WO2016016976A1 - 放電加工方法及び放電加工機 - Google Patents

放電加工方法及び放電加工機 Download PDF

Info

Publication number
WO2016016976A1
WO2016016976A1 PCT/JP2014/070124 JP2014070124W WO2016016976A1 WO 2016016976 A1 WO2016016976 A1 WO 2016016976A1 JP 2014070124 W JP2014070124 W JP 2014070124W WO 2016016976 A1 WO2016016976 A1 WO 2016016976A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
electric discharge
electrode
die
discharge machining
Prior art date
Application number
PCT/JP2014/070124
Other languages
English (en)
French (fr)
Inventor
神谷 聖人
英隆 加藤木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/319,405 priority Critical patent/US9849530B2/en
Priority to PCT/JP2014/070124 priority patent/WO2016016976A1/ja
Priority to DE112014006780.6T priority patent/DE112014006780B4/de
Priority to JP2015527699A priority patent/JP5908176B1/ja
Priority to CN201480080853.9A priority patent/CN106536107B/zh
Publication of WO2016016976A1 publication Critical patent/WO2016016976A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/22Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/105Wire guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2500/00Holding and positioning of tool electrodes
    • B23H2500/20Methods or devices for detecting wire or workpiece position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/006Cavity sinking

Definitions

  • the present invention relates to an electric discharge machining method and an electric discharge machine capable of reducing an electrode completion waiting time when a core pin is manufactured.
  • the connector for connecting electronic devices is formed by resin injection molding (see Patent Document 1).
  • a die-sinking electric discharge machine is used for processing a core pin for providing a hole in a resin molded product.
  • the electrode used in the die-sinking electric discharge machine is generally made by cutting, grinding, or wire electric discharge machining.
  • the present invention has been made in view of the above, and an object thereof is to reduce an electrode completion waiting time when a core pin is manufactured.
  • the present invention provides an electric discharge machining for machining a core pin for a resin mold using an electric discharge machine equipped with a secondary electrode for forming a round bar-shaped machining electrode.
  • the electric discharge machining method according to the present invention has an effect of reducing the electrode completion waiting time when the core pin is manufactured.
  • molding for creation electric discharge machining of a processing electrode Perspective view showing an example of generative electrical discharge machining
  • molding for die-sinking electric discharge machining of a processing electrode Perspective view showing an example of die-sinking electrical discharge machining
  • a perspective view showing an example of a workpiece after machining is completed
  • molding a process electrode for die-sinking discharge in Embodiment 1 A perspective view showing an example of a machining electrode having a plurality of transfer shapes
  • FIG. Side view showing an example of a region occupied by a machining electrode when the machining electrode formed for die-cutting electric discharge machining is rotated by a C-axis motor
  • the side view which shows another example of the area
  • FIG. 1 is a configuration diagram of an electric discharge machine according to Embodiment 1 of the present invention.
  • the electric discharge machine 100 includes a control unit 101, a machining power source 102, an X-axis servo amplifier 103, a Y-axis servo amplifier 104, a Z-axis servo amplifier 105, a C-axis amplifier 106, an X-axis servo motor 107, a Y-axis servo motor 108, Z It has an axis servo motor 109, a machining head 120, and a work table 112.
  • the machining head 120 includes a C-axis motor 110 and an electrode holder 111.
  • the work table 112 is a table on which a work 130 as a workpiece is placed, and the X axis and the Y axis of the electric discharge machine 100 are parallel to the placement surface 112a on which the work 130 is placed.
  • the Z axis of the electric discharge machine 100 extends in a direction perpendicular to the mounting surface 112a of the work table 112.
  • the C axis of the electric discharge machine 100 extends in a direction parallel to the Z axis. That is, the X direction is the left-right direction when the electric discharge machine 100 is viewed from the front.
  • the Y direction is the front-rear direction when the electric discharge machine 100 is viewed from the front.
  • the Z direction is a vertical direction when the electric discharge machine 100 is viewed from the front. Note that the front-rear direction when the electric discharge machine 100 is viewed from the front may be the X direction, and the left-right direction may be the Y direction.
  • the control unit 101 executes a numerical control program input from the computer-aided design and manufacturing apparatus 200, and controls the operation of each unit of the electric discharge machine 100.
  • the X-axis servo amplifier 103 outputs a movement amount in the X direction to the X-axis servo motor 107 based on a position command from the control unit 101.
  • the Y-axis servo amplifier 104 outputs the amount of movement in the Y direction to the Y-axis servo motor 108 based on the position command from the control unit 101.
  • the Z-axis servo amplifier 105 outputs a movement amount in the Z direction to the Z-axis servo motor 109 based on a position command from the control unit 101.
  • the X-axis servo motor 107 moves based on the movement amount input from the X-axis servo amplifier 103 to move the machining head 120 in the X direction.
  • the Y-axis servo motor 108 moves based on the amount of movement input from the Y-axis servo amplifier 104 to move the machining head 120 in the Y direction.
  • the Z-axis servo motor 109 moves based on the movement amount input from the Z-axis servo amplifier 105 to move the machining head 120 in the Z direction.
  • the C-axis amplifier 106 outputs a rotation angle to the C-axis motor 110 that rotates the electrode holder 111.
  • the C-axis motor 110 rotates the electrode holder 111 based on the rotation angle input from the C-axis amplifier 106.
  • the electrode holder 111 holds a machining electrode 140 for electric discharge machining or a reference electrode 141 for positioning the workpiece 130.
  • the processing electrode 140 has a round bar shape, but can be formed into another shape using the secondary electrode 131 as will be described later.
  • a specific example of the material of the processing electrode 140 can be copper.
  • Another specific example of the material of the processing electrode 140 may include a copper-tungsten alloy.
  • the processing electrode 140 is held by the electrode holder 111 so that the central axis is located on the rotation axis of the C axis. When the electrode holder 111 is rotated by the C-axis motor 110, the machining electrode 140 or the reference electrode 141 held by the electrode holder 111 is also rotated together with the electrode holder 111.
  • the C-axis extends in a direction parallel to the Z-axis, when the electrode holder 111 is rotated by the C-axis motor 110, the machining electrode 140 or the reference electrode 141 held by the electrode holder 111 is orthogonal to the XY plane.
  • the direction of rotation is the rotation axis.
  • the work table 112 is provided with a secondary electrode 131 used for forming the work 130 and the machining electrode 140.
  • a specific example of the material of the secondary electrode 131 is a copper-tungsten alloy.
  • the work table 112 includes a reference sphere 112b for aligning the machining electrode 140.
  • the machining power supply 102 applies a pulse voltage for electric discharge machining between the electrode holder 111 and the work table 112 based on the machining conditions input from the control unit 101. Depending on the voltage applied by the machining power supply 101, the electric discharge machining of the workpiece 130 by the machining electrode 140 or the electric discharge machining of the machining electrode 140 by the secondary electrode 131 is performed.
  • the computer-aided design and manufacturing apparatus 200 creates a numerical control program that is executed when the electric discharge machine 100 processes a core pin for a resin mold.
  • the computer-aided design and manufacturing apparatus 200 controls the machine tool 300 to execute an operation for processing the secondary electrode 131.
  • the machine tool 300 is a general machine tool, and examples thereof include a cutting device, a grinding device, and a wire electric discharge machine, but may be a different type of machine tool.
  • FIG. 2 is a flowchart showing a flow of pre-processing operations for core pin machining by a computer-aided design and manufacturing apparatus.
  • the computer-aided design and manufacturing apparatus 200 analyzes a process of forming the work 130 into a core pin for a resin mold, and analyzes the shape data of the work 130 after the creation electric discharge machining, The shape data of the workpiece 130 is created.
  • work 130 after generating electric discharge machining is a rough shape of a core pin
  • work 130 after die-sinking electric discharge machining is the shape of the completed core pin.
  • the computer-aided design and manufacturing apparatus 200 designs the secondary electrode 131 used for forming the machining electrode 140 based on the shape data of the work 130 after the die-sinking electric discharge machining.
  • the secondary electrode 131 is designed to include all the shape elements used when forming the machining electrode 140 for die-sinking electric discharge machining and a flat surface used when shaping the machining electrode 140 for generating electric discharge machining. Is done.
  • the “shape element” is a surface for forming on the machining electrode 140 a shape to be transferred to the workpiece 130 by die-sinking electric discharge machining.
  • the processing electrode 140 can be formed not only with a transfer shape of the shape element included in the secondary electrode 131 but also with a shape obtained by combining a plurality of shape elements. For example, if a shape formed by two surfaces is transferred from the machining electrode 140 to the workpiece 130 by die-sinking electric discharge machining, the machining electrode 140 is formed by using two shape elements of the secondary electrode 131. Molded for carved electrical discharge machining. After the design of the secondary electrode 131 is completed, the computer-aided design and manufacturing apparatus 200 controls the machine tool 300 to create the secondary electrode 131 in step S103.
  • FIG. 3 is a side view showing an example of the secondary electrode
  • FIGS. 4 and 5 are cross-sectional views showing examples of the secondary electrode.
  • 4 shows a cross section taken along the line IV-IV in FIG. 3
  • FIG. 5 shows a cross section taken along the line VV in FIG.
  • the secondary electrode 131 includes four shape elements 131a, 131b, 131c, and 131d and a flat surface 131e.
  • FIG. 6 is a flowchart showing a flow of operations of the electric discharge machine according to the first embodiment.
  • step S ⁇ b> 201 the worker installs the workpiece 130 and the secondary electrode 131 on the workpiece table 112 shown in FIG. 1, and attaches the reference electrode 141 to the electrode holder 111.
  • step S202 processing of the core pin is started.
  • the control unit 101 positions the workpiece 130 in step S203. As an example, the control unit 101 brings the reference electrode 141 attached to the electrode holder 111 shown in FIG.
  • the posture of the work 130 is the inclination of the work 130 in the XY plane, that is, the deviation between the direction of the XY axis of the electric discharge machine 100 and the vertical and horizontal directions of the work 130.
  • the control unit 101 determines that the direction specified by the control program input from the computer-aided design and manufacturing apparatus 200 is an angle corresponding to the deviation between the vertical and horizontal directions of the workpiece 130 and the XY axis direction of the electric discharge machine 100.
  • step S204 the control unit 101 replaces the electrode held by the electrode holder 111 from the reference electrode 141 to the processing electrode 140, and brings the processing electrode 140 into contact with the reference sphere 112b from the + Z direction, thereby processing electrode 140. Position in the Z direction.
  • the control unit 101 determines in step S205 whether or not creation electrical discharge machining is included in the machining created by the core pin.
  • the control unit 101 shapes the machining electrode 140 for generating electric discharge machining in step S206.
  • the control unit 101 outputs a position command indicating the forming position to the X-axis servo amplifier 103, the Y-axis servo amplifier 104, and the Z-axis servo amplifier 105, and also outputs the C-axis.
  • the rotation angle is output to the amplifier 106.
  • the control unit 101 instructs a voltage to be applied between the work table 112 and the machining head 120.
  • FIG. 7 is a perspective view showing an example of forming a machining electrode for generating electric discharge machining.
  • the processing electrode 140 held by the electrode holder 111 rotates with a direction orthogonal to the XY plane as a rotation axis.
  • the C-axis motor 110 is driven to rotate the machining electrode 140 around the C-axis, By moving the processing electrode 140 so as to trace the flat surface 131e of the next electrode 131, the lower end of the processing electrode 140 is processed flat.
  • the control unit 101 After processing the lower end of the machining electrode 140 to be flat, the control unit 101 performs generating electric discharge machining in step S207.
  • the control unit 101 When performing generating electric discharge machining, the control unit 101 outputs a position command indicating a machining position and a machining depth to the X-axis servo amplifier 103, the Y-axis servo amplifier 104, and the Z-axis servo amplifier 105, and a C-axis amplifier 106. The rotation angle is output to.
  • the control unit 101 instructs a voltage to be applied between the work table 112 and the machining head 120.
  • FIG. 8 is a perspective view showing an example of generating electric discharge machining. In the generated electric discharge machining, as shown in FIG. 8, the rough shape of the core pin is cut out from the workpiece 130 by moving the machining electrode 140 while a voltage is applied to the workpiece table 112 and the machining head 120.
  • the control unit 101 forms a machining electrode for die-sinking electric discharge machining in step S208.
  • the control unit 101 outputs a position command indicating the forming position to the X-axis servo amplifier 103, the Y-axis servo amplifier 104, and the Z-axis servo amplifier 105, and C The rotation angle is output to the axis amplifier 106.
  • the control unit 101 instructs a voltage to be applied between the work table 112 and the machining head 120.
  • FIG. 9 is a perspective view showing an example of forming the machining electrode for die-sinking electric discharge machining.
  • the C-axis motor 110 is stopped while the voltage is applied to the work table 112 and the machining head 210, and the shape element 131a of the secondary electrode 131 is traced.
  • the transferred shape of the shape element 131 a of the secondary electrode 131 is formed on the processed electrode 140 by moving the processed electrode 140.
  • a plurality of shape elements 131a, 131b, 131c, and 131d are combined to form a shape to be transferred to the work 130 on the machining electrode 140.
  • the side surface of the processing electrode 140 can be processed into a flat surface by moving the processing electrode 140 along the side surface of the secondary electrode 131.
  • the processing electrode 140 can be formed into a prismatic shape.
  • step S209 the control unit 101 positions the machining electrode 140 in the Z direction by bringing the machining electrode 140 formed for die-sinking electric discharge machining into contact with the reference sphere 112b shown in FIG. 1 from the + Z direction.
  • the control unit 101 moves the machining head 120 so that the machining electrode 140 is disposed at the machining position in step S210, and then the workpiece table 112, the machining head 120, and the like. With the voltage applied to the workpiece 130, the machining electrode 140 is brought closer to the workpiece 130 from the + Z direction, so that the workpiece 130 is subjected to die-sinking electric discharge machining.
  • the control unit 101 When performing the die-sinking electric discharge machining, the control unit 101 outputs a position command indicating a forming position and a machining depth to the X-axis servo amplifier 103, the Y-axis servo amplifier 104, and the Z-axis servo amplifier 105, and a C-axis amplifier. The rotation angle is output to 106. In addition, the control unit 101 instructs a voltage to be applied between the work table 112 and the machining head 120.
  • FIG. 10 is a perspective view showing an example of die-sinking electric discharge machining.
  • the control unit 101 determines in step S211 whether or not the die-sinking electric discharge machining is completed. In step S211, the control unit 101 determines that the die-sinking electric discharge machining has been completed when the control unit 101 executes the numerical control program input from the computer-aided design and manufacturing apparatus 200 to the end.
  • step S211 / No the process proceeds to step S208, and the control unit 101 repeats steps S208 to S211 until the die-sinking electric discharge machining is completed.
  • the control unit 101 ends the processing (step S211 / Yes).
  • the control unit 101 repeats steps S208 to S211 to change the shape electrode transferred from the secondary electrode to the machining electrode in the process of forming the machining electrode for die machining electric discharge machining.
  • the step of forming for the purpose and the step of performing die-sinking electric discharge machining are performed a plurality of times.
  • step S209 when continuously performing the die-sinking electric discharge machining for transferring the same shape from the machining electrode 140 to the workpiece 130, the process proceeds to step S209 after step S211 / No, and the machining electrode 140 is used for die-sinking electric discharge machining. It is also possible to omit the forming process.
  • FIG. 11 is a perspective view showing an example of a workpiece after machining is completed.
  • the workpiece 130 is machined into the shape of the core pin by the control unit 101 transferring the shape of the machining electrode 140 to the workpiece 130 in which the outer shape of the core pin is cut out by generating electric discharge machining. .
  • an electric discharge machine in which a machining electrode for generating electric discharge machining and a machining electrode for die-sinking electric discharge machining are different will be described as a comparative example.
  • the electric discharge machine of the comparative example is the same as the electric discharge machine 100 of the first embodiment with respect to generating electric discharge machining with a round bar-shaped machining electrode.
  • FIG. 12 is a schematic view of an electrode for die-sinking electric discharge machining used by an electric discharge machine according to a comparative example.
  • the electric discharge machining electrode 40 used by the electric discharge machine of the comparative example has a structure in which a plurality of electrode portions 41a, 41b, and 41c protrude from the base portion 42, and the electrode portions 41a, 41b, and 41c are formed in the same shape. ing. Further, the holding portion 43 protrudes from the base portion 42 in a direction opposite to the direction in which the electrode portions 41 a, 41 b, 41 c protrude from the base portion 42. By holding the holding portion 43, the die-sinking electric discharge machining electrode is attached to an electrode holder included in the electric discharge machine of the comparative example.
  • the reason why the die-cut electric discharge machining electrode 40 is provided with the electrode portions 41a, 41b, 41c having the same shape is that it is not necessary to replace the die-cut electric discharge machining electrode 40 when transferring the same shape to a plurality of locations on the workpiece. Because. That is, when the electrode portion 41a is consumed, the die-cut electric discharge machining can be performed using another electrode portion 41b, 41c. Therefore, until the electrode portions 41a, 41b, 41c are all consumed, the electrode for die-cut electric discharge machining is used. Replacement of 40 is not necessary.
  • the machining electrode 40 having a structure in which a plurality of electrode portions 41a, 41b, and 41c protrude from the base portion 42 is removed by machining the portions between the electrode portions 41a, 41b, and 41c when forming the die-cut electric discharge machining electrode 40. Will be. In FIG. 12, a portion to be removed when forming the electrode for electric discharge machining EDM 40 is surrounded by a broken line.
  • the plurality of electrode portions 41 a, 41 b, 41 c include those formed at positions shifted from the holding portion 43. Therefore, when the electrode portions 41a, 41b, and 41c to be used are changed, prior to starting the die-cut electric discharge machining, not only the Z direction but also the X-direction and Y-direction of the die electric discharge machining electrode 40 are used. Positioning work is required.
  • the electrode 40 for die-sinking electric discharge machining has only the electrode portions 41a, 41b, and 41c having the same shape, when transferring another shape to the workpiece by die-sinking electric discharge machining, the electrode for die engraving electric discharge machining It is necessary to replace 40 with another electrode for electric discharge machining.
  • the electric discharge machine 100 uses the same machining electrode 140 for both the generation electric discharge machining and the die-sinking electric discharge machining, when the electric discharge machining is shifted from the electric discharge machining to the electric discharge electric discharge machining. Unlike the comparative example, the machining electrode 140 does not need to be replaced. Accordingly, the time required from the start of processing to the end of processing can be reduced as compared with a comparative example using different processing electrodes for generating electric discharge machining and die-sinking electric discharge machining.
  • the machining electrode 140 has a round bar shape and the central axis of the machining electrode 140 is positioned on the rotation axis of the C axis, it is not necessary to align the machining electrode 140 in the X direction and the Y direction. Even after the machining electrode 140 is formed for die-sinking electric discharge machining, the center of the round bar, which is the original shape of the machining electrode 140, is located on the rotation axis of the C axis. No alignment is required. Therefore, compared with the case where alignment of the machining electrode 140 in the X direction and the Y direction is required, the time required from the machining start to the machining end can be reduced.
  • FIG. 13 is a schematic diagram showing an example of a portion that is removed when the machining electrode is formed for die-sinking discharge in the first embodiment.
  • a portion to be removed when the machining electrode 140 is formed for die-sinking electric discharge machining is surrounded by a broken line.
  • a portion that is removed as compared with the machining electrode 40 having a structure in which the plurality of electrode portions 41a, 41b, 41c protrude from the base portion 42 shown in FIG. Becomes smaller. Thereby, the electrode material discarded without being used for electrical discharge machining can be reduced, and cost reduction can be achieved.
  • the machining electrode 140 can be formed into a plurality of different shapes by using the secondary electrode 131 having a plurality of shape elements, the die-cut electric discharge machining for transferring the different shapes to the workpiece 130 is performed by one machining electrode 140. Can be done. Therefore, even when the die-sinking electric discharge machining for transferring another shape to the workpiece 130 after performing the die-sinking electric discharge machining for transferring a certain shape from the machining electrode 140 to the workpiece 130, it is only necessary to re-shape the machining electrode 140. Since it is not necessary to replace the machining electrode 140, the time required from the machining start to the machining end can be reduced as compared with the case where the electrode exchange is necessary.
  • the processing electrode 140 can have a plurality of transfer shapes at the same time.
  • FIG. 14 is a perspective view showing an example of a processing electrode having a plurality of transfer shapes.
  • the machining electrode when the machining electrode is formed for generating electric discharge machining, the lower end portion is processed flat.
  • the diameter of the machining electrode may be reduced by forming for generating electric discharge machining.
  • the electric discharge machine 100 performs a creation electric discharge machining that cuts a rough shape of the core pin from the work 130 with the machining electrode 140, and transfers the shape element of the secondary electrode 131 to the machining electrode 140.
  • the machining electrode 140 is formed for die-sinking electric discharge machining, and the machining electrode 140 shaped for die-sinking electric discharge machining is used to perform die-sinking electric discharge machining on the workpiece 130 cut out to the approximate shape of the core pin.
  • FIG. 15 is a flowchart showing a flow of operations of the electric discharge machine according to the second embodiment.
  • the operation from step S301 to S310 is the same as the operation from step S201 to S210 in the first embodiment.
  • the control unit 101 determines in step S311 whether or not machining is completed. When the machining is not completed (step S311 / No), the control unit 101 determines in step S312 whether the next machining is die-sinking electric discharge machining.
  • step S312 / Yes If the next machining is die-sinking electric discharge machining (step S312 / Yes), the control unit 101 forms the machining electrode 140 for die-sinking electric discharge machining (step S308), and positions the machining electrode 140 in the Z direction. (Step S309) and die-sinking electric discharge machining is performed (step S310). If the next processing is generating electric discharge machining (step S312 / No), the control unit 101 forms the processing electrode 140 for generating electric discharge machining (step S306) and then performs generating electric discharge processing (step S307).
  • the second embodiment even if it is necessary to perform generating electric discharge machining after performing die-sinking electric discharge machining, it is only necessary to re-form the machining electrode 140, and replacement of the machining electrode 140 is not necessary. Compared to the case where replacement is necessary, the time required from the start of processing to the end of processing can be reduced.
  • FIG. 16 is a side view showing an example of a region occupied by a machining electrode when the machining electrode formed for die-sinking electric discharge machining is rotated by a C-axis motor. Since the region 150 occupied by the machining electrode 140 rotated around the C-axis has a cylindrical shape, the EDM is performed by driving the C-axis motor 110 and rotating the machining electrode 140 to generate EDM. The forming for can be omitted.
  • FIG. 17 is a side view showing another example of a region occupied by a machining electrode when the machining electrode formed for die-sinking electric discharge machining is rotated by a C-axis motor. Since the region 160 occupied by the machining electrode 140 rotated around the C-axis is not cylindrical, it is necessary to form the machining electrode 140 for generating electric discharge machining in order to perform generating electric discharge machining after die-sinking electric discharge machining. There is.
  • the machining start is started compared with the case where the electrode needs to be exchanged. The time required to complete the processing can be reduced.
  • Electrode for EDM 41a, 41b, 41c Electrode, 42 Base, 43 Holding Unit, 100 Electrical Discharge Machine, 101 Control Unit, 102 Machining Power Supply, 103 X-axis Servo Amplifier, 104 Y-axis Servo Amplifier, 105 Z Axis servo amplifier, 106 C axis amplifier, 107 X axis servo motor, 108 Y axis servo motor, 109 Z axis servo motor, 110 C axis motor, 111 electrode holder, 112 work table, 112a mounting surface, 112b reference ball, 120 Machining head, 130 workpiece, 131 secondary electrode, 131a, 131b, 131c, 131d shape element, 131e flat surface, 140 machining electrode, 141 reference electrode, 150, 160, region occupied by machining electrode rotated around C axis, 200 Computer-aided design and manufacturing equipment 300 machine tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

丸棒状の加工電極(140)の成形用に二次電極(131)を備えた放電加工機(100)を用いて樹脂金型用のコアピンを加工する放電加工方法であって、加工電極(140)でワーク(130)からコアピンの概略形状を削り出す創成放電加工を実行する工程と、加工電極(140)に、二次電極(131)の形状要素を転写して、加工電極(140)を型彫放電加工用に成形する工程と、型彫放電加工用に成形した加工電極(140)を用いて、コアピンの概略形状を削り出したワーク(130)に型彫放電加工を施す工程とを有することで、コアピン製造時の電極完成待ち時間を低減する。

Description

放電加工方法及び放電加工機
 本発明は、コアピン製造時の電極完成待ち時間を低減できる放電加工方法及び放電加工機に関する。
 電子機器の接続用のコネクタは、樹脂の射出成形で形成されている(特許文献1参照)。樹脂成形品に穴を設けるためのコアピンの加工には、型彫放電加工機が用いられている。型彫放電加工機で使用される電極は、切削加工、研削加工又はワイヤ放電加工で作成されることが一般的である。
特開2006-032234号公報
 コアピンの型彫放電加工では、複数の工程が存在することが一般的であり、コアピン1本を加工するに当たって複数の工程全ての電極を準備する必要がある。従って、複数の工程の中に電極の準備ができていない工程が一つでもあると、コアピンの加工を完了することができないため、リードタイムが長くなってしまう。
 本発明は、上記に鑑みてなされたものであって、コアピン製造時の電極完成待ち時間を低減することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、丸棒状の加工電極の成形用に二次電極を備えた放電加工機を用いて樹脂金型用のコアピンを加工する放電加工方法であって、加工電極でワークからコアピンの概略形状を削り出す創成放電加工を実施する工程と、加工電極に、二次電極の形状要素を転写して、加工電極を型彫放電加工用に成形する工程と、型彫放電加工用に成形した加工電極を用いて、コアピンの概略形状を削り出したワークに型彫放電加工を施す工程とを有することを特徴とする。
 本発明に係る放電加工方法は、コアピン製造時の電極完成待ち時間を低減することができるという効果を奏する。
本発明の実施の形態1に係る放電加工機の構成図 コンピュータ支援設計及び製造装置によるコアピン加工の前処理の動作の流れを示すフローチャート 二次電極の一例を示す側面図 二次電極の一例を示す断面図 二次電極の一例を示す断面図 実施の形態1に係る放電加工機の動作の流れを示すフローチャート 加工電極の創成放電加工用の成形の一例を示す斜視図 創成放電加工の一例を示す斜視図 加工電極の型彫放電加工用の成形の一例を示す斜視図 型彫放電加工の一例を示す斜視図 加工完了後のワークの一例を示す斜視図 比較例の放電加工機が用いる型彫放電加工用の加工電極の模式図 実施の形態1において加工電極を型彫放電用に成形する際に除去される部分の一例を示す模式図 複数の転写形状を持たせた加工電極の一例を示す斜視図 実施の形態2に係る放電加工機の動作の流れを示すフローチャート 型彫放電加工用に成形した加工電極をC軸モータで回転させた場合に加工電極が占める領域の一例を示す側面図 型彫放電加工用に成形した加工電極をC軸モータで回転させた場合に加工電極が占める領域の別の一例を示す側面図
 以下に、本発明に係る放電加工機及び放電加工方法の実施の形態を図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る放電加工機の構成図である。放電加工機100は、制御部101、加工電源102、X軸サーボアンプ103、Y軸サーボアンプ104、Z軸サーボアンプ105、C軸アンプ106、X軸サーボモータ107、Y軸サーボモータ108、Z軸サーボモータ109、加工ヘッド120及びワーク台112を有する。加工ヘッド120は、C軸モータ110及び電極ホルダ111を備える。
 ワーク台112は、被加工物であるワーク130を載置する台であり、放電加工機100のX軸及びY軸は、ワーク130が載置される載置面112aと平行になっている。なお、放電加工機100のZ軸はワーク台112の載置面112aと垂直な方向に延びている。放電加工機100のC軸は、Z軸と平行な方向に延びている。すなわち、X方向とは、放電加工機100を正面視したときの左右方向である。Y方向とは、放電加工機100を正面視したときの前後方向である。Z方向とは、放電加工機100を正面視したときの上下方向である。なお、放電加工機100を正面視したときの前後方向がX方向で、左右方向がY方向であっても良い。
 制御部101は、コンピュータ支援設計及び製造装置200から入力される数値制御プログラムを実行して、放電加工機100の各部の動作を制御する。X軸サーボアンプ103は、制御部101からの位置指令に基づいてX軸サーボモータ107にX方向の移動量を出力する。Y軸サーボアンプ104は、制御部101からの位置指令に基づいてY軸サーボモータ108にY方向の移動量を出力する。Z軸サーボアンプ105は、制御部101からの位置指令に基づいてZ軸サーボモータ109にZ方向の移動量を出力する。X軸サーボモータ107は、X軸サーボアンプ103から入力される移動量に基づいて回転することにより加工ヘッド120をX方向へ移動させる。Y軸サーボモータ108は、Y軸サーボアンプ104から入力される移動量に基づいて回転することにより加工ヘッド120をY方向へ移動させる。Z軸サーボモータ109は、Z軸サーボアンプ105から入力される移動量に基づいて回転することにより加工ヘッド120をZ方向へ移動させる。
 C軸アンプ106は、電極ホルダ111を回転させるC軸モータ110に回転角度を出力する。C軸モータ110は、C軸アンプ106から入力される回転角度に基づいて電極ホルダ111を回転させる。
 電極ホルダ111は、放電加工用の加工電極140又はワーク130の位置決め用の基準電極141を保持する。加工電極140は、丸棒状であるが、後段で説明するように、二次電極131を用いて別の形状に成形可能である。加工電極140の材料の具体例には、銅を挙げることができる。加工電極140の材料の別の具体例には、銅-タングステン合金を挙げることができる。加工電極140は、中心軸がC軸の回転軸上に位置するように電極ホルダ111に保持される。C軸モータ110によって電極ホルダ111が回転すると、電極ホルダ111に保持されている加工電極140又は基準電極141も電極ホルダ111とともに回転する。C軸はZ軸と平行な方向に延びているため、C軸モータ110によって電極ホルダ111が回転すると、電極ホルダ111に保持されている加工電極140又は基準電極141は、XY平面に対して直交する方向が回転軸となって回転する。
 ワーク台112には、ワーク130及び加工電極140の成形に用いる二次電極131が設置される。二次電極131の材料の具体例には、銅-タングステン合金を挙げることができる。ワーク台112は、加工電極140の位置合わせ用の基準球112bを備えている。
 加工電源102は、制御部101から入力される加工条件に基づいて、電極ホルダ111とワーク台112との間に放電加工用のパルス電圧を印加する。加工電源101が印加する電圧によって、加工電極140によるワーク130の放電加工又は二次電極131による加工電極140の放電加工が行われる。
 コンピュータ支援設計及び製造装置200は、放電加工機100が樹脂金型用のコアピンの加工を行う際に実行する数値制御プログラムを作成する。また、コンピュータ支援設計及び製造装置200は、工作機械300を制御して二次電極131を加工する動作を実行させる。工作機械300は、一般的な工作機械であり、切削加工装置、研削加工装置及びワイヤ放電加工装置を例に挙げることができるが、これらとは異なる種類の工作機械であっても良い。
 図2は、コンピュータ支援設計及び製造装置によるコアピン加工の前処理の動作の流れを示すフローチャートである。まず、コンピュータ支援設計及び製造装置200は、ステップS102において、ワーク130を樹脂金型用のコアピンに成形する加工を解析し、創成放電加工後のワーク130の形状データと、型彫放電加工後のワーク130の形状データとを作成する。なお、創成放電加工後のワーク130の形状は、コアピンの概略形状であり、型彫放電加工後のワーク130の形状は、完成したコアピンの形状である。
 次に、コンピュータ支援設計及び製造装置200は、ステップS102において、型彫放電加工後のワーク130の形状データに基づいて、加工電極140の成形に用いる二次電極131を設計する。二次電極131は、加工電極140を型彫放電加工用に成形する際に使用する全ての形状要素と加工電極140を創成放電加工用に成形する際に使用する平坦面とを含むように設計される。ここでの「形状要素」とは、型彫放電加工によってワーク130に転写する形状を加工電極140に形成するための面である。加工電極140には、二次電極131が備える形状要素の転写形状を形成するだけでなく、複数の形状要素を複合させた形状に成形することも可能である。一例を挙げると、二つの面で構成される形状を型彫放電加工で加工電極140からワーク130へ転写するのであれば、加工電極140は、二次電極131の二つの形状要素を用いて型彫放電加工用に成形される。二次電極131の設計が完了したのち、コンピュータ支援設計及び製造装置200は、ステップS103において、工作機械300を制御して二次電極131を作成する。
 図3は、二次電極の一例を示す側面図、図4及び図5は、二次電極の一例を示す断面図である。図4は、図3におけるIV-IV線に沿った断面を示し、図5は、図3におけるV-V線に沿った断面を示している。二次電極131は、四つの形状要素131a,131b,131c,131dと平坦面131eとを備えている。
 図6は、実施の形態1に係る放電加工機の動作の流れを示すフローチャートである。まず、作業者は、ステップS201において、図1に示すワーク台112にワーク130及び二次電極131を設置し、電極ホルダ111に基準電極141を取り付ける。ワーク130、二次電極131及び基準電極141の設置が完了したら、ステップS202において、コアピンの加工を開始する。加工を開始したら、制御部101は、ステップS203において、ワーク130の位置決めをする。一例を挙げると、制御部101は、図1に示す電極ホルダ111に取り付けられた基準電極141を、±X、±Y及び+Zの各方向からワーク130に接触させることにより、ワーク台112上でのワーク130の位置及び姿勢を測定する。ここでのワーク130の姿勢とは、XY平面内でのワーク130の傾き、すなわち放電加工機100のXY軸の方向とワーク130の縦横方向とのずれである。
 XY平面内でのワーク130の傾きを測定することにより、ワーク130の縦横方向と放電加工機100のXY軸の方向とがずれていても、傾きを補正して加工を行うことができる。すなわち、制御部101は、コンピュータ支援設計及び製造装置200から入力された制御プログラムによって指定される方向とは、ワーク130の縦横方向と放電加工機100のXY軸の方向とのずれに相当する角度分ずらした方向に加工ヘッド120を移動させて加工を行うことで、ワーク130の傾きを補正しながらワーク130に対して創成放電加工及び型彫放電加工を行うことができる。
 次に、制御部101は、ステップS204において、電極ホルダ111に保持させる電極を基準電極141から加工電極140に交換し、加工電極140を+Z方向から基準球112bに接触させることにより、加工電極140のZ方向の位置決めをする。
 加工電極140の位置決めが完了したら、制御部101は、ステップS205において、コアピンの作成する加工に創成放電加工が含まれるか否かを判断する。コアピンを作成する加工に創成放電加工が含まれる場合(ステップS205/Yes)、制御部101は、ステップS206において、加工電極140を創成放電加工用に成形する。加工電極140を創成放電加工用に成形する際に、制御部101は、X軸サーボアンプ103、Y軸サーボアンプ104及びZ軸サーボアンプ105に成形位置を示す位置指令を出力するとともに、C軸アンプ106に回転角度を出力する。また、制御部101は、ワーク台112と加工ヘッド120との間に印加する電圧を指示する。
 図7は、加工電極の創成放電加工用の成形の一例を示す斜視図である。電極ホルダ111に保持されている加工電極140は、C軸モータ110によってC軸回りに電極ホルダ111が回転すると、XY平面に対して直交する方向が回転軸となって回転する。加工電極140を創成放電加工用に成形する場合、ワーク台112と加工ヘッド120とに電圧を印加した状態で、C軸モータ110を駆動して加工電極140をC軸回りに回転させつつ、二次電極131の平坦面131eをなぞるように加工電極140を移動させることで、加工電極140の下端が平坦に加工される。
 加工電極140の下端を平坦に加工したのち、制御部101は、ステップS207において、創成放電加工を行う。創成放電加工を行う際に、制御部101は、X軸サーボアンプ103、Y軸サーボアンプ104及びZ軸サーボアンプ105に加工位置及び加工深さを示す位置指令を出力するとともに、C軸アンプ106に回転角度を出力する。また、制御部101は、ワーク台112と加工ヘッド120との間に印加する電圧を指示する。図8は、創成放電加工の一例を示す斜視図である。創成放電加工においては、図8に示すように、ワーク台112と加工ヘッド120とに電圧を印加した状態で、加工電極140を移動させることで、コアピンの概略形状をワーク130から削り出す。
 創成放電加工が完了したら、制御部101は、ステップS208において、型彫放電加工用に加工電極を成形する。加工電極140を型彫放電加工用に成形する際に、制御部101は、X軸サーボアンプ103、Y軸サーボアンプ104及びZ軸サーボアンプ105に成形位置を示す位置指令を出力するとともに、C軸アンプ106に回転角度を出力する。また、制御部101は、ワーク台112と加工ヘッド120との間に印加する電圧を指示する。図9は、加工電極の型彫放電加工用の成形の一例を示す斜視図である。加工電極140を型彫放電加工用に成形する場合、ワーク台112と加工ヘッド210とに電圧を印加した状態で、C軸モータ110は停止させたまま二次電極131の形状要素131aをなぞるように加工電極140を移動させることで、加工電極140に二次電極131の形状要素131aの転写形状を形成する。形状要素131a,131b,131c,131dを複数組み合わせて、加工電極140にワーク130に転写する形状を形成する。
 なお、二次電極131の側面に沿って加工電極140を移動させることで、加工電極140の側面を平面に加工することができる。例えば、加工電極140を角柱状に成形することもできる。
 制御部101は、ステップS209において、型彫放電加工用に成形済の加工電極140を、+Z方向から図1に示す基準球112bに接触させることにより、加工電極140のZ方向の位置決めをする。
 加工電極140のZ方向の位置決めが完了したら、制御部101は、ステップS210において、加工電極140が加工位置に配置されるように加工ヘッド120を移動させたのち、ワーク台112と加工ヘッド120とに電圧を印加した状態で、加工電極140を+Z方向からワーク130に近づけることで、ワーク130に型彫放電加工を施す。型彫放電加工を施す際に、制御部101は、X軸サーボアンプ103、Y軸サーボアンプ104及びZ軸サーボアンプ105に成形位置及び加工深さを示す位置指令を出力するとともに、C軸アンプ106に回転角度を出力する。また、制御部101は、ワーク台112と加工ヘッド120との間に印加する電圧を指示する。
 図10は、型彫放電加工の一例を示す斜視図である。ワーク台112と加工ヘッド120とに電圧を印加した状態において、加工電極140をZ方向に移動させることで、加工電極140の形状をワーク130に転写する。型彫放電加工により加工電極140の形状をワーク130へ転写したら、制御部101はステップS211において、型彫放電加工が完了したか否かを判断する。ステップS211では、制御部101は、コンピュータ支援設計及び製造装置200から入力された数値制御プログラムを制御部101が最後まで実行した場合に、型彫放電加工が完了したと判断する。型彫放電加工が完了していない場合(ステップS211/No)、ステップS208へ進み、制御部101は、型彫放電加工が完了するまでステップS208からステップS211を繰り返す。型彫放電加工が完了したら、制御部101は(ステップS211/Yes)処理を終了する。制御部101は、ステップS208からS211を繰り返すことにより、加工電極を型彫放電加工用に成形する工程において、二次電極から加工電極に転写する形状要素を変えながら、加工電極を型彫放電加工用に成形する工程と、型彫放電加工を実行する工程とを複数回行う。
 なお、同じ形状を加工電極140からワーク130へ転写する型彫放電加工を連続して行う場合には、ステップS211/Noの後ステップS209へ進むようにし、加工電極140を型彫放電加工用に成形する処理を省略することも可能である。
 図11は、加工完了後のワークの一例を示す斜視図である。創成放電加工でコアピンの外形が削り出されたワーク130に対して、制御部101が型彫放電加工を施して加工電極140の形状を転写することにより、ワーク130はコアピンの形状に加工される。
 ここで、創成放電加工用の加工電極と型彫放電加工用の加工電極とが別である放電加工機を比較例にあげて説明する。比較例の放電加工機は、丸棒状の加工電極で創成放電加工を行うことについては実施の形態1の放電加工機100と同様である。
 図12は、比較例の放電加工機が用いる型彫放電加工用電極の模式図である。比較例の放電加工機が用いる型彫放電加工用電極40は、複数の電極部41a,41b,41cが基部42から突出した構造であり、各電極部41a,41b,41cは同じ形状に成形されている。また、基部42からは電極部41a,41b,41cが基部42から突出する方向とは反対方向に保持部43が突出している。保持部43が保持されることにより、型彫放電加工用電極は、比較例の放電加工機が備える電極ホルダに取り付けられる。型彫放電加工用電極40が同じ形状の電極部41a,41b,41cを備えているのは、同じ形状をワークの複数箇所に転写する際に型彫放電加工用電極40の交換を不要とするためである。すなわち、電極部41aが消耗した場合には、別の電極部41b,41cを用いて型彫放電加工を行えるため、電極部41a,41b,41cが全て消耗するまでは、型彫放電加工用電極40の交換は不要である。
 基部42から複数の電極部41a,41b,41cを突出させる構造の加工電極40は、型彫放電加工用電極40を作成する際に電極部41a,41b,41c同士の間の部分が加工によって除去されてしまう。図12では、型彫放電加工用電極40を作成する際に除去される部分を破線で囲んで示している。
 また、複数の電極部41a,41b,41cの中には、保持部43とずれた位置に形成されるものが含まれる。したがって、使用する電極部41a,41b,41cを変更する場合には、型彫放電加工を開始するのに先だって、Z方向だけでなく、X方向及びY方向についても型彫放電加工用電極40の位置決め作業が必要となる。
 さらに、型彫放電加工用電極40は、同じ形状の電極部41a,41b,41cしか備えていないため、別の形状を型彫放電加工でワークに転写する場合には、型彫放電加工用電極40を別の型彫放電加工用電極に交換する必要がある。
 これに対し、実施の形態1に係る放電加工機100は、同じ加工用電極140を創成放電加工及び型彫放電加工の両方に使用するため、創成放電加工から型彫放電加工へ移行する際に、比較例とは異なり、加工電極140の交換が不要である。従って、創成放電加工と型彫放電加工とで異なる加工電極を使用する比較例と比較して加工開始から加工終了までに要する時間を低減できる。
 また、加工電極140は丸棒状であり、C軸の回転軸上に加工電極140の中心軸が位置するため、X方向及びY方向の加工電極140の位置合わせが不要である。加工電極140を型彫放電加工用に成形した後でも、加工電極140の元の形状である丸棒の中心はC軸の回転軸上に位置していたため、X方向及びY方向の加工電極140の位置合わせは不要である。従って、加工電極140のX方向及びY方向の位置合わせが必要となる場合と比較して、加工開始から加工終了までに要する時間を低減できる。
 図13は、実施の形態1において加工電極を型彫放電用に成形する際に除去される部分の一例を示す模式図である。図13では、加工電極140を型彫放電加工用に成形する際に除去される部分を破線で囲んで示している。棒状の加工電極140を型彫放電加工用に成形するため、図12に示した基部42から複数の電極部41a,41b,41cを突出させる構造の加工電極40と比較すると、除去されてしまう部分は小さくなる。これにより、放電加工に使用されずに廃棄される電極材料を削減し、低コスト化を図ることができる。
 また、複数の形状要素を有する二次電極131を用いることで、加工電極140を異なる複数の形状に成形可能となるため、異なる形状をワーク130に転写する型彫放電加工を一つの加工電極140で行うことができる。従って、ある形状を加工電極140からワーク130に転写する型彫放電加工を行った後に別の形状をワーク130に転写する型彫放電加工を行う場合でも、加工電極140を成形し直すだけで良く、加工電極140の交換は不要であるため、電極の交換が必要な場合と比較して加工開始から加工終了までに要する時間を低減できる。
 なお、加工電極140に同時に複数の転写形状を持たせることも可能である。図14は、複数の転写形状を持たせた加工電極の一例を示す斜視図である。加工電極140に複数の転写形状同時に持たせることで、ある形状を加工電極140からワーク130に転写する型彫放電加工を行った後に別の形状を加工電極140からワーク130に転写する型彫放電加工を行う場合に、加工電極140を成形し直す必要が無くなる。従って、加工電極140を成形し直す場合と比較して、加工終了までに要する時間をさらに低減できる。
 また、上記の説明においては、加工電極を創成放電加工用に成形する際には下端部を平坦に加工するとしたが、創成放電加工用の成形で加工電極の直径を小さくしても良い。直径を小さくした加工電極を用いて創成放電加工を行うことで、元の加工電極のよりも径が小さい円弧を創成放電加工で形成することが可能となる。
 実施の形態1に係る放電加工機100は、加工電極140でワーク130からコアピンの概略形状を削り出す創成放電加工を実行し、加工電極140に、二次電極131の形状要素を転写して、加工電極140を型彫放電加工用に成形し、型彫放電加工用に成形した加工電極140を用いて、コアピンの概略形状に削り出されたワーク130に型彫放電加工を施すため、コアピン製造時に電極完成待ち時間が発生しない。このため、複数の電極を用いて創成放電加工及び型彫放電加工を行う場合と比較して、コアピンの加工終了までに要する時間を低減することが可能となる。
実施の形態2.
 本発明の実施の形態2に係る放電加工機の構成は実施の形態1と同様である。図15は、実施の形態2に係る放電加工機の動作の流れを示すフローチャートである。ステップS301からS310の動作は実施の形態1のステップS201からS210の動作と同様である。型彫放電加工により加工電極140の形状をワーク130へ転写したら、制御部101は、ステップS311において、加工が完了したか否かを判断する。加工完了でない場合は(ステップS311/No)、制御部101は、ステップS312において、次の加工が型彫放電加工であるかを判断する。次の加工が型彫放電加工であれば(ステップS312/Yes)、制御部101は、加工電極140を型彫放電加工用に成形し(ステップS308)、加工電極140のZ方向の位置決めを行って(ステップS309)、型彫放電加工を行う(ステップS310)。次の加工が創成放電加工であれば(ステップS312/No)、制御部101は、加工電極140を創成放電加工用に成形したのち(ステップS306)、創成放電加工を行う(ステップS307)。
 実施の形態2においては、型彫放電加工を行った後に創成放電加工を行う必要がある場合でも、加工電極140を成形し直すだけで良く、加工電極140の交換は不要であるため、電極の交換が必要な場合と比較して加工開始から加工終了までに要する時間を低減できる。
 なお、型彫放電加工用に成形した加工電極140をC軸モータ110で回転させた場合の回転体が元の丸棒と同じ円柱形状になる場合には、創成放電加工用の成形を省略することも可能である。図16は、型彫放電加工用に成形した加工電極をC軸モータで回転させた場合に加工電極が占める領域の一例を示す側面図である。C軸回りに回転させた加工電極140が占める領域150は、円柱形状となっているため、C軸モータ110を駆動して加工電極140を回転させながら創成放電加工を行うことで、創成放電加工用の成形を省略可能である。図17は、型彫放電加工用に成形した加工電極をC軸モータで回転させた場合に加工電極が占める領域の別の一例を示す側面図である。C軸回りに回転させた加工電極140が占める領域160は、円柱形状となっていないため、型彫放電加工後に創成放電加工を行うためには、加工電極140を創成放電加工用に成形する必要がある。
 実施の形態2によれば、型彫放電加工を行った後に創成放電加工を行う必要がある場合でも加工電極の交換は不要であるため、電極の交換が必要な場合と比較して加工開始から加工終了までに要する時間を低減できる。
 40 型彫放電加工用電極、41a,41b,41c 電極部、42 基部、43 保持部、100 放電加工機、101 制御部、102 加工電源、103 X軸サーボアンプ、104 Y軸サーボアンプ、105 Z軸サーボアンプ、106 C軸アンプ、107 X軸サーボモータ、108 Y軸サーボモータ、109 Z軸サーボモータ、110 C軸モータ、111 電極ホルダ、112 ワーク台、112a 載置面、112b 基準球、120 加工ヘッド、130 ワーク、131 二次電極、131a,131b,131c,131d 形状要素、131e 平坦面、140 加工電極、141 基準電極、150,160 C軸回りに回転させた加工電極が占める領域、200 コンピュータ支援設計及び製造装置、300 工作機械。

Claims (6)

  1.  丸棒状の加工電極の成形用に二次電極を備えた放電加工機を用いて樹脂金型用のコアピンを加工する放電加工方法であって、
     前記加工電極でワークから前記コアピンの概略形状を削り出す創成放電加工を実行する工程と、
     前記加工電極に、前記二次電極の形状要素を転写して、前記加工電極を型彫放電加工用に成形する工程と、
     型彫放電加工用に成形した加工電極を用いて、前記コアピンの概略形状に削り出されたワークに型彫放電加工を施す工程と
     を有することを特徴とする放電加工方法。
  2.  前記二次電極は、複数の形状要素を備えており、
     前記加工電極を前記型彫放電加工用に成形する工程において、前記二次電極から前記加工電極に転写する形状要素を変えながら、前記加工電極を型彫放電加工用に成形する工程と、前記型彫放電加工を実行する工程とを複数回繰り返すことを特徴とする請求項1に記載の放電加工方法。
  3.  前記型彫放電加工を実行する工程の後に、前記型彫放電加工用に成形された加工電極を丸棒状に成形する工程を実行し、
     丸棒状に成形した加工電極を用いて、前記ワークに創成放電加工を施すことを特徴とする請求項1に記載の放電加工方法。
  4.  丸棒状の加工電極の成形用に二次電極を備えた放電加工機であって、
     前記加工電極でワークからコアピンの概略形状を創成放電加工で削り出す動作と、前記加工電極に前記二次電極の形状要素を転写して型彫放電加工用に成形する動作と、前記型彫放電加工用に成形した加工電極を用いて前記コアピンの概略形状に削り出されたワークに型彫り放電加工を施す動作とを制御する制御部を有することを特徴とする放電加工機。
  5.  前記二次電極は、形状要素を複数備え、
     前記制御部は、
     前記加工電極を前記型彫放電加工用に成形する動作において前記二次電極から前記加工電極に転写する形状要素を変えながら、前記加工電極を型彫放電加工用に成形する動作と、前記型彫放電加工を実施する動作とを複数回繰り返し実行することを特徴とする請求項4に記載の放電加工機。
  6.  前記制御部は、前記加工電極を前記型彫放電加工用に成形した後で前記ワークに創成放電加工を施す際に、前記二次電極を用いて前記加工電極を丸棒状に成形することを特徴とする請求項4に記載の放電加工機。
PCT/JP2014/070124 2014-07-30 2014-07-30 放電加工方法及び放電加工機 WO2016016976A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/319,405 US9849530B2 (en) 2014-07-30 2014-07-30 Electric discharge machining method and electric discharge machine
PCT/JP2014/070124 WO2016016976A1 (ja) 2014-07-30 2014-07-30 放電加工方法及び放電加工機
DE112014006780.6T DE112014006780B4 (de) 2014-07-30 2014-07-30 Funkenerodierbearbeitungsverfahren und Funkenerodiermaschine
JP2015527699A JP5908176B1 (ja) 2014-07-30 2014-07-30 放電加工方法及び放電加工機
CN201480080853.9A CN106536107B (zh) 2014-07-30 2014-07-30 放电加工方法及放电加工机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070124 WO2016016976A1 (ja) 2014-07-30 2014-07-30 放電加工方法及び放電加工機

Publications (1)

Publication Number Publication Date
WO2016016976A1 true WO2016016976A1 (ja) 2016-02-04

Family

ID=55216919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070124 WO2016016976A1 (ja) 2014-07-30 2014-07-30 放電加工方法及び放電加工機

Country Status (5)

Country Link
US (1) US9849530B2 (ja)
JP (1) JP5908176B1 (ja)
CN (1) CN106536107B (ja)
DE (1) DE112014006780B4 (ja)
WO (1) WO2016016976A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177446A (ja) * 1991-12-25 1993-07-20 Mitsubishi Electric Corp 放電加工装置
JP2002254247A (ja) * 2001-02-23 2002-09-10 Denso Corp 型彫り微細放電加工による高効率孔加工方法
JP2009279735A (ja) * 2008-05-26 2009-12-03 Sodick Co Ltd 形彫放電加工の加工条件設定装置
US20100252533A1 (en) * 2009-04-03 2010-10-07 United Technologies Corporation Trailing edge machining of a workpiece

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH659605A5 (fr) * 1984-09-11 1987-02-13 Charmilles Technologies Machine d'electroerosion pour l'etincelage par fil et pour l'enfoncage.
JPS6328519A (ja) 1986-07-16 1988-02-06 Matsushita Electric Ind Co Ltd 放電加工用電極成形装置
US4900890A (en) * 1987-09-07 1990-02-13 Matsushita Electric Industrial Co., Ltd. Electric discharge machining method and apparatus for machining a microshaft
JPS6478727A (en) 1987-09-18 1989-03-24 Matsushita Electric Ind Co Ltd Electric discharge machining electrode forming device
JPH02167625A (ja) 1988-12-21 1990-06-28 Matsushita Electric Ind Co Ltd 三次元放電加工装置
ATE136482T1 (de) * 1989-07-13 1996-04-15 Charmilles Technologies Vorrichtung, standardrohlinge und normalisierte elektroden für elektroerosionsfräser und -senker
US5345052A (en) * 1991-12-12 1994-09-06 Nissan European Technology Centre Limited Tool making
KR100415744B1 (ko) * 1998-11-13 2004-01-24 미쓰비시덴키 가부시키가이샤 금형의 방전표면처리방법 및 금형 방전표면처리용 전극의제조방법 및 금형 방전표면처리용 전극
JP2000246547A (ja) 1999-03-03 2000-09-12 Mitsutoyo Corp Wedg式放電加工における加工開始位置の決定方法
JP2001105234A (ja) 1999-10-07 2001-04-17 Fuji Xerox Co Ltd 微小構造体の製造方法及び装置
JP4226875B2 (ja) 2002-10-28 2009-02-18 地方独立行政法人 東京都立産業技術研究センター 放電加工による素材の成形方法
CN2736087Y (zh) * 2004-03-31 2005-10-26 广东工业大学 三维微细展成电解加工装置
JP2006032234A (ja) * 2004-07-20 2006-02-02 Sony Corp 接続端子具、接続端子部品、それらの製造方法及び電子機器
CN102371677A (zh) * 2010-08-19 2012-03-14 苏州汉扬精密电子有限公司 产品外观菱格花纹的制作方法
JP2013256085A (ja) * 2012-06-14 2013-12-26 Mitsubishi Pencil Co Ltd 筆記具の外側部材
CN103658879A (zh) * 2012-09-13 2014-03-26 苏州汉扬精密电子有限公司 钻石花纹外观加工方法及其产品
CN103406610B (zh) * 2013-07-24 2015-10-28 东华大学 简单形状电极加工成型形状的电火花加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177446A (ja) * 1991-12-25 1993-07-20 Mitsubishi Electric Corp 放電加工装置
JP2002254247A (ja) * 2001-02-23 2002-09-10 Denso Corp 型彫り微細放電加工による高効率孔加工方法
JP2009279735A (ja) * 2008-05-26 2009-12-03 Sodick Co Ltd 形彫放電加工の加工条件設定装置
US20100252533A1 (en) * 2009-04-03 2010-10-07 United Technologies Corporation Trailing edge machining of a workpiece

Also Published As

Publication number Publication date
CN106536107B (zh) 2018-04-17
CN106536107A (zh) 2017-03-22
US9849530B2 (en) 2017-12-26
US20170151619A1 (en) 2017-06-01
DE112014006780T5 (de) 2017-03-16
JP5908176B1 (ja) 2016-04-26
JPWO2016016976A1 (ja) 2017-04-27
DE112014006780B4 (de) 2019-07-11

Similar Documents

Publication Publication Date Title
US6935003B2 (en) Compound fabrication process and apparatus
JP6457178B2 (ja) 工作機械制御システム
WO2015037150A1 (ja) 工具経路生成方法および工具経路生成装置
JP5908176B1 (ja) 放電加工方法及び放電加工機
CN107717517A (zh) 电极快速更换治具套件
Lin et al. An effective-wire-radius compensation scheme for enhancing the precision of wire-cut electrical discharge machines
CN103170861B (zh) 一种模具电极加工的通用夹具
JP4676413B2 (ja) 金型を切削する方法およびシステム
JP3575993B2 (ja) 放電加工機
Pollák et al. Application of industrial robot in 5-axis milling process
JP2002254247A (ja) 型彫り微細放電加工による高効率孔加工方法
JP2013006224A (ja) 工作機械
JP4107500B2 (ja) 金型製造方法と、それに使用するクランプ工具
JPH08174335A (ja) 歯車状ワークの面取り加工方法
JP2997342B2 (ja) 形彫放電加工機の揺動加工制御方法
CN114193091A (zh) 一种框架类零件的机械加工方法
JP2021096592A (ja) Ncデータ生成装置、およびncデータ生成プログラム
JP2005305571A (ja) 放電加工用リブ電極及びその加工方法
JP5978120B2 (ja) 加工装置
JP4064210B2 (ja) 回転工具による加工方法およびカッタパス生成方法
JPH10137991A (ja) 順送り加工装置
TW201718141A (zh) 夾治具與電極採同向式設計的電化學加工裝置
JP2014237191A (ja) 放電加工方法
JP2007136566A (ja) 被切削物の隅部r加工方法、及び、切削加工装置
JP2020142346A (ja) 加工装置およびワークの支持治具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527699

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15319405

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006780

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899001

Country of ref document: EP

Kind code of ref document: A1