WO2016017821A1 - オゾン水およびその製造方法 - Google Patents

オゾン水およびその製造方法 Download PDF

Info

Publication number
WO2016017821A1
WO2016017821A1 PCT/JP2015/071896 JP2015071896W WO2016017821A1 WO 2016017821 A1 WO2016017821 A1 WO 2016017821A1 JP 2015071896 W JP2015071896 W JP 2015071896W WO 2016017821 A1 WO2016017821 A1 WO 2016017821A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
water
iron
microbubbles
ozone water
Prior art date
Application number
PCT/JP2015/071896
Other languages
English (en)
French (fr)
Inventor
正好 高橋
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to NZ728866A priority Critical patent/NZ728866A/en
Priority to AU2015297373A priority patent/AU2015297373A1/en
Priority to JP2016538474A priority patent/JP6341581B2/ja
Priority to EP15827201.3A priority patent/EP3176131A4/en
Priority to CN201580040683.6A priority patent/CN106573805A/zh
Priority to US15/500,290 priority patent/US10351451B2/en
Priority to CA2956894A priority patent/CA2956894A1/en
Publication of WO2016017821A1 publication Critical patent/WO2016017821A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • A61L2209/212Use of ozone, e.g. generated by UV radiation or electrical discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/48Mixing water in water-taps with other ingredients, e.g. air, detergents or disinfectants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • ozone Since ozone has an oxidizing action, a bactericidal action, a deodorizing action, etc., it is expected to be used in various fields, but since it is a gas, it is not versatile as it is. Therefore, in order to effectively use ozone, for example, it is necessary to dissolve ozone in water and use it as ozone water. However, ozone basically has a low solubility in water and has a short half-life when dissolved in water. For this reason, at present, ozone is used by dissolving ozone gas in water by a method such as bubbling at the site of use.
  • Patent Document 1 proposes a method for ensuring storage over a long period of time. However, further improvement in the storage stability of ozone water is required at the site where ozone is used.
  • an object of the present invention is to provide ozone water having improved storage stability and a method for producing the same.
  • the present inventor has dissolved ozone in a predetermined amount of organic iron compound and inorganic salt in water in which ozone microbubbles have been generated using ozone gas at a predetermined concentration. It has been found that the storage stability of water can be improved.
  • the ozone water of the present invention made based on the above knowledge is, as described in claim 1, 0.1 ⁇ M to 1 mM in water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3.
  • the organic iron compound and 1 to 300 mM inorganic salt are dissolved.
  • the ozone water according to claim 2 is the ozone water according to claim 1, wherein the organic iron compound is ammonium iron citrate, iron fulvic acid, iron acetate, heme iron, dextran iron, diethylenetriamine sodium iron acetate, diethylenetriamine.
  • the ozone water according to claim 3 is the ozone water according to claim 1, wherein the inorganic salt is at least one selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, and magnesium sulfate.
  • the inorganic salt is at least one selected from the group consisting of sodium chloride, potassium chloride, magnesium chloride, and magnesium sulfate.
  • ozone microbubbles are generated using a microbubble generator capable of generating microbubbles having a particle size of 5 to 50 ⁇ m. Is called.
  • the ozone water according to claim 5 is the ozone water according to claim 4, wherein the microbubble generator is a microbubble generator of a two-phase flow swirling method or a pressure dissolution method.
  • the ozone water according to claim 6 is the water in which ozone microbubbles are generated by dissolving the organic iron compound and the inorganic salt in the water in which ozone microbubbles are generated. This is carried out after 20 minutes or more have elapsed since the oxidation-reduction potential has increased and reached at least +600 mV.
  • the ozone water according to claim 7 is the ozone water according to claim 1, wherein the ozone half-life is 3 days when stored in a sealed container under atmospheric pressure at a temperature of 40 ° C. That's it.
  • the ozone water according to claim 8 is the ozone water according to claim 1 after the ozone water is filled in a sealed container under atmospheric pressure and frozen and stored at a temperature of -20 ° C for one month or more. When naturally thawed at room temperature (25 ° C.), it recovers to ozone water before freezing.
  • the ozone water according to claim 9 is the ozone water according to claim 1, wherein the ozone water is not irritating to the skin of the mammal, does not show oral acute toxicity to the mammal, has a bactericidal effect and is effective. Has an odor effect.
  • 0.1 ⁇ M to 1 mM organic iron is added to water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3.
  • ozone gas having a concentration of 1 to 300 g / Nm 3.
  • the method for producing ozone water according to claim 11 is the method for producing ozone water according to claim 10, wherein the generation of ozone microbubbles is a microbubble capable of generating microbubbles having a particle size of 5 to 50 ⁇ m. Use a generator.
  • the method for producing ozone water according to claim 12 is the method for producing ozone water according to claim 10, wherein the dissolution of the organic iron compound and the inorganic salt in the water in which the ozone microbubbles are generated This is performed after 20 minutes or more have elapsed since the oxidation-reduction potential of the water in which the water is generated rises and reaches at least +600 mV.
  • ozone water having improved storage stability and a method for producing the same can be provided.
  • the ozone water of the present invention is obtained by dissolving 0.1 ⁇ M to 1 mM organic iron compound and 1 to 300 mM inorganic salt in water in which ozone microbubbles are generated using ozone gas having a concentration of 1 to 300 g / Nm 3. Become.
  • the production of ozone water of the present invention begins with preparing water in which ozone microbubbles are generated.
  • the method for generating ozone microbubbles in water may be a publicly known method, and can generate microbubbles having a particle size of 5 to 50 ⁇ m. Can be used.
  • ozone is included inside the microbubbles by using a rotor or the like to forcibly generate a vortex with a radius of 10 cm or less and obstacles such as walls and fluids with different relative velocities.
  • the desired ozone microbubbles can be generated by applying the gas-liquid mixture containing the gas to disperse the gas components acquired in the vortex along with the disappearance of the vortex.
  • the ozone contained in the microbubbles is dissolved in water under a high pressure of 2 atm or higher, and then released from the supersaturated condition of the dissolved gas generated by opening it to atmospheric pressure.
  • Ozone microbubbles can be generated.
  • a large number of vortices with a radius of 1 mm or less are generated at the pressure release site using water flow and obstacles, and a large amount of gas phase nuclei (bubble nuclei due to water molecular fluctuation in the central region of the vortex ), And by diffusing gas components in water toward these bubble nuclei along with the supersaturation condition to grow the bubble nuclei, a large amount of desired ozone microbubbles can be generated.
  • the ozone microbubbles generated by these methods have a particle size of 50 ⁇ m or less, and a particle size peak at 10 to 15 ⁇ m when measured with a laser light blocking liquid particle counter (for example, LiQuilaz-E20 manufactured by SPM).
  • the number of microbubbles in the peak region is 1000 / mL or more (see JP 2000-51107 A, JP 2003-265938 A, etc. if necessary).
  • the ozone gas used to generate ozone microbubbles in water is prepared, for example, to a concentration of 1 to 300 g / Nm 3 using a commercially available oxygen source ozone generator.
  • ozone gas having a concentration of less than 1 g / Nm 3 When ozone gas having a concentration of less than 1 g / Nm 3 is used, a large amount of ozone microbubbles cannot be efficiently generated in water. On the other hand, it is difficult to prepare ozone gas having a concentration exceeding 300 g / Nm 3 .
  • the ozone gas may contain oxygen, nitrogen, etc. in addition to ozone.
  • an organic iron compound and an inorganic salt are dissolved in water in which ozone microbubbles are generated.
  • the organic iron compounds include ammonium iron citrate, iron fulvic acid, iron acetate, heme iron, dextran iron, sodium diethylenetriaminepentaacetate, ammonium diethylenetriaminepentaacetate, sodium iron ethylenediaminetetraacetate, ammonium ammonium ethylenediaminetetraacetate , Iron triethylenetetraamine, sodium dicarboxymethyl glutamate, ferrous citrate, sodium iron citrate, iron oxalate, ferrous succinate, sodium iron citrate succinate, ferrous pyrophosphate, pyrophosphate Water-soluble compounds such as ferric iron, iron lactate, ferrous gluconate, ferrous formate, ferric formate, potassium ferric oxalate, ferrous ammonium ascorbate, ferric sodium edetate Can be mentioned.
  • the dissolved amount of the organic iron compound is 0.1 ⁇ M to 1 mM. If the dissolution amount is less than 0.1 ⁇ M, the effect due to dissolution may not be sufficiently obtained. On the other hand, even if it exceeds 1 mM, the improvement of the effect due to dissolution cannot be expected, and only the cost is increased. There is a risk that iron hydroxide may be generated and precipitated.
  • the dissolved amount of the organic iron compound is desirably 1 to 100 ⁇ M.
  • the microbubbles After dissolving the inorganic salt in the water in which ozone microbubbles are generated, the microbubbles are reduced and then stably exist as nanobubbles having a particle size of, for example, 10 to 500 nm.
  • the inorganic acid include water-soluble compounds such as sodium chloride, potassium chloride, magnesium chloride, magnesium sulfate.
  • the dissolved amount of the inorganic salt is 1 to 300 mM. If the dissolution amount is less than 1 mM, the effect due to dissolution may not be sufficiently obtained. On the other hand, even if it exceeds 300 mM, the improvement of the effect due to dissolution cannot be expected and the cost may be increased. There is.
  • the dissolved amount of the inorganic salt is desirably 10 to 100 mM.
  • Dissolution of a predetermined amount of an organic iron compound and an inorganic salt in water that has generated ozone microbubbles causes the redox potential of the water to increase from the initial +300 to 500 mV by at least +600 mV by continuing to generate ozone microbubbles. It is desirable to carry out after 20 minutes or more have passed since reaching the above in terms of effectively improving the storage stability of ozone water (the rise in oxidation-reduction potential reaches a plateau at about +1000 mV).
  • ozone is converted into microbubbles for at least 5 minutes, preferably at least 30 minutes, more preferably at least 1 hour. It is desirable to continue to supply at a point where the storage stability of ozone water can be effectively improved.
  • the dissolution order of the predetermined amount of the organic iron compound and the inorganic salt in the water in which the ozone microbubbles are generated is not particularly limited, and may be dissolved simultaneously or stepwise.
  • the pH of water in which ozone microbubbles in which a predetermined amount of an organic iron compound and an inorganic salt are dissolved is desirably 3 to 10, and more desirably 5 to 9. If the acidity is too strong or the alkalinity is too strong, destabilization of microbubbles and nanobubbles will occur, and in addition to the generation and disappearance of hydroxyl radicals, the generated iron radicals will decompose the organic iron compound. This is because the storage stability of ozone water may not be improved.
  • the pH may be adjusted as appropriate using hydrochloric acid or sodium hydroxide.
  • ozone is present stably in water at a concentration of 1 to 50 mg / L, for example, and its half-life is, for example, that in a sealed container under atmospheric pressure at a temperature of 40 ° C. 3 days or more when stored.
  • the ozone water of the present invention is, for example, filled in a sealed container under atmospheric pressure and stored frozen at -20 ° C for one month or more and then naturally thawed at room temperature (25 ° C). Restores to ozone water.
  • the organic iron compound contributes to the stability of ozone in water, but the iron ions contained in the organic iron compound are caused by the oxidation of ozone supplied to water in the form of microbubbles.
  • the present inventor believes that the nanobubbles are stabilized by being held.
  • the ozone water of the present invention can be used for various applications known as ozone water applications.
  • the ozone water of the present invention is not irritating to the skin of mammals, exhibits no oral acute toxicity to mammals, and exhibits bactericidal and deodorizing effects.
  • Example 1 Ozone microbubbles are generated in distilled water using a commercially available two-phase flow swirl microbubble generator that can generate microbubbles with a particle size of 5 to 50 ⁇ m (aqua air small bubble generator). I let you. Ozone gas prepared at a concentration of about 30 g / Nm 3 using a commercially available oxygen source ozone generator is supplied to the microbubble generator at about 100 mL / min, so that the ozone concentration in water is about 5 mg / L. did.
  • Example 2 Ozone microbubbles are generated in distilled water using a commercially available pressure dissolution type microbubble generator (A-02, manufactured by Resource Development Laboratories) that can generate microbubbles with a particle size of 5-50 ⁇ m.
  • A-02 pressure dissolution type microbubble generator
  • Ozone gas prepared at a concentration of about 20 g / Nm 3 using a commercially available oxygen source ozone generator is supplied to the microbubble generator at about 100 mL / min, so that the ozone concentration in water is about 5 mg / L. did.
  • Example 3 The ozone water of the present invention was produced in the same manner as in Example 1 except that iron fulvic acid was dissolved instead of ammonium iron citrate.
  • Example 4 The ozone half-life of the ozone water of the present invention produced in Example 1 was examined when stored in a plastic bottle as a sealed container under atmospheric pressure when stored under a temperature condition of 40 ° C. for 3 days or more. (More than half of ozone remained when 3 days passed).
  • Example 5 The ozone water of the present invention produced in Example 1 was filled in a PET bottle as an airtight container under atmospheric pressure, and frozen at -20 ° C for 1 month or more and then at room temperature (25 ° C). When it thawed naturally, it was restored to ozone water before freezing (the ozone concentration was the same as that before freezing even after thawing after freezing for 1 month).
  • Example 6 The ozone water of the present invention produced in Example 1 was allowed to stand in a dark place at room temperature for 1 week, and then a spin trap agent DMPO (5,5-dimethyl-1-pyrroline N-oxide) was added.
  • DMPO electron spin resonance
  • ESR electron spin resonance
  • Example 7 When the skin water irritation test using the rabbit according to OECD Guidelines for the Testing of Chemicals 404 was conducted using the ozone water of the present invention produced in Example 1 as a specimen, no irritation was observed.
  • Example 8 When the ozone water of the present invention produced in Example 1 was orally administered to rats at a dose of 20 mg / kg for 14 days, no acute toxicity was observed.
  • Example 9 When the bactericidal effect of the ozone water of the present invention produced in Example 1 on the pathogenic bacterium Salmonella enteritidis was examined, an excellent bactericidal effect was observed.
  • Example 10 When an appropriate amount of the ozone water of the present invention produced in Example 1 was sprayed on cutting waste (industrial waste) of a plastic bottle that gives off a bad smell in summer, an excellent deodorizing effect was exhibited.
  • Example 11 By continuing to generate ozone microbubbles in distilled water, when 1 hour has passed since the redox potential of water reached +600 mV, Example 1 except that iron ammonium citrate and sodium chloride were dissolved. Similarly, when the ozone water of the present invention was produced, the ozone half-life was extended as compared with the ozone water of the present invention produced in Example 1.
  • Comparative Example 1 Ozone water produced in the same manner as in Example 1 except that the supply of ozone is performed by bubbling using a general air diffuser, is filled in a PET bottle as a sealed container under atmospheric pressure, and the temperature is 40 ° C. When stored under the conditions, the ozone concentration almost disappeared when one day passed from the start of the experiment.
  • Comparative Example 2 Ozone water produced in the same manner as in Example 1 except that ammonium iron citrate was not dissolved was filled into a PET bottle as a sealed container under atmospheric pressure and stored under a temperature condition of 40 ° C. When 3 hours passed, the ozone concentration almost disappeared.
  • the present invention has industrial applicability in that it can provide ozone water having improved storage stability and a method for producing the same.

Abstract

 本発明の課題は、保存安定性を向上させたオゾン水およびその製造方法を提供することである。その解決手段としての本発明のオゾン水は、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解させてなる。本発明のオゾン水のオゾンの半減期は、例えば大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3日間以上である。

Description

オゾン水およびその製造方法
 本発明は、オゾン水およびその製造方法に関する。
 オゾンは、酸化作用、殺菌作用、脱臭作用などを有するため、各種の分野での利用が期待されているが、気体であるのでそのままでは汎用性に欠ける面がある。従って、オゾンを有効利用するためには、例えばオゾンを水に溶解してオゾン水として利用することが必要とされている。しかしながら、オゾンは基本的に水への溶解性が低く、また、水に溶解した状態では半減期が非常に短いという欠点がある。このため、現状において、オゾンは使用現場でオゾンガスをバブリングなどの方法により水に溶解して利用されている。けれども、こうした方法は、オゾンの使用現場にオゾン水の製造装置を持ち込む必要がある他、コストや排オゾン対策などの問題を抱えている。よって、オゾンの実用レベルでの利用はあまり進んでいない状況にある。
 そこで本発明者は、オゾン水の欠点である保存性の短さを劇的に改善させる方法として、オゾンのナノサイズの気泡(オゾンナノバブル)を利用することにより、オゾンが有する作用を維持させつつ長期に亘る保存性を確保する方法を特許文献1において提案している。しかしながら、オゾンの使用現場では、オゾン水の保存安定性のさらなる向上が求められている。
特開2005-246293号公報
 そこで本発明は、保存安定性を向上させたオゾン水およびその製造方法を提供することを目的とする。
 本発明者は上記の点に鑑みて鋭意検討を行った結果、所定濃度のオゾンガスを用いてオゾンマイクロバブルを発生させた水に、所定量の有機鉄化合物と無機塩を溶解することで、オゾン水の保存安定性を向上させることができることを見出した。
 上記の知見に基づいてなされた本発明のオゾン水は、請求項1記載の通り、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解させてなる。
 また、請求項2記載のオゾン水は、請求項1記載のオゾン水において、有機鉄化合物が、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄からなる群から選択される少なくとも1種である。
 また、請求項3記載のオゾン水は、請求項1記載のオゾン水において、無機塩が、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムからなる群から選択される少なくとも1種類以上である。
 また、請求項4記載のオゾン水は、請求項1記載のオゾン水において、オゾンマイクロバブルの発生が、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行われる。
 また、請求項5記載のオゾン水は、請求項4記載のオゾン水において、微小気泡発生装置が、二相流旋回方式または加圧溶解方式の微小気泡発生装置である。
 また、請求項6記載のオゾン水は、請求項1記載のオゾン水において、オゾンマイクロバブルを発生させた水への、有機鉄化合物と無機塩の溶解が、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから20分間以上が経過した後に行われる。
 また、請求項7記載のオゾン水は、請求項1記載のオゾン水において、オゾンの半減期が、大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3日間以上である。
 また、請求項8記載のオゾン水は、請求項1記載のオゾン水において、オゾン水が、大気圧下で密閉容器に充填して-20℃の温度条件下において1ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前のオゾン水に回復する。
 また、請求項9記載のオゾン水は、請求項1記載のオゾン水において、オゾン水が、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果と消臭効果を有する。
 また、本発明のオゾン水の製造方法は、請求項10記載の通り、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解することによる。
 また、請求項11記載のオゾン水の製造方法は、請求項10記載のオゾン水の製造方法において、オゾンマイクロバブルの発生を、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行う。
 また、請求項12記載のオゾン水の製造方法は、請求項10記載のオゾン水の製造方法において、オゾンマイクロバブルを発生させた水への、有機鉄化合物と無機塩の溶解を、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから20分間以上が経過した後に行う。
 本発明によれば、保存安定性を向上させたオゾン水およびその製造方法を提供することができる。
 本発明のオゾン水は、濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解させてなる。
 本発明のオゾン水の製造は、まず、オゾンマイクロバブルを発生させた水を調製することから始まる。水中にオゾンマイクロバブルを発生させる方法は自体公知の方法であってよく、粒径が5~50μmのマイクロバブルを発生させることができる、二相流旋回方式や加圧溶解方式による微小気泡発生装置を用いて行うことができる。二相流旋回方式を採用する場合、回転子などを利用して半径が10cm以下の渦流を強制的に生じせしめ、壁面などの障害物や相対速度の異なる流体にマイクロバブルの内部に含ませるオゾンを含んだ気液混合物を打ち当てることにより、渦流中に獲得した気体成分を渦の消失とともに分散させることで、所望のオゾンマイクロバブルを発生させることができる。また、加圧溶解方式を採用する場合、2気圧以上の高圧下でマイクロバブルの内部に含ませるオゾンを水中に溶解した後、これを大気圧に開放することにより生じた溶解気体の過飽和条件からオゾンマイクロバブルを発生させることができる。この場合、圧力の開放部位において、水流と障害物を利用して半径が1mm以下の渦を多数発生させ、渦流の中心域における水の分子揺動を起因として多量の気相の核(気泡核)を形成させるとともに、過飽和条件に伴ってこれらの気泡核に向かって水中の気体成分を拡散させ、気泡核を成長させることにより、所望のオゾンマイクロバブルを大量に発生させることができる。なお、これらの方法によって発生したオゾンマイクロバブルは、粒径が50μm以下で、レーザー光遮断方式の液中パーティクルカウンター(例えばSPM社製LiQuilaz-E20など)による計測において10~15μmに粒径のピークを有しており、そのピークの領域における微小気泡の個数は1000個/mL以上である(必要であれば特開2000-51107号公報や特開2003-265938号公報などを参照のこと)。水中にオゾンマイクロバブルを発生させるために用いるオゾンガスは、例えば市販の酸素源オゾン発生装置を用いて1~300g/Nmの濃度に調製したものである。濃度が1g/Nm未満のオゾンガスを用いた場合、水中に多量のオゾンマイクロバブルを効率よく発生させることができない。一方、濃度が300g/Nmを超えるオゾンガスは調製が困難である。なお、オゾンガスは、オゾンの他に酸素や窒素などを含んでいてもよい。
 次に、オゾンマイクロバブルを発生させた水に、所定量の有機鉄化合物と無機塩を溶解する。有機鉄化合物の具体例としては、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄などの水溶性の化合物が挙げられる。有機鉄化合物の溶解量は、0.1μM~1mMである。溶解量が0.1μM未満であると溶解することによる効果が十分に得られないおそれがある一方、1mMより多くしても溶解することによる効果の向上は期待できずコストがかかるだけであったり、鉄水酸化物などが生成して沈殿してしまったりするおそれがある。有機鉄化合物の溶解量は、1~100μMが望ましい。
 オゾンマイクロバブルを発生させた水に無機塩を溶解することで、マイクロバブルが縮小した後、粒径が例えば10~500nmのナノバブルとして安定に存在する。無機酸の具体例としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムなどの水溶性の化合物が挙げられる。無機塩の溶解量は、1~300mMである。溶解量が1mM未満であると溶解することによる効果が十分に得られないおそれがある一方、300mMより多くしても溶解することによる効果の向上は期待できずコストがかかるだけであったりするおそれがある。無機塩の溶解量は、10~100mMが望ましい。
 オゾンマイクロバブルを発生させた水への所定量の有機鉄化合物と無機塩の溶解は、オゾンマイクロバブルを発生させ続けることで水の酸化還元電位が、当初の+300~500mVから上昇して少なくとも+600mV以上に到達してから20分間以上が経過した後に行うことが、オゾン水の保存安定性を効果的に向上させることができる点において望ましい(酸化還元電位の上昇は+1000mV程度でプラトーに達する)。また、オゾンマイクロバブルを発生させた水に、所定量の有機鉄化合物と無機塩を溶解した後、少なくとも5分間、望ましくは少なくとも30分間、より望ましくは少なくとも1時間は、オゾンをマイクロバブルの形態で供給し続けることが、オゾン水の保存安定性を効果的に向上させることができる点において望ましい。
 オゾンマイクロバブルを発生させた水への所定量の有機鉄化合物と無機塩の溶解順序は特に限定されるものではなく、同時に溶解してもよいし、段階的に溶解してもよい。所定量の有機鉄化合物と無機塩を溶解したオゾンマイクロバブルを発生させた水のpHは、3~10が望ましく、5~9がより望ましい。酸性が強すぎてもアルカリ性が強すぎてもマイクロバブルやナノバブルの不安定化が起こり、水酸基ラジカルを発生して消滅してしまうことに加え、発生した水酸基ラジカルによって有機鉄化合物が分解されてしまうことで、オゾン水の保存安定性を向上させることができないおそれがあるからである。pHの調整は、塩酸や水酸化ナトリウムを用いて適宜行えばよい。
 本発明のオゾン水は、オゾンが例えば1~50mg/Lの濃度で水中で安定に存在しており、その半減期は例えば大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3日間以上である。また、本発明のオゾン水は、例えば大気圧下で密閉容器に充填して-20℃の温度条件下において1ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前のオゾン水に回復する。有機鉄化合物がオゾンの水中での安定性にどのように寄与しているかについては必ずしも明確ではないが、マイクロバブルの形態で水に供給したオゾンの酸化作用によって有機鉄化合物に含まれる鉄イオンが過酸化状態となり、マイクロバブルが縮小する過程の気泡の周囲や縮小することで発生するナノバブルの気泡周囲に静電効果によって引き寄せられて捕捉され、気泡に対するイオンの殻を形成する成分の1つとして保持されることで、ナノバブルを安定化することによると本発明者は考えている。本発明のオゾン水は、オゾン水の用途として知られている各種の用途に利用することができる。例えば、本発明のオゾン水は、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果や消臭効果などを発揮する。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
実施例1:
 主に粒径が5~50μmのマイクロバブルを発生させることができる市販の二相流旋回方式のマイクロバブル発生装置(アクアエアー社製小型気泡発生装置)を用いて蒸留水中にオゾンマイクロバブルを発生させた。オゾンガスは、市販の酸素源オゾン発生装置を用いて約30g/Nmの濃度で調製したものをマイクロバブル発生装置に約100mL/分で供給し、水中のオゾン濃度が約5mg/Lになるようした。オゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が当初の約+500mVから連続的に上昇することを確認した後、+600mVに到達してから30分間が経過した時点で、有機鉄化合物として10μMのクエン酸鉄アンモニウムと無機塩として50mMの塩化ナトリウムを溶解し、水酸化ナトリウムを用いてpHを8に調整した。その後、さらに1時間オゾンマイクロバブルを発生し続けた。こうして製造した本発明のオゾン水のオゾン濃度をKI法によって測定すると5mg/Lであった。5Lの本発明のオゾン水を製造するのに要した時間は約2時間であった。
実施例2:
 主に粒径が5~50μmのマイクロバブルを発生させることができる市販の加圧溶解方式のマイクロバブル発生装置(資源開発研究所社製A-02)を用いて蒸留水中にオゾンマイクロバブルを発生させた。オゾンガスは、市販の酸素源オゾン発生装置を用いて約20g/Nmの濃度で調製したものをマイクロバブル発生装置に約100mL/分で供給し、水中のオゾン濃度が約5mg/Lになるようした。オゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が当初の約+500mVから連続的に上昇することを確認した後、+600mVに到達してから20分間が経過した時点で、有機鉄化合物として10μMのクエン酸鉄アンモニウムと無機塩として50mMの硫酸マグネシウムを溶解し、水酸化ナトリウムを用いてpHを8に調整した。その後、さらに1時間オゾンマイクロバブルを発生し続けた。こうして製造した本発明のオゾン水のオゾン濃度をKI法によって測定すると4mg/Lであった。5Lの本発明のオゾン水を製造するのに要した時間は約1時間であった。
実施例3:
 クエン酸鉄アンモニウムのかわりにフルボ酸鉄を溶解すること以外は実施例1と同様にして本発明のオゾン水を製造した。
実施例4:
 実施例1で製造した本発明のオゾン水のオゾンの半減期を、大気圧下で密閉容器としてペットボトルに充填したものを40℃の温度条件下において保存した場合において調べたところ、3日間以上であった(3日間が経過した時点で半分以上のオゾンが残存)。
実施例5:
 実施例1で製造した本発明のオゾン水のオゾンを、大気圧下で密閉容器としてペットボトルに充填して-20℃の温度条件下において1ヶ月間以上凍結保存した後に常温(25℃)で自然解凍したところ、凍結前のオゾン水に回復した(1ヶ月間凍結保存した後に解凍してもオゾン濃度は凍結前と同じ)。
実施例6:
 実施例1で製造した本発明のオゾン水を、室温条件で暗所に1週間放置した後、スピントラップ剤であるDMPO(5,5-ジメチル-1-ピロリン N-オキサイド)を添加し、さらに塩酸を添加してpH2の強酸条件下で電子スピン共鳴(ESR)スペクトルを測定したところ、スピンアダクトであるDMPO-OHのスペクトル(水酸基ラジカルの発生を意味するスペクトル)を観測することができた。
実施例7:
 実施例1で製造した本発明のオゾン水を検体として、OECD Guidelines for the Testing of Chemicals 404に準拠するウサギを用いた皮膚一次刺激性試験を行ったところ、刺激性は認められなかった。
実施例8:
 実施例1で製造した本発明のオゾン水を、ラットに20mg/kgの投与量で14日間経口投与したところ、急性毒性は認められなかった。
実施例9:
 実施例1で製造した本発明のオゾン水の、病原性細菌サルモネラ・エンテリティディスに対する殺菌効果を調べたところ、優れた殺菌効果が認められた。
実施例10:
 夏場に異臭を発するペットボトルの裁断くず(産業廃棄物)に、適量の実施例1で製造した本発明のオゾン水を噴霧したところ、優れた消臭効果を発揮した。
実施例11:
 蒸留水中にオゾンマイクロバブルを発生させ続けることで、水の酸化還元電位が+600mVに到達してから1時間が経過した時点で、クエン酸鉄アンモニウムと塩化ナトリウムを溶解すること以外は実施例1と同様にして本発明のオゾン水を製造したところ、実施例1で製造した本発明のオゾン水と比較してオゾンの半減期の延長が認められた。
比較例1:
 オゾンの供給を、一般的な散気管を用いたバブリングによって行うことに以外は実施例1と同様にして製造したオゾン水を、大気圧下で密閉容器としてペットボトルに充填し、40℃の温度条件下において保存したところ、実験開始から1日間が経過した時点でオゾン濃度はほぼ皆無となった。
比較例2:
 クエン酸鉄アンモニウムを溶解しないこと以外は実施例1と同様にして製造したオゾン水を、大気圧下で密閉容器としてペットボトルに充填し、40℃の温度条件下において保存したところ、実験開始から3時間が経過した時点でオゾン濃度はほぼ皆無となった。
 本発明は、保存安定性を向上させたオゾン水およびその製造方法を提供することができる点において産業上の利用可能性を有する。

Claims (12)

  1.  濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解させてなるオゾン水。
  2.  有機鉄化合物が、クエン酸鉄アンモニウム、フルボ酸鉄、酢酸鉄、ヘム鉄、デキストラン鉄、ジエチレントリアミン五酢酸鉄ナトリウム、ジエチレントリアミン五酢酸鉄アンモニウム、エチレンジアミン四酢酸鉄ナトリウム、エチレンジアミン四酢酸鉄アンモニウム、トリエチレンテトラアミン鉄、ジカルボキシメチルグルタミン酸鉄ナトリウム、クエン酸第一鉄、クエン酸鉄ナトリウム、シュウ酸鉄、コハク酸第一鉄、コハク酸クエン酸鉄ナトリウム、ピロリン酸第一鉄、ピロリン酸第二鉄、乳酸鉄、グルコン酸第一鉄、ギ酸第一鉄、ギ酸第二鉄、シュウ酸カリウム第二鉄アンモニウム、アスコルビン酸第一鉄、エデト酸ナトリウム第二鉄からなる群から選択される少なくとも1種である請求項1記載のオゾン水。
  3.  無機塩が、塩化ナトリウム、塩化カリウム、塩化マグネシウム、硫酸マグネシウムからなる群から選択される少なくとも1種類以上である請求項1記載のオゾン水。
  4.  オゾンマイクロバブルの発生が、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行われる請求項1記載のオゾン水。
  5.  微小気泡発生装置が、二相流旋回方式または加圧溶解方式の微小気泡発生装置である請求項4記載のオゾン水。
  6.  オゾンマイクロバブルを発生させた水への、有機鉄化合物と無機塩の溶解が、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから20分間以上が経過した後に行われる請求項1記載のオゾン水。
  7.  オゾンの半減期が、大気圧下で密閉容器に充填したものを40℃の温度条件下において保存した場合に3日間以上である請求項1記載のオゾン水。
  8.  オゾン水が、大気圧下で密閉容器に充填して-20℃の温度条件下において1ヶ月間以上凍結保存した後に常温(25℃)で自然解凍した場合、凍結前のオゾン水に回復する請求項1記載のオゾン水。
  9.  オゾン水が、哺乳動物の皮膚に対する刺激性がなく、哺乳動物に対して経口急性毒性を示さず、殺菌効果と消臭効果を有する請求項1記載のオゾン水。
  10.  濃度が1~300g/Nmのオゾンガスを用いてオゾンマイクロバブルを発生させた水に、0.1μM~1mMの有機鉄化合物と1~300mMの無機塩を溶解することによるオゾン水の製造方法。
  11.  オゾンマイクロバブルの発生を、粒径が5~50μmのマイクロバブルを発生させることができる微小気泡発生装置を用いて行う請求項10記載のオゾン水の製造方法。
  12.  オゾンマイクロバブルを発生させた水への、有機鉄化合物と無機塩の溶解を、オゾンマイクロバブルを発生させた水の酸化還元電位が上昇して少なくとも+600mVに到達してから20分間以上が経過した後に行う請求項10記載のオゾン水の製造方法。
PCT/JP2015/071896 2014-08-01 2015-08-01 オゾン水およびその製造方法 WO2016017821A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
NZ728866A NZ728866A (en) 2014-08-01 2015-08-01 Ozone water and method for producing same
AU2015297373A AU2015297373A1 (en) 2014-08-01 2015-08-01 Ozone water and method for producing same
JP2016538474A JP6341581B2 (ja) 2014-08-01 2015-08-01 オゾン水の製造方法
EP15827201.3A EP3176131A4 (en) 2014-08-01 2015-08-01 Ozone water and method for producing same
CN201580040683.6A CN106573805A (zh) 2014-08-01 2015-08-01 臭氧水及其制造方法
US15/500,290 US10351451B2 (en) 2014-08-01 2015-08-01 Ozone water and method for producing the same
CA2956894A CA2956894A1 (en) 2014-08-01 2015-08-01 Ozone water and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014158263 2014-08-01
JP2014-158263 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017821A1 true WO2016017821A1 (ja) 2016-02-04

Family

ID=55217715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071896 WO2016017821A1 (ja) 2014-08-01 2015-08-01 オゾン水およびその製造方法

Country Status (8)

Country Link
US (1) US10351451B2 (ja)
EP (1) EP3176131A4 (ja)
JP (1) JP6341581B2 (ja)
CN (1) CN106573805A (ja)
AU (1) AU2015297373A1 (ja)
CA (1) CA2956894A1 (ja)
NZ (1) NZ728866A (ja)
WO (1) WO2016017821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203698A1 (ja) * 2019-03-29 2020-10-08

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904366B2 (en) 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product
CN112723332B (zh) * 2021-04-02 2021-07-13 金驰能源材料有限公司 一种超细多孔结构的电池级磷酸铁及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246293A (ja) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology オゾン水およびその製造方法
JP2005245817A (ja) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology ナノバブルの製造方法
JP2007275089A (ja) * 2006-04-03 2007-10-25 Naga International Kk 長期持続型オゾン水、長期持続型オゾン水を利用した環境殺菌・脱臭浄化方法
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076177A (zh) * 1992-03-12 1993-09-15 上海市环境保护设备仪器厂 饮用矿泉水的臭氧消毒工艺规范和设备
US6436285B1 (en) 1999-12-22 2002-08-20 William B. Kerfoot Laminated microporous diffuser
CN1382646A (zh) * 2001-04-24 2002-12-04 时文生 管道式臭氧水处理装置
US7547388B2 (en) 2004-07-20 2009-06-16 Think Village-Kerfoot, Llc Superoxidant poiser for groundwater and soil treatment with in-situ oxidation-reduction and acidity-basicity adjustment
US7666316B2 (en) 2004-07-20 2010-02-23 Thinkvillage-Kerfoot, Llc Permanganate-coated ozone for groundwater and soil treatment with in-situ oxidation
CN1847168A (zh) * 2005-04-13 2006-10-18 中国科学院生态环境研究中心 一种用于臭氧氧化去除水体有机物的评估方法与反应器
WO2010004653A1 (ja) * 2008-07-11 2010-01-14 アンスラックス スポアーズ キラー コーポレーション リミテッド ヘリコバクターピロリ菌の駆除剤並びに駆除方法
JP2010189318A (ja) * 2009-02-18 2010-09-02 Yukio Hasegawa 血流改善剤
CN101514043A (zh) * 2009-04-01 2009-08-26 哈尔滨工业大学 高锰酸钾催化氧化去除水中微量有机污染物的方法
WO2011129262A1 (ja) * 2010-04-12 2011-10-20 ライオン株式会社 オゾン殺菌用の殺菌助剤及びオゾン殺菌方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246293A (ja) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology オゾン水およびその製造方法
JP2005245817A (ja) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology ナノバブルの製造方法
JP2007275089A (ja) * 2006-04-03 2007-10-25 Naga International Kk 長期持続型オゾン水、長期持続型オゾン水を利用した環境殺菌・脱臭浄化方法
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176131A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203698A1 (ja) * 2019-03-29 2020-10-08

Also Published As

Publication number Publication date
EP3176131A1 (en) 2017-06-07
JPWO2016017821A1 (ja) 2017-05-18
AU2015297373A1 (en) 2017-03-02
US10351451B2 (en) 2019-07-16
US20170210650A1 (en) 2017-07-27
NZ728866A (en) 2019-06-28
CN106573805A (zh) 2017-04-19
CA2956894A1 (en) 2016-02-04
JP6341581B2 (ja) 2018-06-13
EP3176131A4 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6422976B2 (ja) 過マンガン酸イオンを含む水の製造方法
JP5294370B2 (ja) 反応活性種を含む水の製造方法および反応活性種を含む水
JP4921333B2 (ja) 二酸化炭素ナノバブル水の製造方法
JP6341581B2 (ja) オゾン水の製造方法
Scaiano et al. Photochemical routes to silver and gold nanoparticles
JP2020196743A (ja) 殺菌剤及びその製造方法
JP2005246293A (ja) オゾン水およびその製造方法
JP2007275089A (ja) 長期持続型オゾン水、長期持続型オゾン水を利用した環境殺菌・脱臭浄化方法
JP2009131769A (ja) 窒素ナノバブル水の製造方法
ES2744432T3 (es) Composiciones aditivas de eliminación de sulfuro de hidrógeno, y medio que las comprende
JP2018176148A (ja) 海洋面に浮遊している超微細粒子水等の成分が海水に溶解している。その自然界の仕組みを利用した。空気中にナノ微細粒子水を発生させ、その粒子を液中に加圧溶解溶存させて機能水としてなるナノバブル発生装置。
Duan et al. Aggregation kinetics of UV-aged soot nanoparticles in wet environments: Effects of irradiation time and background solution chemistry
JP2001348214A (ja) フラーレン水分散液の製造法
BR112019008068B1 (pt) Método para remover metal pesado dissolvido de uma solução aquosa e uso de um composto
WO2012158009A1 (es) Compuesto estabilizado eliminador e inhibidor de incrustaciones en tuberías
JP2011050931A (ja) 水中における水酸基ラジカルの生成方法
JP2006515225A (ja) 水酸基の生成増強方法
CN110301456A (zh) 一种基于超微粒光催化氧化的自由基型灭菌雾化剂及其制备方法
JP7061758B2 (ja) 過酸化水素安定化剤および過酸化水素組成物
WO2022019327A1 (ja) 過マンガン酸イオンを含む水の製造方法
Xie et al. Role of surfactant additives in the ferrate (Ⅵ) oxidation of anti-inflammatory drug diclofenac in aqueous solution
정혜중 et al. Sustainable Nitric Oxide-releasing Nanoparticles Applied to Ocular Treatments
JP2016203046A (ja) スライム剥離剤及びスライムの剥離方法
Razali et al. Photodegradation of Phenol Using TiO2 Nanotubular Thin Film Fabricated By Sonoelectrochemical Anodization
JP2019119753A (ja) スライム処理剤及び配管の洗浄方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538474

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15500290

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2956894

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015827201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827201

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015297373

Country of ref document: AU

Date of ref document: 20150801

Kind code of ref document: A