WO2016015325A1 - 一种电磁屏蔽材料及封装光模块的方法 - Google Patents

一种电磁屏蔽材料及封装光模块的方法 Download PDF

Info

Publication number
WO2016015325A1
WO2016015325A1 PCT/CN2014/083516 CN2014083516W WO2016015325A1 WO 2016015325 A1 WO2016015325 A1 WO 2016015325A1 CN 2014083516 W CN2014083516 W CN 2014083516W WO 2016015325 A1 WO2016015325 A1 WO 2016015325A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic shielding
layer
shielding material
magnetic flux
angle
Prior art date
Application number
PCT/CN2014/083516
Other languages
English (en)
French (fr)
Inventor
周敏
林华枫
廖振兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083516 priority Critical patent/WO2016015325A1/zh
Priority to CN201480080966.9A priority patent/CN106664815B/zh
Priority to EP14898581.5A priority patent/EP3163995B1/en
Priority to TW104124930A priority patent/TWI609623B/zh
Priority to TW104214930U priority patent/TWM519947U/zh
Publication of WO2016015325A1 publication Critical patent/WO2016015325A1/zh
Priority to US15/420,972 priority patent/US10178817B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0058Casings specially adapted for optoelectronic applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4277Protection against electromagnetic interference [EMI], e.g. shielding means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • Electromagnetic shielding material and method for packaging optical module are Electromagnetic shielding material and method for packaging optical module
  • Embodiments of the present invention relate to communication technologies, and in particular, to an electromagnetic shielding material and a method of packaging the optical module. Background technique
  • Optical components are the main components of modern communication technology, which are extremely vulnerable to external electromagnetic interference.
  • Conventional optical components are usually packaged in modules, and the metal casing of the module is used for electromagnetic shielding.
  • the main solution in the industry is to use a metal shield, as shown in Figure 1.
  • the package area and the jack are arranged on the periphery of the BOSA.
  • the metal cover is provided with a pin.
  • the socket on the printed circuit board (PCB) board is inserted and fixed, and the metal case needs to be grounded.
  • the metal cover should be welded firmly to the peripheral support of the optical component to ensure that there is no gap outside the optical component to prevent electromagnetic leakage. But this solution has the following disadvantages:
  • the external electromagnetic shielding component of the optical component is not easy to disassemble and is difficult to repair.
  • the electromagnetic shielding component inside the optical component is not easy to package, and it is difficult to miniaturize
  • the optical component electromagnetic shielding component needs to be grounded.
  • grounding requires special grounding, which creates some trouble for the design of the device and the board, making it difficult to generalize and standardize. Since the ground is a public place, disassembly and assembly can affect the performance of other components.
  • the embodiment of the invention provides an electromagnetic shielding material and a method for packaging the optical module, which are used for solving the problem that the prior art is difficult to disassemble, difficult to repair, low in packaging efficiency, difficult to miniaturize, and need to be grounded due to the metal shield.
  • Technical problem is difficult to disassemble, difficult to repair, low in packaging efficiency, difficult to miniaturize, and need to be grounded due to the metal shield.
  • an electromagnetic shielding material includes an electromagnetic shielding layer, the electromagnetic shielding layer including an outer magnetic flux guiding layer, an insulating dielectric layer, and an inner magnetic flux guiding layer; the outer magnetic flux guiding layer and the The inner magnetic flux guiding layer is a conductor having electromagnetic self-inductance; the outer magnetic flux guiding layer has a mesh structure, each mesh forms a first guiding unit, and the first guiding unit is tapered a structure, and the flow guiding unit is at a first angle with the horizontal direction, the first angle is greater than 0 degrees and less than 90 degrees; the inner magnetic flux guiding layer has a mesh structure, and each mesh forms a second a flow guiding unit, the second flow guiding unit has a tapered structure, and the second guiding unit has a second angle with the horizontal direction, and the second angle is greater than 0 degrees and less than 90 degrees, wherein The outer magnetic flux guiding layer and the inner magnetic flux guiding layer are respectively sawtoothed.
  • the first angle is equal to the second angle.
  • the tapered structure of the first flow guiding unit has a tip end facing downward and a round end facing upward; the tapered structure of the second guiding unit has a tip end facing upward and a round end facing downward .
  • the self-inductance coefficient of the inner magnetic flux guiding layer is greater than the outer magnetic flux Self-inductance coefficient of the diversion layer.
  • the inner flux conducting layer is nickel or cobalt.
  • the outer magnetic flux guiding layer is copper or silver.
  • the insulating dielectric layer comprises thermally conductive particles.
  • the electromagnetic shielding material further includes a protective layer, the protective layer is used to provide the outer layer Layer physical protection.
  • the electromagnetic shielding material further includes a bottom layer, and the bottom layer is an insulating thermal conductive adhesive layer.
  • a second aspect a method for packaging an optical module, comprising: encapsulating the optical module with a diaphragm made of an electromagnetic shielding material;
  • the electromagnetic shielding material is the electromagnetic shielding material according to any one of the first aspects.
  • the diaphragm defines a hole for extending the pigtail of the optical module.
  • the nip of the pigtail exit is sealed with a conductive adhesive.
  • the optical module is configured with a wedge foot frame, and the wedge foot frame provides a convex oblique An angle for attaching the diaphragm made of the electromagnetic shielding material.
  • the frame is a plastic frame.
  • the raised bevel height is 3 to 5 mm.
  • the electromagnetic shielding material provided by the invention is a soft material, and only needs to leave a positioning frame around the optical component, and does not need precise positioning of the socket like the metal shielding cover, high mounting efficiency and low labor cost.
  • FIG. 1 is a schematic view showing an electromagnetic shielding structure of a conventional BOSA in the prior art
  • FIG. 2 is a schematic structural diagram of an electromagnetic shielding material according to an embodiment of the present invention.
  • FIG. 3 is a side view showing the structure of an electromagnetic shielding material according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a magnetic flux self-cancellation principle of an electromagnetic shielding material according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of another electromagnetic shielding material according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a package process for directly pasting a BOSA according to the present invention
  • FIG. 7 is a schematic diagram of a package mode in an all-package manner according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a wedge foot sealing method according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is a partial embodiment of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the present invention employs a material based on self-destructive electromagnetic shielding technology as a primary component of electromagnetic crosstalk resistance.
  • the material has a soft composite film structure, and is completely enclosed in a pasted form to surround an optical component that requires crosstalk protection; the film structure is soft and arbitrarily deformable, and is suitable for a variety of different light component application scenarios;
  • the structure can generate self-destructive electromagnetic shielding benefit, so that the shielding component does not need to be grounded, no need to weld the grounding point, and can be used in any area of the single board and the system; the shielding structure is different from the traditional bare metal structure, and has It is resistant to mechanical scraping, chemical and oxidation resistance, and the application environment is more relaxed.
  • the electromagnetic shielding material provided by the present invention includes an electromagnetic shielding layer including upper and lower magnetic flux guiding structures and an insulating dielectric layer, which may be respectively referred to as an outer magnetic flux guiding structure and Internal magnetic flux guiding structure.
  • the two layers of magnetic flux guiding structures are separated by an insulating medium as a physical support, and the two layers of magnetic flux guiding structures are all conductors having electromagnetic self-inductance, such as metal or other materials having electromagnetic self-inductance.
  • the outer magnetic flux guiding layer has a mesh structure, each mesh forms a first guiding unit, the first guiding unit has a tapered structure, and the first guiding
  • the flow unit is at a first angle with the horizontal direction, the first angle is greater than 0 degrees and less than 90 degrees; when the electromagnetic shielding layer is viewed sideways, the outer magnetic flux guiding layer and the inner magnetic flux are The layers are parallel to each other and are jagged.
  • the two-layer flux guiding structure can form two opposite magnetic fluxes based on the induced eddy current shape, thereby canceling the induced electromagnetic field caused by the shielding. This self-destructive shielding method makes the shielding body not grounded.
  • FIG. 3 is a side view of the internal structure of the self-destructive shielding layer, which discloses a specific embodiment of the above two-layer magnetic flux structure.
  • the upper layer is an outer magnetic flux guiding layer
  • the lower layer is Inner flux guide layer.
  • the outer magnetic flux guiding layer has a mesh structure, and each mesh forms a flow guiding unit (not shown in FIG. 3), which is called a first guiding unit, and the guiding unit is Tapered structure, a tapered unit as shown in FIG.
  • the first flow guiding unit has an angle A with the horizontal direction, and the angle of the angle may be 0 degree ⁇ A ⁇ 90 degrees;
  • the inner magnetic flux guiding layer has a mesh structure, each mesh forms a second guiding unit, the second guiding unit has a tapered structure, and the second The flow guiding unit has a second angle B with the horizontal direction, and the second angle B is greater than 0 degrees and less than 90 degrees.
  • the second flow guiding unit of each outer magnetic flux guiding layer corresponds to an inner magnetic flux first guiding unit parallel thereto.
  • the first flow guiding unit and the second flow guiding unit are not shown in Figs. 2 and 3.
  • a portion of the virtual coil in FIG. 4 is a first flow guiding unit of the outer flux guiding structure, and a second guiding unit of the inner magnetic flux guiding structure, the side view of which is two parallel
  • the plane, the top view of which is shown by the arrow in Fig. 4 is a tapered unit with two opposite ends.
  • the upper flow guiding unit induces the magnetic flux B1 to vertically pass through its corresponding inner magnetic flux guiding unit.
  • the lower flow guiding unit Based on the law of electromagnetic induction, the lower flow guiding unit generates a secondary induced magnetic flux B2, which is opposite to the direction of B1 and is used to hinder the change of its own magnetic flux.
  • the internal flux guiding unit generates a clockwise eddy current E2 due to electromagnetic induction.
  • the two eddy currents E1 and E2 form a parallel reversed pattern, and the two magnetic fluxes of B1 and B2 are also reversed.
  • FIG 4 shows the grid-like flow guiding unit in the flux guiding structure, each unit being tapered.
  • These conical elements are placed at an angle of inclination with the same up and down inclination and the planes of the units are parallel.
  • the tapered unit has a sharp tip and a rounded end.
  • the tip end faces downward and the round end faces upward; and for the lower layer guiding unit, the tip end faces upward and the round end faces downward. Due to the tip effect, the induced charge of the flow guiding unit gathers more at the tip end and less gathers at the round end.
  • the tip of the upper and lower unit approaches, and the charge rapidly reverses due to strong repulsive.
  • a strong reverse eddy current is formed under the initial induced eddy current traction, and the force is further generated. Large flux self-destructive force.
  • the design is to keep the two reverse magnetic fluxes as close as possible, and the self-inductance coefficient of the inner magnetic flux conductor is selected. It is larger than the outer magnetic flux conductor. If the outer magnetic flux conductor material can be made of copper or silver, the inner magnetic flux conductor can be made of nickel or cobalt.
  • the insulating dielectric layer between the two layers of magnetic flux conducting layers has anti-oxidation and thermal conductivity, and is capable of blocking moisture, oxygen, etc. to prevent the electromagnetic shielding layer from being oxidized.
  • the insulating dielectric layer is subjected to acid and alkali corrosion treatment to chemically isolate the material;
  • thermal conductive particles can be incorporated into the insulating dielectric layer to enhance the heat dissipation performance of the material.
  • the electromagnetic shielding material further includes a protective layer located on the upper layer of the electromagnetic shielding layer, and is mainly used for providing physical protection of the outer layer, resisting mechanical stress, preventing external mechanical cutting, drawing and the like. Cause damage.
  • the protective layer may be an organic polymer, a dense oxide or the like.
  • the electromagnetic shielding material further comprises a bottom layer located on the lower layer of the electromagnetic shielding layer, which is an insulating thermal conductive adhesive layer, which is characterized by low thermal resistance, and is used for quickly guiding heat of the surface of the attached object to the heat dissipating medium, such as PCB board; the insulating thermal conductive layer is also used to insulate the pin electrical connection between the devices to prevent short circuit when pasting.
  • the insulating and thermally conductive adhesive layer is also used to adhere the shielding material and the BOSA edge to achieve a fully enclosed, leak-free electromagnetic shielding.
  • the insulating and thermally conductive adhesive layer can be selected from materials used for heat conduction and insulation in the prior art, which is not limited in the present invention.
  • the self-destructive electromagnetic shielding material disclosed by the embodiment of the invention realizes the anti-electromagnetic crosstalk of the optical component, and is not only simple, efficient, easy to disassemble, but also ensures that its performance is not affected by the package, and is stable and reliable.
  • three embodiments how to apply the material to package the component to prevent the component from being subjected to electromagnetic drying is described.
  • the material of the present invention is directly pasted around a device requiring electromagnetic shielding.
  • the packaging steps are as follows:
  • the board has a pasting area around the BOSA, and the surrounding area is marked with a dotted line.
  • the self-destructive electromagnetic shielding material film is attached to the bonding area and encloses the BOSA.
  • Self-phase-eliminating The edge of the magnetic shielding material diaphragm is flush with the positioning dotted line, and the BOSA pigtail extends through the front opening of the diaphragm.
  • the self-destructive electromagnetic shielding material does not need to be grounded, so the film size and paste positioning accuracy are very low, and the tolerance can reach several millimeters. Therefore, the above paste and pressure
  • the process can be operated manually and without any other equipment (and the welding requires the corresponding tools, power supply and risk of fire, burns, etc.).
  • the self-adhesive gluing of the solution can also compensate for the electromagnetic leakage caused by partial pressure failure and improve the packaging yield; while the electric welding is used, once the electromagnetic leakage is caused by improper operation, it can only repair or re-weld, and it takes time and labor. .
  • the self-destructive electromagnetic shielding film is a soft shielding material, and the front opening can be designed to match the size of the pigtail, and the slit is less than 1 mm, which is much smaller than the opening of the metal shell of the hard material.
  • the opening of the fiberglass of the BOSA metal shield does not affect the shielding effect. Therefore, the gap between the self-destructive electromagnetic shielding film and the shielding effect is not affected by the theoretically, so the conductive adhesive in the above step four Sealing is optional.
  • COB Chip On Board
  • a chip is placed on a single board, and a small board (chip board) is bridged in the middle, and a laser detection diode (Laser Detector) Diode (LDD) and Optical Amplifier (LA) and matching RC are also placed on the small board.
  • LDD laser detection diode
  • LA Optical Amplifier
  • the all-inclusive method can be used to cover the full board and the edge of the chip board with the self-destructive shielding film, and then insert the small board on the large board.
  • the COB approach enables edge-to-edge shielding with minimal electromagnetic leakage.
  • Fig. 8 is a third possible embodiment.
  • the self-destructive electromagnetic shielding films are all in a flat manner. Since the BOSA has a certain height protrusion relative to the PBC board, in order to make the adhesion more convenient, it is considered to provide a wedge-shaped plastic frame around the BOSA. Among them, the plastic frame provides a convex bevel angle of about 3 ⁇ 5mm for attaching to the self-destructive shielding film.
  • the electromagnetic shielding material provided by the invention is a soft material, and only needs to leave a positioning frame around the optical component for pasting or directly shielding the device to be shielded in a COB form, and does not need to be as precise as a metal shield. Positioning of the jack, high placement efficiency, low labor costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Brushes (AREA)

Abstract

本发明提供一种电磁屏蔽材料及封装光模块的方法,所述电磁屏蔽材料包括电磁屏蔽层,所述电磁屏蔽层包括外磁通导流层、绝缘介质层和内磁通导流层;所述外磁通导流层呈网状结构,每个网孔形成第一导流单元,所述第一导流单元呈锥形结构,并且所述导流单元与水平方向成第一夹角,所述第一夹角大于0度小于90度;所述电磁屏蔽层的剖面呈锯齿状。采用本发明的技术方案,无需在光组件周围设置接地点,实现了粘贴式封装,拆装、返修方便。本发明提供的电磁屏蔽材料为软性材料,只需在光组件周围留出定位框,贴装效率高,人工成本低。

Description

一种电磁屏蔽材料及封装光模块的方法
技术领域 本发明实施例涉及通信技术, 尤其涉及一种电磁屏蔽材料及封装光模块 的方法。 背景技术
光组件是现代通信技术中主要的部件,其极易受到外界电磁干扰而失效, 以往的光组件通常封装在模块中, 釆用模块的金属外壳进行电磁屏蔽。
但是, 随着技术的发展和降成本的需求, 目前部分光组件已经直接焊置 在外部印刷电路板( Prmted Circuit Board, 简称 PCB )上, 对于这部分光组 件, 由于缺少原先模块外壳的屏蔽, 极易受组件外界的电磁干扰, 面临 "光 组件外部电磁屏蔽" 的技术问题。
此外, 光组件内部的各光器件间的电磁串扰也是一直存在的, 最常见的 是双向光组件( Bi-direction Optical Sub-assembly, 简称 BOSA )里发射机 ( Transmitter, 简称 Tx )对接收机( Receiver, 简称 Rx ) 的串扰, 包括光串 扰和电串扰, 面临 "光组件内部电磁屏蔽" 的技术问题。
目前业界的主要方案是釆用金属屏蔽罩, 如图 1所示。 在 BOSA的外围 设置了封装区域和插孔, 金属罩带有插针, 封装时插入印刷电路板(Printed Circuit Board, 简称 PCB )板上的插孔, 并焊接固定, 金属壳需要接地。 为了 防止电磁泄漏, 要将金属罩焊牢, 和光组件周边支撑部紧靠, 以保证光组件 外部没有缝隙, 防止电磁泄漏。 但是这种解决方案具有以下缺点:
第一, 光组件外部电磁屏蔽部件不易拆装、 难以返修
在屏蔽性能要求严格的场合, 金属罩的焊针排布非常的密集, 有时为了 保证焊接紧密, 还要对接缝进行密闭焊接, 这使工人的焊接工作耗时巨大, 成本很高。 此外, 密闭焊接对工人技艺的依赖程度很大, 不同的个人、 甚至 同一工人在不同时期的焊接效果都是不同的,焊接良率和性能存在较大风险。
因此, 为了防止电磁泄漏, 金属罩比较难 "装" , 而难 "装" 就意味着 更难 "拆" 。 对于一个有密集焊点或密闭焊接的金属罩, 其拆封无疑是费时 费力的。 现有的生产经验表明, 这种拆卸会经常性地损坏内部的光组件。 但 是, 光组件的返修需要拆屏蔽罩, 因此传统的金属屏蔽罩用于光组件电磁屏 蔽是非常不利于其返修的。
第二, 光组件内部电磁屏蔽部件不易封装、 难以小型化
对于 "光组件外部电磁屏蔽" 的技术问题, 目前业界还没有很好的解决 方案, 主要有将 Rx、 Tx 的信号线相互离的远些, 用小金属罩屏蔽等。 这些 举措都需要光组件有足够大的体积来提供信号线距离和放置小金属罩, 难以 实现光组件的小型化。 此外, 在期间内部封装金属罩在工艺上也是非常困难 的, 因为需要焊接。
第三, 光组件电磁屏蔽部件需要接地
业界现有的使用金属屏蔽罩的解决方案都需要接地处理, 而接地处理则 需要特殊布置接地端, 对器件和单板的设计制作造成一定的麻烦, 难以通用 和标准化。 由于地是公共地, 拆装会影响其他元件性能。
发明内容
本发明实施例提供一种电磁屏蔽材料及封装光模块的方法, 用于解决现 有技术由于釆用金属屏蔽罩所带来的不易拆装、 难以返修、 封装效率低、 难 以小型化以及需要接地的技术问题。
第一方面, 一种电磁屏蔽材料, 包括电磁屏蔽层, 所述电磁屏蔽层包括 外磁通导流层、 绝缘介质层和内磁通导流层; 所述外磁通导流层和所述内磁 通导流层均为具有电磁自感能力的导体; 所述外磁通导流层呈网状结构, 每 个网孔形成第一导流单元, 所述第一导流单元呈锥形结构, 并且所述导流单 元与水平方向成第一夹角, 所述第一夹角大于 0度小于 90度; 所述内磁通导 流层呈网状结构, 每个网孔形成第二导流单元, 所述第二导流单元呈锥形结 构, 并且所述第二导流单元与水平方向成第二夹角, 所述第二夹角大于 0度 小于 90度, 其中, 所述外磁通导流层和所述内磁通导流层分别呈锯齿状。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述第一夹角 等于所述第二夹角。
结合第一方面, 以及第一方面的第一种可能的实现方式, 在第一方面的 第二种可能的实现方式中, 所述第一导流单元的锥形结构为尖端朝下, 圓端 朝上; 所述第二导流单元的锥形结构为尖端朝上, 圓端朝下。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第三种可能的实现方式中, 所述内磁通导流层的自感系数大于所述外磁通 导流层的自感系数。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第四种可能的实现方式中, 所述内磁通导流层为镍或者钴。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第五种可能的实现方式中, 所述外磁通导流层为铜或者银。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第六种可能的实现方式中, 所述绝缘介质层包含导热颗粒。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第六种可能的实现方式中, 所述电磁屏蔽材料还包括保护层, 所述保护层 用于提供外层物理保护。
结合第一方面, 以及第一方面的任意一种可能的实现方式, 在第一方面 的第七种可能的实现方式中, 所述电磁屏蔽材料还包括底层, 所述底层为绝 缘导热胶层。
第二方面, 一种封装光模块的方法, 包括釆用电磁屏蔽材料制成的膜片 封装所述光模块并粘贴;
其中, 所述电磁屏蔽材料如第一方面任意一项所述的电磁屏蔽材料。 结合第二方面, 在第二方面的第一种可能的实现方式中, 所述膜片开设 一个孔, 所述孔用于伸出所述光模块的尾纤。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 用导电胶将所述尾纤出口处的夹缝进行封口屏蔽。
结合第二方面以及第二方面的任意一种可能的实现方式, 在第二方面的 第三种可能的实现方式中, 所述光模块设置楔脚边框, 所述楔脚边框提供一 个凸起斜角, 用于所述电磁屏蔽材料制成的膜片贴附。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述边框为塑料边框。
结合第二方面的第三种可能的实现方式或第四种可能的实现方式, 在第 五种可能的实现方式中, 所述凸起斜角高度为 3~5毫米。
釆用本发明技术方案可以达到以下技术效果:
第一, 无需接地, 无需在光组件周围设置接地点, 实现了粘贴式封装, 拆装、 返修方便。
第二, 本发明提供的电磁屏蔽材料为软性材料, 只需在光组件周围留出 定位框, 不需要像金属屏蔽罩那样精准的插孔定位, 贴装效率高, 人工成本 低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中传统 BOSA的电磁屏蔽结构示意图;
图 2为本发明实施例提供的一种电磁屏蔽材料结构示意图;
图 3为本发明实施例提供的电磁屏蔽材料结构侧视图;
图 4为本发明实施例提供的电磁屏蔽材料磁通自相消原理示意图; 图 5为本发明实施例提供的另一种电磁屏蔽材料结构示意图;
图 6为本发明提供的一种对 BOSA直接粘贴的封装流程示意图; 图 7为本发明实施例提供的一种全包形式的封装方式示意图;
图 8为本发明实施例提供的一种楔脚封边方式示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 本发明釆用一种基于自相消电磁屏蔽技术的材料充当抗电磁串扰的主要 部件。 该材料具有一种软性的复合薄膜结构, 釆用粘贴的形式全封闭包围需 要抗串扰保护的光组件; 薄膜结构柔软且可任意变形, 适合多种不同规则的 光组件应用场景; 设计的内部结构能够产生自相消的电磁屏蔽效益, 使屏蔽 部件不需要接地, 完全不需要焊接接地点, 可在单板和系统的任意区域使用; 屏蔽结构不同于传统的棵露的金属结构, 而具有耐机械割刮、 耐化学腐蚀和 抗氧化的特性, 应用的环境条件更宽松。
如图 2所示, 本发明提供的电磁屏蔽材料, 包括电磁屏蔽层, 该电磁屏 蔽层包括上、 下两层磁通导流结构和绝缘介质层, 可以分别称为外磁通导流 结构和内磁通导流结构。 该两层磁通导流结构中间由绝缘介质作为物理支撑 以隔开, 该两层磁通导流结构均为具有电磁自感能力的导体, 比如金属或者 其他具有电磁自感能力的材料。 当俯视该电磁屏蔽材料时, 所述外磁通导流 层呈网状结构, 每个网孔形成第一导流单元, 所述第一导流单元呈锥形结构, 并且所述第一导流单元与水平方向成第一夹角, 所述第一夹角大于 0度小于 90度; 当侧视所述电磁屏蔽层时, 所述外磁通导流层和所述内磁通导流层互 相平行, 且呈锯齿状。 该两层磁通导流结构能够基于感应涡流形态构成两层 相反的磁通, 进而抵消屏蔽引起的感应电磁场, 这种自相消的屏蔽方式使得 屏蔽体不用接地。
具体地, 图 3为自相消屏蔽层的内部结构的侧视图, 其揭示了上述两层 磁通结构的一个具体实施例, 如图 3所示, 上层为外磁通导流层, 下层为内 磁通导流层。 当俯视该电磁屏蔽层时, 外磁通导流层呈网状结构, 每个网孔 形成一个导流单元(图 3 中未示出) , 称为第一导流单元, 该导流单元呈锥 形结构, 如图 4中所示的锥形单元。 其中, 第一导流单元与水平方向呈一个 夹角 A, 该夹角的范围可以是 0度 <A<90度;
当仰视所述电磁屏蔽层时, 所述内磁通导流层呈网状结构, 每个网孔形 成第二导流单元, 所述第二导流单元呈锥形结构, 并且所述第二导流单元与 水平方向成第二夹角 B , 所述第二夹角 B大于 0度小于 90度。
当上下层导流单元的倾角 A等于 B时, 电磁自相消的效果最优。 两个导 流层的侧视图呈水平平行排布, 其剖面为折叠排布, 呈锯齿状。 如图 2和图 3中所示。
如图 4所示, 每个外磁通导流层的第二导流单元都对应着一个与之平行 的内磁通第一导流单元。 该第一导流单元和第二导流单元在图 2及图 3中未 示出。 为方便理解, 图 4中用虚线圈起来的一部分, 分别是外磁通导流结构 的第一导流单元, 和内磁通导流结构的第二导流单元, 其侧视图是两个平行 的平面, 其俯视图如图 4箭头所指的图, 是两个尖端相对的锥形单元。 当外 部有电磁串扰时 , 外磁通导流结构上的导流单元会产生一个逆时针涡流 E1 , 并产生一次感应磁通 Bl。 由于上、 下层导流单元平行, 则上层导流单元感应 磁通 B1垂直穿过其对应的内磁通导流单元。基于电磁感应定律, 下层导流单 元会产生一个二次感应磁通 B2, 且与 B1方向相反, 用于阻碍自身磁通的变 化。 相应的, 内磁通导流单元由于电磁感应则产生了一个顺时针的涡流 E2。 受双层导流层的结构限制, E1 和 E2 两个涡流形成平行反向的格局, 而 B1 和 B2两个磁通也恰好反向。
图 4所示为磁通导流结构中的网格状导流单元, 每个单位为锥形。 这些 锥形单元呈倾角摆放, 上下倾角相同, 各单元平面平行。 其中, 锥形单元有 明显的尖端和圓端, 对于上层导流单元, 尖端朝下, 圓端朝上; 而对于下层 导流单元, 则尖端朝上, 圓端朝下。 由于尖端效应, 导流单元的感生电荷在 尖端聚集的多, 在圓端聚集的少, 而感应涡流形成的时候, 上下单元的尖端 靠近, 则电荷由于强相斥而迅速反向回旋, 在初始感应涡流牵引下形成强逆 向涡流, 进而力。大磁通自相消力度。
由于外磁通导流结构为一次感应磁通 , 内磁通导流结构为二次感应磁通 , 则设计上为保持两反向磁通尽量相消, 内磁通的导体选用的自感系数要比外 磁通导体大, 如外磁通导体材料可以选用铜、 银等材料, 则内磁通导体则可 选用镍、 钴等材料。
可选地, 两层磁通导流层之间的绝缘介质层有抗氧化导热性能, 能够隔 绝水汽、 氧等以防止电磁屏蔽层被氧化。
可选地, 绝缘介质层要进行抗酸碱腐蚀处理, 对材料进行化学隔离; 另 外还可以在绝缘介质层中掺入导热颗粒, 增强材料的散热性能。
可选地, 如图 5所示, 该电磁屏蔽材料还包括保护层, 位于上述电磁屏 蔽层的上层, 主要用于提供外层物理保护, 抗机械应力, 防止外部的机械切 割, 划拉等对材料造成损害。 例如, 该保护层可以是有机聚合物、 致密氧化 物等。
可选地, 该电磁屏蔽材料还包括底层, 位于上述电磁屏蔽层的下层, 为 绝缘导热胶层, 其特点是具有低热阻, 用于将被贴附物体表面热量快速牵导 到散热介质,比如 PCB板;该绝缘导热胶层还用于隔绝器件间的管脚电联通, 防止黏贴时发生短路。 该绝缘导热胶层还用于粘贴屏蔽材料和 BOSA边缘, 实现全封闭无泄漏的电磁屏蔽。 该绝缘导热胶层可以选择现有技术中用来导 热、 绝缘的材料, 本发明对此不作限制。
釆用本发明实施例公开的自相消的电磁屏蔽材料实现光组件的抗电磁串 扰, 在器件封装中不但要简单、 高效、 易拆装, 而且还要保证其性能不受封 装影响、 稳定可靠, 下面以三个具体实施例来介绍如何应用本材料来封装组 件, 以防止该组件受到电磁干 4尤。
如图 6所示, 直接将本发明的材料粘贴于需要电磁屏蔽的器件周围, 以 光器件 BOSA为例, 其封装步骤如下:
一、准备好自相消的电磁屏蔽材料膜片,膜片前端开一小孔,方便 BOSA 尾纤伸出。
二、 单板上 BOSA周围设有粘贴区域, 区域周边标有定位虚线。 参照定 位虚线, 将自相消电磁屏蔽材料膜片贴在粘贴区域并包住 BOSA。 自相消电 磁屏蔽材料膜片的边缘与定位虚线齐平, BOSA 的尾纤通过膜片前端开口伸 出。
三、 贴好自相消电磁屏蔽膜片后, 将其边缘沿着定位虚线压牢, 防止电 磁泄漏。
四、 对于尾纤出口处的夹缝, 用导电胶进行封口屏蔽。
相比金属壳罩的屏蔽, 釆用自相消电磁屏蔽材料无需接地, 所以其胶膜 尺寸、 粘贴定位精度要求非常低, 容差可达好几个毫米。 因此, 上述贴、 压 工序完全可以手工轻便操作, 无需其他设备(而焊接则需要相应工具、 电源 且存在引发火灾、 烫伤等风险) 。 此外, 也可以釆用机器流水线式一次性贴 压以提高生产效率, 由于操作要求精度低, 所以相应的设备成本极低。
本方案粘贴釆用自吸附胶合, 还可以补偿部分压不牢造成的电磁泄漏, 提高封装良率; 而釆用电焊, 一旦因操作不当造成电磁泄漏, 只能补焊甚至 重焊, 费工费时。
由于 BOSA尾纤的存在, 自相消电磁屏蔽膜上留有夹缝。 自相消电磁屏 蔽膜是软性屏蔽材料, 前端开口可以设计的和尾纤尺寸匹配, 其夹缝小于 lmm, 远远小于硬性材料的金属壳子的开口。 考察现有的技术应用, BOSA 金属屏蔽罩的尾纤开孔并不会影响屏蔽效果, 因此理论上自相消电磁屏蔽膜 上的夹缝也不会影响屏蔽效果, 所以上述步骤四中的导电胶封口是可选项。
如图 7所示, 另一种可能的实施形式是芯片在板 (Chip On Board, 简称 COB), 即将芯片安置于单板上, 中间通过小板(芯片板)桥接, 激光检测二 极管 ( Laser Detector Diode, 简称 LDD )和光放大器( Laser Amplifier, 简称 LA ) 以及匹配阻容也一并置于小板上。 因此, 可以釆用全包的方式, 使自相 消屏蔽膜覆盖芯片板上全板及边缘,之后再将小板插置在大板上。 该 COB的 方式可以实现边缘全包式屏蔽, 电磁泄漏最低。
图 8为第三种可能的实施方式, 如前两个实施例所述, 自相消电磁屏蔽 膜都是釆用平贴的方式。 由于 BOSA相对 PBC板有一定的高度凸起, 为了粘 贴更加方便, 考虑在 BOSA周边设置楔脚塑料边框。 其中, 塑料边框提供了 一个大约 3 ~ 5mm的凸起斜角, 用于自相消屏蔽膜贴附。
通过釆用本发明技术方案可以达到以下技术效果:
第一, 无需接地, 无需在光组件周围设置接地点, 实现了粘贴式封装, 拆装、 返修方便。
第二, 本发明提供的电磁屏蔽材料为软性材料, 只需在光组件周围留出 定位框用于粘贴或直接将需要屏蔽的器件以 COB形式全包,不需要像金属屏 蔽罩那样精准的插孔定位, 贴装效率高, 人工成本低。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换。 因此, 本发明的保护范围 应以权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种电磁屏蔽材料, 包括电磁屏蔽层, 其特征在于, 所述电磁屏蔽层 包括外磁通导流层、 绝缘介质层和内磁通导流层, 所述外磁通导流层和内磁 通导流层均为具有电磁自感能力的导体;
所述外磁通导流层呈网状结构, 每个网孔形成第一导流单元, 所述第一 导流单元呈锥形结构, 所述导流单元与水平方向成第一夹角, 所述第一夹角 大于 0度小于 90度;
所述内磁通导流层呈网状结构, 每个网孔形成第二导流单元, 所述第二 导流单元呈锥形结构, 并且所述第二导流单元与水平方向成第二夹角, 所述 第二夹角大于 0度小于 90度;
其中, 所述外磁通导流层和所述内磁通导流层分别呈锯齿状。
2、 根据权利要求 1所述的电磁屏蔽材料, 其特征在于, 所述第一夹角等 于所述第二夹角。
3、 根据权利要求 1或 2所述的电磁屏蔽材料, 其特征在于, 所述第一导 流单元的锥形结构为尖端朝下, 圓端朝上; 所述第二导流单元的锥形结构为 尖端朝上, 圓端朝下。
4、 根据权利要求 1~3任意一项所述的电磁屏蔽材料, 其特征在于, 所述 内磁通导流层的自感系数大于所述外磁通导流层的自感系数。
5、 根据权利要求 1~4任意一项所述的电磁屏蔽材料, 其特征在于, 所述 内磁通导流层为镍或者钴。
6、 根据权利要求 1~5任意一项所述的电磁屏蔽材料, 其特征在于, 所述 外磁通导流层为铜或者银。
7、 根据权利要求 1~6任意一项所述的电磁屏蔽材料, 其特征在于, 所述 绝缘介质层包含导热颗粒。
8、 根据权利要求 1~7任意一项所述的电磁屏蔽材料, 其特征在于, 所述 电磁屏蔽材料还包括保护层, 所述保护层用于提供外层物理保护。
9、 根据权利要求 1~8任意一项所述的电磁屏蔽材料, 其特征在于, 所述 电磁屏蔽材料还包括底层, 所述底层为绝缘导热胶层。
10、 一种封装光模块的方法, 其特征在于, 包括:
将电磁屏蔽材料制成的膜片包住所述光模块并粘贴到所述光模块的单板 上;
其中,所述电磁屏蔽材料如权利要求 1~9任意一项所述的电磁屏蔽材料。
11、 根据权利要求 10所述的方法, 其特征在于, 所述膜片开设一个孔, 所述孔用于伸出所述光模块的尾纤。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述方法还包括: 用导电胶将所述尾纤出口处的夹缝进行封口屏蔽。
13、 根据权利要求 10~12任意一项所述的方法, 其特征在于, 所述光模 块设置楔脚边框, 所述楔脚边框提供一个凸起斜角, 用于所述电磁屏蔽材料 制成的膜片贴附。
14、 根据权利要求 13所述的方法, 其特征在于, 所述边框为塑料边框。
15、 根据权利要求 13或 14所述的方法, 其特征在于, 所述凸起斜角高 度为 3~5毫米。
PCT/CN2014/083516 2014-08-01 2014-08-01 一种电磁屏蔽材料及封装光模块的方法 WO2016015325A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/083516 WO2016015325A1 (zh) 2014-08-01 2014-08-01 一种电磁屏蔽材料及封装光模块的方法
CN201480080966.9A CN106664815B (zh) 2014-08-01 2014-08-01 一种电磁屏蔽材料及封装光模块的方法
EP14898581.5A EP3163995B1 (en) 2014-08-01 2014-08-01 Electromagnetic shielding material and method for packaging optical module
TW104124930A TWI609623B (zh) 2014-08-01 2015-07-31 電磁屏蔽材料及封裝光模組的方法
TW104214930U TWM519947U (zh) 2014-08-01 2015-09-15 直線交錯式刷毛結構之電動牙刷
US15/420,972 US10178817B2 (en) 2014-08-01 2017-01-31 Electromagnetic shielding material and method for packaging optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083516 WO2016015325A1 (zh) 2014-08-01 2014-08-01 一种电磁屏蔽材料及封装光模块的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,972 Continuation US10178817B2 (en) 2014-08-01 2017-01-31 Electromagnetic shielding material and method for packaging optical module

Publications (1)

Publication Number Publication Date
WO2016015325A1 true WO2016015325A1 (zh) 2016-02-04

Family

ID=55216678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083516 WO2016015325A1 (zh) 2014-08-01 2014-08-01 一种电磁屏蔽材料及封装光模块的方法

Country Status (5)

Country Link
US (1) US10178817B2 (zh)
EP (1) EP3163995B1 (zh)
CN (1) CN106664815B (zh)
TW (2) TWI609623B (zh)
WO (1) WO2016015325A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027455A1 (zh) * 2019-08-09 2021-02-18 烽火通信科技股份有限公司 具有抗干扰性能的光收发一体组件及bob光模块

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135638A (zh) * 2017-06-01 2017-09-05 上海市共进通信技术有限公司 减小Bob模块打流对WiFi辐射灵敏度影响的装置及方法
TWI694274B (zh) * 2019-04-23 2020-05-21 和碩聯合科技股份有限公司 光發射接收組件屏蔽結構
US20220246348A1 (en) * 2020-02-20 2022-08-04 Amosense Co., Ltd. Magnetic shielding sheet and manufacturing method therefor
US11974419B1 (en) * 2023-06-13 2024-04-30 Stmicroelectronics International N.V. Method, systems, and apparatuses for electromagnetic shielding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722947A (zh) * 2004-08-31 2006-01-18 达昌电子科技(苏州)有限公司 电器抗干扰阻抗片
CN1810069A (zh) * 2003-06-26 2006-07-26 应达公司 感应加热线圈的电磁屏蔽
TWM445836U (zh) * 2012-10-03 2013-01-21 Iteq Corp 電磁干擾屏蔽結構
CN103155737A (zh) * 2010-09-30 2013-06-12 日东电工株式会社 无线电力传输用电磁波屏蔽片
CN203072303U (zh) * 2012-11-29 2013-07-17 瑞斯康达科技发展股份有限公司 一种光模块

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427298A (en) * 1987-07-23 1989-01-30 Uniden Kk Shielding structure for circuit device on substrate
US4890199A (en) * 1988-11-04 1989-12-26 Motorola, Inc. Miniature shield with opposing cantilever spring fingers
US4973963A (en) * 1988-11-18 1990-11-27 Seiko Instuments Inc. Flat lattice for absorbing electromagnetic wave
US5354951A (en) * 1993-03-15 1994-10-11 Leader Tech, Inc. Circuit board component shielding enclosure and assembly
US5583318A (en) * 1993-12-30 1996-12-10 Lucent Technologies Inc. Multi-layer shield for absorption of electromagnetic energy
US5495399A (en) * 1994-07-05 1996-02-27 Motorola, Inc. Shield with detachable grasp support member
US5742004A (en) * 1996-09-09 1998-04-21 Motorola, Inc. Coplanar interlocking shield
GB2327537B (en) * 1997-07-18 2002-05-22 Nokia Mobile Phones Ltd Electronic device
WO2001028305A1 (en) * 1999-10-12 2001-04-19 Shielding For Electronics, Inc. Emi containment apparatus
TW445836U (en) 2000-12-29 2001-07-11 Dar Shin Industry Co Ltd Structure of mop capable of controlling synchronous water supply
TWM244562U (en) * 2003-07-21 2004-09-21 Via Tech Inc Ground shield structure
US7511230B2 (en) * 2004-11-09 2009-03-31 Stealthdrive, Inc. Reduced cost and gasketting “one-hit” and other manufacturing EMI-shielding solutions for computer enclosures
CN101185383B (zh) * 2005-01-10 2011-03-30 弯曲的路径Emi解决方案有限责任公司 为电子设备外壳提供电磁干扰屏蔽的三维结构
US20110083895A1 (en) * 2005-01-10 2011-04-14 Paul Douglas Cochrane Three-Dimensional Shapes with multiple Parametric geometries and Surfaces Formed in Electronics Enclosures for Providing Electromagnetic Interference (EMI) Shielding
US9345183B2 (en) * 2005-03-15 2016-05-17 Stealthdrive Canada Corp. EMI-shielding solutions for electronics enclosures using opposing three-dimensional shapes and channels formed in sheet metal
US8039763B1 (en) * 2005-03-15 2011-10-18 Stealthdrive, Inc. EMI-shielding solutions for computer enclosures using combinations of two and three-dimensional shapes formed in sheet metal
US7504592B1 (en) * 2007-08-31 2009-03-17 Laird Technologies, Inc. Electromagnetic interference shields and related manufacturing methods
TW200919069A (en) * 2007-10-25 2009-05-01 Asia Optical Co Inc Optical engine for improving electromagnetic interference
US8319118B2 (en) * 2008-02-22 2012-11-27 Sumitomo Electric Industries, Ltd. Optical transceiver providing independent spaces for electrical components and for optical components
US7910839B2 (en) * 2008-11-26 2011-03-22 Itt Manufacturing Enterprises, Inc. Electro-conductive contact structure for enclosure sealing in housings
KR20120105485A (ko) * 2009-12-02 2012-09-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Rf 고투자율을 갖는 다층 emi 차폐 박막
JP5593714B2 (ja) * 2010-01-29 2014-09-24 富士通株式会社 電子素子のシールド構造及びこれを備えた電子装置
JP6263847B2 (ja) * 2012-08-16 2018-01-24 住友ベークライト株式会社 電磁波シールド用フィルム、および電子部品の被覆方法
CN104730656A (zh) * 2015-04-01 2015-06-24 苏州旭创科技有限公司 光模块及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810069A (zh) * 2003-06-26 2006-07-26 应达公司 感应加热线圈的电磁屏蔽
CN1722947A (zh) * 2004-08-31 2006-01-18 达昌电子科技(苏州)有限公司 电器抗干扰阻抗片
CN103155737A (zh) * 2010-09-30 2013-06-12 日东电工株式会社 无线电力传输用电磁波屏蔽片
TWM445836U (zh) * 2012-10-03 2013-01-21 Iteq Corp 電磁干擾屏蔽結構
CN203072303U (zh) * 2012-11-29 2013-07-17 瑞斯康达科技发展股份有限公司 一种光模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027455A1 (zh) * 2019-08-09 2021-02-18 烽火通信科技股份有限公司 具有抗干扰性能的光收发一体组件及bob光模块

Also Published As

Publication number Publication date
CN106664815A (zh) 2017-05-10
EP3163995A4 (en) 2017-11-08
TW201607421A (zh) 2016-02-16
TWM519947U (zh) 2016-04-11
US20170142871A1 (en) 2017-05-18
CN106664815B (zh) 2019-04-12
TWI609623B (zh) 2017-12-21
EP3163995B1 (en) 2019-01-02
EP3163995A1 (en) 2017-05-03
US10178817B2 (en) 2019-01-08

Similar Documents

Publication Publication Date Title
TWI609623B (zh) 電磁屏蔽材料及封裝光模組的方法
CN105224926B (zh) 指纹识别模组安装方法及指纹识别模组安装结构
JP4226041B2 (ja) 積層構造を有する透過導電シールド
US20110085316A1 (en) Conforming emi shielding
US20150235966A1 (en) Wiring board and semiconductor device using the same
WO2018133707A1 (zh) 指纹模组及移动终端
CN104582233B (zh) 扁平线缆组件及其组装方法
CN105758531A (zh) 一种非制冷红外探测器的真空封装组件
CN205283692U (zh) 有电磁兼容性屏蔽物(emc)的图像传感器装置
TWI398198B (zh) 具有接地屏蔽結構之電路板及其製作方法
WO2023116592A1 (zh) 电路板组件和电子设备
TW201606947A (zh) 晶片之正、背面間電性連接結構及其製造方法
TW200841795A (en) Flexible printed circuit, manufacture method of same and electronic device with same
TW201501592A (zh) 軟性電路板之導電線路層導接結構
TWM496324U (zh) 電磁屏蔽型電路板結構
WO2022042308A1 (zh) Mems麦克风和电子设备
WO2017147998A1 (zh) 触摸屏及设备
TWM456614U (zh) 防進水串行總線連結器
CN103151615B (zh) 一种抗干扰天线装置
KR102521612B1 (ko) 카메라 모듈
TWI389606B (zh) 具有接地結構之電路板
CN210314100U (zh) 多功能集成式胶带组件
JP2010169568A (ja) 静電誘導検出器用の電圧センサおよびクリップ
WO2015131826A1 (zh) 辅助点胶装置
CN206074655U (zh) 一种可靠连接的电能表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898581

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014898581

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898581

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE