WO2016017192A1 - ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法 - Google Patents

ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法 Download PDF

Info

Publication number
WO2016017192A1
WO2016017192A1 PCT/JP2015/050927 JP2015050927W WO2016017192A1 WO 2016017192 A1 WO2016017192 A1 WO 2016017192A1 JP 2015050927 W JP2015050927 W JP 2015050927W WO 2016017192 A1 WO2016017192 A1 WO 2016017192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sugar chain
labeling agent
formula
sample
Prior art date
Application number
PCT/JP2015/050927
Other languages
English (en)
French (fr)
Inventor
皓基 阿部
秀行 島岡
孝行 松元
雅哲 豊田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2014/069804 external-priority patent/WO2015022854A1/ja
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2016017192A1 publication Critical patent/WO2016017192A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to a labeling agent, a labeled sugar chain sample preparation method, a sugar chain analysis method, and a compound decomposition suppression method.
  • Biopolymers such as sugar chains, glycoproteins, glycopeptides, peptides, oligopeptides, proteins, nucleic acids, and lipids play an important role in biotechnology fields such as medicine, cell engineering, and organ engineering. Clarifying the control mechanism of biological reactions will lead to the development of the biotechnology field.
  • Sugar chain is a general term for molecules in which monosaccharides such as glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and derivatives thereof are linked in a chain by glycosidic bonds.
  • sugar chains are extremely diverse, and are deeply involved in various functions of naturally occurring organisms, such as cell-to-cell information transmission and protein functions and interactions. It is becoming clear.
  • Sugar chains often exist as complex carbohydrates bound to proteins and lipids in vivo.
  • biopolymers having sugar chains include proteoglycans on the cell wall of plant cells that contribute to cell stabilization, glycolipids that affect cell differentiation, proliferation, adhesion, migration, etc., and cell-cell interactions and cells. Examples include glycoproteins involved in recognition.
  • the mechanisms by which sugar chains contained in these biopolymers control advanced and precise biological reactions while acting, assisting, amplifying, regulating, or inhibiting the functions of these biopolymers are gradually being clarified. If the relationship between the sugar chain and cell differentiation / proliferation, cell adhesion, immunity, and cell carcinogenesis is clarified, this sugar chain engineering will be closely related to medicine, cell engineering, or organ engineering. We can expect new developments.
  • sugar chain In glycoprotein drugs, the sugar chain often plays an important role in the expression of biological activity. Therefore, the evaluation of sugar chains is extremely important as a quality control parameter for glycoprotein drugs. Particularly for antibody drugs, it has been reported that the sugar chain structure affects antibody-dependent cytotoxic activity (ADCC activity), and the importance of sugar chain structure analysis is increasing.
  • ADCC activity antibody-dependent cytotoxic activity
  • Patent Document 1 a method for preparing a sugar chain sample using a sugar chain-capturing substance having a functional group (for example, hydrazide group or aminooxy group) that specifically reacts with the aldehyde group of the sugar chain has been reported.
  • a functional group for example, hydrazide group or aminooxy group
  • the sugar chain captured by the sugar chain-trapping substance is released, labeled, and then subjected to analysis by mass spectrometry or high performance liquid chromatography.
  • AoWR has an aminooxy group at its terminal, and this aminooxy group acts on a hydrazone bond or oxime bond between the sugar chain-trapping substance and the sugar chain. Then, by the hydrazone-oxime exchange reaction or oxime-oxime exchange reaction, aoWR can bind to the sugar chain at the same time as the sugar chain is released from the sugar chain-trapping substance. For this reason, it has the advantage that labeling of an efficient sugar chain is attained.
  • a labeling agent represented by the following formula (1) having a group capable of binding to an aldehyde group of a sugar chain, for labeling the sugar chain and performing MALDI-TOF mass spectrometry, A labeling agent having a group W in which R calculated by F1) is 1.5% or less.
  • X and W represent a monovalent group.
  • [In Formula (F1), A is detected by MALDI-TOF mass spectrometry of a glycan sample labeled with the labeling agent after the humidification treatment, and the saccharide using the labeling agent before the humidification treatment.
  • the humidification treatment is a treatment that is allowed to stand for 15 hours at a temperature of 35 to 37 ° C. and a relative humidity of 80% or more.
  • a sample containing a sugar chain is brought into contact with a carrier having a hydrazide group or aminooxy group as a functional group for capturing the sugar chain, and the aldehyde group of the sugar chain and the hydrazide group or aminooxy group of the carrier
  • the step of capturing the sugar chain on the carrier the step of washing the carrier capturing the sugar chain, and the carrier capturing the sugar chain.
  • a method for preparing a labeled sugar chain sample comprising the step of bringing the compound into contact with the labeling agent described above to release the sugar chain from the carrier and simultaneously binding the compound to the sugar chain.
  • R 4 and R 5 are each independently carbon atoms having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO— or —CONH—.
  • R 6 , R 7 and R 8 each independently represents a hydrogen atom, a methyl group or a hydrocarbon chain having 2 to 5 carbon atoms.
  • m and n each independently represent the number of monomer units.
  • a method for analyzing a sugar chain comprising a step of subjecting a labeled sugar chain sample prepared by the method according to any one of [10] to [12] to mass spectrometry to detect a sugar chain.
  • X and Z represent a monovalent group.
  • [In Formula (F1), A is detected by MALDI-TOF mass spectrometry of a glycan sample labeled with the labeling agent after the humidification treatment, and the saccharide using the labeling agent before the humidification treatment.
  • the humidification treatment is a treatment that is allowed to stand for 15 hours at a temperature of 35 to 37 ° C. and a relative humidity of 80% or more.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group.
  • This compound is a compound in which the methyl ester (—CO—O—CH 3 ) group of a conventional aoWR is converted to an amide group (—CO—NR 1 R 2 ).
  • the compound in which the amide group is —CO—NH 2 (N-Aminooxycetyl-tryptophyl- (argineine amide); hereinafter referred to as “aoWR-NH2”) is about 2.7 times as remarkable as aoWR.
  • the fluorescence intensity was shown (FIGS. 1 and 2).
  • the present inventors have found that the compound represented by the above formula (P1) is excellent not only in ionization efficiency but also in fluorescence intensity and storage stability, and preparation of sugar chain samples and sugars using a sugar chain-trapping substance.
  • the present inventors have found that the compound is extremely useful in the detection of a chain sample, and have completed the present invention.
  • the present invention relates to a novel compound represented by the above formula (P1), a labeling reagent containing the compound as an active ingredient, a method for preparing a sugar chain sample using the compound, and a method for analyzing a sugar chain. More specifically, the following invention is provided.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group.
  • R 1 and R 2 in the formula (P1) each independently represent a hydrogen atom, a methyl group, or an ethyl group.
  • a method for preparing a labeled sugar chain sample (A) A sample containing a sugar chain is brought into contact with a carrier having a hydrazide group or an aminooxy group as a functional group for capturing the sugar chain, and the aldehyde group of the sugar chain and the hydrazide group or aminooxy group of the carrier A step of capturing the sugar chain on the carrier by reacting (B) a step of washing the carrier that has captured the sugar chain; and (c) contacting the carrier that has captured the sugar chain with the compound according to any one of (1) to (3), and Releasing the chain and simultaneously binding the compound to the sugar chain; Including methods.
  • R 3 and R 4 each independently represents a carbon atom having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO— or —CONH—.
  • R 5 , R 6 and R 7 each independently represent H, CH 3 or a hydrocarbon chain having 2 to 5 carbon atoms, m and n each independently represents the number of monomer units. Show.
  • a method for analyzing a sugar chain comprising the step of subjecting a labeled sugar chain sample prepared by the method according to any one of (5) to (7) to mass spectrometry to detect the sugar chain Method.
  • the present invention it becomes possible to efficiently prepare a labeled sugar chain from an unpurified biological sample containing a large amount of contaminants, and efficiently detect the labeled sugar chain thus prepared by mass spectrometry. It became possible to do.
  • a labeling agent that enables more efficient analysis when a sugar chain sample prepared using a sugar chain-trapping substance is analyzed by mass spectrometry.
  • a method for preparing a labeled sugar chain sample, a method for analyzing a sugar chain, and a method for inhibiting the degradation of a labeling agent can be provided.
  • FIG. 1 It is a graph which shows the fluorescence peak detected by aoWR-NH2 and aoWR as a result of detecting the fluorescence intensity of aoWR-NH2 and aoWR using the HPLC apparatus.
  • FIG. 1 it is a graph which shows the peak area value of the fluorescence which aoWR-NH2 and aoWR were detected.
  • FIG. 1 it is a figure which shows the result of having detected the sugar_chain
  • the figure (upper) shows the result of detecting aoWR that was not humidified
  • the figure (middle) shows the result of detecting humidified aoWR
  • the figure (lower) shows the result of detecting aoWR-NH2 that has been humidified. It is the result.
  • the present invention is a labeling agent that is represented by the following formula (1), has a group capable of binding to an aldehyde group of a sugar chain, and labels the sugar chain for MALDI-TOF mass spectrometry.
  • the labeling agent which has group W from which R computed by a following formula (F1) becomes 1.5% or less is provided.
  • the R is more preferably 1.0% or less, and further preferably 0.5% or less.
  • the humidification treatment is a treatment which is allowed to stand for 15 hours at a temperature of 35 to 37 ° C. and a relative humidity of 80% or more. .
  • the temperature in the humidification treatment is preferably 37 ° C.
  • the relative humidity in the humidification treatment is more preferably 90% or more, and further preferably 100%.
  • the glycan sample that is detected by MALDI-TOF mass spectrometry of the glycan sample labeled with the labeling agent after the humidification treatment and is the same as the glycan sample using the labeling agent before the humidification treatment
  • at least one of these peaks is represented by A in Formula (F1).
  • R calculated as follows may be 1.5% or less.
  • the calculated Rs of all these peaks are all 1.5% or less.
  • FIG. 3 is a graph showing the results of Experimental Example 2.
  • the MALDI-TOF mass spectrometry result of the sugar chain sample labeled with the labeling agent (aoWR) after the humidification treatment is shown in the middle of FIG.
  • the MALDI-TOF mass spectrometry result of a sample obtained by labeling the same sugar chain sample with a labeling agent (aoWR) before humidification is shown in the upper part of FIG.
  • the peak derived from unresolved aoWR corresponding to peak 1 means peak 2. That is, the peak of the molecular species in which aoWR is decomposed in the molecular species of peak 2 and the mass-to-charge ratio is reduced by about 14 is peak 1. Therefore, in the formula (F1), when the height of peak 1 is A, R is calculated with B being the height of peak 2.
  • the labeling agent of the present embodiment is inhibited from being decomposed even when exposed to a humidification treatment. Therefore, a more stable labeling agent can be provided, and more efficient analysis can be performed when analyzing a sugar chain sample prepared using a sugar chain capturing substance by mass spectrometry.
  • Examples of the group that can be bonded to the aldehyde group of the sugar chain include a hydrazide group and an aminooxy group.
  • the above labeling agent may have a fluorescent group, and examples of the fluorescent group include tryptophan residues.
  • the above labeling agent may further have a group that exhibits a sensitizing action for MALDI-TOF mass spectrometry.
  • a group that exhibits a sensitizing action for MALDI-TOF mass spectrometry is an arginine residue.
  • the labeling agent may be a compound represented by the following formula (2).
  • W represents a monovalent group
  • R 1 represents an alkyl group having 1 to 6 carbon atoms
  • p represents an integer of 0 to 5.
  • p is an integer of 2 or more
  • a plurality of R 1 may be the same as or different from each other.
  • the labeling agent may be a compound in which the group W is represented by the following formula (3).
  • R 2 and R 3 each independently represent a hydrogen atom or an alkyl group.
  • R 2 and / or R 3 is an alkyl group, the ionization efficiency is increased. Therefore, when a sugar chain sample labeled with the compound of the present invention is subjected to the following mass spectrometry, MALDI-TOF MS It tends to be easier to analyze this.
  • the alkyl group is preferably a methyl group or an ethyl group.
  • R 2 and / or R 3 is a hydrogen atom, it can be synthesized using a commercially available reagent as it is, so that the manufacturing process can be easily shortened and the cost can be reduced. It becomes possible.
  • R 2 and R 3 are preferably both hydrogen atoms from the viewpoint of cost reduction, and have a structure represented by the following formula (4) named aoWR-NH 2.
  • a compound is preferred.
  • the labeling agent of the present embodiment When bound to a sugar chain, the labeling agent of the present embodiment exhibits an effect of increasing the ionization efficiency of the sugar chain during mass spectrometry, but further exhibits extremely high fluorescence intensity as shown in Example 1. You can also The fluorescence intensity of the compound of the present invention surprisingly reaches, for example, about 2.7 times that of conventional aoWR with aoWR-NH2. Therefore, the present invention also provides a labeling reagent for increasing ionization efficiency or imparting fluorescence properties.
  • the labeling agent of the present invention can be used for releasing and labeling a sugar chain captured by a carrier in a method for preparing a sugar chain using a carrier having a functional group for capturing the sugar chain. Accordingly, the present invention provides a method for preparing a labeled sugar chain sample, wherein (a) a sample containing a sugar chain is used as a carrier having a hydrazide group or an aminooxy group as a functional group for capturing the sugar chain. Contacting the aldehyde group of the sugar chain with the hydrazide group or aminooxy group of the carrier, thereby capturing the sugar chain on the carrier, and (b) washing the carrier capturing the sugar chain. And (c) a sugar chain labeled by bringing the labeling agent into contact with a carrier capturing the sugar chain to release the sugar chain from the carrier and simultaneously binding the labeling agent to the sugar chain. Obtaining a sample.
  • the carrier used in the step (a) it is preferable to use polymer particles. If the polymer particles are solid particles or gel particles, sugar chains can be captured by the polymer particles and then easily collected by means such as centrifugation or filtration. It is also possible to use polymer particles packed in a column. The method of filling the column and using it is particularly important from the viewpoint of continuous operation.
  • a filter plate as a reaction vessel (for example, MultiScreen Solvinert Filter Plate manufactured by Millipore)
  • multiple samples can be processed at the same time. For example, compared with conventional purification means by column operation typified by gel filtration Thus, the throughput of sugar chain purification is greatly improved.
  • magnetic beads are used as the particles, the beads can be easily washed because the beads can be accumulated on the container wall surface or the like using magnetic force.
  • the shape of the polymer particles is not particularly limited, but a spherical shape or a similar shape is preferable.
  • the average particle size is preferably 0.05 to 1000 ⁇ m, more preferably 0.05 to 200 ⁇ m, still more preferably 0.1 to 200 ⁇ m, and most preferably 0.1 to 200 ⁇ m. 100 ⁇ m. If the average particle diameter is less than the lower limit, when the polymer particles are packed in a column and used, liquid permeability becomes poor, and it is necessary to apply a large pressure. Moreover, it becomes difficult to collect the polymer particles by centrifugation or filtration. When the average particle size exceeds the upper limit, the contact area between the polymer particles and the sample solution decreases, and the sugar chain capture efficiency decreases.
  • the carrier has a hydrazide group or an aminooxy group as a functional group for capturing a sugar chain on at least a part of the surface. These functional groups can react with the aldehyde group of the sugar chain to capture the sugar chain.
  • a cross-linked polymer (polymer substance) having a cross-linked polymer structure represented by the following formula (5) or formula (6), or coated with the polymer substance It is particularly preferred to use one as a carrier.
  • R 4 and R 5 are each independently carbon atoms having 1 to 20 carbon atoms which may be interrupted by —O—, —S—, —NH—, —CO— or —CONH—.
  • R 6 , R 7 and R 8 each independently represent a hydrogen atom, a methyl group or a hydrocarbon chain having 2 to 5 carbon atoms, m and n each independently represents the number of monomer units. To express.
  • crosslinkable polymer examples include a crosslinkable polymer having a structure represented by the following formula (6).
  • the pH of the reaction system when capturing sugar chains with polymer particles that capture sugar chains is preferably 2 to 9, more preferably 2 to 7, and even more preferably 2 to 6.
  • Various buffers can be used for pH adjustment.
  • the temperature at the time of sugar chain capture is preferably 4 to 90 ° C., more preferably 4 to 70 ° C., still more preferably 30 to 80 ° C., and most preferably 40 to 80 ° C.
  • the reaction time can be appropriately set.
  • the sample solution may be passed through a column filled with polymer particles.
  • substances other than sugar chains (substances adsorbed nonspecifically) among substances captured by the carrier can be removed by washing the carrier that has captured the sugar chain.
  • Methods for removing substances other than sugar chains include washing with a guanidine aqueous solution that is a chaotropic reagent capable of dissociating hydrophobic bonds, pure water and water-soluble buffers (eg, phosphate buffer, Tris buffer, etc.) ) Can be used.
  • the cleaning conditions in the cleaning step are a temperature of 4 to 40 ° C. and a cleaning time of 10 seconds to 30 minutes.
  • the carrier when the carrier is polymer particles, the carrier can be cleaned by dipping in a cleaning solution and repeating the replacement of the cleaning solution.
  • the polymer particles are put into a centrifuge tube or tube, a washing solution is added, and after shaking, the polymer particles are precipitated by centrifugation and washed by repeating the operation of removing the supernatant.
  • a washing solution is added
  • the polymer particles are precipitated by centrifugation and washed by repeating the operation of removing the supernatant.
  • it can be washed by repeating the operation of putting polymer particles in a centrifuge tube, adding a washing liquid, and allowing the polymer particles to settle naturally or by centrifugal separation and then removing the supernatant.
  • the washing operation is preferably performed 3 to 6 times. When magnetic beads are used, centrifugation is unnecessary and simple.
  • a filter tube which is a tube-like container and is equipped with a filter having a pore size that allows liquid permeation and does not allow permeation of the beads to the bottom surface portion.
  • 96-well multiwell plate has been developed as a solution dispensing device, a suction removal system, a plate transport system, and the like, and is optimal for high throughput.
  • the washing treatment may be performed continuously from the sugar chain capture reaction by passing a washing solution through the column.
  • substances other than the carrier that has captured the sugar chain may be removed by filtration or centrifugation.
  • the surplus functional group on the carrier can be capped using, for example, acetic anhydride.
  • step (c) the labeling agent is brought into contact with the carrier capturing the sugar chain to release the sugar chain from the carrier, and at the same time, the labeling agent is bound to the sugar chain.
  • a carrier having a hydrazide group is used as a carrier for capturing a sugar chain
  • the aminooxy group present at the end of the labeling agent acts on the hydrazone bond between the carrier and the sugar chain, and hydrazide-oxime
  • This step is achieved by the exchange reaction.
  • a carrier having an aminooxy group is used as a carrier for capturing a sugar chain
  • the aminooxy group present at the end of the labeling agent acts on the oxime bond between the carrier and the sugar chain, and oxime-
  • oxime- is achieved by an oxime exchange reaction.
  • the pH of the reaction solution during the exchange reaction is preferably pH 2 to 7, more preferably pH 3 to 6, and most preferably pH 3.5 to 5.5.
  • the reaction solution can be adjusted to the above pH by adding an acetic acid / acetonitrile solution.
  • the temperature during the exchange reaction is preferably 50 to 95 ° C, more preferably 60 to 90 ° C, and most preferably 70 to 90 ° C.
  • the collected labeled sugar chain solution can be analyzed as it is, or after removing the excessive labeling agent and analyzed by an analysis means such as mass spectrometry.
  • the present invention provides a method for analyzing a sugar chain, comprising the step of subjecting a labeled sugar chain sample prepared by the above method to mass spectrometry to detect the sugar chain.
  • a labeled sugar chain sample prepared by the above method
  • mass spectrometry to detect the sugar chain.
  • the degradation product peak is not detected in the vicinity of the sugar chain peak. For this reason, it becomes possible to efficiently perform detection of sugar chains using mass spectrometry.
  • mass spectrometry method for example, MALDI-TOF MS can be preferably used.
  • the mass spectrum obtained as a result of mass spectrometry can be analyzed using analysis software or the like.
  • the peak of the sample sugar chain can be detected. Furthermore, sugar chain quantification and sugar chain structure can be analyzed from mass-to-charge ratio and peak intensity (arbitrary index such as peak height and peak area). In the analysis of sugar chains, various databases (for example, GlycoSuite etc.) can be used.
  • the present invention provides a labeling agent represented by the following formula (7), having a group capable of binding to an aldehyde group of a sugar chain, for labeling the sugar chain and performing MALDI-TOF mass spectrometry:
  • a method for suppressing decomposition by humidification treatment wherein a group represented by Z in formula (7) is changed to a monovalent group W in which R calculated by the following formula (F1) is 1.5% or less.
  • the R is more preferably 1.0% or less, and further preferably 0.5% or less.
  • A is detected by MALDI-TOF mass spectrometry of a glycan sample labeled with the labeling agent after the humidification treatment, and the saccharide using the labeling agent before the humidification treatment.
  • B represents the peak
  • the peak height derived from the non-decomposed labeling agent corresponding to the above is expressed, and the humidification treatment is a treatment which is allowed to stand for 15 hours at a temperature of 35 to 37 ° C. and a relative humidity of 80% or more. .
  • the temperature in the humidification treatment is preferably 37 ° C. Further, the relative humidity in the humidification treatment is more preferably 90% or more, and further preferably 100%.
  • the calculation method of R in the present embodiment is the same as the calculation method in the above-described “labeling agent” embodiment.
  • decomposition of the labeling agent exposed under humidified conditions can be suppressed. Therefore, a more stable labeling agent can be provided.
  • the method of the present embodiment may actually include a step of replacing the group Z originally possessed by the compound represented by the formula (7) with the group W, but does not actually include such a step. May be.
  • a labeling agent for labeling a sugar chain and performing MALDI-TOF mass spectrometry instead of a hydrolyzing group such as Z in the compound represented by the formula (7), This includes employing a compound having a group W that is difficult to hydrolyze or does not hydrolyze.
  • Examples of the group that can be bonded to the aldehyde group of the sugar chain include a hydrazide group and an aminooxy group.
  • the above labeling agent may have a fluorescent group, and examples of the fluorescent group include tryptophan residues.
  • the above labeling agent may further have a group that exhibits a sensitizing action for MALDI-TOF mass spectrometry.
  • a group that exhibits a sensitizing action for MALDI-TOF mass spectrometry is an arginine residue.
  • the labeling agent represented by the formula (7) may be a labeling agent represented by the following formula (8).
  • Z represents a monovalent group
  • R 1 represents an alkyl group having 1 to 6 carbon atoms
  • p represents an integer of 0 to 5.
  • p is an integer of 2 or more
  • a plurality of R 1 may be the same as or different from each other.
  • the group Z in formula (8) may be —CO—O—CH 3 .
  • the group W may be a group represented by the following formula (3).
  • R 2 and R 3 each independently represents a hydrogen atom or an alkyl group.
  • the group W may be a —NH 2 group.
  • the group Z in the formula (8) is changed to the above group W, whereby decomposition of the compound represented by the formula (8) by the humidification treatment can be suppressed.
  • sugar chains were cut out from the particles and labeled.
  • 20 ⁇ L of aoWR-NH 2 aqueous solution and 180 ⁇ L of 2% acetic acid / acetonitrile solution were added and reacted at 80 ° C. for 1 hour.
  • the aoWR-NH2 aqueous solution was adjusted to a 20 mM aqueous solution by adding a pure water after humidification treatment (100% humidity in powder state and left at 37 ° C. for 15 hours). The reaction was carried out in an open system, and it was visually confirmed that the solvent was completely evaporated and the particles were dried. 50 ⁇ L of 2 mM hydrochloric acid was added to the dried beads, and N-linked sugar chains were recovered.
  • Example 2 Purification was carried out in the same manner as in Example 2 except that aoWR (no humidification treatment) was used for labeling and that 50 ⁇ L of ultrapure water was added to the dried beads to recover the N-linked sugar chain.
  • aoWR no humidification treatment
  • a glycan sample labeled with aoWR after humidification is detected by MALDI-TOF mass spectrometry
  • a glycan sample labeled with aoWR before humidification is detected by MALDI-TOF mass spectrometry
  • Unresolved peaks derived from decomposed aoWR are peaks 1, 5, and 10 indicated by numerals in FIG.
  • the peaks derived from unresolved aoWR corresponding to the peaks 1, 5 and 10 are the peaks 2, 6 and 11, respectively. Therefore, when R in the following formula (F1) was calculated based on the heights (relative values) of peaks 1 and 2, 5 and 6, 10 and 11, the values shown in Table 1 below were obtained.
  • A is detected by MALDI-TOF mass spectrometry of a glycan sample labeled with the labeling agent after the humidification treatment, and the saccharide using the labeling agent before the humidification treatment.
  • B represents the peak
  • the peak height derived from the non-decomposed labeling agent corresponding to the above is expressed, and the humidification treatment is a treatment which is allowed to stand for 15 hours at a temperature of 35 to 37 ° C. and a relative humidity of 80% or more. . ]
  • aoWR-NH2 has a group (—NH 2 ) in which R calculated by the formula (F1) is 1.5% or less.
  • the present invention it is possible to efficiently prepare a labeled sugar chain sample from a biological sample, and to efficiently detect the prepared labeled sugar chain sample by mass spectrometry or the like. Is possible. Accordingly, the present invention can be widely used in the field of test and research related to sugar chains, and can also be applied to fields such as characteristic analysis and quality control of pharmaceuticals and foods containing sugar chains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 本発明のラベル化剤は、式:X-W(ここで、X及びWは1価の基を表す。)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤であり、式:R(%)=A/B×100(ここで、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来するピークの高さを表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。)により算出されるRが1.5%以下となる基Wを有する。

Description

ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法
 本発明は、ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法に関する。
 糖鎖、糖タンパク、糖ペプチド、ペプチド、オリゴペプチド、タンパク、核酸、脂質等といった生体高分子は、医学、細胞工学、臓器工学等のバイオテクノロジー分野において重要な役割を担っており、これら物質による生体反応の制御機構を明らかにすることはバイオテクノロジー分野の発展に繋がることになる。
 糖鎖は、グルコース、ガラクトース、マンノース、フコース、キシロース、N-アセチルグルコサミン、N-アセチルガラクトサミン、シアル酸等の単糖及びこれらの誘導体がグリコシド結合によって鎖状に結合した分子の総称である。生体高分子の中でも、糖鎖は、非常に多様性に富んでおり、天然に存在する生物が有する様々な機能、例えば、細胞間情報伝達や、タンパク質の機能や相互作用の調整等に深く関わっていることが明らかになりつつある。
 糖鎖は生体内でタンパク質や脂質等に結合した複合糖質として存在することが多い。糖鎖を有する生体高分子としては、例えば、細胞の安定化に寄与する植物細胞の細胞壁のプロテオグリカン、細胞の分化、増殖、接着、移動等に影響を与える糖脂質、及び細胞間相互作用や細胞認識に関与している糖タンパク質等が挙げられる。これらの生体高分子に含まれる糖鎖が、この生体高分子と互いに機能を代行、補助、増幅、調節、あるいは阻害しあいながら高度で精密な生体反応を制御する機構が次第に明らかにされつつある。このような糖鎖と細胞の分化増殖、細胞接着、免疫、及び細胞の癌化との関係が明確にされれば、この糖鎖工学と、医学、細胞工学、あるいは臓器工学とを密接に関連させて新たな展開を図ることが期待できる。
 糖タンパク質性医薬品では、その糖鎖が生物活性発現等に重要な役割を担っている場合が多い。したがって、糖タンパク質性医薬品の品質管理のパラメータとして、糖鎖の評価はきわめて重要である。特に抗体医薬品については、その糖鎖構造が抗体依存性細胞傷害活性(ADCC活性)を左右するとの報告がされており、糖鎖構造解析の重要性が高まっている。
 このため、近年、糖鎖構造を迅速、簡便、かつ精度高く解析する方法が求められるようになり、高速液体クロマトグラフィー(HPLC)、核磁気共鳴法、キャピラリー電気泳動法(CE法)、質量分析法、レクチンアレイ法等の多種多様の方法により糖鎖解析が行われている。
 これら種々の手法を用いて糖鎖を解析するためには、あらかじめ生体試料中に含まれるタンパク質、ペプチド、脂質、核酸等と糖鎖を分離・精製することが必要である。しかしながら、これら糖鎖の精製や標識化は時間と工数がかかり、一度に多種多量の試料を調製するのは困難を要する。
 この問題を解決する技術として、糖鎖のアルデヒド基と特異的に反応する官能基(例えば、ヒドラジド基やアミノオキシ基)を持つ糖鎖捕捉物質を利用して糖鎖試料を調製する方法が報告されている(特許文献1)。この方法においては、糖鎖捕捉物質に捕捉された糖鎖を遊離し、標識した上で質量分析や高速液体クロマトグラフィーによる分析に供する。そして、特に、質量分析に供する場合には、分析対象である糖鎖のイオン化効率を高めるための標識試薬として、下記の構造を有する化合物(N-Aminooxyacetyl-tryptophyl-(arginine methyl ester);以下、「aoWR」と称する)が用いられている。
Figure JPOXMLDOC01-appb-C000012
 aoWRは末端にアミノオキシ基を有し、このアミノオキシ基が糖鎖捕捉物質と糖鎖との間のヒドラゾン結合又はオキシム結合に作用する。そして、ヒドラゾン-オキシム交換反応又はオキシム-オキシム交換反応により、糖鎖捕捉物質から糖鎖が遊離すると同時に、aoWRが糖鎖に結合することができる。このため効率的な糖鎖の標識が可能となるという利点を有する。
国際公開第2008/018170号
 本発明は、糖鎖捕捉物質を利用して調製した糖鎖試料を質量分析により分析するに際して、より効率的な分析を可能とする標識化合物(ラベル化剤)を提供することを目的とする。本発明はまた、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及びラベル化剤の分解抑制方法を提供することを目的とする。
 本発明は、以下の通りである。
[1]下記式(1)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤であって、下記式(F1)により算出されるRが1.5%以下となる基Wを有するラベル化剤。
Figure JPOXMLDOC01-appb-C000013
[式(1)中、X及びWは1価の基を表す。]
Figure JPOXMLDOC01-appb-M000014
[式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さを表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。]
[2]前記糖鎖のアルデヒド基と結合可能な基が、ヒドラジド基又はアミノオキシ基である、[1]に記載のラベル化剤。
[3]蛍光基を有する、[1]又は[2]に記載のラベル化剤。
[4]前記蛍光基が、トリプトファン残基である、[3]に記載のラベル化剤。
[5]アルギニン残基を有する、[1]ないし[4]のいずれかに記載のラベル化剤。
[6]下記式(2)で表される、[1]ないし[5]のいずれかに記載のラベル化剤。
Figure JPOXMLDOC01-appb-C000015
[式(2)中、Wは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
[7]基Wが下記式(3)で表される、[1]ないし[6]のいずれかに記載のラベル化剤。
Figure JPOXMLDOC01-appb-C000016
[式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。]
[8]前記式(3)中のR及びRが、それぞれ独立に、水素原子、メチル基又はエチル基を表す、[7]に記載のラベル化剤。
[9]下記式(4)で表される、[1]ないし[8]のいずれかに記載のラベル化剤。
Figure JPOXMLDOC01-appb-C000017
[10]糖鎖を含む試料を、糖鎖を捕捉するための官能基としてヒドラジド基又はアミノオキシ基を有する担体に接触させ、当該糖鎖のアルデヒド基と当該担体のヒドラジド基又はアミノオキシ基とを反応させることにより、当該糖鎖を当該担体に捕捉する工程と、糖鎖を捕捉した担体を洗浄する工程と、糖鎖を捕捉した担体に[1]ないし[9]のいずれか一項に記載のラベル化剤を接触させて、前記担体から糖鎖を遊離させると同時に、前記化合物を糖鎖に結合させる工程と、を備える、ラベル化された糖鎖試料の調製方法。
[11]前記担体が、表面の少なくとも一部に下記式(5)で表される架橋型ポリマー構造を有するものである、[10]に記載の方法。
Figure JPOXMLDOC01-appb-C000018
[式(5)中、R及びRは、それぞれ独立に、-O-、-S-、-NH-、-CO-又は-CONH-で中断されてもよい炭素数1~20の炭化水素鎖を表し、R、R及びRは、それぞれ独立に、水素原子、メチル基又は炭素数2~5の炭化水素鎖を表す。m及びnは、それぞれ独立に、モノマーユニット数を表す。]
[12]前記架橋型ポリマー構造が、下記式(6)で表されるものである、[11]に記載の方法。
Figure JPOXMLDOC01-appb-C000019
[式(6)中、m及びnは、それぞれ独立に、モノマーユニット数を表す。]
[13][10]ないし[12]のいずれかに記載の方法により調製された、ラベル化された糖鎖試料を質量分析に供して糖鎖を検出する工程を備える、糖鎖の分析方法。
[14]下記式(7)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤の加湿処理による分解を抑制する方法であって、式(7)中、Zで表される基を、下記式(F1)により算出されるRが1.5%以下となる1価の基Wにする方法。
Figure JPOXMLDOC01-appb-C000020
[式(1)中、X及びZは1価の基を表す。]
Figure JPOXMLDOC01-appb-M000021
[式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さを表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。]
[15]前記糖鎖のアルデヒド基と結合可能な基が、ヒドラジド基又はアミノオキシ基である、[14]に記載の方法。
[16]前記ラベル化剤が、蛍光基を有する、[14]又は[15]に記載の方法。
[17]前記蛍光基が、トリプトファン残基である、[16]に記載の方法。
[18]前記ラベル化剤が、アルギニン残基を有する、[14]ないし[17]のいずれかに記載の方法。
[19]前記式(7)で表されるラベル化剤が、下記式(8)で表されるラベル化剤である、[14]ないし[18]のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000022
[式(8)中、Zは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
[20]基Wが下記式(3)で表される、[14]ないし[19]のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000023
[式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。]
[21]基Wが-NH基である、[14]ないし[20]のいずれかに記載の方法。
(1)下記の式(P1)で表される化合物。
Figure JPOXMLDOC01-appb-C000024
 式(P1)中、R、Rは、それぞれ独立に、水素原子又はアルキル基を示す。この化合物は、従来のaoWRのメチルエステル(-CO-O-CH)基がアミド基(-CO-NR)に変換された化合物であるが、その蛍光強度を測定したところ、例えば、前記アミド基が-CO-NHである化合物(N-Aminooxyacetyl-tryptophyl-(arginine amide);以下、「aoWR-NH2」と称する)では、aoWRと比較して約2.7倍もの顕著な蛍光強度を示した(図1、図2)。また、糖鎖捕捉物質による糖鎖試料の調製において、標識試薬として加湿処理したaoWRを用いた場合には、質量分析により糖鎖を検出する際に、糖鎖のピークの近傍に標識試薬の分解産物のピークが生じたが、上記化合物のうち、例えば、aoWR-NH2を用いた場合には、このような分解産物のピークが生じなかった(図3)。
 以上から、本発明者らは、上記式(P1)で表される化合物が、イオン化効率の向上のみならず、蛍光強度や保存安定性に優れ、糖鎖捕捉物質による糖鎖試料の調製及び糖鎖試料の検出において極めて有用な化合物であることを見出し、本発明を完成するに至った。
 したがって、本発明は、上記式(P1)で表される新規化合物、当該化合物を有効成分とする標識試薬、並びに当該化合物を利用した糖鎖試料の調製方法及び糖鎖の分析方法に関するものであり、より詳しくは、以下の発明を提供するものである。
 (1)下記の式(P1)で表される化合物。
Figure JPOXMLDOC01-appb-C000025
(R、Rは、それぞれ独立に、水素原子又はアルキル基を示す。)
 (2)前記式(P1)中のR、Rが、それぞれ独立に、水素原子、メチル基、又はエチル基を示す、(1)に記載の化合物。
 (3)下記式で表される、(1)又は(2)に記載の化合物。
Figure JPOXMLDOC01-appb-C000026
 (4)(1)~(3)のうちのいずれかに記載の化合物を有効成分とする標識試薬。
 (5)標識された糖鎖試料の調製方法であって、
 (a)糖鎖を含む試料を、糖鎖を捕捉するための官能基としてヒドラジド基又はアミノオキシ基を有する担体に接触させ、当該糖鎖のアルデヒド基と当該担体のヒドラジド基又はアミノオキシ基とを反応させることにより、当該糖鎖を当該担体に捕捉する工程、
 (b)糖鎖を捕捉した担体を洗浄する工程、及び
 (c)糖鎖を捕捉した担体に(1)~(3)のうちのいずれかに記載の化合物を接触させて、当該担体から糖鎖を遊離させると同時に、前記化合物を糖鎖に結合させる工程、
を含む方法。
 (6)前記担体が下記の式(P2)で表される架橋型ポリマー構造を有する高分子物質により被覆されているものである、(5)に記載の方法。
Figure JPOXMLDOC01-appb-C000027
(式(P2)中、R、Rは、それぞれ独立に、-O-、-S-、-NH-、-CO-、-CONH-で中断されてもよい炭素数1~20の炭化水素鎖を示し、R、R、Rは、それぞれ独立に、H、CH、又は炭素数2~5の炭化水素鎖を示す。m、nは、それぞれ独立に、モノマーユニット数を示す。)
 (7)前記担体が下記の式(P3)で表される架橋型ポリマー構造を有する高分子物質により被覆されているものである、(6)に記載の方法。
Figure JPOXMLDOC01-appb-C000028
(m、nは、それぞれ独立に、モノマーユニット数を示す。)
 (8)糖鎖の分析方法であって、(5)から(7)のいずれかに記載の方法により調製された標識された糖鎖試料を質量分析に供して糖鎖を検出する工程を含む方法。
 本発明により、夾雑物の混入の多い未精製の生体試料から標識された糖鎖を効率的に調製することが可能となるとともに、こうして調製した標識された糖鎖を質量分析により効率的に検出することが可能となった。
 本発明によれば、糖鎖捕捉物質を利用して調製した糖鎖試料を質量分析により分析するに際して、より効率的な分析を可能とするラベル化剤を提供することができる。また、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及びラベル化剤の分解抑制方法を提供することができる。
HPLC装置を用いてaoWR-NH2及びaoWRの蛍光強度を検出した結果、aoWR-NH2及びaoWRの検出された蛍光のピークを示すグラフである。 図1において、aoWR-NH2及びaoWRの検出された蛍光のピーク面積値を示すグラフである。 aoWR-NH2又はaoWRで標識された糖鎖試料を質量分析(MALDI-TOF MS)により検出した結果を示す図である。図(上)は、加湿処理しなかったaoWRを検出した結果であり、図(中)は、加湿処理したaoWRを検出した結果であり、図(下)は、加湿処理したaoWR-NH2を検出した結果である。
[ラベル化剤]
 1実施形態において、本発明は、下記式(1)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤であって、下記式(F1)により算出されるRが1.5%以下となる基Wを有するラベル化剤を提供する。上記のRは1.0%以下であることがより好ましく、0.5%以下であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000029
[式(1)中、X及びWは1価の基を表す。]
Figure JPOXMLDOC01-appb-M000030
[式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さ(シグナル強度)を表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。加湿処理における温度は37℃であることが好ましい。また、加湿処理における相対湿度は90%以上であることがより好ましく、100%であることが更に好ましい。]
 ここで、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来するピークが複数存在する場合には、これらのうち、いずれか少なくとも1つのピークを式(F1)におけるAとして算出したRが1.5%以下となればよい。
 また、分解した前記ラベル化剤に由来する上記のピークが複数存在する場合には、これらの全てのピークについて、それぞれ算出したRが全て1.5%以下となることが最も好ましい。
 ここで、式(F1)におけるAとBについて、後述する実験例2の結果を用いて、より具体的に説明する。図3は、実験例2の結果を示すグラフである。加湿処理後のラベル化剤(aoWR)を用いてラベル化した糖鎖試料のMALDI-TOF質量分析結果が、図3の中段に示されている。また、同じ糖鎖試料を加湿処理前のラベル化剤(aoWR)でラベル化した試料のMALDI-TOF質量分析結果が、図3の上段に示されている。
 図3の上段及び中段に示す結果において、加湿処理後のaoWRを用いたMALDI-TOF質量分析で検出され、加湿処理前のaoWRを用いたMALDI-TOF質量分析で検出されないピークとは、図3中の数字で示す、ピーク1、5及び10である。すなわち、加湿処理前のaoWRを用いたMALDI-TOF質量分析(上段)では、ピーク1、5及び10に対応する領域1’、5’及び10’にピークが検出されていない。したがって、この場合の式(F1)におけるAとは、ピーク1、5又は10の高さを表す。
 また、ピーク1に対応する、分解していないaoWRに由来するピークとは、ピーク2を意味する。すなわち、ピーク2の分子種においてaoWRが分解し、質量電荷比が約14小さくなった分子種のピークがピーク1である。したがって、式(F1)において、ピーク1の高さをAとした場合には、ピーク2の高さをBとしてRを算出する。
 同様に、式(F1)において、ピーク5の高さをAとした場合には、ピーク6の高さをBとしてRを算出する。同様に、式(F1)において、ピーク10の高さをAとした場合には、ピーク11の高さをBとしてRを算出する。
 実験例2の結果のように、加湿処理後のaoWRを用いたMALDI-TOF質量分析で検出され、加湿処理前のaoWRを用いたMALDI-TOF質量分析で検出されないピークが複数存在する場合には、いずれのピークをAとしてRを算出してもよい。
 また、実験例2の結果においては、上述のように加湿処理後のaoWRを用いたMALDI-TOF質量分析で検出され、加湿処理前のaoWRを用いたMALDI-TOF質量分析で検出されないピークが存在したが、このようなピークが存在しない場合には式(F1)におけるAは0とみなせばよい。
 本実施形態のラベル化剤は、加湿処理下に暴露された場合であっても、分解が抑制されている。したがって、より安定なラベル化剤を提供することができ、糖鎖捕捉物質を利用して調製した糖鎖試料を質量分析により分析するに際して、より効率的な分析を行うことができる。
 糖鎖のアルデヒド基と結合可能な基としては、ヒドラジド基又はアミノオキシ基が挙げられる。
 上記のラベル化剤は、蛍光基を有していてもよく、蛍光基としては、例えばトリプトファン残基が挙げられる。
 上記のラベル化剤は、更に、MALDI-TOF質量分析のための増感作用を発揮する基を有していてもよい。このような基としては、例えばアルギニン残基が挙げられる。
 上記のラベル化剤は、下記式(2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000031
[式(2)中、Wは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
 上記のラベル化剤は、基Wが下記式(3)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000032
 式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。前記R及び/又はRがアルキル基である場合にはイオン化効率が高くなるため、本発明の化合物で標識された糖鎖試料を下記の質量分析に供した場合に、MALDI-TOF MSでの分析が更に容易になる傾向にある。前記アルキル基としては、メチル基又はエチル基が好ましい。他方、前記R及び/又はRが水素原子である場合には、一般に市販されている試薬をそのまま使用して合成することができるため製造工程の短縮化が容易となり、コストの低減を行うことが可能となる。
 上記のラベル化剤としては、コスト低減の観点からは、R及びRがいずれも水素原子であることが好ましく、aoWR-NH2と名付けられた下記式(4)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 本実施形態のラベル化剤は、糖鎖に結合すると、質量分析の際に、糖鎖のイオン化効率を高める作用を発揮するが、さらに、本実施例1に示すように極めて高い蛍光強度を発揮することもできる。本発明の化合物自体の蛍光強度は、驚くべきことに、例えば、aoWR-NH2では、従来のaoWRの約2.7倍にも達する。したがって、本発明は、イオン化効率を高めるための、又は蛍光特性を付与するための標識試薬をも提供するものである。
[標識された糖鎖試料の調製方法]
 本発明のラベル化剤は、糖鎖を捕捉するための官能基を有する担体を用いた糖鎖の調製方法において、担体に捕捉された糖鎖の遊離及び標識化に用いることができる。したがって、本発明は、ラベル化された糖鎖試料の調製方法であって、(a)糖鎖を含む試料を、糖鎖を捕捉するための官能基としてヒドラジド基又はアミノオキシ基を有する担体に接触させ、当該糖鎖のアルデヒド基と当該担体のヒドラジド基又はアミノオキシ基とを反応させることにより、当該糖鎖を当該担体に捕捉する工程、(b)糖鎖を捕捉した担体を洗浄する工程、及び(c)糖鎖を捕捉した担体に上記のラベル化剤を接触させて、当該担体から糖鎖を遊離させると同時に、前記ラベル化剤を糖鎖に結合させてラベル化された糖鎖試料を得る工程、を含む方法を提供する。
 工程(a)に用いる「担体」としては、ポリマー粒子を用いることが好ましい。ポリマー粒子が固体粒子あるいはゲル粒子であれば、ポリマー粒子に糖鎖を捕捉させたのち、遠心分離やろ過等の手段によって容易に回収することができる。また、ポリマー粒子をカラムに充填して用いることも可能である。カラムに充填して用いる方法は、特に連続操作化の観点から重要となる。反応容器としてフィルタープレート(例えば、Millipore社製のMultiScreen Solvinert Filter Plate)を用いることにより、複数のサンプルを同時に処理することが可能となり、例えばゲルろ過に代表されるカラム操作による従来の精製手段と比較して、糖鎖精製のスループットが大幅に向上される。また、当該粒子として磁性体ビーズを用いれば、磁力を使って容器壁面等にビーズを集積できるため、ビーズの洗浄を容易に行うことができる。
 ポリマー粒子の形状は特に限定しないが、球状又はそれに類する形状が好ましい。ポリマー粒子が球状の場合、平均粒径は好ましくは0.05~1000μmであり、より好ましくは0.05~200μmであり、さらに好ましくは0.1~200μmであり、最も好ましくは0.1~100μmである。平均粒径が下限値未満では、ポリマー粒子をカラムに充填して用いる際、通液性が悪くなるために大きな圧力を加える必要がある。また、ポリマー粒子を遠心分離やろ過で回収することも困難となる。平均粒径が上限値を超えると、ポリマー粒子と試料溶液の接触面積が少なくなり、糖鎖捕捉の効率が低下する。
 担体は、少なくとも表面の一部に糖鎖を捕捉するための官能基として、ヒドラジド基又はアミノオキシ基を有している。これら官能基は、糖鎖のアルデヒド基と反応して、糖鎖を捕捉することができる。
 糖鎖を捕捉するための担体としては、下記式(5)又は式(6)で表される架橋型ポリマー構造を有する架橋型ポリマー(高分子物質)、或いは、前記高分子物質により被覆されたものを担体として用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000034
(式(5)中、R及びRは、それぞれ独立に、-O-、-S-、-NH-、-CO-又は-CONH-で中断されてもよい炭素数1~20の炭化水素鎖を表し、R、R及びRは、それぞれ独立に、水素原子、メチル基又は炭素数2~5の炭化水素鎖を示す。m及びnは、それぞれ独立に、モノマーユニット数を表す。)
 架橋型ポリマーとして、例えば、下記式(6)で表される構造を有する架橋型ポリマーを挙げることができる。
Figure JPOXMLDOC01-appb-C000035
(式(6)中、m及びnは、それぞれ独立に、モノマーユニット数を示す。)
 糖鎖を捕捉するポリマー粒子によって糖鎖を捕捉する際の反応系のpHは、好ましくは2~9、より好ましくは2~7であり、さらに好ましくは2~6である。pH調整のためには、各種緩衝液を用いることができる。糖鎖捕捉時の温度は、好ましくは4~90℃、より好ましくは4~70℃、さらに好ましくは30~80℃であり、最も好ましくは40~80℃である。反応時間は適宜設定することができる。ポリマー粒子をカラムに充填して試料溶液を通過させてもよい。
 工程(b)における、糖鎖を捕捉した担体の洗浄により、担体に捕捉された物質のうち糖鎖以外の物質(非特異的に吸着した物質)を除去することができる。
 糖鎖以外の物質を除去する方法としては、疎水結合を解離する能力のあるカオトロピック試薬であるグアニジン水溶液で洗浄する方法や、純水や水溶性緩衝液(例えばリン酸緩衝液、トリス緩衝液等)で洗浄する方法を用いることができる。洗浄工程における洗浄条件としては、温度が4~40℃、洗浄時間が10秒~30分である。洗浄方法としては、担体がポリマー粒子の場合は、洗浄液に浸漬し、洗浄液の交換を繰り返すことで洗浄することができる。
 具体的には、遠沈管やチューブにポリマー粒子を入れ、洗浄液を加え、振とうの後、遠心操作によりポリマー粒子を沈殿させて、上清を除去する操作を繰り返すことにより洗浄する。例えば、遠心チューブ内にポリマー粒子を入れ、洗浄液を加え、ポリマー粒子を自然沈降、又は、遠心分離により強制的に沈降させた後、上清を除去する操作を繰り返すことで洗浄することができる。前記洗浄操作は3~6回行うことが好ましい。磁性ビーズを用いる場合には、遠心操作は不要であり、簡便である。
 また、チューブ状の容器であって、底面部に、液体透過可能で該ビーズが不透過な孔径を有するフィルターを装着するフィルターチューブを用いることも可能である。該フィルターチューブにポリマー粒子を入れて使用することで、洗浄に要した洗浄液を、フィルターを介して除去することが可能となり、前記の遠心操作後の上清除去の工程が必要なくなり、作業性の向上を図ることができる。
 また、6~384穴のマルチウェルプレートの底部が前記フィルターを装着したものが各種市販されており、これらのプレートを用いることでハイスループット化することが可能である。特に96穴マルチウェルプレートは、溶液分注機器、吸引除去システム、及びプレートの搬送システム等が開発されており、ハイスループット化に最適である。
 連続式にて糖鎖捕捉反応を行った場合には、洗浄処理は、カラムに洗浄溶液を通して糖鎖捕捉反応から連続的に処理してもよい。また、マルチプレートを用いた場合には、ろ過操作あるいは遠心操作により糖鎖を捕捉した担体以外の物質を除去してもよい。
 なお、担体上の余剰官能基は、例えば、無水酢酸等を利用してキャッピングすることができる。
 工程(c)では、糖鎖を捕捉した担体に上記のラベル化剤を接触させて、当該担体から糖鎖を遊離させると同時に、ラベル化剤を糖鎖に結合させる。糖鎖を捕捉するための担体としてヒドラジド基を有する担体を用いた場合には、ラベル化剤の末端に存在するアミノオキシ基が、担体と糖鎖の間のヒドラゾン結合に作用し、ヒドラジド-オキシム交換反応により、本工程が達成される。糖鎖を捕捉するための担体としてアミノオキシ基を有する担体を用いた場合には、ラベル化剤の末端に存在するアミノオキシ基が、担体と糖鎖の間のオキシム結合に作用し、オキシム-オキシム交換反応により、本工程が達成される。このように上記のラベル化剤によれば、一つの処理で、担体からの糖鎖の遊離と糖鎖の標識を行うことが可能となる。
 交換反応時の反応液のpHは、pH2~7が好ましく、pH3~6がより好ましく、pH3.5~5.5が最も好ましい。酢酸/アセトニトリル溶液を加えることにより、反応液を上記のpHに調整することができる。交換反応時の温度は、50~95℃が好ましく、60~90℃がより好ましく、70~90℃が最も好ましい。交換反応時、反応容器を開放して加熱操作を行うことにより、溶媒を蒸発させながら反応を進め、最終的に乾固させることにより、効率よく交換反応を行うことができる。
[糖鎖の分析方法]
 回収したラベル化された糖鎖溶液はそのまま、あるいは、過剰に含まれるラベル化剤を除去したのち、質量分析法等の分析手段によって分析することができる。
 1実施形態において、本発明は、糖鎖の分析方法であって、上記方法により調製された、ラベル化された糖鎖試料を質量分析に供して糖鎖を検出する工程を備える方法を提供する。実施例2に示すように、化合物(aoWR-NH2)で標識された糖鎖は、質量分析に供した場合に、その分解産物のピークが糖鎖のピークの近傍に検出されない。このため質量分析を利用した糖鎖の検出を効率的に実施することが可能となる。質量分析の手法としては、例えば、MALDI-TOF MSを好適に利用することができる。質量分析の結果得られたマススペクトルは、解析ソフト等を用いて解析することができる。質量電荷比(m/z値)を読み取ることにより、試料糖鎖のピークを検出することができる。さらに、質量電荷比やピーク強度(ピーク高さ、ピーク面積等任意の指標)から、糖鎖の定量や糖鎖の構造を分析することができる。糖鎖の分析においては、各種データベース(例えば、GlycoSuite等)を利用することができる。
[ラベル化剤の加湿処理による分解を抑制する方法]
 1実施形態において、本発明は、下記式(7)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤の加湿処理による分解を抑制する方法であって、式(7)中、Zで表される基を、下記式(F1)により算出されるRが1.5%以下となる1価の基Wにする方法を提供する。上記のRは1.0%以下であることがより好ましく、0.5%以下であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000036
[式(1)中、X及びZは1価の基を表す。]
Figure JPOXMLDOC01-appb-M000037
[式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さ(シグナル強度)を表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。加湿処理における温度は37℃であることが好ましい。また、加湿処理における相対湿度は90%以上であることがより好ましく、100%であることが更に好ましい。]
 本実施形態におけるRの算出方法は、上述した「ラベル化剤」の実施形態における算出方法と同様である。
 本実施形態の方法によれば、加湿条件下に暴露されたラベル化剤の分解を抑制することができる。したがって、より安定なラベル化剤を提供することができる。
 本実施形態の方法は、式(7)で表される化合物がもともと有していた基Zを、基Wに置き換える工程を実際に含んでいてもよいが、このような工程を実際に含まなくてもよい。例えば、本実施形態の方法は、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤として、式(7)で表される化合物におけるZのような加水分解する基の代わりに、加水分解しにくい若しくは加水分解しない基Wを有する化合物を採用することを含む。
 糖鎖のアルデヒド基と結合可能な基としては、ヒドラジド基又はアミノオキシ基が挙げられる。
 上記のラベル化剤は、蛍光基を有していてもよく、蛍光基としては、例えばトリプトファン残基が挙げられる。
 上記のラベル化剤は、更に、MALDI-TOF質量分析のための増感作用を発揮する基を有していてもよい。このような基としては、例えばアルギニン残基が挙げられる。
 本実施形態の方法において、式(7)で表されるラベル化剤は、下記式(8)で表されるラベル化剤であってもよい。
Figure JPOXMLDOC01-appb-C000038
[式(8)中、Zは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
 式(8)中の基Zは、-CO-O-CHであってもよい。また、上記の基Wは、下記式(3)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000039
[式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。]
 上記の基Wは、-NH基であってもよい。
 実施例において後述するように、式(8)における基Zを、上記の基Wにすることによって、式(8)で表される化合物の加湿処理による分解を抑制することができる。
 以下、合成例、実施例、及び比較例に基づいて本発明をより具体的に説明するが、本発明は、以下の合成例や実施例に限定されるものではない。
[合成例1]aoWR-NH2の合成
 合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000040
 Boc-Trp-OH(メルク:853038、4.66g)にTHF(40mL)を添加し、溶液を-50℃に冷却した。前記溶液に4-メチルモルホリン(1.86g)とクロロギ酸イソブチル(2.51g)を添加し、-40℃で10分間、その後0℃に昇温しながら30分間攪拌することで、混合酸無水物(A)を調製した。次に、H-Arg-NH・2HCl(渡辺化学工業:K00125、4.53g)にメタノール(40mL)を添加して5℃に冷却し、トリエチルアミン(1.86g)を添加して調製した溶液を(A)に添加した。0℃で10分間、その後室温に昇温しながら90分間攪拌し、反応溶液を減圧濃縮することで、化合物1(15.96g)を得た。
 化合物1(15.96g)にメタノール(26mL)を添加して0℃に冷却し、続いて4M HCl/ジオキサン溶液(26mL)を添加した。0℃にて30分間、その後室温に昇温しながら3時間撹拌し、反応溶液を減圧濃縮することで、化合物2(13.82g)を得た。
 Boc-amino-oxyacetic acid(メルク:851017、2.45g)にTHF(40mL)を添加し、溶液を-40℃に冷却した。前記溶液に4-メチルモルホリン(1.55g)とクロロギ酸イソブチル(2.09g)を添加し、-30℃で15分間、その後0℃に昇温しながら35分間攪拌することで、混合酸無水物(B)を調製した。次に、化合物2(13.82g)に蒸留水(20mL)を添加して5℃に冷却し、炭酸水素ナトリウム(1.29g)を添加して調製した溶液を(B)に添加した。5℃で1時間、その後室温に昇温しながら6時間攪拌し、反応溶液を減圧濃縮した。続いてODS中圧クロマトグラフィーにより精製することで、化合物3(4.82g)を得た。
 化合物3(4.82g)にメタノール(14.5mL)を添加して0℃に冷却し、続いて4M HCl/ジオキサン溶液(14.5mL)を添加した。室温に昇温しながら2時間撹拌し、反応溶液を減圧濃縮した。得られた残留物3.96gのうち3.2gをODS中圧クロマトグラフィーにより精製することで、化合物4(aoWR-NH2、1.29g)を得た。
[実験例1]
 20mM aoWR及び20mM aoWR-NH2について、HPLC装置としてNexera(島津製作所)を用いて、以下の条件によりHPLCを実施し、それぞれの蛍光強度を測定した。
 <HPLC条件>
カラム:ACQUITY UPLC BEH Glycan 1.7μm 2.1×150mm
溶媒A:50mM ギ酸/アンモニア水溶液(pH4.4)
溶媒B:アセトニトリル
勾配:A液 25%(0分)→A液 42%(38.5分)
カラム温度:60℃→流速:0.5mL/分
Ex:280nm Em:350nm インジェクト量:1μL
 その結果、aoWR-NH2は、aoWRと比較して、約2.7倍もの蛍光強度を示した(図1、図2)。
[実験例2]
(糖タンパク質からのN-結合型糖鎖の遊離)
 ヒト血清由来IgG(SIGMA、I4506)40mgに、超純水2mL、1M重炭酸アンモニウム(和光純薬、017-02875)水溶液及び120mM DTT(ジチオスレイトール、SIGMA、D9779)水溶液を200μLずつ添加し、60℃で30分間反応させた。反応後、123mM IAA(ヨードアセトアミド、和光純薬、093-02152)水溶液400μLを加えて遮光下、室温で1時間反応させた。続いて16000Uのトリプシン(SIGMA、T0303)を400μLの1mM塩酸に溶解した溶液を全量添加し、37℃で1.5時間反応させてタンパク質部分をペプチド断片化した。溶液を90℃で10分間加熱してトリプシンを失活させた後に、80Uのペプチド-N-グリコシダーゼF(Roche、1-365-193)による処理を行って糖鎖をペプチドから遊離させ、糖鎖溶液を得た。
(N-結合型糖鎖の標識及び精製)
 糖鎖捕捉用の担体であるヒドラジド基を有する粒子5mg(BlotGlyco(R))、住友ベークライト株式会社製、BS-45603)が入ったディスポカラムに上記糖鎖溶液20μL及び180μLの2%酢酸/アセトニトリル溶液を加え、80℃で1時間反応させた。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを目視で確認した。
 N-結合型糖鎖が結合した粒子を2Mグアニジン水溶液、水、及び1%トリエチルアミン/メタノール溶液にて洗浄後、10%無水酢酸/メタノール溶液を添加し、室温で30分間反応させ、未反応のヒドラジド基をキャッピングした。キャッピング後、10mM塩酸、メタノール、及びジメチルスルホキシドにてビーズを洗浄した。
 続いて、シアル酸残基のカルボン酸のメチルエステル化を行った。500mMの1-メチル-3-p-トリルトリアゼン(MTT)(東京化成、M0641)/ジメチルスルホキシド溶液を100μL加え、60℃で1時間反応させた。反応後、メタノール及び水で洗浄した。
 最後に、粒子から糖鎖の切り出し及び標識反応を行った。aoWR-NH2水溶液20μL及び2%酢酸/アセトニトリル溶液180μLを加え、80℃で1時間反応させた。aoWR-NH2水溶液は、加湿処理(粉末状態で湿度100%、37℃で15時間放置)後、超純水を添加し、20mMの水溶液に調整した。反応は開放系で行い、溶媒が完全に蒸発し粒子が乾固した状態であることを目視で確認した。乾燥したビーズに2mM塩酸を50μL加え、N-結合型糖鎖を回収した。
(余剰標識試薬の除去)
 回収した糖鎖溶液をアセトニトリルで10倍に希釈した後に、シリカカラム(BlotGlycoキット付属品)に添加してシリカゲルに標識糖鎖を吸着させた。アセトニトリルにてカラムを洗浄後、超純水50μLにて標識糖鎖を回収した。
[比較例1]
 標識にaoWRを使用したこと、及び、乾燥したビーズに超純水を50μL加え、N-結合型糖鎖を回収したこと以外は、実施例2と同様に精製を行った。
[比較例2]
 標識にaoWR(加湿処理なし)を使用したこと、及び、乾燥したビーズに超純水を50μL加え、N-結合型糖鎖を回収したこと以外は、実施例2と同様に精製を行った。
(標識糖鎖の分析)
 回収した標識糖鎖溶液をMALDI-TOF MS(Autoflex III smartbeam、 Bruker Daltonics社製)によりリフレクターモード、ポジティブイオンモードにて分析した。マトリックスには2,5-ジヒドロキシ安息香酸(Bruker、201346)を用いた。
 図3に示した結果から明らかなように、aoWRでは加湿すると本来の質量電荷比よりも約14小さい、メチルエステル基の加水分解が原因と思われる夾雑ピークが生じたが、前記官能基をアミド基に置換したaoWR-NH2では、夾雑ピークは生じなかった。
 図3において、加湿処理後のaoWRを用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前のaoWRを用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出されない、分解したaoWRに由来するピークとは、図3中の数字で示す、ピーク1、5及び10である。
 また、ピーク1、5及び10にそれぞれ対応する、分解していないaoWRに由来するピークとは、それぞれピーク2、6及び11である。そこで、ピーク1及び2、5及び6、10及び11の高さ(相対値)に基づいて、下記式(F1)におけるRを算出すると、下記表1に示す値が得られた。
Figure JPOXMLDOC01-appb-M000041
[式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さ(シグナル強度)を表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。]
Figure JPOXMLDOC01-appb-T000042
 一方、aoWR-NH2を用いたMALDI-TOF質量分析では、加湿処理後においても、分解したaoWR-NH2に由来するピーク(夾雑ピーク)が検出されなかった。したがって、aoWR-NH2の結果に基づいて上記(F1)におけるRを算出すると次のようになる。
 aoWR-NH2の結果においては、式(F1)におけるAに相当するピークの高さが存在しないことから、上述したように、Aは0とみなせばよい。したがって、R=0%となる。
 以上のことから、aoWR-NH2は、式(F1)により算出されるRが1.5%以下となる基(-NH)を有しているといえる。
 本発明によれば、生物学的試料から効率的に標識された糖鎖試料を調製することが可能となるとともに、調製された標識された糖鎖試料を質量分析等により効率的に検出することが可能となる。したがって、本発明は、糖鎖に関する試験研究の分野において広く利用可能であり、また、例えば、糖鎖を含む医薬品や食品の特性分析や品質管理等の分野にも応用可能である。

Claims (21)

  1.  下記式(1)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤であって、下記式(F1)により算出されるRが1.5%以下となる基Wを有するラベル化剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、X及びWは1価の基を表す。]
    Figure JPOXMLDOC01-appb-M000002
    [式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さを表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。]
  2.  前記糖鎖のアルデヒド基と結合可能な基が、ヒドラジド基又はアミノオキシ基である、請求項1に記載のラベル化剤。
  3.  蛍光基を有する、請求項1又は2に記載のラベル化剤。
  4.  前記蛍光基が、トリプトファン残基である、請求項3に記載のラベル化剤。
  5.  アルギニン残基を有する、請求項1ないし4のいずれか一項に記載のラベル化剤。
  6.  下記式(2)で表される、請求項1ないし5のいずれか一項に記載のラベル化剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(2)中、Wは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
  7.  基Wが下記式(3)で表される、請求項1ないし6のいずれか一項に記載のラベル化剤。
    Figure JPOXMLDOC01-appb-C000004
    [式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。]
  8.  前記式(3)中のR及びRが、それぞれ独立に、水素原子、メチル基又はエチル基を表す、請求項7に記載のラベル化剤。
  9.  下記式(4)で表される、請求項1ないし8のいずれか一項に記載のラベル化剤。
    Figure JPOXMLDOC01-appb-C000005
  10.  糖鎖を含む試料を、糖鎖を捕捉するための官能基としてヒドラジド基又はアミノオキシ基を有する担体に接触させ、当該糖鎖のアルデヒド基と当該担体のヒドラジド基又はアミノオキシ基とを反応させることにより、当該糖鎖を当該担体に捕捉する工程と、
     糖鎖を捕捉した担体を洗浄する工程と、
     糖鎖を捕捉した担体に請求項1ないし9のいずれか一項に記載のラベル化剤を接触させて、前記担体から糖鎖を遊離させると同時に、前記化合物を糖鎖に結合させる工程と、
     を備える、ラベル化された糖鎖試料の調製方法。
  11.  前記担体が、表面の少なくとも一部に下記式(5)で表される架橋型ポリマー構造を有するものである、請求項10に記載の方法。
    Figure JPOXMLDOC01-appb-C000006
    [式(5)中、R及びRは、それぞれ独立に、-O-、-S-、-NH-、-CO-又は-CONH-で中断されてもよい炭素数1~20の炭化水素鎖を表し、R、R及びRは、それぞれ独立に、水素原子、メチル基又は炭素数2~5の炭化水素鎖を表す。m及びnは、それぞれ独立に、モノマーユニット数を表す。]
  12.  前記架橋型ポリマー構造が、下記式(6)で表されるものである、請求項11に記載の方法。
    Figure JPOXMLDOC01-appb-C000007
    [式(6)中、m及びnは、それぞれ独立に、モノマーユニット数を表す。]
  13.  請求項10ないし12のいずれか一項に記載の方法により調製された、ラベル化された糖鎖試料を質量分析に供して糖鎖を検出する工程を備える、糖鎖の分析方法。
  14.  下記式(7)で表され、糖鎖のアルデヒド基と結合可能な基を有し、糖鎖をラベル化してMALDI-TOF質量分析するためのラベル化剤の加湿処理による分解を抑制する方法であって、式(7)中、Zで表される基を、下記式(F1)により算出されるRが1.5%以下となる1価の基Wにする方法。
    Figure JPOXMLDOC01-appb-C000008
    [式(1)中、X及びZは1価の基を表す。]
    Figure JPOXMLDOC01-appb-M000009
    [式(F1)中、Aは、加湿処理後の前記ラベル化剤を用いてラベル化した糖鎖試料のMALDI-TOF質量分析で検出され、加湿処理前の前記ラベル化剤を用いて前記糖鎖試料と同じ糖鎖試料をラベル化した試料のMALDI-TOF質量分析で検出されない、分解した前記ラベル化剤に由来する少なくとも1つのピークの高さを表し、Bは、前記ピークに対応する、分解していない前記ラベル化剤に由来するピークの高さを表し、前記加湿処理は、温度35~37℃、相対湿度80%以上の条件下で15時間静置する処理である。]
  15.  前記糖鎖のアルデヒド基と結合可能な基が、ヒドラジド基又はアミノオキシ基である、請求項14に記載の方法。
  16.  前記ラベル化剤が、蛍光基を有する、請求項14又は15に記載の方法。
  17.  前記蛍光基が、トリプトファン残基である、請求項16に記載の方法。
  18.  前記ラベル化剤が、アルギニン残基を有する、請求項14ないし17のいずれか一項に記載の方法。
  19.  前記式(7)で表されるラベル化剤が、下記式(8)で表されるラベル化剤である、請求項14ないし18のいずれか一項に記載の方法。
    Figure JPOXMLDOC01-appb-C000010
    [式(8)中、Zは1価の基を表し、Rは炭素数1~6のアルキル基を表し、pは0~5の整数を表す。pが2以上の整数である場合、複数存在するRは互いに同一であっても異なっていてもよい。]
  20.  基Wが下記式(3)で表される、請求項14ないし19のいずれか一項に記載の方法。
    Figure JPOXMLDOC01-appb-C000011
    [式(3)中、R及びRはそれぞれ独立に水素原子又はアルキル基を表す。]
  21.  基Wが-NH基である、請求項14ないし20のいずれか一項に記載の方法。
PCT/JP2015/050927 2014-07-28 2015-01-15 ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法 WO2016017192A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/069804 2014-07-28
PCT/JP2014/069804 WO2015022854A1 (ja) 2013-08-16 2014-07-28 糖鎖試料を標識するための化合物

Publications (1)

Publication Number Publication Date
WO2016017192A1 true WO2016017192A1 (ja) 2016-02-04

Family

ID=55221149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050927 WO2016017192A1 (ja) 2014-07-28 2015-01-15 ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法

Country Status (1)

Country Link
WO (1) WO2016017192A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018170A1 (fr) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Substance capable de capturer les chaînes glucidiques et procédé l'utilisant
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
WO2009150834A1 (ja) * 2008-06-12 2009-12-17 住友ベークライト株式会社 糖鎖試料調製方法、糖鎖試料および糖鎖分析法
WO2013047798A1 (ja) * 2011-09-29 2013-04-04 住友ベークライト株式会社 糖鎖の精製方法
WO2015022854A1 (ja) * 2013-08-16 2015-02-19 住友ベークライト株式会社 糖鎖試料を標識するための化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018170A1 (fr) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Substance capable de capturer les chaînes glucidiques et procédé l'utilisant
JP2009156587A (ja) * 2007-12-25 2009-07-16 Sumitomo Bakelite Co Ltd 糖タンパク質糖鎖の分析方法
WO2009150834A1 (ja) * 2008-06-12 2009-12-17 住友ベークライト株式会社 糖鎖試料調製方法、糖鎖試料および糖鎖分析法
WO2013047798A1 (ja) * 2011-09-29 2013-04-04 住友ベークライト株式会社 糖鎖の精製方法
WO2015022854A1 (ja) * 2013-08-16 2015-02-19 住友ベークライト株式会社 糖鎖試料を標識するための化合物

Similar Documents

Publication Publication Date Title
JP5500067B2 (ja) 糖鎖標識方法
JP5872768B2 (ja) 糖鎖試料調製方法
JP5076878B2 (ja) 糖タンパク質糖鎖の分析方法
JPWO2005097844A1 (ja) ポリマー粒子
JP2013068594A (ja) シアロ糖鎖をアミド化修飾する方法
WO2009003952A2 (en) Column and method for preparing a biological sample for protein profiling
JP5125637B2 (ja) 糖鎖試料調製方法
JP2009142238A (ja) 細胞表面糖鎖の遊離方法及び検出方法
JP5682850B1 (ja) 糖鎖試料を標識するための化合物
JP6238087B2 (ja) 標識糖鎖試料の調製方法
WO2016017192A1 (ja) ラベル化剤、ラベル化された糖鎖試料の調製方法、糖鎖の分析方法及び化合物の分解抑制方法
JP5392500B2 (ja) 質量分析による糖鎖の分析方法
JP5983347B2 (ja) 糖鎖精製方法
WO2015108020A1 (ja) 組成物、糖鎖試料の調製方法及び糖鎖の分析方法
JP2012189439A (ja) 糖鎖試料の製造方法
JP2009216608A (ja) 試料調製方法
WO2015146514A1 (ja) 標識された糖鎖試料の調製において糖鎖からのシアル酸の脱離を抑制する方法
JP6064541B2 (ja) 糖鎖精製方法
JP2022026938A (ja) 糖鎖を標識する方法及びキット
JP2022122455A (ja) 糖鎖を標識する方法及びキット
JP2024060941A (ja) 糖鎖を標識する方法及びキット
JP2013076649A (ja) 単糖分析用試料の製造方法
JP2015040817A (ja) 糖タンパク質試料の調製方法
JP2017025177A (ja) 組成物、組成物の製造方法、糖鎖試料の調製方法及び糖鎖の分析方法
EP4316625A1 (en) Method for producing carrier for chromatographic use, method for producing chromatography column, and carrier for chromatographic use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15827539

Country of ref document: EP

Kind code of ref document: A1