WO2016015356A1 - 交流-直流转换电路 - Google Patents

交流-直流转换电路 Download PDF

Info

Publication number
WO2016015356A1
WO2016015356A1 PCT/CN2014/084062 CN2014084062W WO2016015356A1 WO 2016015356 A1 WO2016015356 A1 WO 2016015356A1 CN 2014084062 W CN2014084062 W CN 2014084062W WO 2016015356 A1 WO2016015356 A1 WO 2016015356A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
voltage
output
module
control
Prior art date
Application number
PCT/CN2014/084062
Other languages
English (en)
French (fr)
Inventor
曹丹
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/404,463 priority Critical patent/US9627993B2/en
Publication of WO2016015356A1 publication Critical patent/WO2016015356A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to the field of circuit design, and in particular to an AC-DC conversion circuit.
  • FIG. 1 is a schematic structural diagram of a conventional AC-DC conversion circuit, wherein 11 is an input module, 12 is a rectifier module, 13 is a control module, 14 is a transformer module, and 15 is an output module.
  • the rectifier module 12 can convert the AC input from the input module 11 into DC power, and then the AC-DC conversion circuit can smoothly convert the DC power outputted by the rectifier module 12 under the control of the control chip U1 of the control module 13.
  • the voltage module 14 performs a voltage transformation process, and finally outputs a direct current of a corresponding voltage from the output module 15.
  • the AC-DC conversion circuit may cause the filter capacitor CP8 or the switch transistor Q23 to burn out; the AC-DC conversion circuit may cause the input voltage of the input module 11 to be low.
  • the object of the present invention is to provide an AC-DC conversion circuit to solve the technical problem that the existing AC-DC conversion circuit is unstable in output voltage or the conversion circuit is easily damaged when the input voltage is too high or too low.
  • An embodiment of the present invention provides an AC-DC conversion circuit, including:
  • a rectifier module configured to convert an AC voltage input by the input module into a DC voltage
  • a transformer module for performing a voltage transformation process on the DC voltage
  • An output module configured to output a DC voltage after the voltage transformation process
  • a voltage detecting module configured to detect a DC voltage output by the rectifier module
  • control module configured to control whether the AC-DC conversion circuit works according to the detection result of the voltage detection module
  • the rectifier module includes:
  • a rectifier bridge for converting an alternating voltage input by the input module to a direct current voltage
  • One end of the first filter capacitor is connected to an output of the rectifier bridge, and the other end of the first filter capacitor is grounded;
  • the output module includes a second diode and a second filter capacitor
  • a positive pole of the second diode is connected to an output of the transformer module, a cathode of the second diode is connected to an output end of the AC-DC conversion circuit; and one end of the second filter capacitor is The cathode of the second diode is connected, and the other end of the second filter capacitor is grounded.
  • the voltage detecting module includes a first comparator and a second comparator
  • a first input end of the first comparator is connected to an output of the rectifier bridge, a second input end of the first comparator inputs a first reference voltage, and an output end of the first comparator outputs a first comparison signal;
  • a second input end of the second comparator is connected to an output of the rectifier bridge, a first input end of the second comparator inputs a second reference voltage, and an output end of the second comparator outputs a second comparison signal.
  • control module includes a first control unit
  • the first control unit includes a first switch tube and a second switch tube.
  • the control end of the first switch tube inputs the first comparison signal, and the output end of the first switch tube is grounded, the first switch
  • the input end of the tube is respectively connected to the control end of the second switch tube and the power source; the input end of the second switch tube is connected to the first filter capacitor, and the output end of the second switch tube is grounded.
  • the first comparison signal is a high level signal, and the first switch tube guide Passing, the second switch tube is disconnected;
  • the first comparison signal is a low level signal
  • the first switch tube is turned off
  • the second switch tube is turned on.
  • control module includes a second control unit
  • the second control unit includes a control chip and a third switch tube, and the control chip includes a power pin, an overcurrent protection pin, and a gate control pin;
  • a control end of the third switch tube is connected to the gate control pin of the control chip, an input end of the third switch tube is connected to an output end of the rectifier module, and an output of the third switch tube The ends are respectively connected to the overcurrent protection pin and the ground;
  • the power pin of the control chip is connected to the output end of the rectifier module through the transformer module.
  • the power pin of the control chip is connected to the transformer module through a first diode, and the positive pole of the first diode and the change The voltage module is connected, and a cathode of the first diode is connected to the power pin of the control chip.
  • the second control unit further includes a fourth switch tube and a fifth switch tube;
  • the control end of the fourth switch tube inputs the first comparison signal, the input end of the fourth switch tube is connected to the power pin of the control chip, and the output end of the fourth switch tube is grounded;
  • the control end of the fifth switch tube inputs the second comparison signal, the input end of the fifth switch tube is connected to the power pin of the control chip, and the output end of the fifth switch tube is grounded.
  • the first comparison signal is a high level signal, and the fourth switch tube guide Passing, the control chip stops working;
  • the second comparison signal is a high level signal, the fifth switch tube is turned on, and the control chip stops working;
  • the first comparison signal and the first comparison signal are both low level signals, and the fourth switch Both the tube and the fifth switch are disconnected, and the control chip operates normally.
  • An embodiment of the present invention further provides an AC-DC conversion circuit, including:
  • a rectifier module configured to convert an AC voltage input by the input module into a DC voltage
  • a transformer module for performing a voltage transformation process on the DC voltage
  • An output module configured to output a DC voltage after the voltage transformation process
  • a voltage detecting module configured to detect a DC voltage output by the rectifier module
  • control module configured to control whether the AC-DC conversion circuit operates according to the detection result of the voltage detection module.
  • the rectifier module includes:
  • a rectifier bridge for converting an alternating voltage input by the input module to a direct current voltage
  • One end of the first filter capacitor is connected to an output of the rectifier bridge, and the other end of the first filter capacitor is grounded.
  • the voltage detecting module includes a first comparator and a second comparator
  • a first input end of the first comparator is connected to an output of the rectifier bridge, a second input end of the first comparator inputs a first reference voltage, and an output end of the first comparator outputs a first comparison signal;
  • a second input end of the second comparator is connected to an output of the rectifier bridge, a first input end of the second comparator inputs a second reference voltage, and an output end of the second comparator outputs a second comparison signal.
  • control module includes a first control unit
  • the first control unit includes a first switch tube and a second switch tube.
  • the control end of the first switch tube inputs the first comparison signal, and the output end of the first switch tube is grounded, the first switch
  • the input end of the tube is respectively connected to the control end of the second switch tube and the power source; the input end of the second switch tube is connected to the first filter capacitor, and the output end of the second switch tube is grounded.
  • the first comparison signal is a high level signal, and the first switch tube guide Passing, the second switch tube is disconnected;
  • the first comparison signal is a low level signal
  • the first switch tube is turned off
  • the second switch tube is turned on.
  • control module includes a second control unit
  • the second control unit includes a control chip and a third switch tube, and the control chip includes a power pin, an overcurrent protection pin, and a gate control pin;
  • a control end of the third switch tube is connected to the gate control pin of the control chip, an input end of the third switch tube is connected to an output end of the rectifier module, and an output of the third switch tube The ends are respectively connected to the overcurrent protection pin and the ground;
  • the power pin of the control chip is connected to the output end of the rectifier module through a transformer module.
  • the power pin of the control chip is connected to the transformer module through a first diode, and the positive pole of the first diode and the change The voltage module is connected, and a cathode of the first diode is connected to the power pin of the control chip.
  • the second control unit further includes a fourth switch tube and a fifth switch tube;
  • the control end of the fourth switch tube inputs the first comparison signal, the input end of the fourth switch tube is connected to the power pin of the control chip, and the output end of the fourth switch tube is grounded;
  • the control end of the fifth switch tube inputs the second comparison signal, the input end of the fifth switch tube is connected to the power pin of the control chip, and the output end of the fifth switch tube is grounded.
  • the first comparison signal is a high level signal
  • the fourth switch tube guide The control chip stops working.
  • the second comparison signal is a high level signal
  • the fifth switch tube guide The control chip stops working.
  • the first comparison signal and the first comparison The signals are all low level signals, the fourth switch tube and the fifth switch tube are both disconnected, and the control chip works normally.
  • the output module includes a second diode and a second filter capacitor
  • a positive pole of the second diode is connected to an output of the transformer module, a cathode of the second diode is connected to an output end of the AC-DC conversion circuit; and one end of the second filter capacitor is The cathode of the second diode is connected, and the other end of the second filter capacitor is grounded.
  • the AC-DC conversion circuit of the present invention sets the voltage detection module and the control module, so that the AC-DC conversion circuit stops the voltage output when the input voltage is too high or too low, thereby avoiding The damage of the AC-DC conversion circuit and the unstable voltage output solve the technical problem that the existing AC-DC conversion circuit is unstable in output voltage or the conversion circuit is easily damaged when the input voltage is too high or too low.
  • FIG. 1 is a specific circuit diagram of a conventional AC-DC conversion circuit
  • FIG. 2 is a schematic structural view of a preferred embodiment of an AC-DC conversion circuit of the present invention
  • FIG. 3 is a detailed circuit diagram of a preferred embodiment of the AC-DC conversion circuit of the present invention.
  • FIG. 2 is a schematic structural view of a preferred embodiment of an AC-DC conversion circuit according to the present invention
  • FIG. 3 is a specific circuit diagram of a preferred embodiment of the AC-DC conversion circuit of the present invention.
  • the AC-DC conversion circuit 20 of the preferred embodiment includes an input module 21, a rectifier module 22, a transformer module 23, an output module 24, a voltage detection module 25, and a control module 26.
  • the input module 21 is configured to input an AC voltage; the rectifier module 22 is configured to convert an AC voltage input by the input module 21 into a DC voltage; the Transformer module 23 is configured to perform a voltage transformation process on the DC voltage; and the output module 24 is configured to output a voltage transformation.
  • the DC voltage is processed; the voltage detecting module 25 is configured to detect the DC voltage output by the rectifier module 22; and the control module 26 is configured to control whether the AC-DC converting circuit 20 operates according to the detection result of the voltage detecting module 25.
  • the rectifier module 22 includes a rectifier bridge 221 and a first filter capacitor CP5.
  • the rectifier bridge 221 is configured to convert the AC voltage input by the input module 21 into a DC voltage.
  • the first filter capacitor CP5 is used to filter the DC voltage.
  • One end of the filter capacitor CP5 is connected to the output of the rectifier bridge 221, and the other end of the first filter capacitor CP5 is grounded.
  • the transformer module 23 includes a primary coil 231, a first secondary coil 232, a second secondary coil 233, and a core 234, wherein the first secondary coil 232 is used to output a DC voltage after the voltage transformation process, and the second secondary coil 233 It is used to output the driving voltage of the drive control module 26.
  • the output module 24 includes a second diode D7 and a second filter capacitor CP6.
  • the anode of the second diode D7 is connected to the output of the transformer module 23, the cathode of the second diode D7 is connected to the output of the AC-DC converter circuit 20; one end of the second filter capacitor CP6 and the second diode The negative terminal of D7 is connected, and the other end of the second filter capacitor CP6 is grounded.
  • the voltage detecting module 25 includes a first comparator OP1 and a second comparator OP2.
  • the first input terminal of the first comparator OP1 is connected to the output of the rectifier bridge 221, the second input terminal of the first comparator OP1 inputs the first reference voltage Vref1, and the output terminal of the first comparator OP1 outputs the first comparison signal Output1.
  • the second input terminal of the second comparator OP2 is connected to the output of the rectifier bridge 221, the first input terminal of the second comparator OP2 inputs the second reference voltage Vref2, and the output terminal of the second comparator OP2 outputs the second comparison signal Output2.
  • the control module 26 includes a first control unit and a second control unit.
  • the first control unit includes a first switch tube Q20 and a second switch tube Q15.
  • the control end of the first switch tube Q20 inputs a first comparison signal Output1, the output end of the first switch tube Q20 is grounded, and the input end of the first switch tube Q20
  • the control terminal of the second switch transistor Q15 is connected to the power source, the input terminal of the second switch transistor Q15 is connected to the first filter capacitor CP5, and the output terminal of the second switch transistor Q15 is grounded.
  • the second control unit includes a control chip U1, a third switch tube Q12, a fourth switch tube Q19, and a fifth switch tube Q22.
  • the control chip U1 includes a power pin VCC, an overcurrent protection pin ISEN, a gate control pin GATE, and a ground pin GND.
  • the control end of the third switch tube Q12 is connected to the gate control pin of the control chip U1, the input end of the third switch tube Q12 is connected to the output end of the rectifier module 22, and the output end of the third switch tube Q12 is respectively connected to the overcurrent protection tube.
  • the pin ISEN is connected to the ground;
  • the power pin VCC of the control chip U1 is connected to the transformer module 23 through the first diode D9, and is further connected to the output terminal of the rectifier module 22.
  • the anode of the first diode D9 is connected to the transformer module 23, and the cathode of the first diode D9 is connected to the power pin VCC of the control chip U1.
  • the control terminal of the fourth switching transistor Q19 inputs the first comparison signal Output1, the input terminal of the fourth switching transistor Q19 is connected to the power supply pin VCC of the control chip U1, and the output terminal of the fourth switching transistor Q19 is grounded.
  • the control terminal of the fifth switch transistor Q22 inputs a second comparison signal Output2, the input terminal of the fifth switch transistor Q22 is connected to the power supply pin VCC of the control chip U1, and the output terminal of the fifth switch transistor Q22 is grounded.
  • the highest operating voltage (ie, the first reference voltage Output1) and the lowest operating voltage (ie, the second reference voltage Output2) are first set.
  • the AC-DC switching circuit 20 can normally output a DC voltage.
  • the AC-DC conversion circuit 20 stops the voltage output, thereby avoiding damage of the AC-DC conversion circuit 20 and Stable voltage output.
  • the voltage at point A is smaller than the first reference voltage Vref1 and greater than the second reference voltage Vref2.
  • the voltage of the second input terminal of the first comparator OP1 (the first reference voltage Vref1) is higher than the voltage of the first input terminal (the output voltage of the rectifier bridge 221), and the output of the first comparator OP1 outputs a low-level signal ( The first comparison signal Output1);
  • the voltage of the second input terminal of the second comparator OP2 (the output voltage of the rectifier bridge 221) is also higher than the voltage of the first input terminal (the second reference voltage Vref2), and the output of the second comparator OP2 A low level signal (second comparison signal Output2) is also output.
  • the control end of the first switch tube Q20 of the first control unit of the control module 26 receives the first comparison signal Output1 of the low level, the first switch tube Q20 is in the off state; the control of the second switch tube Q15 of the first control unit
  • the first filter capacitor CP5 is grounded through the second switch transistor Q15, and the first filter capacitor CP5 is normally operated.
  • the control end of the fourth switch tube Q19 of the second control unit of the control module 26 receives the first comparison signal Output1 of the low level, the fourth switch tube Q19 is in the off state; the fifth switch tube Q22 of the second control unit The control terminal receives the second comparison signal Output2 of the low level, and the fifth switching transistor Q22 is also in the off state; therefore, the power pin VCC of the control chip U1 is connected to the transformer module 23 through the first diode D9, and the receiving is changed. The output voltage of the module 23.
  • the gate control pin GATE of the control chip U1 outputs a high level signal to the control end of the third switch tube Q12, the third switch tube Q12 is in an on state, and the output end of the rectifier module 22 is respectively controlled by the third switch tube Q12.
  • the overcurrent protection pin ISEN of the chip U1 and the ground are connected, so that the control chip U1 can well detect the output current of the rectifier module 22 through the overcurrent protection pin ISEN, and ensure that the AC-DC conversion circuit 20 is in a normal working state.
  • the voltage at the point A is greater than or equal to the first reference voltage Vref1.
  • the voltage of the second input terminal of the first comparator OP1 (the first reference voltage Vref1) is lower than the voltage of the first input terminal (the output voltage of the rectifier bridge 221), and the output terminal of the first comparator OP1 outputs a high level signal ( The first comparison signal Output1); the voltage of the second input terminal of the second comparator OP2 (the output voltage of the rectifier bridge 221) is also higher than the voltage of the first input terminal (the second reference voltage Vref2), and the output of the second comparator OP2 A low level signal (second comparison signal Output2) is output.
  • the control terminal of the first switching transistor Q20 of the first control unit of the control module 26 receives the first comparison signal Output1 of the high level, the first switching transistor Q20 is in an on state; the power supply is grounded through the first switching transistor Q20, and the second switch The control terminal of the tube Q15 does not input a signal, so the second switching transistor Q15 is in an off state; therefore, the first filter capacitor CP5 is disconnected from the ground through the second switching transistor Q15, and the first filter capacitor CP5 stops operating.
  • the control end of the fourth switch tube Q19 of the second control unit of the control module 26 receives the first comparison signal Output1 of the high level, the fourth switch tube Q19 is in the on state; the fifth switch tube Q22 of the second control unit The control terminal receives the second comparison signal Output2 of the low level, and the fifth switch tube Q22 is in the off state; the output voltage of the transformer module 23 is directly grounded through the first diode D9 and the fourth switch tube Q19, and the control chip U1 is controlled.
  • the power supply pin VCC does not input a signal, so the control chip U1 stops working.
  • the gate control pin GATE of the control chip U1 does not output a signal to the control end of the third switch tube Q12, and the third switch tube Q12 is in the off state, so that the entire AC-DC conversion circuit 20 is in a stopped state, thereby avoiding high work.
  • the voltage is damaged by the AC-DC conversion circuit 20.
  • the voltage at point A is greater than or equal to the second reference voltage Vref2.
  • the voltage of the second input terminal of the first comparator OP1 (the first reference voltage Vref1) is higher than the voltage of the first input terminal (the output voltage of the rectifier bridge 221), and the output of the first comparator OP1 outputs a low-level signal ( The first comparison signal Output1); the voltage of the second input terminal of the second comparator OP2 (the output voltage of the rectifier bridge 221) is lower than the voltage of the first input terminal (the second reference voltage Vref2), and the output of the second comparator OP2 is output. High level signal (second comparison signal Output2).
  • the control end of the first switch tube Q20 of the first control unit of the control module 26 receives the first comparison signal Output1 of the low level, the first switch tube Q20 is in the off state; the control of the second switch tube Q15 of the first control unit
  • the first filter capacitor CP5 is grounded through the second switch transistor Q15, and the first filter capacitor CP5 is normally operated.
  • the control end of the fourth switch tube Q19 of the second control unit of the control module 26 receives the first comparison signal Output1 of the low level, the fourth switch tube Q19 is in the off state; the fifth switch tube Q22 of the second control unit The control terminal receives the second comparison signal Output2 of the high level, and the fifth switch tube Q22 is in the on state; the output voltage of the transformer module 23 is directly grounded through the first diode D9 and the fifth switch tube Q22, and the control chip U1 is controlled.
  • the power supply pin VCC does not input a signal, so the control chip U1 stops working.
  • the gate control pin GATE of the control chip U1 does not output a signal to the control end of the third switch tube Q12, and the third switch tube Q12 is in the off state, so that the entire AC-DC conversion circuit 20 is in a stopped state, avoiding AC- An unstable low voltage output of the DC conversion circuit 20.
  • the AC-DC conversion circuit of the present invention sets the voltage detection module and the control module, so that the AC-DC conversion circuit stops the voltage output when the input voltage is too high or too low, thereby avoiding damage and unstable of the AC-DC conversion circuit.
  • the voltage output solves the technical problem that the existing AC-DC conversion circuit is unstable in output voltage or the conversion circuit is easily damaged when the input voltage is too high or too low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种交流-直流转换电路,其包括输入模块、整流模块、变压模块、输出模块、电压检测模块以及控制模块。其中电压检测模块用于检测整流模块输出的直流电压,控制模块用于控制交流-直流转换电路是否进行工作。通过设置电压检测模块以及控制模块,避免交流-直流转换电路的损坏以及不稳定的电压输出。

Description

交流-直流转换电路 技术领域
本发明涉及电路设计领域,特别是涉及一种交流-直流转换电路。
背景技术
随着社会的发展,人们使用各种各样的电器,以满足个人的需求。由于部分电器在直流电的情况下工作更加稳定,因此部分电器内的交流-直流转换电路的设计成了电器稳定工作的关键。
请参照图1,图1为一种现有的交流-直流转换电路的结构示意图,其中11为输入模块,12为整流模块,13为控制模块,14为变压模块,15为输出模块。整流模块12可很好的将输入模块11输入的交流电转换为直流电,然后该交流-直流转换电路可在控制模块13的控制芯片U1的控制下很好的将整流模块12输出的直流电,通过变压模块14进行变压处理,最后从输出模块15输出相应电压的直流电。
但是该交流-直流转换电路在输入模块11的输入电压过高时,可能导致滤波电容CP8或开关管Q23烧坏;该交流-直流转换电路在输入模块11的输入电压偏低时,可能会导致输出模块15的不稳定电压的输出。
故,有必要提供一种交流-直流转换电路,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种交流-直流转换电路,以解决现有的交流-直流转换电路在输入电压过高或过低时,输出电压不稳定或转换电路容易损坏的技术问题。
技术解决方案
本发明实施例提供一种交流-直流转换电路,其包括:
输入模块,用于输入交流电压;
整流模块,用于将所述输入模块输入的交流电压转换为直流电压;
变压模块,用于对所述直流电压进行变压处理;
输出模块,用于输出所述变压处理后的直流电压;
电压检测模块,用于检测所述整流模块输出的直流电压;以及
控制模块,用于根据所述电压检测模块的检测结果,控制所述交流-直流转换电路是否进行工作;
其中所述整流模块包括:
整流桥,用于将所述输入模块输入的交流电压转换为直流电压;以及
第一滤波电容,用于对所述直流电压进行滤波处理;
其中所述第一滤波电容的一端与所述整流桥的输出连接,所述第一滤波电容的另一端接地;
所述输出模块包括第二二极管以及第二滤波电容;
所述第二二极管的正极与所述变压模块的输出连接,所述第二二极管的负极与所述交流-直流转换电路的输出端连接;所述第二滤波电容的一端与所述第二二极管的负极连接,所述第二滤波电容的另一端接地。
在本发明所述的交流-直流转换电路中,所述电压检测模块包括第一比较器以及第二比较器,
所述第一比较器的第一输入端与所述整流桥的输出连接,所述第一比较器的第二输入端输入第一参考电压,所述第一比较器的输出端输出第一比较信号;
所述第二比较器的第二输入端与所述整流桥的输出连接,所述第二比较器的第一输入端输入第二参考电压,所述第二比较器的输出端输出第二比较信号。
在本发明所述的交流-直流转换电路中,所述控制模块包括第一控制单元;
所述第一控制单元包括第一开关管以及第二开关管,所述第一开关管的控制端输入所述第一比较信号,所述第一开关管的输出端接地,所述第一开关管的输入端分别与所述第二开关管的控制端和电源连接;所述第二开关管的输入端与所述第一滤波电容连接,所述第二开关管的输出端接地。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第一开关管导通,所述第二开关管断开;
当所述整流桥的输出电压小于所述第一参考电压时,所述第一比较信号为低电平信号,所述第一开关管断开,所述第二开关管导通。
在本发明所述的交流-直流转换电路中,所述控制模块包括第二控制单元;
所述第二控制单元包括控制芯片以及第三开关管,所述控制芯片包括电源管脚、过流保护管脚以及门控制管脚;
所述第三开关管的控制端与所述控制芯片的所述门控制管脚连接,所述第三开关管的输入端与所述整流模块的输出端连接,所述第三开关管的输出端分别与所述过流保护管脚和地连接;
所述控制芯片的电源管脚通过所述变压模块与所述整流模块的输出端连接。
在本发明所述的交流-直流转换电路中,所述控制芯片的所述电源管脚通过第一二极管与所述变压模块连接,所述第一二极管的正极与所述变压模块连接,所述第一二极管的负极与所述控制芯片的所述电源管脚连接。
在本发明所述的交流-直流转换电路中,所述第二控制单元还包括第四开关管以及第五开关管;
所述第四开关管的控制端输入所述第一比较信号,所述第四开关管的输入端与所述控制芯片的所述电源管脚连接,所述第四开关管的输出端接地;
所述第五开关管的控制端输入所述第二比较信号,所述第五开关管的输入端与所述控制芯片的所述电源管脚连接,所述第五开关管的输出端接地。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第四开关管导通,所述控制芯片停止工作;
当所述整流桥的输出电压小于等于所述第二参考电压时,所述第二比较信号为高电平信号,所述第五开关管导通,所述控制芯片停止工作;
当所述整流桥的输出电压大于所述第二参考电压、且小于所述第一参考电压,所述第一比较信号和所述第一比较信号均为低电平信号,所述第四开关管和所述第五开关管均断开,所述控制芯片正常工作。
本发明实施例还提供一种交流-直流转换电路,其包括:
输入模块,用于输入交流电压;
整流模块,用于将所述输入模块输入的交流电压转换为直流电压;
变压模块,用于对所述直流电压进行变压处理;
输出模块,用于输出所述变压处理后的直流电压;
电压检测模块,用于检测所述整流模块输出的直流电压;以及
控制模块,用于根据所述电压检测模块的检测结果,控制所述交流-直流转换电路是否进行工作。
在本发明所述的交流-直流转换电路中,所述整流模块包括:
整流桥,用于将所述输入模块输入的交流电压转换为直流电压;以及
第一滤波电容,用于对所述直流电压进行滤波处理;
其中所述第一滤波电容的一端与所述整流桥的输出连接,所述第一滤波电容的另一端接地。
在本发明所述的交流-直流转换电路中,所述电压检测模块包括第一比较器以及第二比较器,
所述第一比较器的第一输入端与所述整流桥的输出连接,所述第一比较器的第二输入端输入第一参考电压,所述第一比较器的输出端输出第一比较信号;
所述第二比较器的第二输入端与所述整流桥的输出连接,所述第二比较器的第一输入端输入第二参考电压,所述第二比较器的输出端输出第二比较信号。
在本发明所述的交流-直流转换电路中,所述控制模块包括第一控制单元;
所述第一控制单元包括第一开关管以及第二开关管,所述第一开关管的控制端输入所述第一比较信号,所述第一开关管的输出端接地,所述第一开关管的输入端分别与所述第二开关管的控制端和电源连接;所述第二开关管的输入端与所述第一滤波电容连接,所述第二开关管的输出端接地。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第一开关管导通,所述第二开关管断开;
当所述整流桥的输出电压小于所述第一参考电压时,所述第一比较信号为低电平信号,所述第一开关管断开,所述第二开关管导通。
在本发明所述的交流-直流转换电路中,所述控制模块包括第二控制单元;
所述第二控制单元包括控制芯片以及第三开关管,所述控制芯片包括电源管脚、过流保护管脚以及门控制管脚;
所述第三开关管的控制端与所述控制芯片的所述门控制管脚连接,所述第三开关管的输入端与所述整流模块的输出端连接,所述第三开关管的输出端分别与所述过流保护管脚和地连接;
所述控制芯片的电源管脚通过变压模块与所述整流模块的输出端连接。
在本发明所述的交流-直流转换电路中,所述控制芯片的所述电源管脚通过第一二极管与所述变压模块连接,所述第一二极管的正极与所述变压模块连接,所述第一二极管的负极与所述控制芯片的所述电源管脚连接。
在本发明所述的交流-直流转换电路中,所述第二控制单元还包括第四开关管以及第五开关管;
所述第四开关管的控制端输入所述第一比较信号,所述第四开关管的输入端与所述控制芯片的所述电源管脚连接,所述第四开关管的输出端接地;
所述第五开关管的控制端输入所述第二比较信号,所述第五开关管的输入端与所述控制芯片的所述电源管脚连接,所述第五开关管的输出端接地。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第四开关管导通,所述控制芯片停止工作。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压小于等于所述第二参考电压时,所述第二比较信号为高电平信号,所述第五开关管导通,所述控制芯片停止工作。
在本发明所述的交流-直流转换电路中,当所述整流桥的输出电压大于所述第二参考电压、且小于所述第一参考电压,所述第一比较信号和所述第一比较信号均为低电平信号,所述第四开关管和所述第五开关管均断开,所述控制芯片正常工作。
在本发明所述的交流-直流转换电路中,所述输出模块包括第二二极管以及第二滤波电容;
所述第二二极管的正极与所述变压模块的输出连接,所述第二二极管的负极与所述交流-直流转换电路的输出端连接;所述第二滤波电容的一端与所述第二二极管的负极连接,所述第二滤波电容的另一端接地。
有益效果
相较于现有的交流-直流转换电路,本发明的交流-直流转换电路通过设置电压检测模块以及控制模块,使得交流-直流转换电路在输入电压过高或过低时,停止电压输出,避免交流-直流转换电路的损坏以及不稳定的电压输出;解决了现有的交流-直流转换电路在输入电压过高或过低时,输出电压不稳定或转换电路容易损坏的技术问题。
附图说明
图1为现有的交流-直流转换电路的具体电路图;
图2为本发明的交流-直流转换电路的优选实施例的结构示意图;
图3为本发明的交流-直流转换电路的优选实施例的具体电路图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图2和图3,图2为本发明的交流-直流转换电路的优选实施例的结构示意图;图3为本发明的交流-直流转换电路的优选实施例的具体电路图。本优选实施例的交流-直流转换电路20包括输入模块21、整流模块22、变压模块23、输出模块24、电压检测模块25以及控制模块26。
其中输入模块21用于输入交流电压;整流模块22用于将输入模块21输入的交流电压转换为直流电压;变压模块23用于对直流电压进行变压处理;输出模块24用于输出变压处理后的直流电压;电压检测模块25用于检测整流模块22输出的直流电压;控制模块26用于根据电压检测模块25的检测结果,控制交流-直流转换电路20是否进行工作。
其中整流模块22包括整流桥221以及第一滤波电容CP5;整流桥221用于将输入模块21输入的交流电压转换为直流电压;第一滤波电容CP5用于对直流电压进行滤波处理;其中第一滤波电容CP5的一端与整流桥221的输出连接,第一滤波电容CP5的另一端接地。
变压模块23包括初级线圈231、第一次级线圈232、第二次级线圈233以及铁芯234,其中第一次级线圈232用于输出变压处理后直流电压,第二次级线圈233用于输出驱动控制模块26的驱动电压。
输出模块24包括第二二极管D7以及第二滤波电容CP6。第二二极管D7的正极与变压模块23的输出连接,第二二极管D7的负极与交流-直流转换电路20的输出端连接;第二滤波电容CP6的一端与第二二极管D7的负极连接,第二滤波电容CP6的另一端接地。
电压检测模块25包括第一比较器OP1以及第二比较器OP2。第一比较器OP1的第一输入端与整流桥221的输出连接,第一比较器OP1的第二输入端输入第一参考电压Vref1,第一比较器OP1的输出端输出第一比较信号Output1。第二比较器OP2的第二输入端与整流桥221的输出连接,第二比较器OP2的第一输入端输入第二参考电压Vref2,第二比较器OP2的输出端输出第二比较信号Output2。
控制模块26包括第一控制单元以及第二控制单元。第一控制单元包括第一开关管Q20以及第二开关管Q15,第一开关管Q20的控制端输入第一比较信号Output1,第一开关管Q20的输出端接地,第一开关管Q20的输入端分别与第二开关管Q15的控制端和电源连接,第二开关管Q15的输入端与第一滤波电容CP5连接,第二开关管Q15的输出端接地。
第二控制单元包括控制芯片U1、第三开关管Q12、第四开关管Q19以及第五开关管Q22。控制芯片U1包括电源管脚VCC、过流保护管脚ISEN、门控制管脚GATE以及接地管脚GND。第三开关管Q12的控制端与控制芯片U1的门控制管脚连接,第三开关管Q12的输入端与整流模块22的输出端连接,第三开关管Q12的输出端分别与过流保护管脚ISEN和地连接;控制芯片U1的电源管脚VCC通过第一二极管D9与变压模块23连接,进而与整流模块22的输出端连接。其中第一二极管D9的正极与变压模块23连接,第一二极管D9的负极与控制芯片U1的电源管脚VCC连接。
第四开关管Q19的控制端输入第一比较信号Output1,第四开关管Q19的输入端与控制芯片U1的电源管脚VCC连接,第四开关管Q19的输出端接地。第五开关管Q22的控制端输入第二比较信号Output2,第五开关管Q22的输入端与控制芯片U1的电源管脚VCC连接,第五开关管Q22的输出端接地。
本优选实施例的交流-直流转换电路20使用时,首先会设定最高工作电压(即第一参考电压Output1)以及最低工作电压(即第二参考电压Output2)。当整流桥221的输出电压小于第一参考电压Output1,且大于第二参考电压Output2时,该交流-直流交换电路20可正常输出直流电压。当整流桥221的输出电压的输出电压大于等于第一参考电压Output1,或小于等于第二参考电压Output2时,该交流-直流转换电路20停止电压输出,避免交流-直流转换电路20的损坏以及不稳定的电压输出。
当整流桥221的输出电压小于第一参考电压Vref1,且大于第二参考电压Vref2时,即A点的电压小于第一参考电压Vref1,且大于第二参考电压Vref2。这时第一比较器OP1的第二输入端的电压(第一参考电压Vref1)高于第一输入端的电压(整流桥221的输出电压),第一比较器OP1的输出端输出低电平信号(第一比较信号Output1);第二比较器OP2的第二输入端的电压(整流桥221的输出电压)也高于第一输入端的电压(第二参考电压Vref2),第二比较器OP2的输出端也输出低电平信号(第二比较信号Output2)。
控制模块26的第一控制单元的第一开关管Q20的控制端接收低电平的第一比较信号Output1,第一开关管Q20处于断开状态;第一控制单元的第二开关管Q15的控制端与电源连接,第二开关管Q15处于导通状态;因此第一滤波电容CP5的一端通过第二开关管Q15接地,第一滤波电容CP5正常工作。
控制模块26的第二控制单元的第四开关管Q19的控制端接收到低电平的第一比较信号Output1,第四开关管Q19处于断开状态;第二控制单元的第五开关管Q22的控制端接收到低电平的第二比较信号Output2,第五开关管Q22也处于断开状态;因此控制芯片U1的电源管脚VCC通过第一二极管D9与变压模块23连接,接收变压模块23的输出电压。
同时控制芯片U1的门控制管脚GATE输出高电平信号至第三开关管Q12的控制端,第三开关管Q12处于导通状态,整流模块22的输出端通过第三开关管Q12分别与控制芯片U1的过流保护管脚ISEN以及地连接,这样控制芯片U1可通过过流保护管脚ISEN很好的检测整流模块22的输出电流,保证交流-直流转换电路20处于正常工作状态。
当整流桥221的输出电压大于等于第一参考电压Vref1时,即A点的电压大于等于第一参考电压Vref1。这时第一比较器OP1的第二输入端的电压(第一参考电压Vref1)低于第一输入端的电压(整流桥221的输出电压),第一比较器OP1的输出端输出高电平信号(第一比较信号Output1);第二比较器OP2的第二输入端的电压(整流桥221的输出电压)也高于第一输入端的电压(第二参考电压Vref2),第二比较器OP2的输出端输出低电平信号(第二比较信号Output2)。
控制模块26的第一控制单元的第一开关管Q20的控制端接收高电平的第一比较信号Output1,第一开关管Q20处于导通状态;电源通过第一开关管Q20接地,第二开关管Q15的控制端未输入信号,因此第二开关管Q15处于断开状态;因此第一滤波电容CP5通过第二开关管Q15与地断开,第一滤波电容CP5停止工作。
控制模块26的第二控制单元的第四开关管Q19的控制端接收到高电平的第一比较信号Output1,第四开关管Q19处于导通状态;第二控制单元的第五开关管Q22的控制端接收到低电平的第二比较信号Output2,第五开关管Q22处于断开状态;变压模块23的输出电压通过第一二极管D9、第四开关管Q19直接接地,控制芯片U1的电源管脚VCC未输入信号,因此控制芯片U1停止工作。
同时控制芯片U1的门控制管脚GATE未输出信号至第三开关管Q12的控制端,第三开关管Q12处于断开状态,从而整个交流-直流转换电路20处于停止工作状态,避免了高工作电压对交流-直流转换电路20的损坏。
当整流桥221的输出电压小于等于第二参考电压Vref2时,即A点的电压大于等于第二参考电压Vref2。这时第一比较器OP1的第二输入端的电压(第一参考电压Vref1)高于第一输入端的电压(整流桥221的输出电压),第一比较器OP1的输出端输出低电平信号(第一比较信号Output1);第二比较器OP2的第二输入端的电压(整流桥221的输出电压)低于第一输入端的电压(第二参考电压Vref2),第二比较器OP2的输出端输出高电平信号(第二比较信号Output2)。
控制模块26的第一控制单元的第一开关管Q20的控制端接收低电平的第一比较信号Output1,第一开关管Q20处于断开状态;第一控制单元的第二开关管Q15的控制端与电源连接,第二开关管Q15处于导通状态;因此第一滤波电容CP5的一端通过第二开关管Q15接地,第一滤波电容CP5正常工作。
控制模块26的第二控制单元的第四开关管Q19的控制端接收到低电平的第一比较信号Output1,第四开关管Q19处于断开状态;第二控制单元的第五开关管Q22的控制端接收到高电平的第二比较信号Output2,第五开关管Q22处于导通状态;变压模块23的输出电压通过第一二极管D9、第五开关管Q22直接接地,控制芯片U1的电源管脚VCC未输入信号,因此控制芯片U1停止工作。
同时控制芯片U1的门控制管脚GATE未输出信号至第三开关管Q12的控制端,第三开关管Q12处于断开状态,从而整个交流-直流转换电路20处于停止工作状态,避免了交流-直流转换电路20的不稳定的低电压输出。
因此本发明的交流-直流转换电路通过设置电压检测模块以及控制模块,使得交流-直流转换电路在输入电压过高或过低时,停止电压输出,避免交流-直流转换电路的损坏以及不稳定的电压输出;解决了现有的交流-直流转换电路在输入电压过高或过低时,输出电压不稳定或转换电路容易损坏的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种交流-直流转换电路,其包括:
    输入模块,用于输入交流电压;
    整流模块,用于将所述输入模块输入的交流电压转换为直流电压;
    变压模块,用于对所述直流电压进行变压处理;
    输出模块,用于输出所述变压处理后的直流电压;
    电压检测模块,用于检测所述整流模块输出的直流电压;以及
    控制模块,用于根据所述电压检测模块的检测结果,控制所述交流-直流转换电路是否进行工作;
    其中所述整流模块包括:
    整流桥,用于将所述输入模块输入的交流电压转换为直流电压;以及
    第一滤波电容,用于对所述直流电压进行滤波处理;
    其中所述第一滤波电容的一端与所述整流桥的输出连接,所述第一滤波电容的另一端接地;
    所述输出模块包括第二二极管以及第二滤波电容;
    所述第二二极管的正极与所述变压模块的输出连接,所述第二二极管的负极与所述交流-直流转换电路的输出端连接;所述第二滤波电容的一端与所述第二二极管的负极连接,所述第二滤波电容的另一端接地。
  2. 根据权利要求1所述的交流-直流转换电路,其中所述电压检测模块包括第一比较器以及第二比较器,
    所述第一比较器的第一输入端与所述整流桥的输出连接,所述第一比较器的第二输入端输入第一参考电压,所述第一比较器的输出端输出第一比较信号;
    所述第二比较器的第二输入端与所述整流桥的输出连接,所述第二比较器的第一输入端输入第二参考电压,所述第二比较器的输出端输出第二比较信号。
  3. 根据权利要求2所述的交流-直流转换电路,其中所述控制模块包括第一控制单元;
    所述第一控制单元包括第一开关管以及第二开关管,所述第一开关管的控制端输入所述第一比较信号,所述第一开关管的输出端接地,所述第一开关管的输入端分别与所述第二开关管的控制端和电源连接;所述第二开关管的输入端与所述第一滤波电容连接,所述第二开关管的输出端接地。
  4. 根据权利要求3所述的交流-直流转换电路,其中当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第一开关管导通,所述第二开关管断开;
    当所述整流桥的输出电压小于所述第一参考电压时,所述第一比较信号为低电平信号,所述第一开关管断开,所述第二开关管导通。
  5. 根据权利要求1所述的交流-直流转换电路,其中所述控制模块包括第二控制单元;
    所述第二控制单元包括控制芯片以及第三开关管,所述控制芯片包括电源管脚、过流保护管脚以及门控制管脚;
    所述第三开关管的控制端与所述控制芯片的所述门控制管脚连接,所述第三开关管的输入端与所述整流模块的输出端连接,所述第三开关管的输出端分别与所述过流保护管脚和地连接;
    所述控制芯片的电源管脚通过所述变压模块与所述整流模块的输出端连接。
  6. 根据权利要求5所述的交流-直流转换电路,其中所述控制芯片的所述电源管脚通过第一二极管与所述变压模块连接,所述第一二极管的正极与所述变压模块连接,所述第一二极管的负极与所述控制芯片的所述电源管脚连接。
  7. 根据权利要求5所述的交流-直流转换电路,其中所述第二控制单元还包括第四开关管以及第五开关管;
    所述第四开关管的控制端输入所述第一比较信号,所述第四开关管的输入端与所述控制芯片的所述电源管脚连接,所述第四开关管的输出端接地;
    所述第五开关管的控制端输入所述第二比较信号,所述第五开关管的输入端与所述控制芯片的所述电源管脚连接,所述第五开关管的输出端接地。
  8. 根据权利要求7所述的交流-直流转换电路,其中当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第四开关管导通,所述控制芯片停止工作;
    当所述整流桥的输出电压小于等于所述第二参考电压时,所述第二比较信号为高电平信号,所述第五开关管导通,所述控制芯片停止工作;
    当所述整流桥的输出电压大于所述第二参考电压、且小于所述第一参考电压,所述第一比较信号和所述第一比较信号均为低电平信号,所述第四开关管和所述第五开关管均断开,所述控制芯片正常工作。
  9. 一种交流-直流转换电路,其包括:
    输入模块,用于输入交流电压;
    整流模块,用于将所述输入模块输入的交流电压转换为直流电压;
    变压模块,用于对所述直流电压进行变压处理;
    输出模块,用于输出所述变压处理后的直流电压;
    电压检测模块,用于检测所述整流模块输出的直流电压;以及
    控制模块,用于根据所述电压检测模块的检测结果,控制所述交流-直流转换电路是否进行工作。
  10. 根据权利要求9所述的交流-直流转换电路,其中所述整流模块包括:
    整流桥,用于将所述输入模块输入的交流电压转换为直流电压;以及
    第一滤波电容,用于对所述直流电压进行滤波处理;
    其中所述第一滤波电容的一端与所述整流桥的输出连接,所述第一滤波电容的另一端接地。
  11. 根据权利要求10所述的交流-直流转换电路,其中所述电压检测模块包括第一比较器以及第二比较器,
    所述第一比较器的第一输入端与所述整流桥的输出连接,所述第一比较器的第二输入端输入第一参考电压,所述第一比较器的输出端输出第一比较信号;
    所述第二比较器的第二输入端与所述整流桥的输出连接,所述第二比较器的第一输入端输入第二参考电压,所述第二比较器的输出端输出第二比较信号。
  12. 根据权利要求11所述的交流-直流转换电路,其中所述控制模块包括第一控制单元;
    所述第一控制单元包括第一开关管以及第二开关管,所述第一开关管的控制端输入所述第一比较信号,所述第一开关管的输出端接地,所述第一开关管的输入端分别与所述第二开关管的控制端和电源连接;所述第二开关管的输入端与所述第一滤波电容连接,所述第二开关管的输出端接地。
  13. 根据权利要求12所述的交流-直流转换电路,其中当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第一开关管导通,所述第二开关管断开;
    当所述整流桥的输出电压小于所述第一参考电压时,所述第一比较信号为低电平信号,所述第一开关管断开,所述第二开关管导通。
  14. 14、根据权利要求10所述的交流-直流转换电路,其中所述控制模块包括第二控制单元;
    所述第二控制单元包括控制芯片以及第三开关管,所述控制芯片包括电源管脚、过流保护管脚以及门控制管脚;
    所述第三开关管的控制端与所述控制芯片的所述门控制管脚连接,所述第三开关管的输入端与所述整流模块的输出端连接,所述第三开关管的输出端分别与所述过流保护管脚和地连接;
    所述控制芯片的电源管脚通过所述变压模块与所述整流模块的输出端连接。
  15. 根据权利要求14所述的交流-直流转换电路,其中所述控制芯片的所述电源管脚通过第一二极管与所述变压模块连接,所述第一二极管的正极与所述变压模块连接,所述第一二极管的负极与所述控制芯片的所述电源管脚连接。
  16. 根据权利要求14所述的交流-直流转换电路,其中所述第二控制单元还包括第四开关管以及第五开关管;
    所述第四开关管的控制端输入所述第一比较信号,所述第四开关管的输入端与所述控制芯片的所述电源管脚连接,所述第四开关管的输出端接地;
    所述第五开关管的控制端输入所述第二比较信号,所述第五开关管的输入端与所述控制芯片的所述电源管脚连接,所述第五开关管的输出端接地。
  17. 根据权利要求16所述的交流-直流转换电路,其中当所述整流桥的输出电压大于等于所述第一参考电压时,所述第一比较信号为高电平信号,所述第四开关管导通,所述控制芯片停止工作。
  18. 根据权利要求16所述的交流-直流转换电路,其中当所述整流桥的输出电压小于等于所述第二参考电压时,所述第二比较信号为高电平信号,所述第五开关管导通,所述控制芯片停止工作。
  19. 根据权利要求16所述的交流-直流转换电路,其中当所述整流桥的输出电压大于所述第二参考电压、且小于所述第一参考电压,所述第一比较信号和所述第一比较信号均为低电平信号,所述第四开关管和所述第五开关管均断开,所述控制芯片正常工作。
  20. 根据权利要求9所述的交流-直流转换电路,其中所述输出模块包括第二二极管以及第二滤波电容;
    所述第二二极管的正极与所述变压模块的输出连接,所述第二二极管的负极与所述交流-直流转换电路的输出端连接;所述第二滤波电容的一端与所述第二二极管的负极连接,所述第二滤波电容的另一端接地。
PCT/CN2014/084062 2014-07-29 2014-08-11 交流-直流转换电路 WO2016015356A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/404,463 US9627993B2 (en) 2014-07-29 2014-08-11 AC-DC conversion circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410367699.5A CN104113223B (zh) 2014-07-29 2014-07-29 交流-直流转换电路
CN201410367699.5 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016015356A1 true WO2016015356A1 (zh) 2016-02-04

Family

ID=51709889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084062 WO2016015356A1 (zh) 2014-07-29 2014-08-11 交流-直流转换电路

Country Status (3)

Country Link
US (1) US9627993B2 (zh)
CN (1) CN104113223B (zh)
WO (1) WO2016015356A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273330A (zh) * 2017-08-18 2017-10-20 安图实验仪器(郑州)有限公司 三线制串行通信接口隔离电路模块
CN116488623A (zh) * 2023-06-25 2023-07-25 广芯微电子(苏州)有限公司 一种电流比较器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302247A (zh) * 2017-07-04 2017-10-27 江苏兴云新能源有限公司 具电压监测及保护的交流桩电路
CN107947123A (zh) * 2017-10-24 2018-04-20 深圳市必易微电子有限公司 Acdc开关电源保护电路及acdc开关电源装置
CN108903604A (zh) * 2018-09-12 2018-11-30 珠海格力电器股份有限公司 电饭煲
CN109586390A (zh) * 2019-01-25 2019-04-05 深圳流量链科技有限公司 电源电路及用电设备
CN110441595A (zh) * 2019-04-23 2019-11-12 浙江八达电子仪表有限公司 基于ac-dc高频变换电源的三相智能电能表

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212185A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 电源电路
CN101841149A (zh) * 2010-05-11 2010-09-22 海洋王照明科技股份有限公司 一种电源保护电路及led灯具
CN202586774U (zh) * 2012-05-10 2012-12-05 冠捷投资有限公司 具有过压保护的电源供应器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033026A (ja) * 2001-07-17 2003-01-31 Sony Corp スイッチング電源回路
US8564974B2 (en) * 2007-01-19 2013-10-22 Shindengen Electric Manufacturing Co., Ltd. Switching power source apparatus
US8059432B2 (en) * 2007-12-12 2011-11-15 Semiconductor Components Industries, Llc. PWM controller having drive control with input voltage sensing and method therefor
US8228692B2 (en) * 2008-07-29 2012-07-24 On-Bright Electronic (Shanghai) Co., Ltd. Systems and methods for adaptive switching frequency control in switching-mode power conversion systems
US8081495B2 (en) * 2008-11-20 2011-12-20 Semiconductor Components Industries, Llc Over power compensation in switched mode power supplies
CN101826796B (zh) * 2009-03-02 2015-10-21 昂宝电子(上海)有限公司 利用多模控制的准谐振系统和方法
JP2010261862A (ja) * 2009-05-08 2010-11-18 Sony Corp Acライン信号検出装置およびその方法、並びに電源装置
CN102857105A (zh) * 2011-06-30 2013-01-02 海洋王照明科技股份有限公司 开关电源电路及相应的开关电源装置
CN202978737U (zh) * 2012-07-27 2013-06-05 深圳市三和电力科技有限公司 一种宽输入电压范围反激电路
CN203071821U (zh) * 2012-12-26 2013-07-17 昂宝电子(上海)有限公司 反激开关电源电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212185A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 电源电路
CN101841149A (zh) * 2010-05-11 2010-09-22 海洋王照明科技股份有限公司 一种电源保护电路及led灯具
CN202586774U (zh) * 2012-05-10 2012-12-05 冠捷投资有限公司 具有过压保护的电源供应器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273330A (zh) * 2017-08-18 2017-10-20 安图实验仪器(郑州)有限公司 三线制串行通信接口隔离电路模块
CN107273330B (zh) * 2017-08-18 2023-05-09 安图实验仪器(郑州)有限公司 三线制串行通信接口隔离电路模块
CN116488623A (zh) * 2023-06-25 2023-07-25 广芯微电子(苏州)有限公司 一种电流比较器
CN116488623B (zh) * 2023-06-25 2023-10-20 广芯微电子(苏州)有限公司 一种电流比较器

Also Published As

Publication number Publication date
US20160204712A1 (en) 2016-07-14
CN104113223A (zh) 2014-10-22
CN104113223B (zh) 2016-07-06
US9627993B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
WO2016015356A1 (zh) 交流-直流转换电路
WO2015113333A1 (zh) 电子设备充电控制装置及方法
WO2015096223A1 (zh) 一种电源转换电路
WO2015113349A1 (zh) 电池充电装置及方法
WO2014134815A1 (zh) 电子烟的可充电电源保护装置及方法
WO2012122701A1 (zh) 一种电流检测电路及其控制电路和电源转换电路
WO2011029334A1 (zh) 一种移动终端供电单元及移动终端供电切换方法
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
WO2017219659A1 (zh) 适配器
WO2015010261A1 (zh) 一种电子烟usb充电器
WO2015039561A1 (en) Led driving and dimming circuit and configuration method
WO2013040876A1 (zh) 变能灯控制电路及变能灯控制板
WO2012071733A1 (zh) 一种led驱动电源电路、驱动电源和照明装置
WO2010143758A1 (ko) 분산전원을 이용한 공기조화기의 전동기 제어장치
WO2016074303A1 (zh) 一种扫描驱动电路
WO2018227965A1 (zh) 供电装置和照明系统
WO2015113335A1 (zh) 启动充电的检测电路和方法
WO2015103907A1 (zh) 一种交直流互通控制电路、微电网及控制方法
WO2014114033A1 (zh) 一种耳机和实现耳机自动识别切换控制的方法
WO2014073811A1 (en) Electronic apparatus, power supply apparatus, and power supply method
WO2017113458A1 (zh) 一种用于mtca机框的双输入电源系统
WO2017084299A1 (zh) 待机电路及电子设备
WO2017197732A1 (zh) 一种数字电源提供电路及液晶驱动装置
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2018152901A1 (zh) 一种电源电路及液晶显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14404463

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898594

Country of ref document: EP

Kind code of ref document: A1