CN109586390A - 电源电路及用电设备 - Google Patents

电源电路及用电设备 Download PDF

Info

Publication number
CN109586390A
CN109586390A CN201910071746.4A CN201910071746A CN109586390A CN 109586390 A CN109586390 A CN 109586390A CN 201910071746 A CN201910071746 A CN 201910071746A CN 109586390 A CN109586390 A CN 109586390A
Authority
CN
China
Prior art keywords
unit
super capacitor
buck
inductance
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910071746.4A
Other languages
English (en)
Inventor
吴明
薛哲峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Flow Chain Technology Co Ltd
Original Assignee
Shenzhen Flow Chain Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Flow Chain Technology Co Ltd filed Critical Shenzhen Flow Chain Technology Co Ltd
Priority to CN201910071746.4A priority Critical patent/CN109586390A/zh
Publication of CN109586390A publication Critical patent/CN109586390A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源电路及用电设备,所述电源电路包括:超级电容、降压DC‑DC单元、充电逆变单元以及检测单元;降压DC‑DC单元以接入第一电压信号并将其降压为第二电压信号输出;充电逆变单元接入所述第二电压信号对所述超级电容充电,还配置为逆变所述超级电容的能量以输出供电电压;检测单元,控制所述降压DC‑DC单元打开或关断所述第二电压信号的输出。使用超级电容作为电量存储单元,超级电容可以在恶劣环境使用,稳定性好不容易引发安全事故,同时循环寿命长;另外,降压DC‑DC单元和充电逆变单元可以分别工作在大电流、小电流低静态的高效区间,从而更好的实现低功耗值守系统的能源管理策略,通过更低的电源系统损耗换来更长的待机续航时间。

Description

电源电路及用电设备
技术领域
本发明属于电源技术领域,尤其涉及一种电源电路及用电设备。
背景技术
当前监视类电子设备为了满足续航需求多会使用低功耗供电,目前的低功耗供电电源设计大多采用DC-DC电源和锂离子电池的方案,实现免换电池低功耗的。
然而,锂离子电池使用在温度较高或者较低的恶劣环境中时容易引发安全事故,且锂离子循环寿命有限。而且,目前的低功耗供电电源中的大、小电流DC-DC变换电路都不能始终工作在高效率区间。典型的,利用大电流的DC-DC变换电路在带动小电流的负载的时候,效率很低,自消耗电流大于有效负载电流,且电源纹波较大,若作为唯一电源供给休眠监视状态的电子系统,必定造成系统休眠电流过大,待机时间不够长问题。
发明内容
有鉴于此,本发明实施例提供了一种极低功耗且混合电流模式的电源电路及用电设备,旨在解决传统的低功耗供电电源使用锂电池不适用于恶劣环境,且功耗过高的问题。
本发明实施例的第一方面提供了一种电源电路,所述电源电路包括:
超级电容;
降压DC-DC单元,配置为工作在高效区间,以接入第一电压信号并将其降压为第二电压信号输出;
充电逆变单元,与所述超级电容和所述降压DC-DC单元连接,配置为接入所述第二电压信号对所述超级电容充电,还配置为逆变所述超级电容的能量以输出供电电压;
检测单元,与所述超级电容和所述降压DC-DC单元连接,配置为检测所述超级电容的电压值,根据所述电压值控制所述降压DC-DC单元打开或关断所述第二电压信号的输出。
在一些实施例中,所述降压DC-DC单元包括降压恒压芯片、输入滤波电容、第一电感、输出滤波电容、第一稳压二极管、第二稳压二极管、谐振电容及第一电阻,其中:
所述降压恒压芯片的电源引脚用于接入所述第一电压信号,所述输入滤波电容的第一端接所述降压恒压芯片的电源引脚,所述输入滤波电容第二端接地;所述第一电感的第一端接所述降压恒压芯片的开关节点引脚,所述第一电感的第二端作为降压DC-DC单元的输出端用以输出所述第二电压信号,所述谐振电容及所述第一电阻串联后与所述第一电感并联,所述第一稳压二极管的负极接所述降压恒压芯片的开关节点引脚,所述第一稳压二极管的正极接地,所述第二稳压二极管的负极接所述第一电感的第二端,所述第二稳压二极管的正极接地,所述输出滤波电容与所述第二稳压二极管并联,所述降压恒压芯片的使能引脚与所述检测单元连接。
在一些实施例中,所述降压DC-DC单元还包括反馈模块,所述反馈模块连接在所述第一电感的第二端和所述降压恒压芯片的反馈引脚之间,用于反馈所述第一电感输出的电压至所述降压恒压芯片以使所述第一电感输出的电压保持在预设值。
在一些实施例中,所述反馈模块包括第二电阻、第三电阻和第一电容,所述第二电阻的第一端接所述第一电感的第二端,所述第二电阻的第二端接所述降压恒压芯片的反馈引脚和所述第三电阻的第一端,所述第三电阻的第二端接地,所述第一电容与所述第二电阻并联。
在一些实施例中,所述充电逆变单元包括移动电源芯片、第一滤波电容、第二电感、第二滤波电容及第三滤波电容,其中:
所述移动电源芯片的电源引脚接入所述第二电压信号,所述第一滤波电容的第一端接所述移动电源芯片的电源引脚,所述第一滤波电容接地,所述第二电感的第一端接所述移动电源芯片的开关节点引脚,所述第二电感的第二端接所述移动电源芯片的电池引脚和使能引脚与所述超级电容的正极连接,所述超级电容的负极接地,所述超级电容的正极还与所述检测单元连接,所述第二滤波电容与所述超级电容并联,所述移动电源芯片的输出引脚作为充电逆变单元的输出端用以输出所述供电电压,所述第三滤波电容的第一端接所述移动电源芯片的输出引脚,所述第三滤波电容的第二端接地。
在一些实施例中,所述检测单元包括一比较器,所述比较器的同相输入端与所述超级电容的正极连接,反相输入端接一参考电压,输出端与所述降压DC-DC单元连接。
在一些实施例中,所述检测单元还包括第四电阻和第五电阻,所述第四电阻的第一端接电源,所述第四电阻与所述比较器的反相输入端连接,还通过第五电阻接地。
在一些实施例中,所述检测单元包括微控制单元。
本发明实施例的第二方面提供了一种用电设备,包括上述的电源电路。
上述的电源电路使用超级电容作为电量存储单元,超级电容可以在恶劣环境使用,稳定性好不容易引发安全事故,同时循环寿命长;另外,降压DC-DC单元和充电逆变单元可以分别工作在大电流、小电流低静态的高效区间,从而更好的实现低功耗值守系统的能源管理策略,通过更低的电源系统损耗换来更长的待机续航时间。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的电源电路结构示意图;
图2为图1所示的电源电路中工作流程图;
图3为图1所示的电源电路中的降压DC-DC单元的示例电路原理图;
图4为图1所示的电源电路中的充电逆变单元的示例电路原理图;
图5为图1所示的电源电路中的检测单元的示例电路原理图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明实施例的电源电路包括超级电容11、降压DC-DC单元12、充电逆变单元13及检测单元14。
降压DC-DC单元12配置为工作在高效区间,以接入第一电压信号DC_in并将其降压为第二电压信号DC_out1输出;充电逆变单元13与超级电容11和降压DC-DC单元12连接,配置为接入第二电压信号DC_out1对超级电容11充电,还配置为逆变超级电容11的能量以输出供电电压DC_out2;检测单元14与超级电容11和降压DC-DC单元12连接,配置为检测超级电容11的电压值,根据电压值控制降压DC-DC单元12打开或关断第二电压信号DC_out1的输出。
请参阅图1和图2,本实施例中的电源电路将大电流、转换效率高的降压DC-DC单元12,和小电流、逆变效率高、且工作静态电流小的充电逆变单元13串联配合使用。在短的时间内,降压DC-DC单元12在自己的高效区间将超级电容11充满。在大部分时间内,静态电流小,小电流逆变效率高的充电逆变单元13长时间为小电流,为需要经常睡眠的小电流后级负载提供电源。
上电时,降压DC-DC单元12为连接了超级电容11的充电逆变单元13(包括移动电源三合一芯片)供电,充电逆变单元13为超级电容11充电,超级电容11的电压随之上升。与超级电容11连接的检测单元14检测超级电容11电压给,当电量充到一定程度后,超级电容11电压超出了高压阈值的,检测单元14输出关断降压DC-DC单元12。超级电容11的能量通过充电逆变单元13逆变输出稳定的系统电压,供应负载使用。同时超级电容11电压在下降,当超级电容11电压低于低压阈值后,检测单元14重新打开降压DC-DC单元12为超级电容11充电,充电到高电压阈值后,检测单元14再次关断降压DC-DC单元12,如此循环。
请参阅图3,在一些实施例中,降压DC-DC单元12包括降压恒压芯片U1、输入滤波电容C1、第一电感L1、输出滤波电容C2、第一稳压二极管D1、第二稳压二极管D2、谐振电容C3及第一电阻R1,其中:降压恒压芯片U1的电源引脚VIN用于接入第一电压信号DC_in,输入滤波电容C1的第一端接降压恒压芯片U1的电源引脚VIN,输入滤波电容C1第二端接地;第一电感L1的第一端接降压恒压芯片U1的开关节点引脚SW,第一电感L1的第二端作为降压DC-DC单元12的输出端用以输出第二电压信号DC_out1,谐振电容C3及第一电阻R1串联后与第一电感L1并联,第一稳压二极管D1的负极接降压恒压芯片U1的开关节点引脚SW,第一稳压二极管D1的正极接地,第二稳压二极管D2的负极接第一电感L1的第二端,第二稳压二极管D2的正极接地,输出滤波电容C2与第二稳压二极管D2并联,降压恒压芯片U1的使能引脚EN与检测单元14连接。第一电感L1和谐振电容C3组成并联谐振回路,对输出变换得到的第二电压信号DC_out1进行滤波。
在一些实施例中,降压DC-DC单元12还包括反馈模块121,反馈模块121连接在第一电感L1的第二端和降压恒压芯片U1的反馈引脚FB之间,用于反馈第一电感L1输出的电压至降压恒压芯片U1以使第一电感L1输出的电压保持在预设值的误差范围内。本实施例中,反馈模块121包括第二电阻R2、第三电阻R3和第一电容C4,第二电阻R2的第一端接第一电感L1的第二端,第二电阻R2的第二端接降压恒压芯片U1的反馈引脚和第三电阻R3的第一端,第三电阻R3的第二端接地,第一电容C4与第二电阻R2并联。
可以理解的是,上述输入滤波电容C1、输出滤波电容C2、谐振电容C3及第一电容C4,可以使用一个或两个以上的电容器串并联实现。
请参阅图4,在一些实施例中,充电逆变单元13包括移动电源芯片U2、第一滤波电容C5、第二电感L2、第二滤波电容C6及第三滤波电容C7,其中:
移动电源芯片U2的电源引脚VCC接入第二电压信号DC_out1,第一滤波电容C5的第一端接移动电源芯片U2的电源引脚VCC,第一滤波电容C5接地,第二电感L2的第一端接移动电源芯片U2的开关节点引脚SW,第二电感L2的第二端接移动电源芯片U2的电池引脚BAT和使能引脚EN与超级电容11的正极连接,超级电容11的负极接地,超级电容11的正极还与检测单元14连接,第二滤波电容C6与超级电容11并联,移动电源芯片U2的输出引脚VOUT作为充电逆变单元13的输出端用以输出供电电压DC_out2,第三滤波电容C7的第一端接移动电源芯片U2的输出引脚VOUT,第三滤波电容C7的第二端接地。
可以理解的是,上述第一滤波电容C5、第二滤波电容C6及第三滤波电容C7,可以使用一个或两个以上的电容器串并联实现。
请参阅图5,在一些实施例中,检测单元14包括一比较器U3,比较器U3的同相输入端与超级电容11的正极连接,反相输入端接一参考电压Vref,输出端DC_EN与降压DC-DC单元12的使能引脚EN连接。
在进一步的实施例中,检测单元14还包括第四电阻R4和第五电阻R5,第四电阻R4的第一端接电源Vin,第四电阻R4与比较器U3的反相输入端连接,还通过第五电阻R5接地。电源Vin可以是第二电压信号DC_out1,也可以是外部电源信号。在另一个实施例中,检测单元14也可以使用设备的微控制单元。
本方案通过设置超级电容的充电电流为较大,让每次打开降压恒压芯片U1的时候使其工作在高效率区间。当充电结束关断降压恒压芯片U1后,降压恒压芯片U1进入休眠模式,消耗大约2ua的电流。
处于实时工作的移动电源三合一芯片U2,在输出空载的时候,消耗大约40ua的静态电流,且全电流范围升压效率均在90%以上(由于输入输出电压偏差较小,因此效率很高)。
通过和普遍使用的单降压DC-DC变换电路低功耗电路相比,本方案中的电路将传统电路的300ua电流下降至40ua。且使得负载具备了后备电源的功能。同时避免了锂离子电池后备电源系统循环寿命有限,不适合应用于高温,高热,等恶劣环境中的弊端。
系统中的检测单元14使用电压比较器U3可以替换为系统负载中的微控制单元,利用微控制单元的模拟比较器,或者模数采集对接,微控制单元根据采集到的电压值或者比较结果根据设计好的策略灵活控制降压恒压芯片U1的打开和关闭。从而更好的实现低功耗值守系统的能源管理策略,通过更低的电源系统损耗换来更长的待机续航时间。
系统中的降压恒压芯片U1可以通过灵活选型,支持更宽泛的电压范围,和交直流电压的全面支持。
本发明实施例的第二方面提供了一种包括上述的电源电路的用电设备,用电设备可以为电池管理系统、太阳能供电、风能供电野外检测系统,一般性的具备宽电压不稳定供电条件的值守运行电子系统。
上述的电源电路使用超级电容11作为电量存储单元,超级电容11可以在恶劣环境使用,稳定性好不容易引发安全事故,同时循环寿命长;另外,降压DC-DC单元12和充电逆变单元13可以分别工作在大电流、小电流低静态的高效区间,从而更好的实现低功耗值守系统的能源管理策略,通过更低的电源系统损耗换来更长的待机续航时间。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种电源电路,其特征在于,所述电源电路包括:
超级电容;
降压DC-DC单元,配置为工作在高效区间,以接入第一电压信号并将其降压为第二电压信号输出;
充电逆变单元,与所述超级电容和所述降压DC-DC单元连接,配置为工作在高效区间,接入所述第二电压信号对所述超级电容充电,还配置为逆变所述超级电容的能量以输出供电电压;
检测单元,与所述超级电容和所述降压DC-DC单元连接,配置为检测所述超级电容的电压值,根据所述电压值控制所述降压DC-DC单元打开或关断所述第二电压信号的输出。
2.如权利要求1所述的电源电路,其特征在于,所述降压DC-DC单元包括降压恒压芯片、输入滤波电容、第一电感、输出滤波电容、第一稳压二极管、第二稳压二极管、谐振电容及第一电阻,其中:
所述降压恒压芯片的电源引脚用于接入所述第一电压信号,所述输入滤波电容的第一端接所述降压恒压芯片的电源引脚,所述输入滤波电容第二端接地;所述第一电感的第一端接所述降压恒压芯片的开关节点引脚,所述第一电感的第二端作为降压DC-DC单元的输出端用以输出所述第二电压信号,所述谐振电容及所述第一电阻串联后与所述第一电感并联,所述第一稳压二极管的负极接所述降压恒压芯片的开关节点引脚,所述第一稳压二极管的正极接地,所述第二稳压二极管的负极接所述第一电感的第二端,所述第二稳压二极管的正极接地,所述输出滤波电容与所述第二稳压二极管并联,所述降压恒压芯片的使能引脚与所述检测单元连接。
3.如权利要求2所述的电源电路,其特征在于,所述降压DC-DC单元还包括反馈模块,所述反馈模块连接在所述第一电感的第二端和所述降压恒压芯片的反馈引脚之间,用于反馈所述第一电感输出的电压至所述降压恒压芯片以使所述第一电感输出的电压保持在预设值。
4.如权利要求2所述的电源电路,其特征在于,所述反馈模块包括第二电阻、第三电阻和第一电容,所述第二电阻的第一端接所述第一电感的第二端,所述第二电阻的第二端接所述降压恒压芯片的反馈引脚和所述第三电阻的第一端,所述第三电阻的第二端接地,所述第一电容与所述第二电阻并联。
5.如权利要求1至4任一项所述的电源电路,其特征在于,所述充电逆变单元包括移动电源芯片、第一滤波电容、第二电感、第二滤波电容及第三滤波电容,其中:
所述移动电源芯片的电源引脚接入所述第二电压信号,所述第一滤波电容的第一端接所述移动电源芯片的电源引脚,所述第一滤波电容接地,所述第二电感的第一端接所述移动电源芯片的开关节点引脚,所述第二电感的第二端接所述移动电源芯片的电池引脚和使能引脚与所述超级电容的正极连接,所述超级电容的负极接地,所述超级电容的正极还与所述检测单元连接,所述第二滤波电容与所述超级电容并联,所述移动电源芯片的输出引脚作为充电逆变单元的输出端用以输出所述供电电压,所述第三滤波电容的第一端接所述移动电源芯片的输出引脚,所述第三滤波电容的第二端接地。
6.如权利要求1至4任一项所述的电源电路,其特征在于,所述检测单元包括一比较器,所述比较器的同相输入端与所述超级电容的正极连接,反相输入端接一参考电压,输出端与所述降压DC-DC单元连接。
7.如权利要求6所述的电源电路,其特征在于,所述检测单元还包括第四电阻和第五电阻,所述第四电阻的第一端接电源,所述第四电阻与所述比较器的反相输入端连接,还通过第五电阻接地。
8.如权利要求1至4任一项所述的电源电路,其特征在于,所述检测单元包括微控制单元。
9.一种用电设备,其特征在于,包括权利要求1至8任一项所述的电源电路。
CN201910071746.4A 2019-01-25 2019-01-25 电源电路及用电设备 Pending CN109586390A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910071746.4A CN109586390A (zh) 2019-01-25 2019-01-25 电源电路及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910071746.4A CN109586390A (zh) 2019-01-25 2019-01-25 电源电路及用电设备

Publications (1)

Publication Number Publication Date
CN109586390A true CN109586390A (zh) 2019-04-05

Family

ID=65917535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910071746.4A Pending CN109586390A (zh) 2019-01-25 2019-01-25 电源电路及用电设备

Country Status (1)

Country Link
CN (1) CN109586390A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653590A (zh) * 2020-11-12 2021-04-13 苏州浪潮智能科技有限公司 一种PCIe链路检测分析装置及方法
WO2023143527A1 (zh) * 2022-01-28 2023-08-03 浙江白马科技有限公司 电源管理电路、功能模块、自主作业设备及控制系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122405A1 (en) * 2006-11-28 2008-05-29 Uniden Corporation Constant voltage and constant current power source
EP2091055A2 (en) * 2008-02-15 2009-08-19 Honeywell International Inc. Battery supplementing super capacitor energy storage charge and discharge converter
CN202405881U (zh) * 2011-10-14 2012-08-29 西北工业大学 一种超级电容储能装置
CN103929102A (zh) * 2013-04-17 2014-07-16 济南田中工贸有限公司 变频输入逆变式直流电机驱动控制器
CN103997295A (zh) * 2014-05-27 2014-08-20 安徽循环经济技术工程院 太阳能光伏充电控制装置
CN203859678U (zh) * 2014-05-30 2014-10-01 淮阴师范学院 一种光伏并网逆变器的开关电源
CN105226732A (zh) * 2015-11-16 2016-01-06 重庆大学 电缆温度监测装置的取能电源电路
CN105281568A (zh) * 2014-07-22 2016-01-27 德昌电机(深圳)有限公司 降压电路
US20160204712A1 (en) * 2014-07-29 2016-07-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Ac-dc conversion circuit
CN106655431A (zh) * 2016-12-21 2017-05-10 江西佰仕通电子科技有限公司 一种自动调节电流充电器电路
KR101863138B1 (ko) * 2017-12-11 2018-05-31 주식회사 키스톤에너지 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지저장장치
CN208013976U (zh) * 2018-03-20 2018-10-26 重庆市潼南区欣会电子商务有限公司 一种电子商务用的扫描仪
CN108809067A (zh) * 2018-06-15 2018-11-13 湖北德普电气股份有限公司 一种可控型电容能量泄放电路
CN209282906U (zh) * 2019-01-25 2019-08-20 深圳猛犸电动科技有限公司 电源电路及用电设备

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122405A1 (en) * 2006-11-28 2008-05-29 Uniden Corporation Constant voltage and constant current power source
EP2091055A2 (en) * 2008-02-15 2009-08-19 Honeywell International Inc. Battery supplementing super capacitor energy storage charge and discharge converter
CN202405881U (zh) * 2011-10-14 2012-08-29 西北工业大学 一种超级电容储能装置
CN103929102A (zh) * 2013-04-17 2014-07-16 济南田中工贸有限公司 变频输入逆变式直流电机驱动控制器
CN103997295A (zh) * 2014-05-27 2014-08-20 安徽循环经济技术工程院 太阳能光伏充电控制装置
CN203859678U (zh) * 2014-05-30 2014-10-01 淮阴师范学院 一种光伏并网逆变器的开关电源
CN105281568A (zh) * 2014-07-22 2016-01-27 德昌电机(深圳)有限公司 降压电路
US20160204712A1 (en) * 2014-07-29 2016-07-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Ac-dc conversion circuit
CN105226732A (zh) * 2015-11-16 2016-01-06 重庆大学 电缆温度监测装置的取能电源电路
CN106655431A (zh) * 2016-12-21 2017-05-10 江西佰仕通电子科技有限公司 一种自动调节电流充电器电路
KR101863138B1 (ko) * 2017-12-11 2018-05-31 주식회사 키스톤에너지 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지저장장치
CN208013976U (zh) * 2018-03-20 2018-10-26 重庆市潼南区欣会电子商务有限公司 一种电子商务用的扫描仪
CN108809067A (zh) * 2018-06-15 2018-11-13 湖北德普电气股份有限公司 一种可控型电容能量泄放电路
CN209282906U (zh) * 2019-01-25 2019-08-20 深圳猛犸电动科技有限公司 电源电路及用电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112653590A (zh) * 2020-11-12 2021-04-13 苏州浪潮智能科技有限公司 一种PCIe链路检测分析装置及方法
WO2023143527A1 (zh) * 2022-01-28 2023-08-03 浙江白马科技有限公司 电源管理电路、功能模块、自主作业设备及控制系统

Similar Documents

Publication Publication Date Title
TWI492483B (zh) Step - up battery charge management system and its control method
CN103139936B (zh) 能量自供给的无线传感器网络节点
US7952231B1 (en) Method and system for providing supplemental power
Katayama et al. New topology for dc–dc converters used in fuel cell–electric double layer capacitor hybrid power source systems for mobile devices
CN110620413B (zh) 电池系统的能量均衡电路
CN106059322A (zh) Llc谐振变换器电路
US8384356B2 (en) Self contained power source
CN104635149A (zh) 电子式断路器的自检模块
CN109586390A (zh) 电源电路及用电设备
CN210693486U (zh) 待机激活电路及电子设备
CN101378228B (zh) 一种电源转换控制装置及电源电路
CN209282906U (zh) 电源电路及用电设备
CN102299629A (zh) 一种直流高压电源供电控制方法及供电装置
CN106505659B (zh) 不间断直流电源的电池活化控制电路的设计方法
Kularatna et al. A supercapacitor technique for efficiency improvement in linear regulators
CN215419699U (zh) 一种电磁水表的电池供电系统及电磁水表
Ariyarathna et al. Dc-ups capability for the scaldo-assisted 48-v google rack power architecture
CN214255820U (zh) 一种专用于电力载波的电源管理芯片
CN211880118U (zh) 电池管理芯片、电池管理系统及电子设备
CN202948398U (zh) 一种计算机内嵌式智能自保护供电模块
CN204156835U (zh) 待机启动电路及电子设备
CN220732395U (zh) 一种储能电源装置
Mok Single-inductor-multiple-output DC-DC converter design
Joseph et al. Battery management system for DC nanogrid
CN210444045U (zh) 一种触发式直流电源管理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 Guangdong Province, Baoan District, Baoan District, Xin'an Street, Xingdong Community 67 District, Zhongliang Chuangzhi Factory District, 903A

Applicant after: Shenzhen Mammoth Electric Technology Co., Ltd.

Address before: 518000 Food Experience Hall, 67 District Xingdong Community, Xin'an Street, Baoan District, Shenzhen City, Guangdong Province (1) 201

Applicant before: Shenzhen Flow Chain Technology Co., Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination