WO2016019774A1 - Procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude et son application - Google Patents

Procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude et son application Download PDF

Info

Publication number
WO2016019774A1
WO2016019774A1 PCT/CN2015/083350 CN2015083350W WO2016019774A1 WO 2016019774 A1 WO2016019774 A1 WO 2016019774A1 CN 2015083350 W CN2015083350 W CN 2015083350W WO 2016019774 A1 WO2016019774 A1 WO 2016019774A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
powder
mixture
returned
sand
Prior art date
Application number
PCT/CN2015/083350
Other languages
English (en)
Chinese (zh)
Inventor
杨医博
郭文瑛
莫海鸿
王恒昌
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to JP2016568449A priority Critical patent/JP6404948B2/ja
Publication of WO2016019774A1 publication Critical patent/WO2016019774A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of industrial solid waste treatment, and particularly relates to an alkali alkali residue and a sand returning stone treatment method and an application method thereof.
  • soda ash As a basic chemical raw material, soda ash is mainly used in construction materials, chemicals, chemical pesticides, non-ferrous metals, textiles and other industries. It plays an important role in the national economy and is known as the “mother of chemical industry”. At present, the production of soda ash mainly includes the trona method, the ammonia-alkali method and the combined alkali method. The production of soda ash in China is mainly based on the ammonia-alkali method.
  • Alkali slag is an industrial waste residue produced during the process of producing soda ash by the ammonia-base method.
  • the main components of the alkali slag are calcium carbonate, calcium sulfate and oxides such as aluminum, iron and silicon, and contain a large amount of chloride.
  • the annual production of alkali slag in China exceeds 300. Ten thousand tons.
  • Alkali slag is a worldwide problem due to its high alkalinity and high chloride ion content.
  • the main methods of its use are to prepare engineering soil for land preparation, dam construction, roadbed and pavement base layer, etc.
  • soil improver and smoke are prepared by using alkali residue.
  • how to effectively reduce the chloride ion content in the alkali residue has not been broken, and the excessive chloride ion content in the alkali residue after treatment also affects its application in various fields.
  • the most effective method for dechlorination of alkali residue is water washing and dechlorination, but the washing efficiency is low, multiple washings are required, and a large amount of water is consumed, which also seriously affects its application.
  • the higher chloride ion content can be controlled.
  • the chloride ion content of the alkali residue is controlled at 1.5% after one water washing and pressure filtration. Left and right.
  • the high-efficiency dechlorination method of alkali slag has become a major problem that restricts the sustainable development of the soda ash industry.
  • the solid waste of the soda ash plant also has a returning sand returning stone, which is generated for each ton of soda ash produced.
  • the object of the present invention is to provide a chlorine removal alkali slag mixture by using an alkali-base alkali residue for good chlorine removal effect.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returning stone powder in water 0.5 to 14 After dissolving the calcined calcium oxide, the digested returning stone powder, alkali residue and water are mixed, and the ratio of the dry mass of the returned sand powder and the alkali residue after digestion is 2:8. To 5 : 5, the total mass of water is 1.5 to 8 times the total dry mass of the returned sand returning powder and alkali residue after digestion;
  • Step 3 Perform a pressure filtration treatment to obtain a dechlorination alkali residue mixture having a chloride ion content of 0.30% lower than the total mass of the solid in the mixture.
  • intermittent agitation is also performed during the step 2 in which the returning sand powder is immersed.
  • One or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be used to replace the returning sand powder of less than or equal to 50%.
  • the first method further comprises the steps of separately separating and recovering calcium hydroxide in the re-returned stone powder after digestion, and using it for soda ash production.
  • Another object of the present invention is to provide an application of the above-described chlorine-removing alkali residue mixture, the scheme being as follows:
  • the chlorine-removing alkali residue mixture can be used as a mixed material of cement, mineral admixture of concrete and mortar, engineering soil, filler, flue gas desulfurizer, soil treatment agent , adsorbents and carriers.
  • the chlorinated alkali residue mixture is used as a mixed material of cement, a mineral admixture of concrete and mortar, a filler, a flue gas desulfurizer, a soil treatment agent, an adsorbent and a carrier, and is first dried, crushed, and ground. The mixture was treated to obtain a powdery chlorinated alkali residue mixture.
  • the dechlorination alkali residue mixture can replace 30% or less of the cementitious material.
  • the alkali slag particles are small, the particle size is between several micrometers and several tens of micrometers, and contains a large amount of pores, so the moisture content and chloride ion content of the alkali slag after pressure filtration are high.
  • the chloride ion in the alkali residue is mainly present in water, and the particle grading adjustment material may be added to reduce the porosity, thereby reducing the chloride ion content in the alkali residue after pressure filtration.
  • the returning sand powder after water digestion is selected as the particle grading adjustment material. Due to the dissolution of calcium oxide, the surface of the returned sand powder after water digestion is rough, which can reduce the chloride ion content more effectively.
  • the present invention has the following advantages:
  • the dechlorination effect of the invention is good, and the chlorine ion content (calculated as the total mass of the solid) can be made less than 0.30% by using a single water washing and pressure filtration treatment, which greatly reduces the chloride ion content compared with the conventional primary water washing pressure filtration.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returning stone powder in water 0.5 Days dissolve the burned calcium oxide, and intermittently stir when returning the sand to the stone powder, and then mix the returned sand returning powder, alkali residue and water after the digestion, based on the mass percentage of the material, the back-returned stone powder after digestion and The ratio of alkali residue is 2 : 8, the total mass of water is 8 times the total mass of returning stone powder and alkali residue after digestion;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.28% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • the calcium hydroxide in the re-returned stone powder after digestion is first separated and recovered, and used for soda ash production.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returning sand powder in water 3 Days dissolve the burned calcium oxide, and intermittently stir when returning the sand to the stone powder, and then mix the returned sand returning powder, alkali residue and water after the digestion, based on the mass percentage of the material, the back-returned stone powder after digestion and The ratio of alkali residue is 3 :7, the total mass of water is 7 times of the total mass of returning stone powder and alkali residue after digestion;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.08% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • the calcium hydroxide in the re-returned stone powder after digestion is first separated and recovered, and used for soda ash production.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returning stone powder in water 7 Days dissolve the burned calcium oxide, and intermittently stir when returning the sand to the stone powder, and then mix the returned sand returning powder, alkali residue and water after the digestion, based on the mass percentage of the material, the back-returned stone powder after digestion and The ratio of alkali residue is 5 : 5, the total mass of water is 3 times the total mass of returning stone powder and alkali residue after digestion;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.05% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • the calcium hydroxide in the re-returned stone powder after digestion is first separated and recovered, and used for soda ash production.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 soak in water 14 Days dissolve the burned calcium oxide, and intermittently stir when returning the sand to the stone powder, and then mix the returned sand returning powder, alkali residue and water after the digestion, based on the mass percentage of the material, the back-returned stone powder after digestion and The ratio of alkali residue is 5 : 5, the total mass of water is 1.5 times the total mass of returning stone powder and alkali residue after digestion;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.09% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • the calcium hydroxide in the re-returned stone powder after digestion is first separated and recovered, and used for soda ash production.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returned sand powder, alkali residue and water, and soak 0.5
  • the calcined calcium oxide is dissolved in days, and the ratio of the mass of the returned sand powder to the alkali residue is 2:8, and the total mass of the water is 8 times the total dry mass of the returned sand powder and the alkali residue;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.28% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • a method for preparing a mixture of chlor-alkali residues by using an alkali-base alkali residue comprising the steps of:
  • Step 1 First, returning the sand to the stone and crushing it into a sand returning powder;
  • Step 2 Soak the returned sand powder, alkali residue and water, and soak 3
  • the calcined calcium oxide is dissolved in days, and the ratio of the mass of the returned sand powder to the alkali residue is 3:7, and the total mass of the water is 7 times the total dry mass of the returned sand powder and the alkali residue;
  • Step 3 Perform a pressure filtration treatment to obtain a chlorinated alkali residue mixture having a chloride ion content of 0.08% of the total solid mass in the mixture.
  • one or more of fly ash, limestone powder, slag powder, slag powder, steel slag powder and stone powder may be replaced by no more than 50%. Returning sand to stone powder.
  • the chlor-alkali residue mixture is used as a mineral admixture for concrete, and the chlor-alkali residue is formulated to have a water content of 250%.
  • the suspension is used to replace 10% of the cement with chlor-alkali slag (dry basis).
  • the concrete strength is basically unchanged and does not cause corrosion of the steel in the structure.
  • the powdered dechlorination alkali residue mixture after drying and crushing and grinding the dechlorination alkali residue mixture is used as a mixed material of cement, wherein the powdery dechlorination alkali residue mixture has a particle size of 80
  • the micron sieve residue is less than 5%, the amount is 30%, the amount of slag powder is 22%, the amount of cement clinker is 45%, and the amount of gypsum is 3%.
  • Cement performance meets masonry cement 12.5 Grade requirements, and high water retention, water retention rate of 96.5%.
  • the powdered dechlorination alkali residue mixture after drying and crushing and grinding the dechlorination alkali residue mixture is classified according to different particle sizes, wherein less than 3 Micron powdered chlorinated alkali residue mixture used as rubber filler, greater than or equal to 3 A micron powdered chlor-alkali residue mixture is used as a flue gas desulfurizer.
  • the porosity of the mixture of dechlorination alkali slag is utilized to improve the mechanical properties of the rubber and the efficiency of the flue gas desulfurizer. When used as a flue gas desulfurizer, it can replace the limestone powder originally used, saving energy and environmental protection.
  • the chlor-alkali residue mixture When used in engineering soil, it can be directly used for earthwork filling, and the chlorine ion content is low, and it will not cause harm to the environment.

Abstract

L'invention concerne un procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude. Ce procédé comprend les étapes suivantes : étape 1, broyer du sable de rebut et des pierres de rebut pour obtenir de la poudre de sable de rebut et de pierres de rebut; étape 2, faire tremper la poudre de sable de rebut et de pierres de rebut dans l'eau pendant 0,5 à 14 jours, mettre en digestion de l'oxyde de calcium brûlé, puis mélanger la poudre de sable de rebut et de pierres de rebut digérée, des résidus alcalins et de l'eau, le rapport entre la masse sèche de cette poudre digérée et les résidus alcalins représentant de 2/8 à 5/5 du pourcentage massique des matériaux, et la masse totale de l'eau est de 1,5 à 8 fois égale à la masse totale sèche de ladite poudre de sable de rebut et de pierres de rebut digérée et des résidus alcalins; ou bien mélanger la poudre de sable de rebut et de pierres de rebut, les résidus alcalins et l'eau, puis faire tremper ce mélange pendant 0,5 à 14 jours, et mettre en digestion l'oxyde de calcium calciné; étape 3, exécuter un traitement de pressage-filtrage, puis obtenir le mélange de résidus alcalins d'élimination de chlore dont le contenu en ions chlore est inférieur à 0,30 % de la masse totale des solides dans le mélange. L'invention concerne également une application du mélange de résidus alcalins d'élimination de chlore. Ce procédé possède de bons effets d'élimination du chlore, est simple à mettre en œuvre, efficace du point de vue énergétique et sans danger pour l'environnement.
PCT/CN2015/083350 2014-08-06 2015-07-06 Procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude et son application WO2016019774A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016568449A JP6404948B2 (ja) 2014-08-06 2015-07-06 アンモニアソーダ法による苛性スラッジから脱塩素苛性スラッジ混合物を調製する方法及びその応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410383247.6A CN104190690B (zh) 2014-08-06 2014-08-06 一种利用氨碱法碱渣制备除氯碱渣混合物的方法及应用
CN201410383247.6 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016019774A1 true WO2016019774A1 (fr) 2016-02-11

Family

ID=52076137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083350 WO2016019774A1 (fr) 2014-08-06 2015-07-06 Procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude et son application

Country Status (3)

Country Link
JP (1) JP6404948B2 (fr)
CN (1) CN104190690B (fr)
WO (1) WO2016019774A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723842A (zh) * 2021-01-07 2021-04-30 广州大学 一种蒸压加气混凝土砌块及其制备方法
CN113082846A (zh) * 2021-03-26 2021-07-09 路德环境科技股份有限公司 氨碱厂碱渣的除杂净化工艺和净化装置
CN114768603A (zh) * 2022-05-27 2022-07-22 路德环境科技股份有限公司 应用于碱渣处理工艺的黄土化浆系统
CN116119999A (zh) * 2022-10-12 2023-05-16 东南大学 一种碱渣轻质土及其制备方法与应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190690B (zh) * 2014-08-06 2016-05-04 华南理工大学 一种利用氨碱法碱渣制备除氯碱渣混合物的方法及应用
CN105060828A (zh) * 2015-07-16 2015-11-18 浙江大学宁波理工学院 道路工程用脱氯碱渣固化土
CN105330488B (zh) * 2015-12-08 2019-01-18 华北理工大学 一种含腐植酸复合土壤调理剂及其制备方法和应用
CN106186767A (zh) * 2016-07-15 2016-12-07 华南理工大学 一种无机粉体保水剂及其制备方法与应用
CN106220018B (zh) * 2016-07-15 2018-09-14 华南理工大学 一种无机粉体保水剂的回转烘干制备方法与应用
CN106186769B (zh) * 2016-07-15 2019-01-15 华南理工大学 一种碱渣保水剂及其回转烘干制备方法与应用
CN106167362B (zh) * 2016-07-15 2019-01-18 华南理工大学 一种碱渣保水剂及其制备方法与应用
CN108863118A (zh) * 2018-08-15 2018-11-23 淮安市水泥厂有限公司 一种碱渣水泥超细粉及其制备方法
CN111454003A (zh) * 2020-04-29 2020-07-28 山东海天生物化工有限公司 纯碱生产中返砂的回收利用方法
CN111848034B (zh) * 2020-07-16 2022-05-10 广州大学 一种湿拌砂浆及制备工艺
CN112573553B (zh) * 2020-10-26 2023-02-03 山东海天生物化工有限公司 一种纯碱生产时返砂回收利用的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033893A (ja) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp 廃棄物の再資源化処理方法
CN101966999A (zh) * 2010-11-11 2011-02-09 中国地质大学(北京) 高铝粉煤灰两步碱溶法提取氧化铝和白炭黑的方法
CN103664242A (zh) * 2013-09-18 2014-03-26 薛彦辉 碱渣的处理方法
CN103769407A (zh) * 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种含硫碱渣的再生方法
CN104190690A (zh) * 2014-08-06 2014-12-10 华南理工大学 一种利用氨碱法碱渣制备除氯碱渣混合物的方法及应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1545789A (en) * 1975-06-04 1979-05-16 Ici Ltd Manufacture of calcium carbonate magnesium bicarbonate magnesium carbonate and calcium sulphate
FR2459210A1 (fr) * 1979-06-19 1981-01-09 Solvay Procede de fabrication d'un mortier hydraulique, materiau d'isolation thermique a structure cellulaire a liant hydraulique et procede de fabrication d'un tel materiau
JPS5645824A (en) * 1979-09-19 1981-04-25 Central Glass Co Ltd Treatment of ammonia soda process waste
CN1182646A (zh) * 1996-11-14 1998-05-27 乔希海 硅化碱渣土的制造方法
CN1141270C (zh) * 1996-11-29 2004-03-10 天津渤海化工有限责任公司天津碱厂 碱渣土的制造方法
JP3304300B2 (ja) * 1997-07-14 2002-07-22 太平洋セメント株式会社 セメント原料化処理方法
JP4118495B2 (ja) * 2000-08-23 2008-07-16 株式会社トクヤマ 泥漿の再利用方法
JP4358014B2 (ja) * 2004-03-29 2009-11-04 株式会社荏原製作所 焼却灰及びセメントキルンダストの水洗方法並びに装置
JP2007069185A (ja) * 2005-09-09 2007-03-22 Unitika Ltd 無機物の洗浄方法
CN101780464B (zh) * 2010-02-02 2012-02-01 山东海化集团有限公司 一种脱除氨碱法纯碱废渣氯离子的方法
JP5716892B2 (ja) * 2010-11-30 2015-05-13 三菱マテリアル株式会社 汚泥の洗浄方法
CN102070287B (zh) * 2010-12-03 2013-07-03 广州市天益三和能源环保有限公司 一种降低氨碱厂白泥中氯离子的工艺
JP5954863B2 (ja) * 2012-02-29 2016-07-20 太平洋セメント株式会社 ごみ焼却灰の処理方法及び処理装置
CN103157652B (zh) * 2013-04-09 2015-03-11 东莞市嘉汇环保科技有限公司 一种纯碱厂工业中产生的固体废弃物制造脱硫剂的方法
CN104192881A (zh) * 2014-08-06 2014-12-10 华南理工大学 一种利用返砂返石制备多用途固体废渣的方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033893A (ja) * 2002-07-02 2004-02-05 Taiheiyo Cement Corp 廃棄物の再資源化処理方法
CN101966999A (zh) * 2010-11-11 2011-02-09 中国地质大学(北京) 高铝粉煤灰两步碱溶法提取氧化铝和白炭黑的方法
CN103769407A (zh) * 2012-10-26 2014-05-07 中国石油化工股份有限公司 一种含硫碱渣的再生方法
CN103664242A (zh) * 2013-09-18 2014-03-26 薛彦辉 碱渣的处理方法
CN104190690A (zh) * 2014-08-06 2014-12-10 华南理工大学 一种利用氨碱法碱渣制备除氯碱渣混合物的方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO, WEICHONG ET AL.: "DISCUSSION ABOUT PRODUCING GEL BUILDING MATERIALS (ALINITE CEMENT) BY WET PROCESS FROM WASTE RESIDUE GENERATED IN SODA PRODUCTION BY AMMONIA-SODA PROCESS", SODA INDUSTRY, no. 01, 28 February 1997 (1997-02-28), pages 27 - 31 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723842A (zh) * 2021-01-07 2021-04-30 广州大学 一种蒸压加气混凝土砌块及其制备方法
CN113082846A (zh) * 2021-03-26 2021-07-09 路德环境科技股份有限公司 氨碱厂碱渣的除杂净化工艺和净化装置
CN114768603A (zh) * 2022-05-27 2022-07-22 路德环境科技股份有限公司 应用于碱渣处理工艺的黄土化浆系统
CN116119999A (zh) * 2022-10-12 2023-05-16 东南大学 一种碱渣轻质土及其制备方法与应用

Also Published As

Publication number Publication date
CN104190690B (zh) 2016-05-04
JP2017520391A (ja) 2017-07-27
JP6404948B2 (ja) 2018-10-17
CN104190690A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2016019774A1 (fr) Procédé de préparation d'un mélange de résidus alcalins d'élimination de chlore par utilisation de résidus alcalins par le biais d'un processus ammoniac-soude et son application
Ismail et al. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications
KR100464666B1 (ko) 굴패각을 이용한 지반개량형 고화재 제조방법
Juan et al. Re-use of ceramic wastes in construction
CN109516707B (zh) 一种抑制碱-骨料反应的再生骨料的制备方法
JP6325837B2 (ja) 初期ひび割れの発生が少ない改質フライアッシュ含有舗装用コンクリート、および初期ひび割れの発生が少ない改質フライアッシュ含有舗装用コンクリートの製造方法
Fang et al. Fast enhancement of recycled fine aggregates properties by wet carbonation
JP2015514662A (ja) 補助セメント質材料(SCMs)の製造方法
CN112456946A (zh) 一种纳米微膨胀无机注浆材料及其制备方法
CN104192881A (zh) 一种利用返砂返石制备多用途固体废渣的方法及应用
CN113149564A (zh) 一种再生混凝土的制备方法
CN113549463A (zh) 一种修复重金属污染土的固化剂及其应用
CN107021703B (zh) 复合高效超微细粉灌浆材料
KR100836598B1 (ko) 폐 콘크리트를 활용한 콘크리트 모르타르 조성물
CN104310811A (zh) 水泥及制备方法
CN110627466A (zh) 一种钛石膏废渣抹灰砂浆及其制备方法
CN103553545A (zh) 一种高效固化剂
CN111635206A (zh) 一种抗渗和抗碳化固废混凝土及其制备方法
JP2007314393A (ja) コンクリートのアルカリシリカ反応抑制方法
CN112250392B (zh) 一种用于道路建设的人工碎石及其制备方法
Premkumar et al. Performance of fly ash based geopolymer concrete with partial replacement of fine aggregate by steel mill slag
CN110240438B (zh) 一种用于水泥基材料密实增强剂及其制备方法
TWI711595B (zh) 砂漿組成物、砂漿及砂漿硬固物
CN113336463A (zh) 一种利用铝灰制备水泥、混凝土膨胀剂的方法
Kibriya Crushed limestone waste as supplementary cementing material for high strength concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829869

Country of ref document: EP

Kind code of ref document: A1