔軟性が十分でないためインクジェットヘッドの動きに金属管が追随できないという問題がある。また、遮光性を有する樹脂やゴム(例えば、塩化ビニル樹脂,ポリスチレン,ブチルゴム,ウレタン等)を用いた場合、柔軟性が十分でなかったり、望ましくない不純物を含有していたりといった問題がある。
 以上の理由から、本願の発明者らは、フッ素樹脂等の透光性を有する材料から成るチューブを用いつつ、有機発光デバイスの不良品発生を抑制することができるようにインクの品質が管理された有機発光デバイスの製造方法を発明するに至った。
 ≪実施形態1≫
 〔1.有機発光デバイスの製造装置の概略構成〕
 本発明の一態様である実施形態1に係る有機発光デバイスの製造装置の概略構成について、図2および図3を用い説明する。なお、R,G,B各発光色についてそれぞれ同種の構成要素を備える場合には、符号の後にR,G,Bの何れかを付して発光色を表す。また、特に発光色により区別する必要が無い場合には、R,G,Bを付けずに符号を用いる。
 図2は、実施形態1に係る有機発光デバイスの製造装置100(以下、単に「製造装置100」という。)の概略構成を示す外観斜視図である。図3は、製造装置100の機能ブロック図である。図2および図3に示すように、製造装置100は、主な構成要素として、制御ユニット10,作業テーブル20,インク吐出部30,インク供給ユニット40,照度センサ50,観察ユニット60を有する。なお、製造装置100からインク供給ユニット40を除いた部分を製造装置本体101とする。また、観察ユニット60については製造装置100に必須ではなく、製造装置100とは別ユニットとしてもよい。
 <制御ユニット>
 制御ユニット10は、主な構成要素として、制御部11,記憶部12(HDD等の大容量記憶手段を含む),表示部(ディスプレイ)13,入力部14,タイマ15を有する。
 制御部11は、様々な制御処理を実行するCPUである。制御ユニット10は、具体的にはパーソナルコンピューター(PC)を用いることができる。
 記憶部12は、各種制御プログラム等が格納されたROM(Read Only Memory)、ROMから読み出され、制御処理に利用される各種制御パラメータ値のデータを一時的に記憶するRAM(Random Access Memory)等の揮発性のメインメモリ、積算照度ETの情報等を記憶するEEPROM(Electrically Erasable Programmable Read-Only Memory)等の不揮発性のサブメモリなどから構成されている。記憶部12は、HDD(Hard Disk Drive)等の大容量記憶手段を含んでもよい。
 記憶部12には、制御ユニット10に接続された作業テーブル20,インク吐出部30,インク供給ユニット40,観察ユニット60を駆動するための制御プログラム等が格納されている。製造装置100の駆動時には、制御部11が入力部14を通じてユーザや管理者により入力された指示と、記憶部12に格納された各制御プログラムに基づいて所定の制御を行う。
 表示部13は、製造装置100のオペレーションに関する各種情報を表示するための表示装置であって、具体的には、液晶ディスプレイや有機ELディスプレイ等のディスプレイ装置を用いることができる。
 入力部14は、制御部11に各種の制御の実行や変更を指示する情報をユーザや管理者が入力するための装置であって、具体的には、キーボードやマウスである。
 タイマ15は、時間を計測するためのものであって、制御部11の機能の一部としてもよい。
 <作業テーブル>
 図2に示すように、作業テーブル20はいわゆるガントリー式の作業テーブルであり、基台21と、基台21上面の四隅に立設されたスタンド22a,22b,22c,22dと、基台21の中央に塗布対象基板を載置するためのステージSTと、塗布直前にインクを吐出させることにより吐出特性を安定化させるために用いるインクパン(皿状容器)IPとを備える。
 スタンド22a,22bには基台21の長手方向(X軸方向)に沿ってガイドシャフト23aが軸支されている。スタンド22c,22dには基台21の長手方向(X軸方向)に沿ってガイドシャフト23bが、ガイドシャフト23aと平行に軸支されている。ガイドシャフト23a,23bには、リニアモータ24a,24bがそれぞれ挿通されている。リニアモータ24a,24b上には、ステージSTを跨ぐようにガントリー部25が掛け渡されて搭載されている。リニアモータ24a,24bが同方向に等速で駆動されると、ガントリー部25がガイドシャフト23a,23bの長手方向(X軸方向)にスライドする。
 ガントリー部25には、L字型の台座からなる移動体(キャリッジ)20が配設されている。移動体26にはサーボモータ(移動体モータ)26aが配設され、各モータの軸の先端に不図示のギヤが配されている。ギヤはガントリー部25の長手方向(Y軸方向)に沿って形成されたガイド溝25aに嵌合される。ガイド溝25aの内部にはそれぞれ長手方向(Y軸方向)に沿って微細なラックが形成されている。ギヤはラックと噛合しているので、サーボモータ26aが駆動すると、移動体26はいわゆるピニオンラック機構によって、Y軸方向に沿って往復自在に精密に移動する。
 移動体26にはインク吐出部30が装着されており、インク吐出部30の塗布対象基板に対する走査は、次の2つの動きを組み合わせることにより行うことができる。1つは、移動体26をガントリー部25に対して固定した状態でガントリー部25をガイドシャフト23a,23bの長手方向に沿って移動させる動きである。もう1つは、ガントリー部25を停止させた状態で移動体26をガントリー部25の長手方向(Y軸方向)に沿って移動させる動きである。なお、インク吐出部30の主走査方向は行方向(X軸方向)であり、副走査方向は列方向(Y軸方向)である。
 なお、リニアモータ24a,24b、およびサーボモータ26aはそれぞれ直接駆動を制御するためのモータ制御部27に接続され、モータ制御部27は、制御ユニット10の制御部11に接続されている。製造装置100の駆動時には、制御プログラムを読み込んだ制御部11により、モータ制御部27を介してリニアモータ24a,24b、サーボモータ26aの各駆動が制御される。
 <インク吐出部>
 インク吐出部30は、公知のピエゾ方式が採用された複数のノズルが列状に配置されたインクジェットヘッド31を有する。複数のインクジェットヘッド31を1組として1つのホルダ32により保持されている。ホルダ32により保持された1組のインクジェットヘッド31は、アーム33を介して移動体26に固定されている。本実施形態においては、R,G,Bそれぞれ1本ずつのインクジェットヘッド31が3本1組で1つのホルダ32により保持され、4組のインクジェットヘッド31がそれぞれアーム33を介して移動体26に固定されている。R,G,B各色のインクジェットヘッド31は、それぞれの組に1本ずつ配されているが、同じ色のインクジェットヘッド31はひとまとめに各色用の吐出制御部34に接続されており、それぞれの色ごとにインクの吐出が制御されている。吐出制御部34は、例えば、マイコンである。
 <インク供給ユニット>
 図2に示すように、インク供給ユニット40は、R,G,Bそれぞれについてのインク供給ユニット40R,40G,40Bにより構成されている。それぞれのインク供給ユニットは、インクの発光色が異なる以外は、基本的な構成は同じであるので、ここでは代表してインク供給ユニット40Rについてその構成を以下に説明する。
 インク供給ユニット40Rは、インクを内部に収容する容器として供給タンク41R,INタンク42R,OUTタンク43R,および分配タンク44Rを有する。分配タンク44Rは、移動体26に取着されており、アーム33内部を介してインク吐出部30Rと接続されている。
 供給タンク41RとINタンク42Rとは、チューブ45aRにより接続されている。INタンク42RとOUTタンク43Rとは、チューブ45bRにより接続されている。INタンク42Rと分配タンク44Rとは、チューブ45cRにより接続されている。OUTタンク43Rと分配タンク44Rとは、チューブ45dRにより接続されている。
 チューブ45aR,45bR,45cR,45dRは、フッ素樹脂から成る。チューブ45aRには、その途中に供給ポンプ46aRおよびフィルタ47が接続されている。チューブ45bRには、その途中にI/Oポンプ46bRが接続されている。
 INタンク42Rには圧力センサ48aRが接続されており、INタンク42R内のインクの圧力を検出する。OUTタンク43Rには、圧力センサ48bRが接続されており、OUTタンク43R内のインクの圧力を検出する。
 圧力センサ48aR,圧力センサ48bR,I/Oポンプ46bRは、インク供給制御部49Rにそれぞれ接続されている。インク供給制御部49Rは、例えば、マイコンから成る。インク供給制御部49Rは、圧力センサ48aRにより検出されたINタンク42R内部のインク圧力と、圧力センサ48bRにより検出されたOUTタンク43R内部のインク圧力に基づいてI/Oポンプ46bRを駆動制御し、OUTタンク43RからINタンク42Rへとチューブ45bRを介してインクを搬送させ、INタンク42R内のインクとOUTタンク43R内のインクとの間に圧力差を生じさせる。この圧力差により、インクはINタンク42Rからチューブ45cRを通って分配タンク44Rへと流れ出、分配タンク44Rからチューブ45dRを通ってOUTタンク43Rへと戻って来る。そして、このようにして、INタンク42R、OUTタンク43R、分配タンク44Rおよび、チューブ45bR,45cR,45dRによりインク搬送路450Rが形成されており、インク搬送路450R中をインクは常時循環している。
 有機発光デバイス製造時には、分配タンク44Rから一部のインクがインク吐出部30のインクジェットヘッド31からインクが吐出され消費されるので、その消費分は、供給ポンプ46aRにより供給タンク41Rからチューブ45aRを通ってINタンク42Rへと供給される。その際に、新しく供給されるインクは、フィルタ47Rによりゴミ等の不純物が取り除かれる。
 メンテナンスが行われている時など有機発光デバイスが製造されていない待機時にも、インクの固着を防ぐ目的で、インクはインク搬送路450R内を循環している。この場合、インクジェットヘッド31のノズルからはインクが吐出されないので、そのまま長時間放置するとインクが感想固化してノズル詰まりが発生する虞がある。そこで、ノズル詰まりを防止するために、待機時においては、インクの循環に加えてノズルの吐出口でインクをメニスカス振動させている。
 <照度センサ>
 照度センサ50は、受光した光を電気に変換する光電変換素子であり、本実施形態においては、SMDタイプのフォトダイオードが用いられている。本実施形態に係る製造装置100では、照度センサ50は、ガントリー部25の長手方向(Y軸方向)におけるチューブ45(45a,45b,45c,45d)が配置されている側の端部に取り付けられている。照度センサ50が配置される位置については上記の位置に限られないが、照度センサ50は、透光性のチューブであるチューブ45に照射される光の照度を測定するために、チューブ45の近傍に配置されるのがよい。ただし、有機発光デバイスの製造時にインク吐出部30が移動されるのに伴いチューブ45c,45dも移動するので、チューブ45c,45dと衝突したり、チューブ45c,45dが上から覆いかぶさって受光が妨げられたりしないような位置に照度センサ50を配置することが必要である。
 <観察ユニット>
 観察ユニット60は、機能的には図3に示すように、カメラ制御部61と、リニアモータ62a,62bと、サーボモータ63と、カメラ64とを備える。カメラ64は公知のCCDカメラであり、インクジェットヘッド31の不良ノズルの検査を行うためのものである。
 リニアモータ62a,62bはそれぞれガイドシャフト23a,23bに挿通されている。リニアモータ62a,62b上には、ステージSTを跨ぐようにガントリー部65が掛け渡されて搭載されている。ガントリー部65には、ガイド溝65aが形成されている。
 リニアモータ62a,62bは、基本的な構成はリニアモータ24a,24bと同じであり、サーボモータ63は、基本的な構成はサーボモータ26aと同じである。ガントリー部65およびガイド溝65aは、基本的な構成はそれぞれガントリー部25およびガイド溝25aと同じである。
 ガントリー部65には、L字型の台座からなる移動体(キャリッジ)66が配設されている。移動体66にはサーボモータ(移動体モータ)63が配設されている。移動体66は、Y軸方向の幅が異なる以外は、基本的な構成は移動体26と同じである。移動体66には、カメラ64が取着されており、リニアモータ62a,62bおよびサーボモータ63をカメラ制御部61により駆動制御して、カメラ64をステージST上の所望の位置に移動させることができる。
 不良ノズルの検査は、検査用の撥水基板へインクジェットヘッド31からインクを吐出し、基板上に着弾したインク液滴をカメラで撮影することにより行われる。不良ノズルの検査は、有機発光デバイスを所定枚数(例えば100枚)製造するごとに行われる。
 カメラ制御部61は制御部11に接続され、所定のタイミングで撮影を行うように制御部11がカメラ制御部61に指示する。
 なお、観察ユニット60については、製造装置本体101に含まれるとしてもよいし、製造装置本体101とは別部材であるとしてもよい。
 <照明装置>
 照明装置1は、500nm以上の波長成分から成る光を発する照明装置であり、具体的には、例えば、黄色光を出射する蛍光灯である。
 なお、照明装置1は、製造装置100には含まれない。
 〔2.積算照度とデバイス劣化〕
 インクが光によって劣化することは従来から知られており、インクの劣化を抑制するために500nm以上の波長成分から成る光(黄色光など)が照射される環境下で有機発光デバイスの製造を行う方法も従来から採用されている。それでもインクの劣化は発生するのであるが、それでは、どれくらいの量の上記光が照射されるとインクの劣化が使用に適さなくなるのであろうか。
 本願発明者らは、照明の明るさと照射時間を変えて有機発光デバイスがどの程度劣化するのかについて実験を行った。実験は、照度と照射時間の組み合わせがそれぞれ異なる5種類の試験体(実施例1,実施例2,実施例3,比較例1,比較例2)について、発光効率とLT75の2つの項目について評価を行った。なお、LT75とは、寿命試験の1つであり、有機発光デバイスに連続的に電圧を印加して発光させ、初期の輝度を100とした場合に輝度が75%になるまでの時間で寿命を評価する方法である。
 試験体の作成は、以下のようにして行われた。チューブ45a,45b,45c,45dのうち、少なくともチューブ45c,45dと同じ材料(本実施形態においては、フッ素樹脂)から成る透光性のチューブ内にインクを収容し、500nm以上の波長成分から成る光を所定の照度で所定時間チューブの外側から照射した。その際、インクはチューブ内を循環せず、静止した状態で光が照射された。照射後のインクを製造装置100にセットして、インク吐出部30から当該インクを基板上に塗布して有機発光デバイスを作成した。作成した有機発光デバイスを用い、発光効率およびLT75について評価を行った。発光効率の評価は、10〔mA/cm2〕の電流を印加して行った。LT75の評価は、初期輝度が8000cd/m2となる一定の電流を印加してデバイスを連続的に発光させ、初期輝度の75%の輝度(6000cd/m2)となるまでの時間を計測した。
 5種類の試験体それぞれの照度E〔lux〕,照射時間T〔hrs〕および、積算照度ET〔lux×hrs〕,発光効率〔cd/A〕,LT75〔hrs〕の結果を図4に示す。
 実施例1は、照度E=10〔lux〕で照射時間300〔hrs〕(積算照度ET=3000〔lux×hrs〕)のインクを用いて作成した試験体である。実施例1の発光効率は37.9〔cd/A〕であり、LT75は24.1〔hrs〕であった。
 実施例2は、照度E=50〔lux〕で照射時間250〔hrs〕(積算照度ET=12500〔lux×hrs〕)のインクを用いて作成した試験体である。実施例2の発光効率は36.8〔cd/A〕であり、LT75は23.5〔hrs〕であった。
 実施例3は、照度E=100〔lux〕で照射時間150〔hrs〕(積算照度ET=15000〔lux×hrs〕)のインクを用いて作成した試験体である。実施例3の発光効率は36.5〔cd/A〕であり、LT75は23.3〔hrs〕であった。
 比較例1は、照度E=250〔lux〕で照射時間150〔hrs〕(積算照度ET=37500〔lux×hrs〕)のインクを用いて作成した試験体である。比較例1の発光効率は28.4〔cd/A〕であり、LT75は7.4〔hrs〕であった。
 比較例2は、照度E=700〔lux〕で照射時間150〔hrs〕(積算照度ET=105000〔lux×hrs〕)のインクを用いて作成した試験体である。比較例2の発光効率は20.4〔cd/A〕であり、LT75は2.2〔hrs〕であった。
 図5(a)は、上記5種類の試験体の発光効率と積算照度とをグラフ上にプロットした図である。図5(b)は、上記5種類の試験体のLT75と積算照度とをグラフ上にプロットした図である。図5(a),(b)において、実線の曲線は、プロットされた点をつなぐ近似曲線である。
 <積算照度と発光効率>
 図4および図5(a)に示すように、実施例1,実施例2,実施例3(積算照度ET=3000~15000〔lux×hrs〕)では、発光効率に大きな違いは見られなかった。しかし、比較例1(積算照度37500〔lux×hrs〕)では発光効率が大きく低下し、比較例2ではさらに低下した。また、図5(a)において、近似曲線の変曲点は、実施例3と変形例1との間に存在し、これらの間に発光効率が急激に低下するポイントがあることが示された。
 図5(a)における近似曲線のY軸との交点、即ち、積算照度ET=0〔lux×hrs〕の場合に想定される発光効率の値(38.2〔cd/A〕)を発光効率の初期値とした場合、発光効率が初期値から10%低下する積算照度ETは、およそ18000〔lux×hrs〕である。従って、積算照度ET≦18000〔lux×hrs〕であれば、発光効率に関しては、インクの劣化がデバイスの品質に問題が無い程度であると考えられる。
 <積算照度とLT75>
 図4および図5(b)に示すように、実施例1,実施例2,実施例3(積算照度ET=3000~15000〔lux×hrs〕)では、LT75の値に大きな違いは見られなかった。しかし、比較例1(積算照度37500〔lux×hrs〕)ではLT75の値が大きく低下し、比較例2ではさらに低下した。また、発光効率の場合と同様に、近似曲線の変曲点は、実施例3と変形例1との間に存在し、これらの間に発光効率が急激に低下するポイントがあることが示された。
 図5(b)における近似曲線のY軸との交点、即ち、積算照度ET=0〔lux×hrs〕の場合に想定されるLT75の値(24.2〔cd/A〕)をLT75の初期値とした場合、LT75が初期値から20%低下する積算照度ETは、およそ17500〔lux×hrs〕である。従って、積算照度ET≦17500〔lux×hrs〕であれば、LT75に関しては、インクの劣化がデバイスの品質に問題が無い程度であると考えられる。
 〔3.有機発光デバイスの製造方法〕
 以上の結果から、積算照度ETを用いてインクの品質管理を行うことにより、有機発光デバイスの不良品発生を抑制することができることがわかった。
 本実施形態に係る有機発光デバイスの製造方法においては、照度センサ50により検出された照度Eを積算し、その積算照度ETが所定の値以上になると、インクの劣化が許容範囲を超えたと判断する。そして、ユーザや管理者がインク搬送路内の古いインクを取り出し、新しいインクと交換する。具体的には、表示部13にインクの取出しを促すメッセージ(インク交換警告)を表示させる。そして、当該メッセージを見たユーザや管理者が、インク搬送路450内に収容された古いインクを取り出して、新しいインクと交換する。
 ここで、インクの「交換」とは、インク搬送路450内に収容された古いインクを取り出して、新しいインクをインク搬送路450に充填することを意味する。また、上記「古いインク」とは、インク交換の際にインク搬送路450内に収容されており、劣化の程度が許容範囲を超えたと判断されたインクを意味し、「新しいインク」とは、それまで供給タンク41内に収容されていたインクを意味する。(上記「新しいインク」とは、上記古いインクと同じバッチの供給タンク41の場合もあれば、別の新しいバッチの供給タンク41である場合もある。即ち、同一バッチの未使用インクを新たに充填する場合と、バッチ交換を行う場合とがある。)以下、各実施形態および各変形例においても同様である。
 このような製造方法を採用することにより、劣化したインクが有機発光デバイスの製造に用いられないため、不良品の発生を抑制し、有機発光デバイスの品質を良好に維持することができる。
 以下、本実施形態に係る有機発光デバイスの製造方法について、図6に基づいてより詳細に説明する。
 上記積算照度と発光効率との関係においては、積算照度ET≦18000〔lux×hrs〕が、インク劣化の許容範囲であった。また、上記積算照度とLT75の関係においては、積算照度ET≦17500〔lux×hrs〕が、インク劣化の許容範囲であった。従って、両方を満たす範囲として、本実施形態においては、積算照度ET≦17500〔lux×hrs〕をインク劣化の許容範囲とする。
 図6は、実施形態1に係る有機発光デバイスの製造方法における制御部11によるインク品質管理制御の処理内容を示すフローチャートである。
 なお、製造装置100全体を制御する不図示のメインルーチンが別途有り、製造装置100の電源が投入されてメインルーチンが実行されると、所定のタイミングで当該インク品質管理制御のサブルーチンがコールされ、実行される。
 まず、製造装置100の電源が投入されて、当該インク品質管理制御のフローが開始されると、記憶部12に記憶されている積算照度ETの値をリセットして(ステップS1)、タイマをスタートさせる(ステップS2)。初回使用の場合は、積算照度ETは記憶部12に記憶されていないので、ステップS1は省略される。
 次に、照度センサ50により検出された照度Eを取得し(ステップS3)、タイマにより計測された時間Δtを取得する(ステップS4)。
 その後、タイマをストップしてリセットし、リスタートする(ステップS5)。
 続いて、積算照度E×Δtを算出する(ステップS6)。ここで、照度センサ50は、光電素子の電流値を微小な時間Δt(例えば、100〔msec〕)間隔でサンプリングして瞬間的な照度を検出している。従って、Δtを照度センサ50のサンプリング間隔と同じにすることにより、照度センサ50が検出する照度の情報を全て積算に利用することができ、より正確な積算照度を得ることができる。
 なお、ここでは、光電素子の電流値をサンプリングする時間間隔を100〔msec〕としたが、これに限られず、100〔msec〕よりも短い時間間隔(例えば、数〔msec〕~数十〔msec〕)でもよいし、長い時間間隔(例えば、数百〔msec〕~数千〔msec〕)でもよい。
 次に、記憶部12に記憶されている前回までの積算照度E×Δtの累積値にステップS6で算出された積算照度E×Δtを加算して積算照度ETを算出し、算出した積算照度ETを記憶部12に記憶させる(ステップS7)。なお、当該インク品質管理制御のフローがスタートして最初にステップS7に到達した場合には、前回までの積算照度E×Δtの累積値が存在しない。従って、この場合は、ステップS6で算出された積算照度E×Δtが積算照度ETとして記憶部12に記憶される。
 続いて、積算照度ETが17500〔lux×hrs〕以上であるかどうかを判定する(ステップS8)。
 積算照度ETが17500〔lux×hrs〕以上である場合、制御部11は、インクの劣化が許容範囲を超えたとして、インク交換警報、即ち、古いインクの取り出しをユーザまたは管理者に促すメッセージを表示部13に表示させ(ステップS8:YES,ステップS9)る。
 そして、タイマをストップしてリセットした後(ステップS10)、当該インク品質管理制御のフローを終了する。
 ステップS8において、積算照度ETが17500〔lux×hrs〕以上でない場合、即ち、17500〔lux×hrs〕未満である場合、ステップS3に戻って再び照度Eを取得する(ステップS8:NO,ステップS3)。以下、ステップS8において積算照度ETが17500〔lux×hrs〕以上であると判定されるまで、ステップS3からステップS8を繰り返す。
 なお、上記のフローにおける積算照度ETは、次の式1で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 〔4.実施形態1のまとめ〕
 以上説明したように、本実施形態に係る有機発光デバイスの製造方法によると、500nm以下の波長成分から成る光が照射される環境下において、積算照度ET≧17500〔lux×hrs〕の場合に、インク交換警報が表示部13に表示される。これにより、インク劣化が許容範囲を超えた場合に、ユーザや管理者は速やかにインク交換を行うことができる。従って、劣化程度が許容範囲を超えたインクが有機発光デバイスの製造に用いられる事態を防止することができるため、有機発光デバイスの不良品発生を抑制することができる。
 また、照明装置1が複数設置されている場合、または照明装置1が複数の光源を有し、点灯させる光源の数を変えることができる場合に、複数の照明装置1または照明装置1が有する複数の光源を全部点灯させる場合と、そのうちのいくつかのみを点灯させる場合とで照度が異なってくる。このような場合においても、微小時間Δtにおける照度Eを積算することにより、積算照度ETを正確に算出することができる。
 なお、有機発光デバイスの製造装置100に照明装置1を加えた有機発光デバイスの製造システムとして、本実施形態のインク品質管理制御を行う製造方法を実行することもできる。
 ≪実施形態2≫
 実施形態1においては、積算照度ET≧17500〔lux×hrs〕の場合に、インク交換警報が表示される場合について説明した。しかし、これに限られない。
 実施形態1で説明した積算照度と発光効率およびLT75との関係を調べる実験においては、チューブ内において循環せず静止した状態で光が照射されたインクが実験に用いられた。しかしながら、実際の製造装置100においては、インクはインク搬送路450内を常時循環している。従って、実際の製造装置100においては、インクの品質を積算照度ETの値17500〔lux×hrs〕で管理することは、あまり現実的ではない可能性が考えられる。
 実施形態2では、製造装置100において、より現実的なインク品質管理を行う製造方法について説明する。なお、説明の重複を避けるため、実施形態1と同じ構成要素については、同符号を付して、その説明を省略する。
 実施形態1で説明したように、インクはインク搬送路450内を常時循環している。また、チューブ45b,45c,45dは透光性の樹脂材料から形成されているが、INタンク42、OUTタンク43、分配タンク44は金属等の遮光性の部材から形成されている。従って、インクがチューブ45b,45c,45d内に存在している時に光が照射されるとインクは光により劣化されるが、インクがINタンク42、OUTタンク43、分配タンク44内に存在している時に光が照射されてもインクは光の影響を受けない。
 ここで、インク搬送路450全体の容積をCw、透光性のチューブ45b,45c,45dの容積(それぞれのチューブの容積の和)をCtとすると、インクがインク搬送路450内において、45b,45c,45d内に存在している確率Pは、P=Ct/Cwで表される。
 従って、実際に製造装置100においてインク搬送路450内を循環しているインクが照明装置1からの光を受ける時間は、P×T=Ct/Cw×Tである。そこで、インクの品質管理に用いるより現実的な積算照度の値としては、17500にPの逆数を乗じた値となり、ET≧17500×Cw/Ctの場合に、インク交換警報を表示させる制御を行うのがより現実的である。
 図7は、実施形態2に係る有機発光デバイスの製造方法における制御部11によるインク品質管理制御の処理内容を示すフローチャートである。
 本実施形態に係るインク品質管理制御のフローも、実施形態1と同様に、製造装置100全体を制御する不図示のメインルーチンが実行されると、所定のタイミングで当該インク品質管理制御のサブルーチンがコールされ、実行される。
 図7のフローチャートにおいて、ステップS11からステップS17までは、図6に示す実施形態1に係るインク品質管理制御のフローチャートにおけるステップS1からステップS7と同じであるので、ここでは説明を省略する。
 ステップS17で積算照度ETを算出してその値を記憶部12に記憶させた後、積算照度ETが17500×Cw/Ct〔lux×hrs〕以上であるかどうかを判定する(ステップS18)。
 積算照度ETが17500×Cw/Ct〔lux×hrs〕以上である場合、制御部11は、インクの劣化が許容範囲を超えたとして、インク交換警報、即ち、古いインクの取り出しをユーザまたは管理者に促すメッセージを表示部13に表示させ(ステップS18:YES,ステップS19)る。
 そして、タイマをストップしてリセットした後(ステップS20)、当該インク品質管理制御のフローを終了する。
 ステップS18において、積算照度ETが17500×Cw/Ct〔lux×hrs〕以上でない場合、即ち、17500×Cw/Ct〔lux×hrs〕未満である場合、ステップS13に戻って再び照度Eを取得する(ステップS18:NO,ステップS13)。以下、ステップS18において積算照度ETが17500×Cw/Ct〔lux×hrs〕以上であると判定されるまで、ステップS13からステップS18を繰り返す。
 〔実施形態2のまとめ〕
 以上説明したように、本実施形態に係る有機発光デバイスの製造方法によると、500nm以下の波長成分から成る光が照射される環境下において、積算照度ET≧17500×Cw/Ct〔lux×hrs〕の場合に、インク交換警報が表示部13に表示される。これにより、実施形態1と同様に、劣化程度が許容範囲を超えたインクが有機発光デバイスの製造に用いられる事態を防止して、有機発光デバイスの不良品発生を抑制することができる。
 また、本実施形態に係る有機発光デバイスの製造方法によると、照明装置1が点灯されている総時間ではなく、インク搬送路450内を循環しているインクが透光性チューブ内に存在していて実際に照明装置1からの光の影響を受ける時間のみを積算照度ETに反映させることができる。従って、より現実に即したインクの品質管理を行うことができ、実際には劣化が許容範囲を超えていないにもかかわらず、取り出されて廃棄されるインクの無駄を抑制してコスト抑制に資することができる。加えて、インク交換の頻度を低減して、作業効率の向上も図ることができる。
 なお、製造装置100に照明装置1を加えた製造システムとして、本実施形態のインク品質管理制御を行う製造方法を実行することもできる。
 また、インク交換警告が表示部に表示される条件(図6のステップS8及び図7のステップS18)を、定数αを用いて積算照度ET≧α×17500〔lux×hrs〕と表すと、実施形態1はα=1の場合であり、実施形態2はα=Cw/Ctの場合である。ここで、Cw/Ct>1であるので、α≧1である。
 ≪変形例≫
 以上、本発明を実施形態1および2に基づいて説明してきたが、本発明が上述の実施形態に限定されないのは勿論であり、以下のような変形例を実施することが出来る。なお、説明の重複を避けるため、実施形態1および2と同じ構成要素については、同符号を付して、その説明を省略する。
 (変形例1)
 上記実施形態1および2に係る有機発光デバイスの製造方法では、照明装置1とチューブ45a,45b,45c,45dとの間には、何ら遮光するものが存在しない環境下で製造装置100が使用される場合について説明した。しかし、これに限られず、遮光部材を配置してもよい。
 製造装置100が設置されている現場(工場など)において、製造装置100が稼働中(有機発光デバイスの製造中)の時は、基本的には作業者(ユーザ、管理者)は当該現場には立ち入らず、照明装置1は消灯している。照明装置1を点灯させるシチュエーションとしては、次のような場合が考えられる。
 1つ目は、製造装置100のメンテナンスを行う場合である。メンテナンス作業には、インクジェットヘッドの不良ノズルの検査や、インクジェットヘッドの拭き取り、インクの交換、製造装置の保守点検および修理などの作業が含まれる。これらのメンテナンス作業において、リニアモータ24a,24bの動作確認を行う場合以外は、基本的にはインク吐出部30は静止している。そして、メンテナンス時においても、インクの固着を防止するためにインクはインク搬送路450内を循環しており、製造装置100の電源はOFFにされない。このように製造動作は行われずに待機モードで製造装置100が駆動される状態を「メンテナンスモード」とする。
 2つ目は、製造装置100が稼働中であっても、何らかの目的で作業者が現場に立ち入る必要がある場合である。このような場合としては、例えば、現場の空きスペースに備品のストック等を保管しており、この備品を出し入れする必要が生じた場合や、作業者が現場に何らかの忘れ物をし、それを取りに戻る場合などが考えられる。製造装置100が有機発光デバイスを製造している状態を「製造モード」とする。
 ここで、遮光部材を配置する場合、考慮しなければならないことがある。製造装置100が、メンテナンスモードのときには、インク吐出部30は基本的には、静止しているが、製造モードのときには、インク吐出部30がステージST上をX軸方向に沿って移動する。これに伴いチューブ45a,45b,45c,45dもX軸方向に移動される。そのため、遮光部材は、チューブ45a,45b,45c,45dの移動を妨げないようにする必要がある。また、照明装置1を点灯させるときは、製造装置100に対してユーザが何かしらの作業を行う必要があるときであるので、チューブ45a,45b,45c,45dには極力光が照射されないようにしたいが、それ以外の部分はユーザが作業しやすいようになるべく遮光されないようにする必要がある。本変形例では、これらの点を考慮した上で、遮光部材を備えた製造システムとしての構成について以下に説明する。
 変形例1に係る有機発光デバイスの製造システム1000の構成について、図8および図9を用い説明する。
 図8および図9に示すように、本変形例に係る有機発光デバイスの製造システム1000は、製造装置100および遮光ユニット70を有する。
 遮光ユニット70は、遮光部材保持部71および遮光部材72から構成されている。
 遮光部材保持部71は、ガイドレール71aと、遮光部材72の一部を保持した状態でガイドレール71aに沿って移動可能に設置された移動体71bとから成る。
 ガイドレール71aは、長尺の金属材料から成り、照明装置1よりも高い位置に配置され、製造装置本体101とインク供給ユニット40のタンク群(供給タンク41,INタンク42,OUTタンク43)との間の位置にX軸と略平行に設けられている。
 移動体71bは、内部に不図示のモータを有し、不図示のケーブルにより制御部11と接続されており、制御部11からの制御を受けてモータが駆動され、ガイドレール71aに沿って移動する。本変形例においては、移動体71bは、一対の移動体部分71b1および71b2から成り、それぞれ上記モータを有している。なお、図8においては、移動体部分71b2は、図面の範囲の外側に位置しており、図示されていない。
 遮光部材72は、遮光性を有する布状または板状の部材である。本変形例においては、遮光部材72は、具体的には遮光カーテンであり、移動体部分71b1に保持された遮光部材部分72aと、移動体部分71b2に保持された遮光部材部分72bとから成る。
 なお、遮光部材72が板状の部材から構成される場合には、縦型ブラインドのように、搖動可能に保持された複数の板状部材が互いに少しずつずれて重なり合うような構成とするとよい。このような構成とすることにより、チューブ45a,45b,45c,45dの移動を許容しつつ、これらのチューブに対する光の照射を抑制することができる。板状部材の材料としては、木材,金属,セラミック,遮光性の樹脂等を用いることができる。また、透光性の樹脂等から成る板状部材の表面に遮光性の塗料を塗布する方法や、遮光性の布や紙等を貼付する方法により遮光性を実現してもよい。
 図8は、遮光部材72が、照明装置1とチューブ45a,45b,45c,45dとの間に介在していない状態、即ち、遮光部材72により照明装置1からの光が遮光されない状態の製造システム1000を示している。このように照明装置1からチューブ45a,45b,45c,45dへの光が遮光されない遮光部材72の位置を「開放位置」とする。
 図9は、遮光部材72が、照明装置1とチューブ45a,45b,45c,45dとの間に介在している状態、即ち、遮光部材72により照明装置1からの光が遮光されている状態の製造システム1000を示している。このように照明装置1からチューブ45a,45b,45c,45dへの光が遮光される遮光部材72の位置を「遮光位置」とする。本変形例においては、遮光部材72が遮光位置に位置しているとき、チューブ45c,45dの分配タンク44に接続されている端部の近傍部分は、遮光部材部分72aと遮光部材部分72bとにより挟まれている。しかし、遮光部材部分72aおよび72bは変形可能な布製のカーテンであるため、当該端部近傍部分を損傷することがない。
 本変形例に係る製造システム1000において実行される製造方法におけるインク品質管理制御について、その詳細を以下に説明する。
 図10は、変形例1に係る有機発光デバイスの製造システム1000にて実行される製造方法における制御部11による遮光部材制御の処理内容を示すフローチャートである。
 本変形例に係る遮光部材制御のフローも、実施形態1および2のインク品質管理制御のサブルーチンと同様に、製造装置100全体を制御する不図示のメインルーチンの所定のタイミングで当該遮光部材制御のサブルーチンがコールされ、実行される。
 まず、製造装置100の電源が投入されて、当該遮光部材制御のフローが開始されると、製造装置100の駆動モードを判別する、即ち、製造装置100がメンテナンスモードで駆動されているのか、製造モードで駆動されているのかを判別する(ステップS31)。なお、ここで、メンテナンスモードまたは製造モードで駆動されているのは、実際には製造装置100全体であるが、製造装置本体101がメンテナンスモードで駆動されているのか、製造モードで駆動されているのかを判別すれば足りる。従って、製造装置100の駆動モードを、製造装置本体101の駆動モードとして表してもよい。
 メンテナンスモードの場合は、インク吐出部30は静止しているので、分配タンク44に接続されたチューブ45c,45dも静止している。よって、遮光部材72が遮光位置に位置していても、チューブ45c,45dと遮光部材72とがぶつかる虞がない。従って、製造装置100がメンテナンスモードで駆動されていると判別された場合、遮光部材72を遮光位置に位置させる(ステップS21:メンテナンスモード,ステップS22)。言い換えると、制御部11は、遮光部材72が遮光位置に位置した状態で保持される位置に移動体部分71b1および71b2(移動体71b)をそれぞれ移動させる。遮光部材72が既に遮光位置に位置している場合には、移動体71bはそのままである。
 そしてその後、照明装置1が点灯しているかどうかを判別する(ステップS24)。
 製造モードのときは、インク吐出部30は移動している。よって、遮光部材72が遮光位置に位置していると、チューブ45c,45dと遮光部材72とがぶつかって、チューブ45c,45dが分配タンク44から外れたり、インク吐出部30の移動が妨げられたりする虞がある。従って、ステップS21において、製造装置100が製造モードで駆動されていると判別された場合、遮光部材72を開放位置に位置させる(ステップS21:製造モード,ステップS23)。言い換えると、制御部11は、遮光部材72が開放位置に位置した状態で保持される位置に移動体部分71b1および71b2(移動体71b)をそれぞれ移動させる。遮光部材72が既に開放位置に位置している場合には、移動体71bはそのままである。
 そしてその後、照明装置1が点灯しているかどうかを判別する(ステップS24)。
 ステップS24で、照明装置1が点灯されていると判別されなかった場合、即ち、照明装置1が消灯していると判別された場合は、当該点灯装置点灯の判別を繰り返す(ステップS24:NO,ステップS24)。
 ステップS24で、照明装置1が点灯されていると判別された場合、続いて製造装置100の駆動モードを判別する(ステップS24:YES,ステップS25)。
 駆動モードがメンテナンスモードであると判別された場合、遮光部材72を遮光位置に位置させる(ステップS25:メンテナンスモード,ステップS26)。
 そしてその後、照明装置1が消灯しているかどうかを判別する(ステップS29)。
 ステップS25で駆動モードが製造モードであると判別された場合、遮光部材72を開放位置に位置させる(ステップS25:製造モード,ステップS27)。この場合、照明装置1が点灯されていて遮光部材72が開放位置に位置しているため、照明装置1からの光がチューブ45(45a,45b,45c,45d)に照射されることになる。しかしながら、インク吐出部30の移動が妨げられたり、チューブ45c,45dが分配タンク44から外れたりすると、不良品が発生したり有機発光デバイスの製造が中断したりすることになる。従って、製造モードの場合には、光の遮光よりもそのような問題の発生回避を優先させる。この場合においても、照度センサ50により照度を検出し、図6または図7に示すインク品質管理制御を行っているので、劣化の程度が許容範囲を超えたインクが使用されることはない。
 そしてステップS27の後、照明装置1が消灯しているかどうかを判別する(ステップS29)。
 ステップS28において、照明装置1が消灯していると判別されなかった場合、即ち、照明装置1が点灯していると判別された場合、ステップS25に戻って、製造装置100の駆動モードの判別を行う(ステップS28:NO,ステップS25)。以下、ステップS28において照明装置1が消灯していると判別されるまで、ステップS25からステップS28を繰り返す。
 ステップS28において、照明装置1が消灯していると判別された場合、遮光部材72を開放位置に位置させて(ステップS298:YES,ステップS29)、リターンする。
 本変形例に係る有機発光デバイスの製造システムによると、必要最小限の場合にのみ照明装置1からの光がチューブ45に照射されるので、インクの劣化をさらに起こりにくくすることができ、積算照度ETが許容最大値に達するまでの時間をより長くすることができる。これにより、劣化によるインク交換の頻度を低減して、コスト低減および作業性向上に資することができる。
 なお、変形例1に係る製造システム1000では、照明装置1については、製造システム1000に含まれてもよいし、含まれなくてもよい。
 (変形例2)
 上記変形例1においては、製造装置100が製造モードで駆動されているときに照明装置1が点灯された場合、遮光部材72は開放位置に位置しているため、チューブ45に照明装置1からの光が照射される。
 そこで、変形例2では、実施形態1,2および変形例1における照明装置1の光(「第1の光」とする。)よりも長い波長成分から成る光(「第2の光」とする。)を発する光源を照明装置がさらに有し、何れか一方の光源を選択的に点灯可能な構成について説明する。ここでは、第1の光を発する光源を第1光源、第2の光を発する光源を第2光源とする。
 なお、本変形例に係る製造システムには照明装置が含まれ、製造装置本体101の制御部11(図3参照)と照明装置とが接続されている。そして、制御部11は、照明装置に対して、第1光源または第2光源を選択的に点灯させる制御を行う。
 また、本変形例においては、第2の光は、650nm以上の波長成分から成る光であり、具体的には、例えば、赤色光であるが、これに限られず、第2の光は、例えば、620nm以上の波長成分から成る光であってもよいし、赤外光であってもよい。
 図11は、変形例2に係る有機発光デバイスの製造システムにて実行される製造方法における制御部11による遮光部材制御の処理内容を示すフローチャートである。なお、変形例2に係る有機発光デバイスの製造システムは、照明装置が含まれ、照明装置は第1光源と第2光源とを選択的に点灯可能に備えていており、照明装置と接続された制御部11が照明装置の点灯制御を行う点が異なっている以外は、変形例1に係る製造システム1000と同じである。また、基本的な外観構成は、図8および図9に示す製造システム1000と同じである。従って、本変形例に係る照明装置についても変形例1に係る照明装置と同じ符号1を付して以下に説明する。
 本変形例に係る遮光部材制御のフローも、実施形態1,2のインク品質管理制御のサブルーチンおよび変形例1の遮光部材制御のサブルーチンと同様に、製造装置100全体を制御する不図示のメインルーチンの所定のタイミングで当該遮光部材制御のサブルーチンがコールされ、実行される。
 ステップS31からステップS33は、図10に示す変形例1に係る遮光部材制御のフローにおけるステップS21からステップS23と同じであるので、ここでは説明を省略する。
 ステップS32またはステップS33に続いて、照明スイッチがONになったかどうかの判別を行う(ステップS34)。ここで、照明スイッチとは、壁などに設置され、照明装置を点灯または消灯させるためにユーザが操作するスイッチであって、所謂壁スイッチである。なお、照明スイッチは、壁スイッチに限られず、リモコンなどであってもよい。
 照明スイッチがONになったと判別されない場合、即ち、照明スイッチがOFFである場合、当該照明スイッチがONになったかどうかの判別を繰り返す(ステップS34:NO,ステップS34)。
 照明スイッチがONになったと判別された場合、次に、製造装置100の駆動モードを判別する(ステップS34:YES,ステップS35)。
 製造装置100の駆動モードがメンテナンスモードである場合、遮光部材72を遮光位置に位置させ、制御部11は照明装置1に第1光源を点灯させる(ステップS35:メンテナンスモード,ステップS36)。
 製造装置100の駆動モードが製造モードである場合、遮光部材72を開放位置に位置させ、制御部11は照明装置1に第2光源を点灯させる(ステップS35:製造モード,ステップS37)。
 ステップS36またはステップS37に続いて、照明スイッチがOFFになったかどうかの判別を行う(ステップS38)。
 照明スイッチがOFFになっていない場合、即ち照明装置が点灯している場合、ステップS35に戻って、製造装置100の駆動モードの判別を行う(ステップS38:NO,ステップS35)。以下、ステップS38において照明スイッチがOFFになったと判別されるまで、ステップS35からステップS38を繰り返す。このような制御方法を採用することにより、照明装置を点灯させたまま製造装置100の駆動モードを変更する場合にも、適切に対応することができる。
 ステップS38において、照明スイッチがOFFになったと判別された場合、遮光部材72を開放位置に位置させ、照明装置1を消灯する(ステップS38:YES,ステップS39)。ステップS36からステップS38、ステップS39への流れに従った場合、第1光源が点灯されており、第2光源は点灯されていないため、ステップS39では第1光源を消灯する。ステップS37からステップS38、ステップS39への流れに従った場合、第2光源が点灯されており、第1光源は点灯されていないため、ステップS39では第2光源を消灯する。そして最後にリターンする。
 本変形例の遮光部材制御によると、遮光部材72を開放位置に位置させたまま照明装置を点灯させなければならないという止むを得ない状況が生じた場合には、第1の光を発する第1光源に代えて、第1の光よりも長い波長成分から成る第2の光(即ち、インクの光吸収ピークが存在しないかほとんど存在しない範囲の波長成分から成る光)を発する第2光源を点灯する。これにより、チューブ45に照射された光がチューブ45を介してインクに達してもインクが劣化しにくいため、第1の光を照射する場合と比較してインクの劣化を抑制することができる。それと同時に、製造装置を製造モードで駆動中に何らかの作業を行う必要がある場合に、照明装置を点灯させないで懐中電灯などを使用して作業を行う場合と比較して、ユーザは作業を容易に行うことができる。
 (変形例3)
 上記変形例1および2においては、遮光部材72として遮光カーテンを用いたが、これに限られない。例えば、床上に設置されたアコーディオン式の衝立や、床上を移動可能な遮光性の板状部材等を利用してもよい。板状部材の材料としては、木材,金属,セメント,セラミック,遮光性の樹脂等を用いることができる。また、透光性の樹脂等から成る板状部材の表面に遮光性の塗料を塗布する方法や、遮光性の布や紙等を貼付する方法により遮光性を実現してもよい。
 (変形例4)
 上記各実施形態および各変形例においては、チューブ45(45a,45b,45c,45d)は、フッ素樹脂から成るとしたが、これに限られない。十分な柔軟性と耐溶媒性が得られ、インクに悪影響を及ぼさない程度に十分に低い不純物含有率を有する材料であれば、他の材料を用いてもよい。
 (変形例5)
 上記各実施形態および各変形例においては、チューブ45(45a,45b,45c,45d)は、全て透光性の樹脂から成るとしたが、これに限られない。これらのうち、チューブ45aおよび45bは、それぞれ供給タンク41とINタンク42との間、およびINタンク42とOUTタンク43との間を接続するものであって、どちらも分配タンク44に接続されていない。これらのタンクは静止しており、チューブ45a,45bは移動することがないため、チューブ45c,45dほどの柔軟性は要求されない。
 従って、チューブ45a,45bとして遮光性の材料から成るチューブを用いることができる。遮光性の材料としては、例えば、塩化ビニル樹脂,ポリスチレン,ブチルゴム,ウレタン等の樹脂やゴムを用いることができる。さらには、SUS等の金属材料を用いてもよい。
 また、フッ素樹脂から成るチューブの外側に、ビニール等の樹脂や金属薄膜により被覆コーティングを施したものを用いてもよい。
 さらには、フッ素樹脂から成るチューブの外側に、遮光性の樹脂やゴムを積層形成した2層以上の層から成るチューブを用いてもよい。遮光性の樹脂層としては、フッ素樹脂に黒色の顔料やフィラー等を混入したものを用いてもよいし、別の種類の樹脂やゴムを用いてもよい。
 (変形例6)
 変形例1および2においては、遮光部材72は可動式であったが、これに限られない。固定式の遮光部材を用いてもよい。
 図12は、変形例6に係る製造システム2000の概略構成を示す側面図である。製造システム2000は、主な構成要素として、製造装置100,照明装置1,および遮光ユニット2070を有する。
 図12に示すように、製造システム2000における遮光ユニット2070は、床に立設された壁状の遮光部材保持部2071と、遮光部材保持部2071の上端に固定された遮光部材2072とから構成されている。遮光ユニット2070は、断面逆L字状であって、遮光部材2072は、インク供給ユニット40の上方を覆う、言わば屋根の役割をしている。遮光部材2072が形成される材料としては、木材、金属、セメント、セラミック、布、樹脂などを利用することができ、遮光性を有するものであれば特に限定されない。
 そして、遮光部材2072の上方には、照明装置1が配設されている。照明装置1は、遮光部材2072の遮光部材保持部2071と接続されていない側の端部に対して、製造装置本体101とは反対側に配設されている。従って、照明装置1から発せられた光は、遮光部材2072により遮光されてインク供給ユニット40には直接照射されないが、製造装置本体101の少なくともインク供給ユニット40とは反対側の部分には、直接照射される。
 これにより、チューブ45に照射される光を低減してインク劣化を抑制しつつ、製造装置本体101を明るく照らして作業を容易に行うことができる。
 なお、図12においては、遮光ユニット2070および床については、断面で表示している。さらに、図12では、製造装置100における制御ユニット10については図示を省略している。
 また、遮光部材2072は、遮光部材保持部2071の上端に固定された構成に限られず、インク供給ユニット40の上方を覆うことができれば、遮光部材保持部2071のどの位置に固定されていてもよい。そして、製造装置100が配置されている部屋の壁を遮光部材保持部2071として、壁に遮光部材2072が固定されていてもよい。さらには、遮光部材2072が、例えば、天井から吊るされていてもよい。また、遮光部材2072は、床面に対して略平行な姿勢で保持されている場合に限られず、遮光部材2072が床面に対して傾斜した姿勢で遮光部材保持部2071に固定されていてもよい。
 (変形例7)
 不良ノズルの検査において、インクジェットヘッド31から吐出されたインク液滴の着弾の様子を観察ユニット60により観察する際には、特にRGBの色を区別する必要はないので、赤外線照明と赤外線カメラを用いて観察を行ってもよい。また、通常のCCDカメラを使用する場合であっても、照明に赤色灯を用いてもよい。このように、黄色灯よりもさらに長波長の波長成分から成る光を用いることにより、インクの劣化をより抑制することができる。
 (変形例8)
 上記各実施形態および各変形例においては、積算照度ETが所定の値以上になった場合、インク搬送路450内に収容されているインクを交換する構成について説明したが、これに限られない。インク搬送路450に収容されているインクに加えてチューブ45a内に収容されているインクも取り出して新しいインクと交換してもよい。また、インク搬送路450内に収容されているインクと、チューブ45a内に収容されているインクと、供給タンク41に収容されているインクを全て新しいインクと交換してもよい。
 (変形例9)
 変形例2では、異なる波長成分から成る光を選択的に照射する制御方法について説明したが、これに限られない。例えば、照明装置が段階的に明るさを調整可能な構成を有し、照明装置から発せられる光の明るさを変える制御を制御部が行ってもよい。ここでは、実施形態1の構成に、本変形例の構成を適用した場合について以下に説明する。
 図13は、変形例9に係る有機発光デバイスの製造システムを用いて実行される製造方法における制御部11による照度制御の処理内容を示すフローチャートである。なお、変形例9に係る有機発光デバイスの製造システムは、制御部11に接続された照明装置が段階的に明るさを調整可能となっている点が異なっている以外は、基本的な構成は、図8および図9に示す変形例1に係る製造システム1000と同じである。本変形例に係る照明装置についても変形例1に係る照明装置と同じ符号1を付して以下に説明する。
 また、本変形例においては、照明装置はレベル1,レベル2,レベル3の3段階の明るさで点灯可能な構成となっており、その明るさは、レベル1<レベル2<レベル3であるとする。
 本変形例に係る遮光部材制御のフローも、実施形態1,2のインク品質管理制御のサブルーチンおよび変形例1の遮光部材制御のサブルーチンと同様に、製造装置100全体を制御する不図示のメインルーチンの所定のタイミングで当該遮光部材制御のサブルーチンがコールされ、実行される。
 まず、照明スイッチがONになったかどうかの判別を行う(ステップS41)。ここで、照明スイッチとは、壁などに設置され、照明装置を点灯または消灯させるためにユーザが操作するスイッチであって、所謂壁スイッチである。なお、照明スイッチは、壁スイッチに限られず、リモコンなどであってもよい。
 照明スイッチがONになったと判別されない場合、即ち、照明スイッチがOFFである場合、当該照明スイッチがONになったかどうかの判別を繰り返す(ステップS41:NO,ステップS41)。
 照明スイッチがONになったと判別された場合、次に、積算照度ETが15500〔lux×hrs〕未満であるかどうかを判別する(ステップS41:YES,ステップS42)。
 積算照度ETが15500〔lux×hrs〕未満であると判別された場合、制御部11は、最も明るいレベル3で照明装置1を点灯させる(ステップS42:YES,ステップS43)。この場合、積算照度ETがインク劣化の許容範囲内の最大値である17500〔lux×hrs〕まで、まだ余裕があるので、特に照明装置の明るさを低下させなくてもよい。
 そして次に、照明スイッチがOFFになったかどうかの判別を行う(ステップS44)。
 照明スイッチがOFFになっていない場合、引き続き照明スイッチがOFFになったかどうかの判別を行う(ステップS44:NO,ステップS44)。
 照明スイッチがOFFになったと判別された場合、制御部11は、照明装置1を消灯させて(ステップS44:YES,ステップS45)、リターンする。
 ステップS42で、積算照度ETが15500〔lux×hrs〕未満であると判別されなかった場合、即ち積算照度ETが15500〔lux×hrs〕以上であると判別された場合、次に、積算照度ETが16500〔lux×hrs〕未満であるかどうか判別する(ステップS42:NO,ステップS46)。
 積算照度ETが16500〔lux×hrs〕未満である場合、制御部11は、照明装置1を2番目に明るいレベル2で点灯させる。この場合、積算照度ETは、インク劣化の許容範囲内の最大値である17500〔lux×hrs〕まで、まだ若干余裕があるものの、15500〔lux×hrs〕は超えており、最大値に少し近づいてきているので、照明装置の明るさを低下させる制御を行って、インク劣化を抑制する制御を行う。
 ステップS47で照明装置1をレベル2で点灯させた後、ステップS44に移る。ステップS44およびステップS45については、既に説明した通りであるので、ここではその説明を省略する。
 ステップS46で、積算照度ETが16500〔lux×hrs〕未満であると判別されなかった場合、即ち積算照度ETが16500〔lux×hrs〕以上であると判別された場合、次に、積算照度ETが17500〔lux×hrs〕未満であるかどうか判別する(ステップS46:NO,ステップS48)。
 積算照度ETが17500〔lux×hrs〕未満である場合、制御部11は、照明装置1を最も暗いレベル1で点灯させる。この場合、積算照度ETは、インク劣化の許容範囲内の最大値である17500〔lux×hrs〕にずいぶん近づいてきているので、照明装置の明るさをさらに低下させる制御を行って、インク劣化をより一層抑制する制御を行う。
 ステップS49で照明装置1をレベル1で点灯させた後、ステップS44に移る。ステップS44およびステップS45については、既に説明したとおりであるので、ここではその説明を省略する。
 ステップS48で、積算照度ETが17500〔lux×hrs〕未満であると判別されなかった場合、即ち積算照度ETが17500〔lux×hrs〕以上であると判別された場合は、インクの劣化が許容範囲を超えているので、制御部11は、交換警報、即ち、ユーザに古いインクの取り出しを促すメッセージを表示部13に表示させて(ステップS48:NO,ステップS50)、当該照度制御のフローを終了する。
 積算照度ETの値に係らず常に照明装置1の明るさを低下させると、ユーザが暗い環境で作業をしなくてはならず、ユーザの利便性を損なうこととなる。本変形例の制御方法によると、積算照度ETの値が許容最大値である17500〔lux×hrs〕に近づくにつれて段階的に照明装置の明るさを低下させ、透光性のチューブ45に照射される照明装置1からの光の照度を低下させる。これにより、積算照度ETの値が許容最大値までまだ余裕がある場合には、照明装置を最も明るい明るさで点灯させて、ユーザの利便性を優先させることができる。積算照度ETの値が許容最大値に近づいてきた場合には、照明装置の明るさを低下させることによりインク劣化の速度を遅くすることができる。即ち、積算照度ETの値が許容最大値に達するまでの時間を長くして、インク交換の頻度を低減させることができる。さらには、積算照度ETの値が許容最大値に達する前に使用中のバッチのインクが全て消費される可能性を高めて、インクを最大限有効に使用することができる。
 なお、図13のフローにおけるステップS42の判定をET<α×15500であるか否か、ステップS46の判定をET<α×16500であるか否か、ステップS48の判定をET<α×17500であるか否かと表すことができる。その場合、上記で説明した本変形例を実施形態1に適用した場合は、α=1のときに相当し、本変形例を実施形態2に適用した場合は、α=Cw/Ctのときに相当する。ここで、Cw/Ct>1であるので、α≧1である。
 また、ステップS42およびステップS46で判別に用いられる値は、それぞれ15500、16500〔lux×hrs〕に限られず、任意の値を用いてもよい。照明装置の明るさ決定の基準として用いられる積算照度の値をDとすると、Dには、17500未満の任意の値を用いることができる。その場合、照明装置が第1の明るさと第1の明るさよりも明るい第2の明るさを少なくとも含む複数段階の明るさで選択的に点灯可能な構成であるとすると、本変形例の制御は、次のように言うことができる。即ち、ET<D〔lux×hrs〕の場合には、第2の明るさで照明装置を点灯させ、D≦ET<α×17500〔lux×hrs〕の場合には、第1の明るさで照明装置を点灯させる。ここで、α=1のときは、実施形態1に本変形例を適用した場合に相当し、α=Cw/Ctのときは、実施形態2に本変形例を適用した場合に相当する。
 さらには、照明装置の明るさは、3段階に限られず、2段階でも4段階以上でもよい。照明装置の明るさ決定の基準として用いられる積算照度の値も3種類に限られず、2種類でも、4種類以上でもよい。
 またさらに、変形例2に示したような照明装置が第1の光と第2の光を照射する構成において、第1の光および第2の光共に明るさを段階的に調整可能として、本変形例における照度制御を行ってもよい。
 (変形例10)
 変形例9に係る有機発光デバイスの製造システムは、遮光ユニット70を備えた構成であったが、遮光ユニット70を備えない構成としてもよい。
 (変形例11)
 劣化の程度が許容範囲を超えたと判断され、インク搬送路450から取り出された古いインクは、その後廃棄される場合に限られず、何らかの再生処理を経て再び有機発光デバイスの製造に使用されてもよいし、別の製品の材料として再利用されてもよい。
 (変形例12)
 上記各実施形態および各変形例においては、積算照度ET=α×17500〔lux×hrs〕(定数α≧1)をインク劣化の許容最大値としたが、これに限られない。例えば、不良品発生のリスクをより厳格に回避するために、α×17500〔lux×hrs〕よりも低い値(例えば、α×15000〔lux×hrs〕)をインク劣化の許容最大値としてもよいし、例えば、コスト低減を優先させる場合や目的とする品質レベルによっては、α×17500〔lux×hrs〕よりも高い値(例えば、α×20000〔lux×hrs〕)をインク劣化の許容最大値としてもよい。
 以上、本発明に係る有機発光デバイスの製造方法、製造システム、および製造装置について、各実施形態および各変形例に基づいて説明したが、本発明は、上記の各実施形態および各変形例に限定されるものではない。上記各実施形態および各変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施形態および各変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る有機ELデバイスの製造方法等は、例えば、家庭用もしくは公共施設、あるいは、業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等として用いられる有機EL素子および有機EL表示パネルの製造方法等に好適に利用可能である。
   1.照明装置
  11.制御部
  13.表示部
  40.インク供給ユニット
  45a,45b,45c,45d.チューブ(透光性のチューブ)
  50.照度センサ
  71.遮光部材保持部
  72,2072.遮光部材
 100.製造装置
 101.製造装置本体
 450.インク搬送路
 1000,2000.製造システム

Claims (23)

  1.  外光が遮光され、500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブと、を有する製造装置を用いた有機発光デバイスの製造方法であって、
     前記透光性のチューブに対して照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積で与えられる積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすとき、前記インク搬送路内の前記インクを取り出す
     有機発光デバイスの製造方法。
  2.  α=1である
     請求項1に記載の有機発光デバイスの製造方法。
  3.  前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctである
     請求項1に記載の有機発光デバイスの製造方法。
  4.  前記製造装置本体は、有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動される
     請求項1から3の何れか1項に記載の有機発光デバイスの製造方法。
  5.  前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を配置する
     請求項4に記載の有機発光デバイスの製造方法。
  6.  前記製造装置本体が前記製造モードで駆動されているときには、前記照明装置と前記透光性のチューブとの間以外の位置に前記遮光部材を配置する
     請求項5に記載の有機発光デバイスの製造方法。
  7.  前記照明装置は、前記500nm以上の波長成分から成る光を第1の光とし、650nm以上の波長成分から成る光を第2の光とする場合、前記第1の光と前記第2の光とを選択的に照射可能であって、前記製造装置本体が前記製造モードで駆動されているときには、前記第1の光を照射せずに前記第2の光を照射し、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記第2の光を照射せずに前記第1の光を照射する
     請求項4から6の何れか1項に記載の有機発光デバイスの製造方法。
  8.  前記照明装置は、第1の明るさレベルと前記第1の明るさレベルよりも明るい第2の明るさレベルとを含む複数の明るさレベルで選択的に点灯可能であって、α×17500よりも小さい所定の値をDとした場合、前記積算照度ETが、ET<D(ルクス×時間)の関係を満たすときに、前記第2の明るさレベルで点灯し、前記積算照度ETが、D≦ET<α×17500(ルクス×時間)の関係を満たすときに、前記第1の明るさレベルで点灯する
     請求項1から7の何れか1項に記載の有機発光デバイスの製造方法。
  9.  外光が遮光された環境下に設置され、
     500nm以上の波長成分から成る光を照射する照明装置と、
     有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、
     前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブを有するインク供給ユニットと、
     前記透光性のチューブに照射される前記光の照度を検出する照度センサと、
     ユーザに対する情報を表示する表示部と、
     前記透光性のチューブに照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積である積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすときに、前記インク搬送路内の前記インクの取り出しを促す情報を前記表示部に表示させる制御部と、を有する
     有機発光デバイスの製造システム。
  10.  α=1である
     請求項9に記載の有機発光デバイスの製造システム。
  11.  前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctである
     請求項9に記載の有機発光デバイスの製造システム。
  12.  前記製造装置本体は、有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動される
     請求項9から11の何れか1項に記載の有機発光デバイスの製造システム。
  13.  前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を有する
     請求項12に記載の有機発光デバイスの製造システム。
  14.  前記遮光部材が前記透光性のチューブと前記照明装置との間に介在する遮光位置と、前記遮光部材が前記透光性のチューブと前記照明装置との間に介在しない開放位置との間で、前記遮光部材を移動可能に保持する遮光部材保持部を有し、
     前記制御部は、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記遮光部材保持部に前記遮光部材を前記遮光位置で保持させ、前記製造装置本体が前記製造モードで駆動されているときには、前記遮光部材保持部に前記遮光部材を前記開放位置で保持させる
     請求項13に記載の有機発光デバイスの製造システム。
  15.  前記照明装置は、前記500nm以上の波長成分から成る光を第1の光とし、650nm以上の波長成分から成る光を第2の光とする場合、前記第1の光を発する第1光源と前記第2の光を発する第2光源とを有し、前記第1光源と前記第2光源とを選択的に点灯可能に構成されており、
     前記制御部は、前記製造装置本体が前記製造モードで駆動されているときには、前記照明装置に前記第1光源を点灯させずに前記第2光源を点灯させ、前記製造装置本体が前記メンテナンスモードで駆動されているときには、前記照明装置に前記第2光源を点灯させずに前記第1光源を点灯させる
     請求項12から14の何れか1項に記載の有機発光デバイスの製造システム。
  16.  前記照明装置は、第1の明るさレベルと前記第1の明るさレベルよりも明るい第2の明るさレベルとを含む複数の明るさレベルで選択的に点灯可能であって、
     α×17500よりも小さい所定の値をDとした場合、前記制御部は、前記積算照度ETが、ET<D(ルクス×時間)の関係を満たすときに、前記照明装置を前記第2の明るさレベルで点灯させ、前記積算照度ETが、D≦ET<α×17500(ルクス×時間)の関係を満たすときに、前記照明装置を前記第1の明るさレベルで点灯させる
     請求項9から15の何れか1項に記載の有機発光デバイスの製造システム。
  17.  外光が遮光されて500nm以上の波長成分から成る光を照射する照明装置が配置された環境下に設置され、
     有機発光材料を含むインクを吐出するインク吐出部を有する製造装置本体と、
     前記インクが収容されたタンクと前記インク吐出部との間のインク搬送路の少なくとも一部を形成する透光性のチューブを有するインク供給ユニットと、
     前記透光性のチューブに照射される前記光の照度を検出する照度センサと、
     ユーザに対する情報を表示する表示部と、
     前記透光性のチューブに照射される前記光の照度E(ルクス)と前記光が照射される時間の長さT(時間)との積である積算照度ETが、ET≧α×17500(ルクス×時間)(定数α≧1)の関係を満たすときに、前記インク搬送路内の前記インクの取り出しを促す情報を前記表示部に表示させる制御部と、を有する
     有機発光デバイスの製造装置。
  18.  α=1である
     請求項17に記載の有機発光デバイスの製造装置。
  19.  前記インク搬送路全体の容積をCwとし、前記透光性のチューブの容積をCtとした場合に、α=Cw/Ctである
     請求項17に記載の有機発光デバイスの製造装置。
  20.  有機発光デバイスを製造する製造モードとメンテナンスが行われるメンテナンスモードとで選択的に駆動され、前記メンテナンスモードで駆動されているときには、前記照明装置と前記透光性のチューブとの間に遮光部材を有する
     請求項17から19の何れか1項に記載の有機発光デバイスの製造装置。
  21.  有機発光材料を含むインクが内部を搬送されるチューブを有し、前記インクを用いて形成された発光層を有する有機発光デバイスを製造する製造装置であって、前記チューブは、遮光性を有する
     有機発光デバイスの製造装置。
  22.  前記チューブは、透光性の材料から形成された第1層と、前記第1層の外側を覆い遮光性の材料から形成された第2層とを有する
     請求項21に記載の有機発光デバイスの製造装置。
  23.  前記第1層は、フッ素樹脂から形成されている
     請求項22に記載の有機発光デバイスの製造装置。
PCT/JP2015/003865 2014-08-04 2015-07-31 有機発光デバイスの製造方法、その製造システム、およびその製造装置 WO2016021164A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580041937.6A CN106576411B (zh) 2014-08-04 2015-07-31 有机发光器件的制造方法、其制造系统及其制造装置
US15/501,705 US10158099B2 (en) 2014-08-04 2015-07-31 Organic light-emitting device production method, production system therefor, and production device therefor
JP2016539839A JP6446680B2 (ja) 2014-08-04 2015-07-31 有機発光デバイスの製造方法、その製造システム、およびその製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014158649 2014-08-04
JP2014-158649 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021164A1 true WO2016021164A1 (ja) 2016-02-11

Family

ID=55263460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003865 WO2016021164A1 (ja) 2014-08-04 2015-07-31 有機発光デバイスの製造方法、その製造システム、およびその製造装置

Country Status (4)

Country Link
US (1) US10158099B2 (ja)
JP (1) JP6446680B2 (ja)
CN (1) CN106576411B (ja)
WO (1) WO2016021164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212393A (ja) * 2018-05-31 2019-12-12 住友化学株式会社 電子デバイスの製造方法及びインクジェット印刷装置の駆動方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016101767A1 (de) * 2016-02-02 2017-08-03 Phoenix Contact Gmbh & Co. Kg Automatisierungsgerät
JP6440802B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 有機デバイスの製造方法
JP6440803B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 色温度の調整方法及び有機el素子の製造方法
CN111940191A (zh) * 2019-05-16 2020-11-17 神讯电脑(昆山)有限公司 带有计时功能的点胶装置
CN110479532B (zh) * 2019-08-29 2020-08-28 歌尔股份有限公司 一种喷胶阀擦胶设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291456A (ja) * 2003-03-27 2004-10-21 Seiko Epson Corp 液滴吐出装置用チューブ、液滴吐出装置
JP2005000914A (ja) * 2002-03-13 2005-01-06 Ricoh Co Ltd 機能性素子基板の製造装置
JP2008246456A (ja) * 2007-03-30 2008-10-16 Seiko Epson Corp 機能液回収方法および機能液回収装置、機能液供給装置、液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838964B2 (ja) 2002-03-13 2006-10-25 株式会社リコー 機能性素子基板の製造装置
JP2004055333A (ja) * 2002-07-19 2004-02-19 Fuji Photo Film Co Ltd 発光素子用塗布液及び発光素子の製造方法
JP2007165605A (ja) 2005-12-14 2007-06-28 Showa Denko Kk 有機エレクトロルミネッセンス素子および該有機エレクトロルミネッセンス素子の製造方法
JP5750267B2 (ja) 2010-01-15 2015-07-15 住友化学株式会社 有機半導体素子用の液状組成物の保管方法
US20130048962A1 (en) 2010-02-05 2013-02-28 Panasonic Corporation Organic electroluminescent element, method for producing same, and device for producing same
KR20130044117A (ko) * 2010-08-06 2013-05-02 파나소닉 주식회사 유기 el 표시 패널, 표시 장치, 및 유기 el 표시 패널의 제조 방법
WO2016021520A1 (ja) 2014-08-04 2016-02-11 住友化学株式会社 有機電界発光素子用液状組成物パッケージ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000914A (ja) * 2002-03-13 2005-01-06 Ricoh Co Ltd 機能性素子基板の製造装置
JP2004291456A (ja) * 2003-03-27 2004-10-21 Seiko Epson Corp 液滴吐出装置用チューブ、液滴吐出装置
JP2008246456A (ja) * 2007-03-30 2008-10-16 Seiko Epson Corp 機能液回収方法および機能液回収装置、機能液供給装置、液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019212393A (ja) * 2018-05-31 2019-12-12 住友化学株式会社 電子デバイスの製造方法及びインクジェット印刷装置の駆動方法
JP7107753B2 (ja) 2018-05-31 2022-07-27 住友化学株式会社 電子デバイスの製造方法及びインクジェット印刷装置の駆動方法

Also Published As

Publication number Publication date
US10158099B2 (en) 2018-12-18
JP6446680B2 (ja) 2019-01-09
US20170229680A1 (en) 2017-08-10
CN106576411B (zh) 2018-09-21
CN106576411A (zh) 2017-04-19
JPWO2016021164A1 (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6446680B2 (ja) 有機発光デバイスの製造方法、その製造システム、およびその製造装置
EP2572865A1 (en) Three-dimensional shaping apparatus
WO2013069257A1 (ja) インクジェット装置及び液滴測定方法
US20170165909A1 (en) Three-dimensional object forming device and adjustment method
JP5791755B2 (ja) 光造形装置および光造形方法
JP2013144274A (ja) 液滴量測定方法、粒度分布測定方法および液滴吐出装置
JP2016215522A (ja) 画像形成装置
JP2016203118A (ja) 膜形成装置
US11141981B2 (en) Waste fluid quantity measuring device and printer equipped therewith
JP2007179880A (ja) 成膜装置
KR101481803B1 (ko) 엘이디 전광판의 휘도 보정기능을 갖춘 화상콘트롤 장치 및 방법
JP4314880B2 (ja) 機能液滴吐出ヘッドの吐出検査方法、液滴吐出装置、並びに電気光学装置の製造方法および電気光学装置
JP2019177682A (ja) 床部材補修装置及び床部材補修システム
JP2016185502A (ja) 液滴吐出ヘッド検査装置、液滴吐出ヘッド検査方法および液滴吐出装置
JP2005305742A (ja) インクジェットプリンタ
US20170008322A1 (en) Liquid Droplet Discharging Apparatus
KR102656532B1 (ko) 자동화된 슬롯다이코팅장치 및 그 제어방법
US11738572B2 (en) Image recording apparatus
US20240123733A1 (en) Printer
JP7326710B2 (ja) 液体供給装置
JP4432322B2 (ja) 液滴吐出装置
CN115615552B (zh) 一种在线自动检测键帽颜色的方法及装置
JP2015047706A (ja) 液体吐出装置、及び、吐出検知部材
JP7331634B2 (ja) 画像形成装置及び画像形成装置の検査方法
US11787122B2 (en) Droplet discharge apparatus, droplet discharge method, and non-transitory storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829508

Country of ref document: EP

Kind code of ref document: A1