WO2016013513A1 - ハニカムフィルタ - Google Patents

ハニカムフィルタ Download PDF

Info

Publication number
WO2016013513A1
WO2016013513A1 PCT/JP2015/070545 JP2015070545W WO2016013513A1 WO 2016013513 A1 WO2016013513 A1 WO 2016013513A1 JP 2015070545 W JP2015070545 W JP 2015070545W WO 2016013513 A1 WO2016013513 A1 WO 2016013513A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
cell
cells
cross
gas introduction
Prior art date
Application number
PCT/JP2015/070545
Other languages
English (en)
French (fr)
Inventor
俊明 柴田
啓人 小木曽
鈴木 宏和
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to EP15825380.7A priority Critical patent/EP3173139B1/en
Publication of WO2016013513A1 publication Critical patent/WO2016013513A1/ja
Priority to US15/412,058 priority patent/US10335727B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2462Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure the outer peripheral sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships

Definitions

  • the present invention relates to a honeycomb filter.
  • cordierite is used as an exhaust gas purification device that collects PM in exhaust gas by being connected to an internal combustion engine and purifies harmful gas components in exhaust gas such as CO, HC or NOx contained in the exhaust gas.
  • Various filters honeycomb filters having a honeycomb structure made of a porous ceramic such as silicon carbide have been proposed.
  • exhaust gas regulations have become stricter for both diesel engines and gasoline engines, and it has been required to make exhaust gas purification devices conform to strict exhaust gas regulations.
  • exhaust gas aftertreatment was possible to a level satisfying exhaust gas regulations only with a catalyst carrier carrying an oxidation catalyst and a honeycomb filter that collects PM, but recently, the demand for NOx purification has become severe,
  • a catalyst carrier carrying an SCR catalyst or to provide an exhaust gas purification device with an ammonia injection mechanism or the like for causing the SCR catalyst to function.
  • the catalyst carrier and the honeycomb filter are required to be further miniaturized on the assumption that a device that exhibits the above-described functions is incorporated.
  • the honeycomb filter can further reduce the pressure loss. A structure that can be used is required.
  • FIG. 8A is a perspective view schematically showing a honeycomb filter described in Patent Document 1
  • FIG. 8B is a perspective view schematically showing a honeycomb fired body constituting the honeycomb filter. is there.
  • an exhaust gas introduction cell 102 having an end on the exhaust gas inlet side opened and an end on the exhaust gas outlet side plugged, and an exhaust gas outlet are disclosed.
  • the exhaust gas discharge cell 101 is open at the end of the exhaust gas side and plugged at the end of the exhaust gas inlet side, and the cross-sectional shape of the cross section perpendicular to the longitudinal direction of the exhaust gas exhaust cell 101 is square, the exhaust gas introduction cell
  • a plurality of honeycomb fired bodies 100 each having an octagonal cross-sectional shape perpendicular to the longitudinal direction of the cells 102 and the exhaust gas exhaust cells 101 and the exhaust gas introduction cells 102 arranged alternately (in a check pattern) are adhesive layers.
  • a honeycomb filter 90 is disclosed which is bound by 105 and has an outer peripheral coat layer 106 formed on the outer periphery.
  • an exhaust gas discharge cell a cell in which an end portion on the exhaust gas outlet side is opened and an end portion on the exhaust gas inlet side is plugged
  • an exhaust gas introduction cell a cell in which an end portion on the exhaust gas inlet side is opened and an end portion on the exhaust gas outlet side is plugged.
  • a cross section perpendicular to the longitudinal direction of the cells such as the exhaust gas introduction cell and the exhaust gas discharge cell is simply referred to as a cross section of the exhaust gas introduction cell and the exhaust gas discharge cell.
  • FIG. 9A is a perspective view schematically showing the honeycomb filter described in Patent Document 2
  • FIG. 9B is an end view schematically showing the end face of the honeycomb filter.
  • each cell has a square honeycomb filter having the same cross-sectional shape, the exhaust gas outlet side end is opened, and the exhaust gas inlet Exhaust gas introduction cells 112 and 114 having an exhaust gas inlet side end portion opened and an exhaust gas outlet side end portion plugged around the entire periphery of the exhaust gas exhaust cell 111 whose end portion is plugged are cell partition walls 113.
  • An adjacent honeycomb filter 110 is disclosed.
  • FIG. 10 is a cross-sectional view schematically showing a cross section of the honeycomb filter described in Patent Document 3.
  • Patent Document 3 As shown in FIG. 10, the end portion on the exhaust gas outlet side is opened and the end portion on the exhaust gas inlet side is plugged.
  • a honeycomb filter 120 in which an exhaust gas inlet cell 122 having an open end on the exhaust gas inlet side and plugged on an end on the exhaust gas outlet side and having a hexagonal cross-sectional shape adjacent to each other with a cell partition wall 123 interposed therebetween is disclosed. .
  • the cross-sectional shape of the exhaust gas exhaust cell 121 is a regular hexagon
  • the cross-sectional shape of the exhaust gas introduction cell 122 is a hexagon in which two sides a and b having different lengths are alternately arranged.
  • FIG. 11 is a cross-sectional view schematically showing a cross section of a honeycomb fired body constituting the honeycomb filter described in Patent Document 4.
  • Patent Document 4 as shown in FIG. 11, the exhaust gas outlet side end portion is opened and the exhaust gas inlet side end portion is plugged.
  • the first exhaust gas introduction cell 132 and the second exhaust gas introduction cell 134 having different cross-sectional shapes in which the end portion on the inlet side is opened and the end portion on the exhaust gas outlet side are plugged are adjacent to each other across the cell partition wall 133.
  • a honeycomb filter 130 is disclosed.
  • these exhaust gas introduction cells are composed of two types: a first exhaust gas introduction cell 132 having a square cross-sectional shape, and a second exhaust gas introduction cell 134 having a cross-sectional area larger than the first exhaust gas introduction cell 132 and an octagonal cross section.
  • the cross-sectional area of the exhaust gas discharge cell 131 is the same as or larger than the cross-sectional area of the second exhaust gas introduction cell 134.
  • honeycomb filter 120 shown in FIG. 10 disclosed in Patent Document 3 six exhaust gas introduction cells 122 having the same cross-sectional shape are arranged around the entire periphery of the exhaust gas exhaust cell 121 having a hexagonal cross-section. Since the volume of the cell 122 is smaller than the volume of the exhaust gas exhaust cell 121, the resistance when the exhaust gas passes through the exhaust gas exhaust cell 121 and the resistance when the exhaust gas flows out of the filter can be kept low. However, since the cross-sectional shape of the cell is hexagonal, the shape of the cross-section of the cell adjacent to the outer peripheral wall tends to be distorted. was there.
  • a honeycomb filter 130 shown in FIG. 11 disclosed in Patent Document 4 is a honeycomb filter previously proposed by the present inventor, and two kinds of cross-sectional shapes are provided around the exhaust gas discharge cell 131 having an octagonal cross-sectional shape.
  • Different first exhaust gas introduction cells 132 and second exhaust gas introduction cells 134 are arranged, and the cross sectional area of the exhaust gas exhaust cells 131 is larger than the cross sectional area of the first exhaust gas introduction cells 132. Therefore, the resistance when the exhaust gas passes through the exhaust gas discharge cell 131 and the resistance when the exhaust gas flows out of the filter can be kept low.
  • the main flow path switch occurs, and PM is also deposited on the inner wall surface of the second exhaust gas introduction cell 134 having a larger cross-sectional area than the first exhaust gas introduction cell 132. Since the total volume of the first exhaust gas introduction cell 132 and the second exhaust gas introduction cell 134 is larger than the total volume of the exhaust gas exhaust cell 131, the thickness of the PM layer deposited on the exhaust gas introduction cell is not so thick, and the pressure loss is reduced. A low state can be maintained.
  • the exhaust gas exhaust cells 131A and 131B is larger than the total volume of the exhaust gas introduction cell 132A for the cells adjacent to the outer peripheral wall, the exhaust gas having a large volume from the exhaust gas introduction cell 132A adjacent to the outer peripheral wall.
  • Exhaust gas easily flows into the exhaust cells 131A and 131B, and the exhaust gas can be transmitted not only to the cell partition wall 133a that partitions the exhaust gas introduction cell 132A adjacent to the outer peripheral wall but also to the outer peripheral wall 137 that defines the exhaust gas introduction cell 132A. Therefore, the substantial filtration area can be made sufficiently large, the pressure loss is low in the initial stage, and even if PM is deposited, the honeycomb filter can be obtained in which the pressure loss is hardly increased.
  • the honeycomb filter 130 described in Patent Document 4 uses two types of the first exhaust gas introduction cell 132 and the second exhaust gas introduction cell 134 having different cross-sectional shapes, the first exhaust gas having a particularly small cross-sectional area is used. It is difficult to reduce the resistance when the exhaust gas flowing into the introduction cell 132 passes through the inside of the cell, and this causes an increase in the initial pressure loss (before PM is deposited). In the case where the exhaust temperature is high and PM burns continuously before a large amount of PM is deposited on the honeycomb filter 130, there is room for further reducing the initial pressure loss.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a honeycomb filter that suppresses pressure loss (initial pressure loss) when PM is not deposited and pressure loss when PM is deposited.
  • the honeycomb filter of the present invention has a porous cell partition wall that defines a plurality of cells serving as exhaust gas flow paths, an end on the exhaust gas inlet side, and an end on the exhaust gas outlet side that is plugged.
  • the honeycomb fired body is provided with an exhaust gas introduction cell, an exhaust gas exhaust cell whose end on the exhaust gas outlet side is open and whose end on the exhaust gas inlet side is plugged, and an outer peripheral wall formed on the outer periphery.
  • a honeycomb filter comprising: The shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas introduction cell is the same in all locations in each cell from the end portion on the exhaust gas inlet side to the end portion on the exhaust gas outlet side except for the plugging portion, The shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas exhaust cell is the same at all locations in each cell from the end on the exhaust gas inlet side to the end on the exhaust gas outlet side except for the plugging portion, Except for the cells adjacent to the outer peripheral wall, the exhaust gas introduction cell is adjacent to the entire periphery of the exhaust gas discharge cell with the porous cell partition wall interposed therebetween.
  • the cross-sectional areas of the cross sections perpendicular to the longitudinal direction of the exhaust gas introduction cell are the same except for the cells adjacent to the outer peripheral wall, and the cross section of the cross section perpendicular to the longitudinal direction of the exhaust gas discharge cell is the same. It is smaller than the area.
  • each exhaust gas discharge cell is vertically and horizontally while sharing the exhaust gas introduction cells disposed adjacent to the entire periphery of the exhaust gas discharge cell. They are arranged in a two-dimensionally repeating pattern.
  • the inventors of the present invention have the following pressure loss: (a) inflow resistance when exhaust gas flows into the honeycomb filter, (b) passage resistance of the exhaust gas introduction cell, (c) permeation resistance of the cell partition, (d) accumulated PM It is considered to be caused by permeation resistance generated when exhaust gas permeates through the layer, (e) passage resistance of the exhaust gas discharge cell, and (f) outflow resistance when the exhaust gas flows out of the honeycomb filter.
  • the exhaust gas introduction cell is arranged around the exhaust gas discharge cell with the porous cell partition wall therebetween, so that the entire cell partition around the exhaust gas discharge cell can be fully utilized. it can.
  • the number of exhaust gas introduction cells is four times the number of exhaust gas exhaust cells, and the cross-sectional area of the exhaust gas introduction cell is relatively small.
  • the flow resistance increases, the flow velocity of the exhaust gas flowing into the exhaust gas introduction cell decreases and becomes uniform due to this passage resistance, so that the exhaust gas flows into the exhaust gas exhaust cell through a wide range of cell partition walls with respect to the longitudinal direction of the honeycomb filter cell. become.
  • the permeation resistance of the cell partition wall is reduced, and the thickness of the PM deposited on the cell partition wall is made uniform and thin, and (d) the permeation resistance generated when the exhaust gas permeates the deposited PM layer. Can be reduced.
  • the cross-sectional area of the exhaust gas introduction cell is the same, the PM deposited in each exhaust gas introduction cell becomes more uniform, and the ash remaining in the honeycomb filter after combustion removal of the PM deposited on the honeycomb filter accumulates more uniformly. To do. Furthermore, by setting the number of exhaust gas introduction cells to be four times the number of exhaust gas discharge cells, the volume of the exhaust gas introduction cell on which ash is deposited increases, so that a filtration area can be secured even after ash is deposited.
  • the cells adjacent to the outer peripheral wall include the exhaust gas introduction cells and the exhaust gas discharge cells arranged alternately with the exhaust gas introduction cells.
  • the cell adjacent to the outer peripheral wall includes the exhaust gas introduction cell and the exhaust gas discharge cell alternately arranged with the exhaust gas introduction cell, and is perpendicular to the longitudinal direction of the exhaust gas discharge cell. Is larger than the cross-sectional area of the cross section perpendicular to the longitudinal direction of the exhaust gas introduction cell, the exhaust gas can flow more easily from the exhaust gas introduction cell adjacent to the outer peripheral wall to the exhaust gas exhaust cell having a large cross section.
  • the permeation of the exhaust gas can also be made to the outer peripheral wall that partitions the exhaust gas introduction cell, so that the substantial filtration area can be maximized. In the initial stage, the pressure loss is lower, and even when PM is deposited, the honeycomb filter is less likely to increase in pressure loss.
  • the exhaust gas introduction cells are all pentagonal, and the exhaust gas exhaust cells are preferably square or octagonal.
  • the cross-sectional shape of the exhaust gas exhaust cell is a square or octagon and the cross-sectional shape of the exhaust gas introduction cell surrounding the periphery is a pentagon, it is easy to design the cross-sectional shape of the honeycomb fired body constituting the honeycomb filter and the filtration area is wider An exhaust gas introduction cell can be formed, and a honeycomb filter having a lower pressure loss can be obtained.
  • the exhaust gas introduction cell is a pentagon having three 90 ° corners and two 135 ° corners that are not adjacent to each other. Is square, and it is desirable that the eight exhaust gas introduction cells are arranged around the exhaust gas discharge cell.
  • the honeycomb filter having the above-described configuration, it is easy to design the cross-sectional shape of the honeycomb fired body, the honeycomb filter can have a lower pressure loss, and the strength as a structure can be increased.
  • the thickness of the cell partition walls separating the cells of the honeycomb filter is equal in all places.
  • the exhaust gas can more easily permeate through the entire cell partition walls, and PM can be deposited uniformly, so that the pressure loss can be reduced.
  • the apex portion of the cell has a chamfered shape, and the cell has a chamfering ratio R expressed by the following equation (1). Is preferably 50 to 100%.
  • Chamfering rate R (%) ( ⁇ / ⁇ ) ⁇ 100 (1) (In the above equation (1), ⁇ represents the length of one side of the cell in the cross section perpendicular to the longitudinal direction of the cell, and ⁇ represents the chamfer of one side of the cell in the cross section perpendicular to the longitudinal direction of the cell. Indicates the length of the part that is
  • the cell refers to both the exhaust gas exhaust cell and the exhaust gas introduction cell.
  • the outer peripheral wall has a corner, and the exhaust gas in contact with the outer peripheral wall in a cross section perpendicular to the longitudinal direction of the cell so that the thickness of the outer peripheral wall other than the corner is uniform. It is desirable that the side of the introduction cell and the exhaust gas discharge cell that is in contact with the outer peripheral wall is formed in parallel and linearly with the side that forms the outer wall of the outer peripheral wall.
  • the outer peripheral wall improves the strength of the honeycomb fired body, further suppresses partial variations in the volume ratio of the exhaust gas exhaust cells and exhaust gas introduction cells in the honeycomb fired body, and makes the exhaust gas flow more uniform. Can be reduced.
  • the plurality of honeycomb fired bodies are formed by bonding through an adhesive layer, and the number of exhaust gas introduction cells is 3.2 to 4. It is desirable to be 0 times.
  • the adhesive layer becomes a buffer layer at the time of regeneration or the like, and the honeycomb filter can be prevented from being broken by thermal stress. Further, the mechanical strength can be increased by the adhesive layer.
  • the number of exhaust gas introduction cells is 3.2 to 4.0 times the number of exhaust gas discharge cells.
  • the cell partition wall thickness is desirably 0.075 mm to 0.310 mm.
  • the cell partition wall preferably has a porosity of 40 to 65%.
  • the porosity of the cell partition is 40 to 65%, the cell partition can capture PM in the exhaust gas well and suppress the increase in pressure loss due to the permeation resistance of the cell partition. Can do. Accordingly, the honeycomb filter has a low initial pressure loss and is unlikely to increase even when PM is deposited.
  • the honeycomb fired body is preferably made of silicon carbide or silicon-containing silicon carbide.
  • the silicon carbide and the silicon-containing silicon carbide are materials having excellent heat resistance. For this reason, the honeycomb filter of the present invention is a honeycomb filter having excellent heat resistance.
  • the honeycomb filter of the present invention it is desirable that an outer peripheral coat layer is formed on the outer periphery.
  • This outer peripheral coat layer serves to mechanically protect the inner cells. Therefore, the honeycomb filter of the present invention is a honeycomb filter excellent in mechanical properties such as compressive strength.
  • the cross-sectional shape of the cell as used in the field of the present invention is the shape constituted by each cell inner wall of the exhaust gas exhaust cell and the exhaust gas introduction cell with respect to the cross section perpendicular to the longitudinal direction of the cell.
  • the cross-sectional area as used in the field of this invention is related to the cross section perpendicular
  • the cell inner wall refers to a surface portion on the inner side of the cell among the surfaces of the cell partition walls constituting the cell.
  • the side in the present invention refers to a cross section perpendicular to the longitudinal direction of the cell, and when the cross-sectional shape formed by the inner walls of the exhaust gas exhaust cell and exhaust gas introduction cell is a polygon, the apex of the polygon The line segment between.
  • the length of the side means the length of the line segment, and when the apex portion has a so-called chamfered shape constituted by a curve, it means the length of the straight line portion excluding the curve portion.
  • the permeation resistance increases because the cell walls separating the cells are thick, and the exhaust gas flows preferentially into the straight portion. Because it is necessary to adjust the length of the part, it is more appropriate to consider without the curved part.
  • the length of the side of the straight line portion excluding the curved line portion is such that when the straight line portion of the polygon is virtually extended and the intersection at which the virtual straight lines intersect is a virtual vertex, It is desirable to set it to 80% or more of the length of the virtual side formed by connecting the vertices.
  • the cross-sectional shape of the cell is a polygonal shape
  • the pressure loss which is the effect of the present invention is adjusted by adjusting the length of the side. This is because it is possible to achieve a reduction of the above.
  • the thickness of the cell partition wall that separates two cells is defined as follows. That is, the thickness of the cell partition wall separating the two cells is the distance from the midpoint of each side of the exhaust gas introduction cell to the side of the cell where the vertical line first intersects when the vertical line is drawn outward from the cell. . This is because, as described above, in the case of a chamfered shape, it is more appropriate to consider by excluding the curved portion of the side.
  • the measurement of the length of the cell side and the thickness of the cell partition and the specification of the cell cross-sectional shape are performed using an electron micrograph.
  • the electron microscope photograph is taken with an electron microscope (FE-SEM: Hitachi High-Technologies high-resolution field emission scanning electron microscope S-4800).
  • the magnification of the electron micrograph shows that the particle on the surface (inner wall) of the cell partition walls and the unevenness of the pores in the cell are used to specify the cell cross-sectional shape, the length of the side, the partition wall thickness, and the cell cross-sectional area.
  • a square corresponding to a unit area (a square having one side of the scale length) is cut out from the scale of the electron micrograph, and this weight is measured.
  • the cell cross section is cut along the cell cross-sectional shape (or cut along the curve when the apex portion is a curve in the case of a polygon), and the weight of the cut portion is measured.
  • the cross-sectional area of the cell cross section can be calculated from the weight ratio.
  • the measurement of the length of the cell, the thickness of the cell partition wall, and the cross-sectional area are taken from the above-described manual measurement, and an electron micrograph is taken as image data, or image data taken directly from the electron microscope is used. It is also possible to input a photo scale and replace it with electronic measurement.
  • both the manual measurement method and the digitized measurement method are measurements based on the scale of the electron microscope image, and are based on the same principle, and it goes without saying that no wrinkles occur in the measurement results of both.
  • measurement software such as image analysis type particle size distribution software (manufactured by Mountech Co., Ltd.) MAC-View (Version 3.5) can be used.
  • image analysis type particle size distribution software manufactured by Mountech Co., Ltd.
  • MAC-View Version 3.5
  • the cross-sectional area can be measured by taking an electron micrograph with a scanner or using image data taken directly from the electron microscope, inputting the scale of the photo, and specifying a range along the inner wall of the cell.
  • the distance between any points in the image can be measured based on the scale of the electron micrograph.
  • the exhaust gas introduction cell and the exhaust gas exhaust cell are all in each cell except for the plugging portion from the exhaust gas inlet end to the exhaust gas outlet end.
  • the cross-sectional shapes formed by the inner walls of the cells are the same.
  • the cross-sectional figure formed by its inner wall looks at the cross section of any part from the exhaust gas inlet end to the exhaust gas outlet end except for the plugged portion. But it is the same shape.
  • the same shape means congruence and does not include similarity. That is, the shapes having a similar relationship are different shapes.
  • FIG. 1 (a), (b) is the enlarged end elevation which expanded and showed a part of end surface of the honey-comb filter which concerns on one Embodiment of this invention.
  • a porous portion is formed around the exhaust gas discharge cell 11 whose end on the exhaust gas outlet side is open and whose end on the exhaust gas inlet side is plugged.
  • An exhaust gas introduction cell 12 having an end portion on the exhaust gas inlet side opened and a plugged end portion on the exhaust gas outlet side is adjacent to the cell partition wall 13.
  • the exhaust gas discharge cell 11 is square.
  • the exhaust gas introduction cells 12 are all pentagonal and the same shape, but are not regular pentagons, but pentagons having three 90 ° interior angles and two 135 ° interior angles that are not adjacent to each other.
  • FIG. 1A when divided by a broken line 12X, a rectangle and a right-angled isosceles triangle are added.
  • a portion corresponding to the rectangle of the two exhaust gas introduction cells 12 is adjacent to one side 11a constituting the cross section of the exhaust gas discharge cell 11, and a shape in which a right isosceles triangle is added to the outside of the rectangle, It has become.
  • a similar pattern is repeated on the four sides 11 a constituting the exhaust gas discharge cell 11.
  • a pattern in which eight exhaust gas introduction cells 12 are arranged adjacently around one exhaust gas discharge cell 11 is repeated vertically and horizontally.
  • the rectangular exhaust gas discharge cells 11 are aligned vertically and horizontally with a predetermined interval, and the exhaust gas introduction cells 12 are arranged in a vacant space. 11, a rectangular portion constituting the exhaust gas introduction cell 12 is inserted.
  • a cell partition wall 13 is arranged so that right-angled parts of right-angled isosceles triangles constituting the exhaust gas introduction cell 12 face each other.
  • one cell unit may assume a quadrilateral connecting the centers of gravity of four adjacent exhaust gas exhaust cells 11 as depicted by a broken line Y.
  • the unit includes four exhaust gas introduction cells 12 and one exhaust gas discharge cell 11. Therefore, when the repeated pattern of the exhaust gas discharge cells 11 and the exhaust gas introduction cells 12 excluding exceptional parts such as cells adjacent to the outer peripheral wall is observed, the number of the exhaust gas introduction cells 12 and the number of the exhaust gas discharge cells 11 are determined.
  • the flow of exhaust gas will be considered.
  • the exhaust gas flows into the exhaust gas introduction cell 12 having an open end on the inlet side.
  • the exhaust gas flows into the exhaust gas introduction cell 12 in order from the portion where it easily flows in the filter, but the exhaust gas introduction cell 12 has the same cross-sectional shape and is adjacent to the side constituting the cross section of the exhaust gas exhaust cell 11.
  • the length of each side of 12 is also the same. Accordingly, the exhaust gas uniformly flows into the respective exhaust gas introduction cells 12, passes through the cell partition wall 13a that defines the exhaust gas discharge cell 11 and the exhaust gas introduction cell 12, and flows into the exhaust gas discharge cell 11, and FIG.
  • a PM deposited layer is formed on the cell partition wall 13a.
  • each exhaust gas introduction cell 12 Due to the fact that the cross-sectional area of each exhaust gas introduction cell 12 is smaller than the cross-sectional area of each exhaust gas discharge cell 11, (b) the passage resistance of the exhaust gas introduction cell 12 is slightly increased. The flow rate of the exhaust gas flowing into the exhaust gas introduction cell 12 decreases and becomes uniform, and the exhaust gas passes through the cell partition wall 13 in a wide range with respect to the longitudinal direction of the cells of the honeycomb filter and flows into the exhaust gas discharge cell 11. Further, since the cross-sectional area of each exhaust gas discharge cell 11 is larger than the cross-sectional area of each exhaust gas introduction cell 12, (e) the passage resistance of the exhaust gas discharge cell 11 and (f) the exhaust gas flows out of the honeycomb filter. As a result, the pressure loss can be reduced as compared with the conventional honeycomb filter 90 and the like.
  • a PM deposited layer is formed.
  • the entire cell partition wall 13 constituting the exhaust gas introduction cell 12 (the portions corresponding to the sides 12a, 12b, 12c, 12d, and 12e of the exhaust gas introduction cell).
  • a PM deposit layer having a uniform thickness is formed on the partition walls.
  • the cross-sectional areas of the exhaust gas introduction cells 12 are the same, and the number of the exhaust gas introduction cells 12 is four times the number of the exhaust gas discharge cells 11. As a result, the PM is uniformly deposited from the initial stage, that is, the exhaust gas easily passes through more cell partition walls from the initial stage, so that the initial pressure loss can be reduced.
  • the cross sectional shape of the exhaust gas exhaust cell Among the sides constituting the cross-sectional shape of the exhaust gas introduction cell, and the sides adjacent to the exhaust gas discharge cell across the cell partition wall are parallel to each other. It is desirable that
  • the thickness of the cell partition wall separating the exhaust gas discharge cell and the exhaust gas introduction cell is uniform everywhere, the filter has a high breaking strength, easily allows the exhaust gas to permeate, and deposits PM uniformly. This is because the pressure loss can be reduced.
  • the vertex part of a polygon is comprised with the curve in cross-sectional shape, the curve part is not handled as an edge. This is because they are not parallel in the first place.
  • the length of the side of the cross-sectional shape excluding the curved portion virtually extends the straight line portion regarded as the side, and the intersection of the virtual straight lines intersects the virtual vertex
  • the length is 80% or more of the length of the virtual side of the polygon formed by connecting the virtual vertices.
  • the portion not treated as a side is less than 20% of the length of the virtual side.
  • the honeycomb filter of the present invention is preferably used for purifying PM in exhaust gas discharged from an internal combustion engine of an automobile. This is because both the initial pressure loss generated in the filter before PM deposition and the transient pressure loss generated in the filter due to PM deposition can be reduced at the same time, so that the fuel efficiency of the engine can be improved.
  • the honeycomb filter of the present invention is optimal when a diesel engine is adopted as an internal combustion engine of an automobile. This is because the amount of PM discharged from the diesel engine is larger than that of the gasoline engine, and the demand for reducing the transient pressure loss generated in the filter due to PM accumulation is higher than that of the gasoline engine.
  • the honeycomb filter of the present invention When the honeycomb filter of the present invention is used for purifying PM in exhaust gas discharged from an internal combustion engine of an automobile, the honeycomb filter of the present invention is fixed in the exhaust pipe via a holding material.
  • FIG. 1 (a), (b) is the enlarged end elevation which expanded and showed a part of end surface of the honey-comb filter which concerns on one Embodiment of this invention.
  • FIG. 2 is a perspective view schematically showing the honeycomb filter according to the first embodiment of the present invention.
  • Fig. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter shown in Fig. 2.
  • FIG. 3B is a cross-sectional view taken along the line AA of the honeycomb fired body shown in FIG.
  • FIG. 4 is an enlarged end view showing a part of the end face of the honeycomb fired body shown in FIGS. 3A and 3B in an enlarged manner.
  • FIG. 5 is a cross-sectional view schematically showing a pressure loss measuring method.
  • FIG. 6A is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter according to the second embodiment.
  • FIG. 6B is a cross-sectional view of the honeycomb fired body shown in FIG. 6A taken along line BB.
  • FIG. 7 is an enlarged end view showing a part of the end face of the honeycomb filter according to the second embodiment of the present invention of the honeycomb fired body shown in FIG.
  • FIG. 8A is a perspective view schematically showing a honeycomb filter described in Patent Document 1
  • FIG. 8B is a perspective view schematically showing a honeycomb fired body constituting the honeycomb filter. .
  • FIG. 9A is a perspective view schematically showing the honeycomb filter described in Patent Document 2
  • FIG. 9B is an end view schematically showing the end face of the honeycomb filter.
  • FIG. 10 is a cross-sectional view schematically showing a cross section of the honeycomb filter described in Patent Document 3.
  • FIG. 11 is a cross-sectional view schematically showing a cross section of a honeycomb fired body constituting the honeycomb filter described in Patent Document 4.
  • Fig. 12 (a) is a perspective view schematically showing a honeycomb filter according to a comparative example
  • Fig. 12 (b) schematically shows a honeycomb fired body constituting the honeycomb filter shown in Fig. 12 (a). It is a perspective view.
  • the honeycomb filter according to the first embodiment of the present invention includes a porous cell partition wall that defines a plurality of cells serving as exhaust gas flow paths, an end on the exhaust gas inlet side, and an end on the exhaust gas outlet side.
  • Honeycomb firing comprising a plugged exhaust gas introduction cell, an exhaust gas exhaust cell having an end portion on the exhaust gas outlet side opened and an end portion on the exhaust gas inlet side plugged, and an outer peripheral wall formed on the outer periphery Consists of the body.
  • the cross-sectional area of each cross section perpendicular to the longitudinal direction of the exhaust gas introduction cell is the same except for the cells adjacent to the outer peripheral wall, and the cross-sectional area of the cross section perpendicular to the longitudinal direction of the exhaust gas exhaust cell. Smaller than.
  • the cross-sectional shape of the exhaust gas introduction cell in the present embodiment is the same shape in which all five corners are chamfered, and the cross-sectional shape of the exhaust gas discharge cell is a square.
  • the cells adjacent to the outer peripheral wall are composed of the exhaust gas introduction cells and the exhaust gas discharge cells arranged alternately with the exhaust gas introduction cells.
  • the shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas introduction cell is the same at all locations in each cell from the end portion on the exhaust gas inlet side to the end portion on the exhaust gas outlet side except for the plugging portion.
  • the shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas exhaust cell is the same at all locations in each cell from the end on the exhaust gas inlet side to the end on the exhaust gas outlet side except for the plugging portion. is there.
  • FIG. 2 is a perspective view schematically showing an example of the honeycomb filter according to the first embodiment of the present invention.
  • Fig. 3 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb filter shown in Fig. 2.
  • FIG. 3B is a cross-sectional view taken along the line AA of the honeycomb fired body shown in FIG.
  • FIG. 4 is an enlarged end view showing a part of the end face of the honeycomb fired body shown in FIGS. 3A and 3B in an enlarged manner.
  • honeycomb filter 20 shown in FIG. 2, a plurality of honeycomb fired bodies 10 are bonded through an adhesive layer 15 to form a ceramic block 18, and exhaust gas is prevented from leaking around the ceramic block 18.
  • An outer peripheral coating layer 16 is formed.
  • the outer periphery coating layer 16 should just be formed as needed.
  • the honeycomb fired body 10 has a substantially quadrangular prism shape, but as shown in FIG. 3A, the corners at the end face are chamfered so as to have a curved shape. Stress is concentrated and damage such as cracks is prevented. The corner may be chamfered so as to have a linear shape.
  • the exhaust gas discharge cell 11 has an end on the exhaust gas outlet side opened and an end on the exhaust gas inlet side is plugged, and the exhaust gas introduction cell 12 has an exhaust gas Although the end on the inlet side is opened and the end on the exhaust gas outlet side is plugged, the plugging material 11 is preferably the same material as the honeycomb fired body.
  • an exhaust gas introduction cell 12 having a pentagonal cross section with a porous cell partition wall 13 is provided around the exhaust gas discharge cell 11 having a square cross section. Eight are adjacent.
  • the shape of the exhaust gas introduction cell 12 is the same except for the cells adjacent to the outer peripheral wall 17 and is a pentagon having three 90 ° inner angles and two 135 ° inner angles that are not adjacent to each other.
  • the exhaust gas discharge cell 11 has the same shape except for the cell adjacent to the outer peripheral wall 17.
  • this arrangement pattern when this arrangement pattern is considered as one unit, a quadrangle connecting the centers of gravity of four adjacent exhaust gas discharge cells 11, this unit has a right angle of an isosceles right triangle at its center.
  • Four exhaust gas introduction cells 12 are arranged so that the portions face each other, have a cross shape, and four exhaust gas discharge cells 11 divided into 1 ⁇ 4 are arranged in the four corners of the square. Yes. Therefore, the number of exhaust gas introduction cells 12 is four times the number of exhaust gas discharge cells 11. Note that the cross-sectional areas of the exhaust gas introduction cells 12 are the same.
  • the outer peripheral wall 17 has a corner, and the exhaust gas introduction cell 12 ⁇ / b> A and the exhaust gas discharge cell in a cross section perpendicular to the longitudinal direction of the cell so that the thickness of the outer peripheral wall other than the corner is uniform.
  • the side adjacent to the outer peripheral wall 17 of 11A is formed in parallel and linearly with the side forming the outer wall of the outer peripheral wall 17.
  • the exhaust gas introduction cells 12 ⁇ / b> A and the exhaust gas exhaust cells 11 ⁇ / b> A are alternately arranged, and the exhaust gas introduction cells 12 ⁇ / b> A are pentagonal but are not adjacent to the outer peripheral wall 17.
  • the area of the rectangular portion is increased.
  • the area of the exhaust gas exhaust cell 11A adjacent to the outer peripheral wall 12 is substantially the same as that of the exhaust gas exhaust cell 11 not adjacent to the outer peripheral wall 17.
  • the area of the exhaust gas exhaust cell 11A adjacent to the outer peripheral wall 17 is preferably 65 to 90% of the area of the exhaust gas exhaust cell 11 other than the exhaust gas exhaust cell 11A adjacent to the outer peripheral wall 17, and preferably 70 to 85%. Is more desirable.
  • the area of the exhaust gas introduction cell 12A adjacent to the outer peripheral wall 17 is preferably 130 to 200% of the area of the exhaust gas introduction cell 12 other than the exhaust gas introduction cell 12A adjacent to the outer peripheral wall 17, and is 150 to 180%. More desirable.
  • the exhaust gas discharge cells 11B present at the corners of the honeycomb fired body 10 are substantially quadrangular having a chamfered portion 110B formed of a curve.
  • the chamfered portion 110B of the exhaust gas discharge cell 11B shown in FIG. 3A is chamfered so that the chamfered portion has a curve, but may be chamfered so that the chamfered portion becomes a straight line.
  • the cross-sectional area of the exhaust gas exhaust cell 11B is substantially the same as that of the exhaust gas exhaust cell 11 that is not adjacent to the outer peripheral wall 17.
  • the honeycomb filter of the present embodiment has the passage resistance of the exhaust gas introduction cell 12 due to the cross sectional area of each exhaust gas introduction cell 12 being smaller than the cross sectional area of each exhaust gas discharge cell 11.
  • the flow resistance of the exhaust gas flowing into the exhaust gas introduction cell 12 decreases and becomes uniform due to this passage resistance, and the exhaust gas passes through the cell partition wall 13 in a wide range with respect to the longitudinal direction of the cells of the honeycomb filter, and exhaust gas is discharged. It flows into the cell 11.
  • the opening ratio of the honeycomb filter 20 by the exhaust gas introduction cell 12 is larger than the opening ratio of the honeycomb filter 20 by the exhaust gas discharge cell 11, and the cross sectional area of each exhaust gas discharge cell 11 is larger than the cross sectional area of each exhaust gas introduction cell 12.
  • a PM deposit layer is mainly formed on the cell partition wall 13 on the side of the exhaust gas introduction cell 12 that separates the exhaust gas introduction cell 12 and the exhaust gas exhaust cell 11, but after a very short period of time, After entering the cell partition wall 13 that separates the exhaust gas introduction cells 12, the gas penetrates the cell partition wall 13 and enters the exhaust gas discharge cell 11, and PM gradually accumulates in the cell partition wall 13 that separates the exhaust gas introduction cells 12. As a result, PM is deposited almost uniformly on the entire cell partition wall 13 constituting the exhaust gas introduction cell 12.
  • the initial pressure loss can be reduced because PM is uniformly deposited from an earlier stage, that is, the exhaust gas easily passes through more cell partition walls 13 from the earlier stage.
  • the outer peripheral wall 17 and the exhaust gas discharge cell 11 and the exhaust gas introduction cell 12 adjacent to the outer peripheral wall 17 are configured as described above, so that While the strength of the fired body 10 is improved, partial variation in the volume ratio of the exhaust gas discharge cell 11 and the exhaust gas introduction cell 12 in the honeycomb fired body 10 is further suppressed, the flow of exhaust gas becomes more uniform, and the vicinity of the outer peripheral wall 17 However, since the exhaust gas smoothly flows into the exhaust gas introduction cell 12 and the cell partition wall 13 and the outer peripheral wall 17 function as a filter, the pressure loss can be further reduced.
  • the cross sections of the exhaust gas discharge cells 11, 11A, and 11B are square, rectangular, and partially chamfered.
  • the cross section of the exhaust gas introduction cells 12 and 12A is pentagonal, but the shape of the cross section of the exhaust gas exhaust cell and the exhaust gas introduction cell constituting the honeycomb filter of the present invention is not limited to the above shape, and the exhaust gas exhaust cell is Polygons other than squares may be used.
  • An example of the specific shape of the exhaust gas discharge cell is an octagon.
  • the shape of the exhaust gas introduction cell may also be a polygon other than a pentagon. Specific shapes of the exhaust gas introduction cell include a rectangle or a hexagon.
  • the apex portions of the exhaust gas exhaust cell and the exhaust gas introduction cell of a polygonal cell such as a square cross section may have a curved chamfered shape having a curved cross section.
  • the curve include a curve (arc) obtained when a circle is divided into four equal parts, a curve obtained when an ellipse is divided into four equal parts by a straight line perpendicular to the major axis and the major axis, and the like.
  • curve chamfering that has a curved cross section is applied to the apex portion of a cell having a square cross section. It is because it can prevent that a crack enters into a cell partition because stress concentrates on a corner.
  • the honeycomb filter 20 may include a part of cells made of a curve such as an arc having a circular cross section as necessary.
  • the ratio (%) of the cross-sectional area of each exhaust gas introduction cell 12 to the cross-sectional area of each exhaust gas discharge cell is preferably 30 to 50%, 35 to 45% is more preferable.
  • the thickness of the cell partition wall of the honeycomb filter is preferably 0.075 to 0.310 mm, and more preferably 0.10 to 0.28 mm. If the cell partition wall thickness is less than 0.075 mm, the cell partition wall thickness becomes too thin, so that the mechanical strength of the honeycomb filter decreases. On the other hand, when the thickness of the cell partition wall exceeds 0.310 mm, the cell partition wall becomes thick, and the pressure loss when exhaust gas permeates the cell partition wall increases.
  • the cell partition wall preferably has a porosity of 40 to 65%.
  • the porosity of the cell partition is 40 to 65%, the cell partition can capture PM in the exhaust gas well, and can suppress an increase in pressure loss caused by the cell partition. Accordingly, the honeycomb filter has a low initial pressure loss and is unlikely to increase even when PM is deposited.
  • the porosity of the cell partition is less than 40%, the ratio of the pores in the cell partition is too small, so that the exhaust gas does not easily pass through the cell partition, and the pressure loss when the exhaust gas passes through the cell partition increases.
  • the porosity of the cell partition wall exceeds 65%, the mechanical properties of the cell partition wall are low, and cracks are likely to occur during regeneration.
  • the pore diameter and the porosity are measured by a mercury intrusion method with a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the average pore diameter of the pores contained in the cell partition wall is 8 to 25 ⁇ m.
  • PM can be collected with high collection efficiency while suppressing an increase in pressure loss. If the average pore diameter of the pores contained in the cell partition walls is less than 8 ⁇ m, the pores are too small, and the pressure loss when the exhaust gas permeates the cell partition walls increases. On the other hand, when the average pore diameter of the pores contained in the cell partition wall exceeds 25 ⁇ m, the pore diameter becomes too large, and the PM collection efficiency is lowered.
  • the honeycomb filter of the present invention may be composed of a plurality of honeycomb fired bodies or a single honeycomb fired body.
  • the constituent material of the honeycomb fired body include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, alumina, zirconia, and cordierite. And oxide ceramics such as mullite and aluminum titanate, and silicon-containing silicon carbide.
  • silicon carbide or silicon-containing silicon carbide is preferable. It is because it is excellent in heat resistance, mechanical strength, thermal conductivity, and the like.
  • the silicon-containing silicon carbide is a mixture of silicon carbide and metal silicon, and silicon-containing silicon carbide containing 60 wt% or more of silicon carbide is preferable.
  • the number of cells per unit area in the cross section of the honeycomb fired body 10 is desirably 31 to 62 cells / cm 2 (200 to 400 cells / inch 2 ).
  • the honeycomb filter 20 of the present invention it is desirable that a plurality of honeycomb fired bodies having outer peripheral walls on the outer periphery are bonded together via an adhesive layer.
  • the adhesive layer that bonds the honeycomb fired bodies includes an adhesive paste containing an inorganic binder and inorganic particles. It is applied and dried.
  • the adhesive layer may further contain inorganic fibers and / or whiskers.
  • the thickness of the adhesive layer is preferably 0.5 to 2.0 mm.
  • the outer peripheral coat layer may be provided on the outer periphery of the honeycomb filter, but the material of the outer peripheral coat layer is preferably the same as the material of the adhesive.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 3.0 mm.
  • a forming step for producing a honeycomb formed body by extruding a wet mixture containing a ceramic powder and a binder is performed. Specifically, first, a wet mixture for manufacturing a honeycomb formed body is prepared by mixing silicon carbide powder having different average particle sizes as ceramic powder, an organic binder, a liquid plasticizer, a lubricant, and water. To prepare.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite may be added to the wet mixture.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • a honeycomb formed body having a predetermined shape.
  • a honeycomb formed body is manufactured using a mold that has a cross-sectional shape having the cell structure (cell shape and cell arrangement) shown in FIGS. 2 and 3A and 3B.
  • the honeycomb formed body is cut to a predetermined length, dried using a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, etc.
  • a plugging step is performed in which the cells are plugged by filling the cells with a plug material paste as a plug.
  • the wet mixture can be used as the sealing material paste.
  • honeycomb formed body is heated to 300 to 650 ° C. in a degreasing furnace to perform a degreasing process for removing organic substances in the honeycomb formed body, and then the degreased honeycomb formed body is conveyed to a firing furnace, and 2000 to By performing a firing step of heating to 2200 ° C., a honeycomb fired body as shown in FIG. 2 and FIGS. 3A and 3B is manufactured.
  • the sealing material paste with which the edge part of the cell was filled is baked by heating and becomes a plugging material.
  • the conditions conventionally used when manufacturing a honeycomb fired body can be applied to the conditions of the cutting process, the drying process, the plugging process, the degreasing process, and the firing process.
  • honeycomb fired body manufactured by the above process may be used as it is as a honeycomb filter.
  • silicon carbide used as the ceramic powder
  • a plurality of honeycomb fired bodies are interposed via an adhesive layer. It is desirable to use an adhesive.
  • a bundling process is performed in which a plurality of honeycomb fired bodies are sequentially stacked and bonded via an adhesive paste on a support base to produce a honeycomb aggregate in which a plurality of honeycomb fired bodies are stacked.
  • the adhesive paste for example, a paste made of an inorganic binder, an organic binder, and inorganic particles is used.
  • the adhesive paste may further contain inorganic fibers and / or whiskers.
  • Examples of the inorganic particles contained in the adhesive paste include carbide particles and nitride particles. Specific examples include silicon carbide particles, silicon nitride particles, and boron nitride particles. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide particles having excellent thermal conductivity are desirable.
  • Examples of the inorganic fiber and / or whisker contained in the adhesive paste include inorganic fiber and / or whisker made of silica-alumina, mullite, alumina, silica, and the like. These may be used alone or in combination of two or more. Among inorganic fibers, alumina fiber is desirable.
  • the inorganic fiber may be a biosoluble fiber.
  • the balloon which is a micro hollow sphere which uses an oxide type ceramic as a component, spherical acrylic particle, graphite, etc.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon.
  • the adhesive paste is heated and solidified to form an adhesive layer, and a square columnar ceramic block is manufactured.
  • the conditions for heating and solidifying the adhesive paste the conditions conventionally used when producing a honeycomb filter can be applied.
  • a cutting process for cutting the ceramic block is performed. Specifically, a ceramic block whose outer periphery is processed into a substantially cylindrical shape is manufactured by cutting the outer periphery of the ceramic block using a diamond cutter.
  • An outer peripheral coating layer forming step is performed in which an outer peripheral coating material paste is applied to the outer peripheral surface of the substantially cylindrical ceramic block, and dried and solidified to form an outer peripheral coating layer.
  • the said adhesive paste can be used as an outer periphery coating material paste.
  • the outer peripheral coat layer is not necessarily provided, and may be provided as necessary.
  • a honeycomb filter having a predetermined shape was manufactured by performing a cutting process.
  • a honeycomb fired body having a plurality of shapes having an outer peripheral wall on the entire outer periphery was manufactured.
  • the honeycomb fired bodies having a plurality of shapes may be combined with each other through an adhesive layer so as to have a predetermined shape such as a cylinder. In this case, the cutting process can be omitted.
  • each exhaust gas exhaust cell is larger than the cross-sectional area of each exhaust gas introduction cell, (e) the passage resistance of the exhaust gas exhaust cell, and (f) the outflow when the exhaust gas flows out of the honeycomb filter.
  • the cross-sectional areas of the exhaust gas introduction cells 12 are the same, and the number of exhaust gas introduction cells 12 is four times the number of exhaust gas discharge cells 11.
  • the PM is uniformly deposited from the initial stage, that is, the exhaust gas easily passes through more cell partition walls from the initial stage, so that the initial pressure loss can be reduced.
  • the cross-sectional areas of the exhaust gas introduction cells 12 are the same, and the number of the exhaust gas introduction cells 12 is four times as many as the number of the exhaust gas discharge cells 11.
  • the total volume of the introduction cell is large, the substantial filtration area can be sufficiently large, the thickness of the PM layer deposited on the cell partition wall constituting the exhaust gas introduction cell is thin, and (d) the deposited PM layer is removed from the exhaust gas.
  • the permeation resistance generated when the light is transmitted does not increase.
  • the honeycomb filter of the present invention has a low pressure loss in the initial stage and can be a honeycomb filter in which the pressure loss does not easily increase even when PM is deposited.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the exhaust gas discharge cell is made larger than the cross-sectional area of the cross section perpendicular to the longitudinal direction of the exhaust gas introduction cell
  • the cell adjacent to the wall is composed of the exhaust gas introduction cell and the exhaust gas discharge cell arranged alternately with the exhaust gas introduction cell, so that the exhaust gas having a large cross-sectional area from the exhaust gas introduction cell adjacent to the outer peripheral wall.
  • Exhaust gas can flow more easily into the exhaust cell, and the exhaust gas can be permeated into the outer peripheral wall defining the exhaust gas introduction cell as well as the cell partition wall defining the exhaust gas introduction cell adjacent to the outer peripheral wall.
  • a honeycomb filter that can maximize the area has a lower pressure loss in the initial stage, and is less likely to increase even if PM is deposited. Kill.
  • the exhaust gas introduction cells are all pentagonal, the exhaust gas exhaust cells are square or octagonal, and the substantial number of the exhaust gas introduction cells.
  • the exhaust gas introduction cells are all pentagonal, and the exhaust gas discharge cells are square or octagonal to constitute the honeycomb filter. It is easy to design the cross-sectional shape of the honeycomb fired body, an exhaust gas introduction cell having a wider filtration area can be formed, and a honeycomb filter with a lower pressure loss can be obtained.
  • the constituent material of the honeycomb fired body can be silicon carbide or silicon-containing silicon carbide, and the honeycomb filter can be excellent in heat resistance.
  • the adhesive layer becomes a buffer layer during regeneration or the like, and the honeycomb filter is destroyed by thermal stress. Can be prevented. Further, the mechanical strength can be increased by the adhesive layer.
  • the honeycomb filter of the present invention by reducing the thickness of the cell partition wall to 0.075 mm to 0.310 mm, the permeation resistance of the cell partition wall of exhaust gas can be reduced, and the pressure loss is further reduced. be able to.
  • Example 1 A silicon carbide coarse powder of 52.8% by weight having an average particle size of 22 ⁇ m and a silicon carbide fine powder of 22.6% by weight of an average particle size of 0.5 ⁇ m were mixed, and the resulting mixture was mixed with an organic binder.
  • (Methylcellulose) 4.6% by weight, Lubricant (manufactured by NOF Corporation) 0.8% by weight, glycerin 1.3% by weight, pore former (acrylic resin) 1.9% by weight, oleic acid 2.8% by weight % And 13.2% by weight of water were added and kneaded to obtain a wet mixture, followed by a molding step of extrusion molding. In this step, a raw honeycomb molded body having the same shape as the honeycomb fired body 10 shown in FIG. 3A and having no cell plugged was produced.
  • the raw honeycomb formed body was dried using a microwave dryer, thereby manufacturing a dried body of the honeycomb formed body.
  • plugging paste was filled in predetermined cells of the dried honeycomb molded body to plug the cells. Specifically, the cells were plugged such that the end on the exhaust gas inlet side and the end on the exhaust gas outlet side were plugged at the positions shown in FIG.
  • the wet mixture was used as a sealing material paste. After the cells were plugged, the dried honeycomb molded body filled with the plug paste was dried again using a dryer.
  • a degreasing treatment for degreasing the dried honeycomb molded body in which the cells were plugged was performed at 400 ° C., and further, a firing treatment was performed under conditions of 2200 ° C. and 3 hours in an atmospheric argon atmosphere. Thereby, a square pillar honeycomb fired body was produced.
  • the length and cross-sectional area of the side are measured using the electron micrograph and image analysis type particle size distribution software (manufactured by Mountech Co., Ltd.) MAC-View (Version 3.5). can do.
  • the manufactured honeycomb fired body has a porosity of 45%, an average pore diameter of 15 ⁇ m, a size of 34.3 mm ⁇ 34.3 mm ⁇ 150 mm, a number of cells per unit area (cell density) of 345 cells / inch 2 ,
  • the honeycomb fired body 10 shown in FIGS. 3A and 3B was made of a silicon carbide sintered body having a cell partition wall thickness of 0.25 mm.
  • the exhaust gas introduction cell 12 was adjacent to the entire periphery of the exhaust gas discharge cell 11.
  • the cross-sectional shape of the exhaust gas introduction cells 12 and 12A is a pentagon having three 90 ° inner angles adjacent to each other and two 135 ° inner angles not adjacent to each other, and a side 12a constituting the cross-sectional shape of the exhaust gas introduction cell 12
  • the length of the side 12b is 0.972 mm
  • the length of the side 12d is 0.687 mm
  • the cross-sectional area of the exhaust gas introduction cell 12 is 0.916 mm 2 . there were.
  • the length of the side 12f was 1.311 mm, and the cross-sectional area of the exhaust gas introduction cell 12 was 1.510 mm. (See FIG. 4).
  • the cross-sectional shape of the exhaust gas discharge cell 11 was square, the length of one side 11a was 1.503 mm, and the cross-sectional area of the exhaust gas discharge cell 11 was 2.259 mm 2 .
  • the cross-sectional area of the exhaust gas discharge cells 11B located at the four corners of the honeycomb fired body 10 was 1.478 mm 2 .
  • the length of the side 11Aa perpendicular to the outer peripheral wall 17 was 1.237 mm.
  • the aperture ratio of the honeycomb filter by the exhaust gas introduction cell 12 was 39.9%, and the aperture ratio of the honeycomb filter by the exhaust gas exhaust cell was 26.0%.
  • honeycomb fired body 10 had a quadrangular prism shape that was chamfered so that the corners at the end face had a curved shape.
  • alumina fibers having an average fiber length of 20 ⁇ m, 21% by weight of silicon carbide particles having an average particle diameter of 0.6 ⁇ m, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% by weight of water were added.
  • a number of honeycomb fired bodies were bundled using the heat-resistant adhesive paste contained, and the adhesive paste was dried and solidified at 120 ° C. to form an adhesive layer, thereby producing a prismatic ceramic block.
  • the outer periphery of the prismatic ceramic block was cut using a diamond cutter to produce a substantially cylindrical ceramic block.
  • a sealing material paste having the same composition as the adhesive paste is applied to the outer peripheral surface of the ceramic block, and the outer peripheral coating layer is formed by drying and solidifying the sealing material paste at 120 ° C., thereby forming a cylindrical honeycomb filter.
  • the opening ratio of the honeycomb filter by the exhaust gas introduction cell 12 was 37.3%, and the opening ratio of the honeycomb filter by the exhaust gas discharge cell 11 was 24.3%.
  • the honeycomb filter had a diameter of 143.8 mm and a length in the longitudinal direction of 150 mm.
  • the exhaust gas introduction cells 152 were all octagonal except for the exhaust gas introduction cells 152A and 152B adjacent to the outer peripheral wall 157.
  • the side facing the exhaust gas discharge cell 151 was a vertical and horizontal side, and its length was 1.11 mm.
  • the sides facing the other exhaust gas introduction cells 152, 152A, and 152B are oblique sides, and the length was 0.27 mm.
  • the exhaust gas exhaust cells 151 and 151A were all square, and the length of the side constituting the cross-sectional shape of the exhaust gas exhaust cells 151 and 151A was 0.96 mm.
  • the length of the side adjacent to the outer peripheral wall 157 is 1.23 mm
  • the length of the vertical and horizontal sides is 1.04 mm
  • the length of the oblique side is The cross-sectional area was 0.28 mm and the cross-sectional area was 1.48 mm 2 .
  • the length of the side adjacent to the outer peripheral wall 157 is 1.49 mm
  • the length of the vertical side parallel to the side adjacent to the outer peripheral wall 157 is 1.11 mm.
  • the length of the side that is perpendicular to the side adjacent to the outer peripheral wall 157 is 1.04 mm, the length of the hypotenuse is 0.27 mm, and the cross-sectional area is 1.79 mm 2. It was. Moreover, the thickness of the cell partition wall 153 was 0.25 mm, and the thickness of the outer peripheral wall 157 was 0.35 mm.
  • the cross-sectional area of the exhaust gas introduction cell 152 was 2.17 mm 2 , and the cross-sectional area of the exhaust gas discharge cell 151 was 0.93 mm 2 . That is, the cross-sectional area of the exhaust gas introduction cell 152 was larger than the cross-sectional area of the exhaust gas discharge cell 151.
  • Comparative Example 2 A honeycomb fired body and a honeycomb filter were produced in the same manner as in Comparative Example 1 except that the cell plugging position was changed to the position shown in FIG.
  • Example 1 For the honeycomb fired bodies manufactured in Example 1 and Comparative Examples 1 and 2, the pressure loss when 8 g / L of PM was deposited on the initial and honeycomb fired bodies using a pressure loss measuring apparatus as shown in FIG. It was measured. The PM was deposited on the honeycomb fired body using a diesel engine.
  • FIG. 5 is an explanatory view schematically showing a pressure loss measuring apparatus.
  • the pressure loss measuring device 210 includes a blower 211, an exhaust gas pipe 212 connected to the blower 211, a metal casing 213 in which the honeycomb fired body 10 is fixedly disposed, and pressures before and after the honeycomb fired body 10.
  • the pressure gauge 214 is provided with piping so that it can be detected. That is, in this pressure loss measuring device 210, the pressure loss is measured by flowing gas inside the honeycomb fired body 10 and measuring the pressure before and after the gas. And the air blower 211 was operated so that the flow volume of gas might be 10 m ⁇ 3 > / h, and the pressure loss was measured.
  • the pressure loss at the initial stage and when 8 g / L of PM is deposited is 5.87 kPa and 7.49 kPa, respectively, and in the honeycomb fired body according to Comparative Example 2, 4.02 kPa, respectively. 6.04 kPa, in the honeycomb fired body according to Example 1, the pressure loss when the initial and PM were deposited at 8 g / L was 3.60 kPa and 5.95 kPa, respectively. The pressure loss was lower than those of Comparative Example 1 and Comparative Example 2.
  • the honeycomb filter according to the second embodiment includes a porous cell partition wall that defines a plurality of cells serving as exhaust gas flow paths, an end portion on the exhaust gas inlet side, and an end portion on the exhaust gas outlet side that is plugged.
  • a honeycomb fired body having an exhaust gas introduction cell, an exhaust gas exhaust cell whose end on the exhaust gas outlet side is open and whose end on the exhaust gas inlet side is plugged, and an outer peripheral wall formed on the outer periphery Being done.
  • the cross-sectional area of each cross section perpendicular to the longitudinal direction of the exhaust gas introduction cell is the same except for the cells adjacent to the outer peripheral wall, and the cross-sectional area of the cross section perpendicular to the longitudinal direction of the exhaust gas exhaust cell. Smaller than.
  • the cross-sectional shape of the exhaust gas introduction cell in this embodiment is pentagonal and the same shape, and the cross-sectional shape of the exhaust gas discharge cell is octagonal with chamfered square corners.
  • the cells adjacent to the outer peripheral wall are composed of the exhaust gas introduction cells and the exhaust gas discharge cells arranged alternately with the exhaust gas introduction cells.
  • the shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas introduction cell is the same at all locations in each cell from the end portion on the exhaust gas inlet side to the end portion on the exhaust gas outlet side except for the plugging portion.
  • the shape of the cross section in the direction perpendicular to the longitudinal direction of the exhaust gas exhaust cell is the same at all locations in each cell from the end on the exhaust gas inlet side to the end on the exhaust gas outlet side except for the plugging portion. is there.
  • the honeycomb filter according to the second embodiment is the same honeycomb filter as the honeycomb filter according to the first embodiment, and the basic cell shape and arrangement are the same as those of the honeycomb filter according to the first embodiment.
  • the cross-sectional shape of the exhaust gas discharge cell is different from the honeycomb filter according to the first embodiment in that the square corner is chamfered and is an octagon.
  • Fig. 6 (a) is a perspective view schematically showing a honeycomb fired body constituting the honeycomb filter according to the second embodiment of the present invention
  • Fig. 6 (b) is a honeycomb shown in Fig. 6 (a). It is a BB line sectional view showing a fired body.
  • FIG. 7 is an enlarged end view showing a part of the end face of the honeycomb filter according to the second embodiment of the present invention of the honeycomb fired body shown in FIG.
  • the configuration of the honeycomb filter is the same as that of the honeycomb filter 20 except that the shape of the exhaust gas discharge cells constituting the honeycomb fired body is the configuration shown in FIGS. 6 (a) and 6 (b). Then, a drawing is omitted.
  • the cross-sectional shape of the exhaust gas discharge cell 31 is different in that the corners of the square are chamfered and are octagonal.
  • This is basically the same as the honeycomb fired body 10 constituting the honeycomb filter 20 shown in FIG. 3A, and has a pentagonal cross section around the exhaust gas discharge cell 31 having an octagonal cross section with a porous cell partition wall 33 therebetween.
  • eight exhaust gas introduction cells 32 having sides 32a, 32b, 32c, 32d, and 32e are adjacent to each other (see FIG. 7).
  • the shape of the exhaust gas introduction cell 32 is the same except for the cells adjacent to the outer peripheral wall 37, and is a pentagon having three internal angles of 90 ° and two internal angles of 135 ° that are not adjacent to each other.
  • the shape is a combination of right-angled isosceles triangles.
  • the cross-sectional shapes of the two exhaust gas introduction cells 32 adjacent to one side constituting the cross section of the exhaust gas discharge cell 31 are directed in opposite directions, and the right-angled portions of the right isosceles triangle are opposed to each other.
  • Four pentagons are arranged.
  • the exhaust gas discharge cell 31 has the same shape except for the cell adjacent to the outer peripheral wall 37.
  • this arrangement pattern when this arrangement pattern is considered as a unit having a quadrilateral connecting the centers of gravity of the four exhaust gas discharge cells 11, this unit has a right-angled portion of a right isosceles triangle at its center.
  • Four exhaust gas introduction cells 12 are arranged so as to be opposed to each other, have a cross shape, and four exhaust gas discharge cells 11 divided into 1 ⁇ 4 are arranged in the open portions of the four corners of the square. Therefore, the number of exhaust gas introduction cells 12 is four times the number of exhaust gas discharge cells 11. Note that the cross-sectional areas of the exhaust gas introduction cells 12 are the same.
  • the outer peripheral wall 37 is configured similarly to the honeycomb filter 20 according to the first embodiment.
  • the exhaust gas introduction cells 32 ⁇ / b> A and the exhaust gas exhaust cells 31 ⁇ / b> A are alternately arranged, and the exhaust gas introduction cells 32 ⁇ / b> A are pentagonal.
  • the area of the rectangular portion is increased.
  • the area of the exhaust gas discharge cell 31A adjacent to the outer peripheral wall 32 has the same shape as that of the exhaust gas exhaust cell 31 not adjacent to the outer peripheral wall 37, and the area thereof is also the same.
  • the area of the exhaust gas exhaust cell 31A adjacent to the outer peripheral wall 37 is preferably 65 to 90%, and preferably 70 to 85% of the area of the exhaust gas exhaust cell 31 other than the exhaust gas exhaust cell 31A adjacent to the outer peripheral wall 37. Is more desirable.
  • the area of the exhaust gas introduction cell 32A adjacent to the outer peripheral wall 37 is preferably 130 to 200% of the area of the exhaust gas introduction cell 32 other than the exhaust gas introduction cell 32A adjacent to the outer peripheral wall 37, and is 150 to 180%. More desirable.
  • the exhaust gas discharge cells 31B existing at the corners of the honeycomb fired body 30 have the same shape as the other exhaust gas discharge cells 31.
  • the honeycomb filter of the present embodiment has the passage resistance of the exhaust gas introduction cell 32 due to the cross sectional area of each exhaust gas introduction cell 32 being smaller than the cross sectional area of each exhaust gas discharge cell 31.
  • the flow resistance of the exhaust gas flowing into the exhaust gas introduction cell 32 decreases and becomes uniform due to this passage resistance, and the exhaust gas passes through the cell partition wall 33 in a wide range with respect to the longitudinal direction of the cells of the honeycomb filter, and the exhaust gas is discharged. It flows into the cell 31.
  • the opening ratio of the honeycomb filter by the exhaust gas introduction cell 32 is larger than the opening ratio of the honeycomb filter by the exhaust gas discharge cell 31, and the cross-sectional area of each exhaust gas discharge cell 31 is larger than the cross-sectional area of each exhaust gas introduction cell 32. Therefore, (e) the reduction effect of the passage resistance of the exhaust gas discharge cell 31 and (f) the outflow resistance when the exhaust gas flows out of the honeycomb filter is large, and as a result, the pressure loss is lower than that of the conventional honeycomb filter 90. can do.
  • the cross-sectional shape of the exhaust gas discharge cell 31 is an octagon
  • (e) the passage resistance of the exhaust gas discharge cell 31 and (f) the outflow resistance when the exhaust gas flows out of the honeycomb filter are the first embodiment. This is further reduced as compared with the honeycomb filter 20 according to the above.
  • the cell partition wall 33 is thick, so that the mechanical strength of the honeycomb fired body is increased, and thermal stress is caused when the deposited PM is burned. Even if this works, cracks are unlikely to occur.
  • the apex portion of the exhaust gas exhaust cell 31 has a chamfered octagonal shape, and the exhaust gas exhaust cell 31 has a chamfering rate R expressed by the following equation (1). It is desirable to be 50 to 100%.
  • Chamfering rate R (%) ( ⁇ / ⁇ ) ⁇ 100 (1) (In the above formula (1), ⁇ represents the length of one side 31a of the exhaust gas discharge cell 31 in the cross section perpendicular to the longitudinal direction of the cell, and ⁇ represents the exhaust gas discharge cell in the cross section perpendicular to the longitudinal direction of the cell. The length of the chamfered portion of one side of 31.)
  • the chamfering rate R of the present embodiment will be described with reference to FIG. 7.
  • the cross section of the exhaust gas discharge cell 31 has an octagonal shape by being chamfered. This octagon is point-symmetric with respect to the center of gravity.
  • the lengths of the chamfered portions (slanted sides, indicated by 31b in FIG. 7) are all equal, and the length of one side (vertical and horizontal sides, indicated by 31a in FIG. 7) of the exhaust gas discharge cell 31 is equal. All are octagons of equal shape.
  • the octagon has a shape in which four oblique sides and four vertical and horizontal sides are alternately arranged, and an angle formed between the oblique side and the vertical and horizontal sides is 135 °.
  • the chamfering rate R can be expressed by the following equation (2).
  • Chamfering rate R (%) (length of hypotenuse 31b / length of side 31a in length and breadth) ⁇ 100 (2) The range of the value is preferably 50 to 100%.
  • the “slope side” generally refers to a longer side that is opposite to the right angle of a right triangle, but in this specification, for convenience of explanation, the side of the portion where the square is chamfered is expressed as the hypotenuse.
  • the sides other than the hypotenuse are called vertical and horizontal sides.
  • a PM deposition layer is mainly formed on the cell partition wall 33 on the side of the exhaust gas introduction cell 32 that separates the exhaust gas introduction cell 32 and the exhaust gas exhaust cell 31, but a very short period of time is formed.
  • the exhaust gas also enters the cell partition wall 33 that separates the exhaust gas introduction cells 32, then passes through the cell partition wall 33 and enters the exhaust gas discharge cell 31, and the cell partition wall 33 that separates the exhaust gas introduction cells 32 from each other.
  • PM is gradually deposited, and as a result, PM is deposited almost uniformly on the entire cell partition wall 33 constituting the exhaust gas introduction cell 32.
  • the initial pressure loss can be reduced so that PM is uniformly deposited from an earlier stage, that is, the exhaust gas easily passes through more cell partition walls 33 from the earlier stage.
  • the cross-sectional areas of the exhaust gas introduction cells 12 are the same, and the number of the exhaust gas introduction cells 12 is four times as many as the number of the exhaust gas discharge cells 11, so that the substantial filtration area can be made sufficiently large.
  • the PM layer deposited on the cell partition 33 constituting the exhaust gas introduction cell 32 is thin, and (d) the permeation resistance generated when the exhaust gas permeates the deposited PM layer does not increase.
  • the honeycomb filter of the present invention has a low pressure loss in the initial stage and can be a honeycomb filter in which the pressure loss does not easily increase even when PM is deposited.
  • the outer peripheral wall 37 and the exhaust gas discharge cell 31 and the exhaust gas introduction cell 32 adjacent to the outer peripheral wall 37 are configured as described above, whereby the honeycomb fired body is formed by the outer peripheral wall 37.
  • the strength of the exhaust gas exhaust cell 31 and the exhaust gas introduction cell 32 in the honeycomb fired body 30 is further suppressed, and the exhaust gas flow becomes more uniform. Since the exhaust gas smoothly flows into the exhaust gas introduction cell 32 and the cell partition wall 33 and the outer peripheral wall 37 function as a filter, the pressure loss can be further reduced.
  • the ratio (%) of the cross-sectional area of each exhaust gas introduction cell 32 to the cross-sectional area of each exhaust gas discharge cell 31 is 30 to 50% is preferable, and 35 to 45% is more preferable.
  • the thickness of the cell partition of the honeycomb filter, the porosity of the cell partition, the average pore diameter of the pores included in the cell partition are the same as those of the honeycomb filter of the first embodiment. Preferably there is.
  • the honeycomb filter according to the second embodiment may be composed of a plurality of honeycomb fired bodies or a single honeycomb fired body.
  • the constituent material of the honeycomb fired body is preferably the same as the constituent material of the honeycomb fired body according to the first embodiment, and the number per unit area of the cells in the cross section of the honeycomb fired body 30 is also according to the first embodiment. It is desirable to be the same as the honeycomb fired body.
  • the outer peripheral coat layer may be provided on the outer periphery of the honeycomb filter, but the material of the outer peripheral coat layer is preferably the same as the material of the adhesive.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 3.0 mm.
  • honeycomb filter of the present embodiment can be manufactured using a method similar to the method described in the first embodiment of the present invention, except that the shape of the mold used in the extrusion process is changed.
  • the honeycomb filter according to the present embodiment is the same as the honeycomb filter according to the first embodiment in the basic cell arrangement, shape, plugging mode, and the like.
  • the same operation and effect as the operation and effect of (11) can be achieved, and furthermore, since the cross-sectional shape of the exhaust gas exhaust cell is an octagon, (e) the passage resistance of the exhaust gas exhaust cell and (f ) Outflow resistance when exhaust gas flows out of the honeycomb filter is further reduced as compared with the honeycomb filter 20 according to the first embodiment.
  • the cell partition wall is thick, so that the mechanical strength of the honeycomb fired body is increased, and thermal stress is generated when the deposited PM is burned. Even if it acts, there exists an effect that it is hard to generate a crack.
  • Honeycomb fired body 20 Honeycomb filter 11, 11A, 11B, 31, 31A, 31B Exhaust gas discharge cell 11a, 11Aa, 31a, 31b Side (side of exhaust gas discharge cell) 12, 12A, 32, 32A Exhaust gas introduction cells 12a, 12b, 12c, 12d, 12e, 12f, 32a, 32b, 32c, 32d, 32e side (side of the exhaust gas introduction cell) 13, 13a, 13b, 13c, 33 Cell partition 15 Adhesive layer 16 Outer peripheral coat layer 17, 37 Outer peripheral wall 18 Ceramic block

Abstract

本発明のハニカムフィルタは、多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルと、外周に形成された外周壁とを備えたハニカム焼成体から構成され、前記排ガス導入セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から前記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、前記排ガス排出セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から前記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、外周壁に隣接するセルを除き、排ガス排出セルの周囲全体に、多孔質のセル隔壁を隔てて排ガス導入セルが隣接してなり、外周壁に隣接するセルは、排ガス導入セルと排ガス排出セルとからなり、実質的な排ガス導入セルの個数と排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であり、排ガス導入セルの長手方向に垂直方向の断面のそれぞれの断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、排ガス排出セルの長手方向に垂直な断面の断面積よりも小さいことを特徴とする。

Description

ハニカムフィルタ
本発明は、ハニカムフィルタに関する。
ディーゼルエンジン、ガソリンエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMという)が含まれており、近年、このPMが環境または人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HCまたはNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境または人体に及ぼす影響についても懸念されている。
そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HCまたはNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、コージェライトや炭化ケイ素等の多孔質セラミックからなるハニカム構造のフィルタ(ハニカムフィルタ)が種々提案されている。
最近、ディーゼルエンジン、ガソリンエンジンとも、排ガス規制がさらに厳しくなり、排ガス浄化装置を厳しい排ガス規制に適合させることが求められている。例えば、従来では、酸化触媒を担持した触媒担体とPMを捕集するハニカムフィルタのみで排ガス規制を満たすレベルまで排ガスの後処理が可能であったが、最近では、NOx浄化の要求が厳しくなり、SCR触媒を担持した触媒担体をさらに備えたり、SCR触媒を機能させるためのアンモニア噴射機構等を排ガス浄化装置に備える必要が生じている。
このような背景から、触媒担体やハニカムフィルタには、上記した機能を発揮させる装置を組み込むことを前提にさらなる小型化が求められており、特にハニカムフィルタには、圧力損失をさらに低く抑えることができる構造が求められている。
従来より、圧力損失の低下が可能なハニカムフィルタを開示した発明として、下記の特許文献1~特許文献4が挙げられる。
図8(a)は、特許文献1に記載のハニカムフィルタを模式的に示した斜視図であり、図8(b)は、上記ハニカムフィルタを構成するハニカム焼成体を模式的に示す斜視図である。
特許文献1には、図8(a)および(b)に示すように、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セル102と、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セル101とを備え、排ガス排出セル101のセルの長手方向に垂直な断面の断面形状が正方形、排ガス導入セル102のセルの長手方向に垂直な断面の断面形状が八角形で、これら排ガス排出セル101と排ガス導入セル102とが交互に(チェックパターンに)配置されたハニカム焼成体100が複数個接着材層105により結束され、外周に外周コート層106が形成されたハニカムフィルタ90が開示されている。
以下、本発明および背景技術の説明においては、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止されたセルを、単に、排ガス排出セルと表記する。また、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止されたセルを、単に、排ガス導入セルと表記する。
単に、セルと記載した場合は、排ガス排出セルおよび排ガス導入セルの両方を示す。
さらに、排ガス導入セル、排ガス排出セル等のセルの長手方向に対して垂直方向の断面を、単に、排ガス導入セル、排ガス排出セル等の断面と表記する。
図9(a)は、特許文献2に記載のハニカムフィルタを模式的に示した斜視図であり、図9(b)は、上記ハニカムフィルタの端面を模式的に示した端面図である。
特許文献2には、図9(a)~(b)に示すような、各セルの断面の断面形状が全て同じ正方形のハニカムフィルタであって、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セル111の周囲全体に排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セル112、114がセル隔壁113を隔てて隣接するハニカムフィルタ110が開示されている。実質的な前記排ガス導入セルの個数と前記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=3:1の割合となっている。
図10は、特許文献3に記載のハニカムフィルタの断面を模式的に示した断面図である。
特許文献3には、図10に示すように、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された断面形状が六角形の排ガス排出セル121の周囲全体に、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止されたやはり断面形状が六角形の排ガス導入セル122がセル隔壁123を隔てて隣接するハニカムフィルタ120が開示されている。ただし、排ガス排出セル121の断面形状は、正六角形であるが、排ガス導入セル122の断面形状は、二つの異なる長さの辺a、bが交互に配置された六角形となっている。また、実質的な前記排ガス導入セルの個数と前記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=2:1の割合となっている。
図11は、特許文献4に記載のハニカムフィルタを構成するハニカム焼成体の断面を模式的に示した断面図である。
特許文献4は、図11に示すように、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された断面形状が八角形の排ガス排出セル131の周囲全体に、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された2種類の断面形状が異なる第1排ガス導入セル132および第2排ガス導入セル134がセル隔壁133を隔てて隣接するハニカムフィルタ130が開示されている。すなわち、これら排ガス導入セルは、断面形状が正方形の第1排ガス導入セル132と、断面積が第1排ガス導入セル132より大きい断面形状が八角形の第2排ガス導入セル134の2種類からなり、かつ、排ガス排出セル131の断面積は、第2排ガス導入セル134の断面積と同じであるかそれよりも大きく形成されている。また、実質的な前記排ガス導入セルの個数と前記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=3:1の割合となっている。
国際公開第2004/024294号 米国特許第4417908号明細書 国際公開第2007/134897号 国際公開第2013/187444号
特許文献1に開示された図8に示すハニカムフィルタ90では、排ガス導入セル102の断面積が排ガス排出セル101の断面積よりも大きくなっているため、排ガスが排ガス排出セル101を通過する際の通過抵抗や排ガスが排ガス排出セル101から流出する際の流出抵抗が大きく、その結果、圧力損失が高くなっていた。
特許文献2に開示された図9に示すハニカムフィルタ110では、排ガス排出セル111の断面積が小さいため、図8に示すハニカムフィルタ90と同様、排ガスが排ガス排出セル111を通過する際の通過抵抗や排ガスが排ガス排出セル111から流出する際の流出抵抗が大きく、その結果、圧力損失が高くなっていた。
特許文献3に開示された図10に示すハニカムフィルタ120では、断面形状が六角形の排ガス排出セル121の周囲全体に、同じ断面形状の排ガス導入セル122が6個配置されており、各排ガス導入セル122の容積は、排ガス排出セル121の容積より小さいので、排ガスが排ガス排出セル121を通過する際の抵抗、排ガスがフィルタの外部に流出する際の抵抗を低く抑えることができる。しかしながら、セルの断面形状が六角形であるため、外周壁に隣接するセルの断面の形状が歪みやすく、圧力損失をさらに低減させるためには、排ガス排出セルや排ガス導入セルの形状に検討の余地があった。
特許文献4に開示された図11に示すハニカムフィルタ130は、本発明者が先に提案したハニカムフィルタであり、断面形状が八角形の排ガス排出セル131の周囲全体に、2種類の断面形状が異なる第1排ガス導入セル132と第2排ガス導入セル134とが配置されており、第1排ガス導入セル132の断面積より排ガス排出セル131の断面積の方が大きい。そのため、排ガスが排ガス排出セル131を通過する際の抵抗、排ガスがフィルタの外部に流出する際の抵抗を低く抑えることができる。また、PMがある程度堆積すると、主流路のスイッチが起こり、第1排ガス導入セル132より断面積が大きい第2排ガス導入セル134の内壁表面にもPMが堆積する。第1排ガス導入セル132および第2排ガス導入セル134の総容積は、排ガス排出セル131の総容積よりも大きいので、排ガス導入セルに堆積したPM層の厚さが余り厚くならず、圧力損失が低い状態を維持することができる。
さらに、外周壁に隣接するセルについては、排ガス排出セル131A、131Bの総容積を排ガス導入セル132Aの総容積よりも大きくとっているので、外周壁に隣接する排ガス導入セル132Aから容積の大きい排ガス排出セル131A、131Bに排ガスが流れやすくなり、外周壁に隣接する排ガス導入セル132Aを区画するセル隔壁133aは勿論のこと、排ガス導入セル132Aを区画する外周壁137にも排ガスの透過が可能となるため、実質的な濾過面積を充分に大きくとることができ、初期において圧力損失が低く、PMが堆積しても圧力損失が上昇しにくいハニカムフィルタとすることができる。
しかしながら、特許文献4に記載のハニカムフィルタ130は、断面形状の異なる二種類の第1排ガス導入セル132と第2排ガス導入セル134とを使用しているため、特に、断面積の小さい第1排ガス導入セル132に流入した排ガスがセルの内部を通過する際の抵抗を小さくすることが難しく、それが初期(PMが堆積する前)の圧力損失を増加させる原因となっており、特にエンジンからの排気温度が高く、PMがハニカムフィルタ130に多量に堆積する前に連続的に燃焼するような場合においては、初期の圧力損失をさらに低減させる余地があった。
本発明は、上記課題に鑑みてなされたものであり、PM未堆積時の圧力損失(初期圧損)、および、PM堆積時の圧力損失の上昇を抑制したハニカムフィルタの提供を目的とする。
すなわち、本発明のハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルと、外周に形成された外周壁とを備えたハニカム焼成体から構成されてなるハニカムフィルタであって、
上記排ガス導入セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、上記排ガス排出セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、上記外周壁に隣接するセルを除き、上記排ガス排出セルの周囲全体に、上記多孔質のセル隔壁を隔てて上記排ガス導入セルが隣接してなり、上記外周壁に隣接するセルは、上記排ガス導入セルと上記排ガス排出セルとからなり、実質的な上記排ガス導入セルの個数と上記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であり、上記排ガス導入セルの長手方向に垂直方向の断面のそれぞれ断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、上記排ガス排出セルの長手方向に垂直な断面の断面積よりも小さいことを特徴とする。
本発明のハニカムフィルタにおいては、一部の例外部分を除いて、それぞれの排ガス排出セルが、上記排ガス排出セルの周囲全体に隣接して配設された排ガス導入セルを互いに共有しながら上下左右に2次元的に繰り返すパターンで配置されている。本発明のハニカムフィルタにおいて、「実質的な上記排ガス導入セルの個数と上記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1である」とは、外周壁に隣接するセルの例外部分を除いた上記した排ガス排出セルと排ガス導入セルとの繰り返しパターンを観察した際、排ガス導入セルの個数と排ガス排出セルの個数との比が、排ガス導入セル:排ガス排出セル=4:1となっていることをいう。具体的には、ハニカムフィルタのセルの長手方向に垂直な断面において、4つの隣り合う排ガス排出セルの幾何学的な重心を結んだ四角形の中に、4つ分の排ガス導入セルと1つ分の排ガス排出セルとを含んでいることをいう。上記四角形に、セルが分割して含まれるため、その面積の合計がそれぞれのセルの面積の幾つ分に相当するかで示す。
本発明者らは、圧力損失は、(a)排ガスがハニカムフィルタに流入する際の流入抵抗、(b)排ガス導入セルの通過抵抗、(c)セル隔壁の透過抵抗、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗、(e)排ガス排出セルの通過抵抗、(f)排ガスがハニカムフィルタから流出する際の流出抵抗、により発生すると考えている。
本発明のハニカムフィルタでは、排ガス排出セルの周囲全体に、多孔質のセル隔壁を隔てて排ガス導入セルを配置しているので、排ガス排出セルの周囲にあるセル隔壁全体を完全に利用することができる。
本発明のハニカムフィルタでは、排ガス導入セルの個数を排ガス排出セルの個数の4倍とし、排ガス導入セルの断面積を相対的に小さくすることにより、(b)排ガス導入セルの通過抵抗は、若干大きくなるが、この通過抵抗により排ガス導入セルに流れ込む排ガスの流速が低下するとともに均一化し、排ガスがハニカムフィルタのセルの長手方向に対して広い範囲のセル隔壁を通過して排ガス排出セルに流れ込むようになる。これにより、(c)セル隔壁の透過抵抗が小さくなるとともに、セル隔壁に堆積するPMの厚さが均一化されて薄くなり、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗を低減させることができる。
また、排ガス導入セルの断面積が同じであるので、各排ガス導入セルに堆積するPMがより均一になるとともに、ハニカムフィルタに堆積したPMの燃焼除去後にハニカムフィルタ内に残るアッシュもより均一に堆積する。さらに、排ガス導入セルの個数を排ガス排出セルの個数の4倍とすることにより、アッシュの堆積する排ガス導入セルの容積も大きくなるため、アッシュが堆積した後も濾過面積を確保することができる。
本発明のハニカムフィルタでは、上記外周壁に隣接するセルは、上記排ガス導入セルと、該排ガス導入セルと交互に配置された上記排ガス排出セルとからなることが望ましい。
上記構成のハニカムフィルタでは、上記外周壁に隣接するセルは、上記排ガス導入セルと、該排ガス導入セルと交互に配置された上記排ガス排出セルとからなり、上記排ガス排出セルの長手方向に垂直方向の断面の断面積は、上記排ガス導入セルの長手方向に垂直方向の断面の断面積よりも大きいので、外周壁に隣接する排ガス導入セルから断面積の大きい排ガス排出セルに排ガスがより流れやすくなり、外周壁に隣接する排ガス導入セルを区画するセル隔壁は勿論のこと、上記排ガス導入セルを区画する外周壁にも排ガスの透過が可能となり、実質的な濾過面積を最大限に大きくとることができ、初期において圧力損失がより低く、PMが堆積しても圧力損失がより上昇しにくいハニカムフィルタとすることができる。
本発明のハニカムフィルタでは、セルの長手方向に垂直な断面に関し、上記排ガス導入セルは、いずれも五角形であり、上記排ガス排出セルは、正方形もしくは八角形であることが望ましい。
排ガス排出セルの断面形状を正方形もしくは八角形とし、その周囲を取り囲む排ガス導入セルの断面形状を五角形とした場合、ハニカムフィルタを構成するハニカム焼成体の断面形状を設計しやすく、濾過面積がより広い排ガス導入セルを形成することができ、圧力損失がより低いハニカムフィルタとすることができる。
本発明のハニカムフィルタでは、セルの長手方向に垂直な断面に関し、上記排ガス導入セルは、3つの90°の角と、隣り合わない2つの135°の角からなる五角形であり、上記排ガス排出セルは正方形であり、上記排ガス排出セルの周囲に8つの上記排ガス導入セルが配置されていることが望ましい。
上記構成のハニカムフィルタでは、ハニカム焼成体の断面形状の設計がしやすく、圧力損失がより低いハニカムフィルタとすることができ、また、構造体としての強度を高めることができる。
本発明のハニカムフィルタでは、上記ハニカムフィルタのセル同士を隔てるセル隔壁の厚さは、全ての場所において等しいことが望ましい。
セル同士を隔てるセル隔壁の厚さが全ての場所において等しい場合、排ガスがセル隔壁全体をより均一に透過しやすく、PMを均一に堆積させることができることから、圧力損失を低くすることができる。
本発明のハニカムフィルタでは、セルの長手方向に垂直な断面に関し、上記セルの頂点部分は、面取りされた形状となっており、上記セルは、下記の(1)式で表される面取り率Rが50~100%であることが望ましい。
面取り率R(%)=(β/α)×100・・・(1)
(但し、上記(1)式において、αはセルの長手方向に垂直な断面におけるセルの1辺の長さをさし、βはセルの長手方向に垂直な断面におけるセルの1辺のうち面取りされている部分の長さをさす。)
上記構成のハニカムフィルタでは、セルの断面形状がより円に近くなるため、(b)及び(e)のセルの通過抵抗をより小さくすることができ、より初期圧損の低いハニカムフィルタとすることができる。上記した「セルの頂点部分は、面取りされた形状となっている」に関し、上記セルは、排ガス排出セルおよび排ガス導入セルの両方を指す。
本発明のハニカムフィルタでは、上記外周壁は、角部を有し、該角部以外の外周壁の厚さが均一になるように、セルの長手方向に垂直な断面における上記外周壁に接する排ガス導入セルおよび排ガス排出セルの上記外周壁に接する辺は、上記外周壁の外壁をなす辺と平行かつ直線的に形成されていることが望ましい。
外周壁によりハニカム焼成体の強度が向上すると共に、ハニカム焼成体における排ガス排出セルと排ガス導入セルの容積比率の部分的なバラツキがより抑えられ、より排ガスの流れが均一になるため、圧力損失を低減させることができる。
本発明のハニカムフィルタでは、複数の上記ハニカム焼成体が接着材層を介して接着されることにより形成されており、上記排ガス導入セルの個数は、排ガス排出セルの個数の3.2~4.0倍であることが望ましい。
複数のハニカム焼成体が接着材層を介して接着されていると、再生時等において、接着材層が緩衝層となり、熱応力によりハニカムフィルタが破壊されるのを防止することができる。また、接着材層により機械的な強度を増加させることができる。また、ハニカム焼成体の外周壁に隣接するセルを考慮に入れると、上記排ガス導入セルの個数は、排ガス排出セルの個数の3.2~4.0倍となる。
本発明のハニカムフィルタでは、セル隔壁の厚さは、0.075mm~0.310mmであることが望ましい。
セル隔壁の厚さは、0.075mm~0.310mmと薄くすることにより、排ガスのセル隔壁の透過抵抗を低減させることができ、圧力損失をより低下させることができる。
本発明のハニカムフィルタでは、上記セル隔壁の気孔率は、40~65%であることが望ましい。
セル隔壁の気孔率が40~65%である場合、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁の透過抵抗に起因する圧力損失の上昇を抑制することができる。従って、初期の圧力損失が低く、PMを堆積しても圧力損失が上昇しにくいハニカムフィルタとなる。
本発明のハニカムフィルタでは、上記ハニカム焼成体は、炭化ケイ素、または、ケイ素含有炭化ケイ素からなることが望ましい。
上記炭化ケイ素、上記ケイ素含有炭化ケイ素は、耐熱性に優れた材料である。このため、本発明のハニカムフィルタは、耐熱性に優れたハニカムフィルタとなる。
本発明のハニカムフィルタでは、外周には、外周コート層が形成されていることが望ましい。
この外周のコート層は、内部のセルを機械的に保護する役割を果たす。そのため、本発明のハニカムフィルタは、圧縮強度等の機械的特性に優れたハニカムフィルタとなる。
なお、本発明でいうセルの断面形状とは、セルの長手方向に垂直方向の断面に関し、排ガス排出セル、排ガス導入セルの各セル内壁で構成される形状をいう。
また、本発明でいう断面積とは、セルの長手方向に垂直方向の断面に関し、排ガス排出セル、排ガス導入セルの各セル内壁で構成される断面形状の面積をいう。なお、セル内壁とはセルを構成するセル隔壁の表面のうち、セルの内部側の表面部分をいう。
さらに、本発明でいう辺とは、セルの長手方向に垂直な断面に関し、排ガス排出セル、排ガス導入セルの各セル内壁で構成される断面形状が多角形である場合に、その多角形の頂点間の線分をいう。
また、辺の長さとはその線分の長さをいい、頂点部分が曲線によって構成されるいわゆる面取り形状となっている場合には、その曲線部分を除外した直線部分の長さをいう。
頂点部分が曲線となっている場合には、その曲線部位においては、セル間を隔てるセル壁が厚くなっていることから透過抵抗が高くなり、排ガスは直線部分に優先的に流れ込むため、この直線部分の長さを調整する必要があることから、曲線部分を除外して考えた方が妥当だからである。
なお、曲線部分を除外した直線部分の辺の長さは、多角形の直線部分を仮想的に延長し、この仮想の直線同士が交差する交点を仮想的な頂点とするとき、この仮想的な頂点間を結んで構成される仮想的な辺の長さの80%以上とすることが望ましい。セルの断面形状が多角形状の場合には、辺の長さが仮想的な辺の長さの80%以上であれば、辺の長さを調整することで本発明の作用効果である圧力損失の低減を実現できるからである。
また、本発明のハニカムフィルタにおいては、2つのセル間を隔てるセル隔壁の厚さは、次のように定義される。
すなわち、2つのセル間を隔てるセル隔壁の厚さは、排ガス導入セルの各辺の中点からセルの外向きに垂線を引いた時に、その垂線が最初に交わるセルの辺までの距離とする。上述したように面取り形状となっている場合には、辺の曲線部分は除外して考えた方が妥当だからである。
なお、本発明においては、セルの辺の長さおよびセル隔壁の厚さの測定、セル断面形状の特定は、電子顕微鏡写真を用いて行う。電子顕微鏡写真の撮影は、電子顕微鏡(FE-SEM:日立ハイテクノロジーズ製 高分解能電界放出形走査電子顕微鏡 S-4800)にて行う。
また、電子顕微鏡写真の拡大倍率は、セルを構成するセル隔壁の表面(内壁)の粒子や気孔の凹凸が、セルの断面形状の特定や、辺の長さ、隔壁厚さおよびセルの断面積の計測に支障にならない程度の倍率であり、かつセルの断面形状の特定や、辺の長さ、セル隔壁の厚さおよびセルの断面積の計測が可能となる倍率を採用することが必要であり、拡大倍率30倍の電子顕微鏡写真を用いて計測することが最適である。
すなわち、上述したセルの長さやセル隔壁の厚さの定義に基づき、電子顕微鏡写真のスケールを利用してセルの各辺の長さを測定して、その値を求め、断面積については、得られたセルの長さ等の値に基づき、算術的に求める。また、断面積について算術的に計測することが煩雑な場合は、電子顕微鏡写真のスケールから単位面積に相当する正方形(スケール長さを1辺とする正方形)を切り取り、この重量を測定、一方でセルの断面形状に沿ってセル断面を切り取り(多角形の場合に頂点部分が曲線となっている場合にはその曲線に沿って切り取り)、その切り取った部分の重量を測定する。重量比率からセルの断面の断面積を計算することができる。
また、本発明においては、セルの長さやセル隔壁の厚さ、断面積の計測について、上述した人手による計測から、電子顕微鏡写真を画像データとして取り込むか、電子顕微鏡から直接取り込んだ画像データを用い、写真のスケールを入力して、電子的な計測に置き換えることも可能である。もちろん、人手による計測方法も電子化した計測方法も電子顕微鏡画像のスケールに基づいた計測であって、同一原理に基づいており、両者の計測結果に齟齬が発生しないことは言うまでもない。
電子的な計測としては、画像解析式粒度分布ソフトウエア(株式会社マウンテック(Mountech)製)MAC-View (Version3.5)なる計測ソフトウエアを用いることができる。このソフトウエアでは電子顕微鏡写真をスキャナーで取り込むか、電子顕微鏡から直接取り込んだ画像データを用い、当該写真のスケールを入力し、セルの内壁に沿って範囲を指定することで断面積を計測できる。また、画像中の任意の点間距離も電子顕微鏡写真のスケールを基に計測できる。
電子顕微鏡によりセル断面を撮影する際には、セルの長手方向に垂直にフィルタを切断し、その切断面が入るように、1cm×1cm×1cmのサンプルを準備し、サンプルを超音波洗浄するか、もしくは樹脂で包埋して、電子顕微鏡写真を撮影する。樹脂による包埋を行っても、セルの辺の長さおよびセル隔壁の厚さの計測には影響を与えない。
本発明においては、ハニカムフィルタを構成するセルの長手方向に垂直な断面に関し、排ガス導入セルおよび排ガス排出セルは、排ガス入口端から排ガス出口端にかけて目封止部分を除き、それぞれのセルにおける全ての場所において、それらセルの内壁で構成される断面形状は同じである。つまり、排ガス導入セルだけについて、その長手方向に垂直な断面を見た場合、その内壁で構成される断面図形は目封止部分を除いて排ガス入口端から排ガス出口端のどの部分の断面を見ても同じ形状である。同じ形状というのは合同という意味であり、相似は含まない。すなわち、相似関係となる形状は、異なる形状となる。排ガス導入セルのみならず、排ガス排出セルもまた、それぞれ排ガス導入セルの場合と同じ説明が成り立つ。目封止部分を除外した理由は、目封止部分には目封止材が存在するためセル隔壁の内壁により構成される断面図形が物理的に存在しないからである。
以下、本発明の作用効果について、本発明のハニカムフィルタの一実施形態を例示として詳しく説明する。
図1(a)、(b)は、本発明の一実施形態に係るハニカムフィルタの端面の一部を拡大して示した拡大端面図である。
図1(a)に示すように、このハニカムフィルタ20では、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セル11の周囲全体に、多孔質のセル隔壁13を隔てて排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セル12が隣接している。
セルの長手方向に垂直方向の断面の形状に関し、排ガス排出セル11は正方形である。一方、排ガス導入セル12は五角形で全て同じ形状であるが、正五角形ではなく、3つの90°の内角と、隣り合わない2つの135°の内角とを有する五角形であり、図形的には、図1(a)に示すように、破線12Xで分割すると、矩形と直角二等辺三角形とを足し合わせた形状となっている。そして、2個の排ガス導入セル12の矩形に相当する部分が、排ガス排出セル11の断面を構成する1つの辺11aに隣接しており、直角二等辺三角形が矩形の外側に付加された形状となっている。そして、同様のパターンが排ガス排出セル11を構成する4つの辺11aに繰り返されている。排ガス排出セル11に注目して観察すると、1個の排ガス排出セル11の周囲に8個の排ガス導入セル12が隣接して配置されたパターンが上下左右に繰り返されている。
また、全体を見ると、矩形形状の排ガス排出セル11が所定の間隔をあけて上下左右に整列し、空いたスペースに排ガス導入セル12が配置されたパターンとなっており、2つの排ガス排出セル11の間には、排ガス導入セル12を構成する矩形の部分が挿入されている。そして、4個の排ガス排出セル11に囲まれた中央のスペースには、排ガス導入セル12を構成する直角二等辺三角形の部分の直角部分が互いに対向するようにセル隔壁13を隔てて配されており、このように、排ガス導入セル12の矩形部分と直角二等辺三角形の部分とをうまく配置することにより、排ガス排出セル11と排ガス導入セル12とを隙間なく配置することができる。
上記した排ガス排出セル11と排ガス導入セル12のパターンに関し、1つのセルユニットは、破線Yで描かれているように、4つの隣り合う排ガス排出セル11の重心を結んだ四角形を想定することができ、上記ユニットは、4つ分の排ガス導入セル12と1つ分の排ガス排出セル11とを含んでいる。従って、外周壁に隣接するセルなどの例外部分を除いた上記した排ガス排出セル11と排ガス導入セル12との繰り返しパターンを観察した際、排ガス導入セル12の個数と排ガス排出セル11の個数との比が、排ガス導入セル:排ガス排出セル=4:1となっている。
次に、排ガスの流れについて考察する。
まず、図1(a)に示すように、上記構成のハニカムフィルタ20に向かって排ガスが流れてくると、入口側の端部が開口している排ガス導入セル12に流れ込む。排ガスは、フィルタ内の流れ易い部分から順に、排ガス導入セル12に流れ込むが、排ガス導入セル12の断面形状は、皆同じであり、排ガス排出セル11の断面を構成する辺に隣接する排ガス導入セル12の各辺の長さも、皆同じである。従って、排ガスは、それぞれの排ガス導入セル12に均一に流れこみ、排ガス排出セル11と排ガス導入セル12とを区画形成するセル隔壁13aを透過して、排ガス排出セル11に流れ込み、図1(a)に示すように、セル隔壁13aにPM堆積層が形成される。
それぞれの排ガス導入セル12の断面積が、それぞれの排ガス排出セル11の断面積よりも小さいことに起因して、(b)排ガス導入セル12の通過抵抗は、若干大きくなるが、この通過抵抗により排ガス導入セル12に流れ込む排ガスの流速が低下するとともに均一化し、排ガスがハニカムフィルタのセルの長手方向に対して広い範囲のセル隔壁13を透過して排ガス排出セル11に流れ込むようになる。また、それぞれの排ガス排出セル11の断面積は、それぞれの排ガス導入セル12の断面積よりも大きいので、(e)排ガス排出セル11の通過抵抗、および、(f)排ガスがハニカムフィルタから流出する際の流出抵抗の低減効果が大きく、その結果、従来のハニカムフィルタ90等に比べて圧力損失を低くすることができる。
セル隔壁13aにある程度の厚さのPM層が形成されると、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗が大きくなり、一方、排ガス導入セル12のそれぞれの断面積は、いずれも同じで、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍と多いので、排ガス導入セル12同士を隔てるセル隔壁13b、13cの透過抵抗は余り大きくない。従って、ごく短い期間の後、図1(b)に示すように、排ガスは、排ガス導入セル12同士を隔てるセル隔壁13b、13cを透過して排ガス排出セル11に流れ込むようになり、セル隔壁13b、13cにもPM堆積層が形成されるようになる。そして、最終的には、図1(b)に示すように、排ガス導入セル12を構成するセル隔壁13の全体(排ガス導入セルの各辺12a、12b、12c、12d、12eに相当する部分の隔壁)に均一な厚さのPM堆積層が形成される。本発明では、上述したように、排ガス導入セル12のそれぞれの断面積は、いずれも同じで、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍と多い。その結果、より初期の段階からPMが均一に堆積するように、すなわち、排ガスが初期の段階からより多くのセル隔壁を透過しやすくなるため、初期の圧力損失を低減できる。
その結果、本発明に係るハニカムフィルタを搭載した車両では、使用領域全体にわたって、圧力損失の上昇に起因する運転に不都合な現象が発生しにくく、燃費も低く抑えることができる。
本発明のハニカムフィルタにおいては、セル隔壁を隔てて隣接する排ガス排出セルと排ガス導入セルのセル長手方向に垂直な断面に関し、それらの断面形状が多角形である場合に、排ガス排出セルの断面形状を構成する辺のうち、セル隔壁を隔てて排ガス導入セルと隣接する辺と、排ガス導入セルの断面形状を構成する辺のうち、セル隔壁を隔てて排ガス排出セルと隣接する辺とは互いに平行であることが望ましい。
このことは、排ガス排出セルと排ガス導入セルを隔てるセル隔壁の厚みはどこでも均一であることを意味しており、フィルタの破壊強度が高い上、排ガスを透過させやすく、PMを均一に堆積させることができることから、圧力損失を低くできるからである。
なお、断面形状において多角形の頂点部分が曲線で構成されている場合には、その曲線部分は辺としては扱わない。そもそも平行にはならないからである。
セル長手方向に垂直な断面において、曲線部分を除外した断面形状の辺の長さは、辺とみなされる直線部分を仮想的に延長し、この仮想の直線同士が交差する交点を仮想的な頂点とするとき、この仮想的な頂点の間を結んで構成される多角形の仮想的な辺の長さの80%以上とすることが望ましい。逆に言えば、辺として扱われない部分は、仮想的な辺の長さの20%未満とすることが望ましい。
セルの断面形状が多角形状の場合には、辺の長さが仮想的な辺の長さの80%以上であれば、辺の長さを調整することで本発明の作用効果である圧力損失の低減の効果を実現できるからである。
本発明のハニカムフィルタは、自動車の内燃機関から排出される排ガス中のPMを浄化するために用いられることが望ましい。PM堆積前にフィルタに生じる初期圧損、PM堆積によりフィルタに生じる過渡圧損の両方を同時に低減できるため、エンジンの燃費を改善できるからである。
本発明のハニカムフィルタは、自動車の内燃機関としてディーゼルエンジンを採用した場合に最適である。ディーゼルエンジンから排出されるPMの量はガソリンエンジンよりも多く、PM堆積によってフィルタに生じる過渡圧損を低減する要請がガソリンエンジンに比べて高いからである。
本発明のハニカムフィルタを自動車の内燃機関から排出される排ガス中のPMを浄化するために用いる場合には、排気管内に保持材を介して本発明のハニカムフィルタを固定して使用する。
図1(a)、(b)は、本発明の一実施形態に係るハニカムフィルタの端面の一部を拡大して示した拡大端面図である。 図2は、本発明の第一実施形態に係るハニカムフィルタを模式的に示す斜視図である。 図3(a)は、図2に示すハニカムフィルタを構成するハニカム焼成体の一例を模式的に示す斜視図である。図3(b)は、図3(a)に示すハニカム焼成体のA-A線断面図である。 図4は、図3(a)、(b)に示したハニカム焼成体の端面の一部を拡大して示した拡大端面図である。 図5は、圧力損失測定方法を模式的に示す断面図である。 図6(a)は、第二実施形態に係るハニカムフィルタを構成するハニカム焼成体の一例を模式的に示す斜視図である。図6(b)は、図6(a)に示すハニカム焼成体のB-B線断面図である。 図7は、図6に示したハニカム焼成体の本発明の第二実施形態に係るハニカムフィルタの端面の一部を拡大して示した拡大端面図である。 図8(a)は、特許文献1に記載のハニカムフィルタを模式的に示す斜視図であり、図8(b)は、上記ハニカムフィルタを構成するハニカム焼成体を模式的に示す斜視図である。 図9(a)は、特許文献2に記載のハニカムフィルタを模式的に示した斜視図であり、図9(b)は、上記ハニカムフィルタの端面を模式的に示した端面図である。 図10は、特許文献3に記載のハニカムフィルタの断面を模式的に示す断面図である。 図11は、特許文献4に記載のハニカムフィルタを構成するハニカム焼成体の断面を模式的に示す断面図である。 図12(a)は、比較例に係るハニカムフィルタを模式的に示す斜視図であり、図12(b)は、図12(a)に示すハニカムフィルタを構成するハニカム焼成体を模式的に示す斜視図である。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明のハニカムフィルタの一実施形態である第一実施形態について説明する。
本発明の第一実施形態に係るハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルと、外周に形成された外周壁とを備えたハニカム焼成体から構成されてなる。
また、上記外周壁に隣接するセル以外のセルに関し、上記排ガス排出セルの周囲全体に、上記多孔質のセル隔壁を隔てて上記排ガス導入セルが隣接してなり、上記外周壁に隣接するセルは、上記排ガス導入セルと上記排ガス排出セルとからなり、実質的な上記排ガス導入セルの個数と上記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であり、上記排ガス導入セルの長手方向に垂直方向の断面のそれぞれの断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、上記排ガス排出セルの長手方向に垂直な断面の断面積よりも小さい。
本実施形態における排ガス導入セルの断面形状は、いずれも五角の角部が曲線面取りされた形状で同じ形状であり、排ガス排出セルの断面形状は、正方形である。
なお、上記外周壁に隣接するセルは、上記排ガス導入セルと該排ガス導入セルと交互に配置された上記排ガス排出セルとからなる。
また、上記排ガス導入セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、上記排ガス排出セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じである。
図2は、本発明の第一実施形態に係るハニカムフィルタの一例を模式的に示す斜視図である。
図3(a)は、図2に示すハニカムフィルタを構成するハニカム焼成体の一例を模式的に示す斜視図である。図3(b)は、図3(a)に示すハニカム焼成体のA-A線断面図である。図4は、図3(a)、(b)に示したハニカム焼成体の端面の一部を拡大して示した拡大端面図である。
図2に示すハニカムフィルタ20では、複数個のハニカム焼成体10が接着材層15を介して接着されることによりセラミックブロック18を構成し、このセラミックブロック18の外周には、排ガスの漏れを防止するための外周コート層16が形成されている。なお、外周コート層16は、必要に応じて形成されていればよい。
なお、ハニカム焼成体10は、略四角柱形状であるが、図3(a)に示すように、端面における角部が曲線形状となるように面取りが施されており、これにより角部に熱応力が集中し、クラック等の損傷が発生するのを防止している。上記角部は、直線形状となるように面取りされていてもよい。
なお、第一実施形態に係るハニカムフィルタ20では、排ガス排出セル11は、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止されており、排ガス導入セル12は、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止されているが、目封止材11は、ハニカム焼成体と同じ材料が好ましい。
図3(a)および図3(b)に示すハニカム焼成体10では、断面が正方形の排ガス排出セル11の周囲全体に、多孔質のセル隔壁13を隔てて断面が五角形の排ガス導入セル12が8個隣接している。排ガス導入セル12の形状は、外周壁17に隣接するセルを除いていずれも同一であり、3つの90°の内角と、隣り合わない2つの135°の内角とを有する五角形である。なお、排ガス排出セル11も外周壁17に隣接するセルを除いて、同じ形状である。
この配置パターンを、図1(a)に示すように、4つの隣り合う排ガス排出セル11の重心を結んだ四角形を1つのユニットとして考えると、このユニットは、その中心に直角二等辺三角形の直角部分が対向するように4つの排ガス導入セル12が配置され、十字形状となっており、上記四角形の四隅の空いた部分に、1/4に分割された排ガス排出セル11が4つ配置されている。従って、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍である。なお、排ガス導入セル12のそれぞれの断面積は、いずれも同じである。
外周壁17に関し、外周壁17は、角部を有し、該角部以外の外周壁の厚さが均一になるように、セルの長手方向に垂直な断面における排ガス導入セル12Aおよび排ガス排出セル11Aの外周壁17に隣接する辺は、外周壁17の外壁をなす辺と平行かつ直線的に形成されている。
また、外周壁12に隣接するセルに関し、排ガス導入セル12Aと排ガス排出セル11Aとは交互に配置されており、排ガス導入セル12Aは、五角形であるが、外周壁17に隣接していない排ガス導入セル12と比べると、矩形の部分の面積が増加している。一方、外周壁12に隣接する排ガス排出セル11Aの面積は、外周壁17に隣接していない排ガス排出セル11と比べると、ほぼ同じ面積となっている。
外周壁17に隣接する排ガス排出セル11Aの面積は、外周壁17に隣接する排ガス排出セル11A以外の排ガス排出セル11の面積の65~90%であることが望ましく、70~85%であることがより望ましい。
また、外周壁17に隣接する排ガス導入セル12Aの面積は、外周壁17に隣接する排ガス導入セル12A以外の排ガス導入セル12の面積の130~200%であることが望ましく、150~180%であることがより望ましい。
ハニカム焼成体10の角部に存在する排ガス排出セル11Bは、曲線からなる面取り部110Bを有する略4角形である。図3(a)に示す排ガス排出セル11Bの面取り部110Bは、面取り部分が曲線を有するように面取りされているが、面取り部分が直線となるように面取りされていてもよい。排ガス排出セル11Bの断面積は、外周壁17に隣接していない排ガス排出セル11とほぼ同様である。
本実施形態のハニカムフィルタは、上述したように、それぞれの排ガス導入セル12の断面積が、それぞれの排ガス排出セル11の断面積よりも小さいことに起因して、排ガス導入セル12の通過抵抗は、若干大きくなるが、この通過抵抗により排ガス導入セル12に流れ込む排ガスの流速が低下するとともに均一化し、排ガスがハニカムフィルタのセルの長手方向に対して広い範囲のセル隔壁13を透過して排ガス排出セル11に流れ込むようになる。また、排ガス導入セル12によるハニカムフィルタ20の開口率が排ガス排出セル11によるハニカムフィルタ20の開口率よりも大きく、それぞれの排ガス排出セル11の断面積は、それぞれの排ガス導入セル12の断面積よりも大きいので、(e)排ガス排出セル11の通過抵抗、および、(f)排ガスがハニカムフィルタから流出する際の流出抵抗の低減効果が大きく、その結果、従来のハニカムフィルタ90に比べて圧力損失を低くすることができる。
また、一般に、初期においては、排ガス導入セル12と排ガス排出セル11とを隔てる排ガス導入セル12側のセル隔壁13に主にPM堆積層が形成されるが、ごく短い期間の後、排ガスは、排ガス導入セル12同士を隔てるセル隔壁13にも入った後、該セル隔壁13を透過して排ガス排出セル11に入るようになり、排ガス導入セル12同士を隔てるセル隔壁13にも次第にPMが堆積し、結果的には、排ガス導入セル12を構成するセル隔壁13の全体にほぼ均一にPMが堆積する。本発明では、より初期の段階からPMが均一に堆積するように、すなわち、排ガスが初期の段階からより多くのセル隔壁13を透過しやすくなるため、初期の圧力損失を低減できる。
また、排ガス導入セル12の長手方向に垂直方向の断面のそれぞれ断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、排ガス排出セルの長手方向に垂直な断面の断面積よりも小さいが、排ガス導入セル12の個数と排ガス排出セル11の個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であるので、排ガス導入セル12の総容積は大きく、実質的な濾過面積を充分に大きくとることができ、排ガス導入セル12を構成するセル隔壁13に堆積するPM層の厚さは薄く、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗は大きくならない。その結果、本発明のハニカムフィルタでは、初期において圧力損失が低く、PMが堆積しても圧力損失が上昇しにくいハニカムフィルタとすることができる。
第一実施形態に係るハニカムフィルタ20では、上記効果に加え、外周壁17及び外周壁17に隣接する排ガス排出セル11及び排ガス導入セル12を上記のように構成することにより、外周壁17によりハニカム焼成体10の強度が向上すると共に、ハニカム焼成体10における排ガス排出セル11と排ガス導入セル12の容積比率の部分的なバラツキがより抑えられ、より排ガスの流れが均一になり、外周壁17近傍においても、排ガス導入セル12に排ガスがスムーズに流れ込み、セル隔壁13および外周壁17がフィルタとしての機能を果たすため、圧力損失をさらに低減させることができる。
上記したセルの形状に関し、図3(a)、(b)に示すハニカムフィルタを構成するハニカム焼成体10では、排ガス排出セル11、11A、11Bの断面は正方形、矩形、一部が面取りされた正方形であり、排ガス導入セル12、12Aの断面は五角形であるが、本発明のハニカムフィルタを構成する排ガス排出セルおよび排ガス導入セルの断面の形状は、上記形状に限定されず、排ガス排出セルは、正方形以外の多角形であってもよい。排ガス排出セルの具体的形状としては、八角形が挙げられる。排ガス導入セルの形状も、五角形以外の多角形であってもよい。排ガス導入セルの具体的形状としては、矩形または六角形が挙げられる。
また、このような断面が正方形等の多角形のセルの排ガス排出セルおよび排ガス導入セルの頂点部分は、断面が曲線となる曲線面取り形状となってもよい。
上記曲線としては、円を4等分に分割した際に得られる曲線(円弧)、楕円を長軸および長軸に垂直な直線で4等分に分割した際に得られる曲線等が挙げられる。特に断面が四角形状のセルの頂点部分に断面が曲線となる曲線面取りが施されていることが好ましい。角部に応力が集中することによりセル隔壁にクラックが入るのを防止することができるからである。
また、このハニカムフィルタ20では、必要に応じて、断面が円形の一部である円弧等の曲線からなるセルが一部含まれていてもよい。
図2及び図3(a)、(b)に示すハニカムフィルタにおいて、それぞれの排ガス排出セルの断面積に対するそれぞれの排ガス導入セル12の断面積の割合(%)は、30~50%が好ましく、35~45%がより好ましい。
本発明のハニカムフィルタでは、ハニカムフィルタのセル隔壁の厚さは、0.075~0.310mmであることが望ましく、0.10~0.28mmであることがより望ましい。
上記セル隔壁の厚さが0.075mm未満では、セル隔壁の厚さが薄くなりすぎるため、ハニカムフィルタの機械的強度が低下する。一方、セル隔壁の厚さが0.310mmを超えると、セル隔壁が厚くなり、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。
本発明のハニカムフィルタでは、上記セル隔壁の気孔率は、40~65%であることが望ましい。
セル隔壁の気孔率が40~65%である場合、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、初期の圧力損失が低く、PMを堆積しても圧力損失が上昇しにくいハニカムフィルタとなる。
セル隔壁の気孔率が40%未満では、セル隔壁の気孔の割合が小さすぎるため、排ガスがセル隔壁を透過しにくくなり、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、セル隔壁の気孔率が65%を超えると、セル隔壁の機械的特性が低く、再生時等において、クラックが発生し易くなる。気孔径および気孔率は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定する。
本発明のハニカムフィルタでは、上記セル隔壁に含まれる気孔の平均気孔径は、8~25μmであることが望ましい。
上記構成のハニカムフィルタでは、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。セル隔壁に含まれる気孔の平均気孔径が8μm未満であると、気孔が小さすぎるため、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、セル隔壁に含まれる気孔の平均気孔径が25μmを超えると、気孔径が大きくなりすぎるので、PMの捕集効率が低下してしまう。
本発明のハニカムフィルタは、複数のハニカム焼成体により構成されていてもよく、単一のハニカム焼成体からなるものであってもよい。ハニカム焼成体の構成材料としては、例えば、炭化ケイ素、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック、ケイ素含有炭化ケイ素等が挙げられる。これらのなかでは、炭化ケイ素、または、ケイ素含有炭化ケイ素が好ましい。耐熱性、機械強度、熱伝導性率等に優れるからである。
なお、ケイ素含有炭化ケイ素は、炭化ケイ素に金属ケイ素が配合されたものであり、炭化ケイ素を60wt%以上含むケイ素含有炭化ケイ素が好ましい。
ハニカム焼成体10の断面におけるセルの単位面積あたりの数は、31~62個/cm(200~400個/inch)であることが望ましい。
本発明のハニカムフィルタ20では、外周に外周壁を有する複数のハニカム焼成体が接着材層を介して接着されることにより形成されていることが望ましい。このように、複数のハニカム焼成体が接着材層を介して接着されることにより形成されている場合、ハニカム焼成体を接着する接着材層は、無機バインダと無機粒子とを含む接着材ペーストを塗布、乾燥させたものである。上記接着材層は、さらに無機繊維および/またはウィスカを含んでいてもよい。接着材層の厚さは、0.5~2.0mmが好ましい。
本発明の第一実施形態に係るハニカムフィルタでは、ハニカムフィルタの外周に外周コート層を備えていてもよいが、外周コート層の材料は、接着材の材料と同じであることが望ましい。
外周コート層の厚さは、0.1~3.0mmが好ましい。
次に、本発明のハニカムフィルタの製造方法について説明する。
なお、以下においては、セラミック粉末として、炭化ケイ素を用いる場合について説明する。
(1)セラミック粉末とバインダとを含む湿潤混合物を押出成形することによってハニカム成形体を作製する成形工程を行う。
具体的には、まず、セラミック粉末として平均粒子径の異なる炭化ケイ素粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが望ましい。
続いて、上記湿潤混合物を押出成形機に投入し、押出成形することにより所定の形状のハニカム成形体を作製する。
この際、図2および図3(a)、(b)に示すセル構造(セルの形状およびセルの配置)を有する断面形状が作製されるような金型を用いてハニカム成形体を作製する。
(2)ハニカム成形体を所定の長さに切断し、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させた後、所定のセルに封止材となる封止材ペーストを充填して上記セルを目封止する目封止工程を行う。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
(3)ハニカム成形体を脱脂炉中、300~650℃に加熱し、ハニカム成形体中の有機物を除去する脱脂工程を行った後、脱脂されたハニカム成形体を焼成炉に搬送し、2000~2200℃に加熱する焼成工程を行うことにより、図2および図3(a)、(b)に示すようなハニカム焼成体を作製する。
なお、セルの端部に充填された封止材ペーストは、加熱により焼成され、目封止材となる。
また、切断工程、乾燥工程、目封止工程、脱脂工程および焼成工程の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
(4)上記工程により製造された1個のハニカム焼成体をそのままハニカムフィルタとして用いてもよいが、セラミック粉末として、炭化ケイ素を用いる場合には、複数のハニカム焼成体が接着材層を介して接着されたものを用いることが望ましい。
この場合、支持台上で複数個のハニカム焼成体を、接着材ペーストを介して順次積み上げて結束する結束工程を行い、ハニカム焼成体が複数個積み上げられてなるハニカム集合体を作製する。
接着材ペーストとしては、例えば、無機バインダと有機バインダと無機粒子とからなるものを使用する。また、上記接着材ペーストは、さらに無機繊維および/またはウィスカを含んでいてもよい。
上記接着材ペーストに含まれる無機粒子としては、例えば、炭化物粒子、窒化物粒子等が挙げられる。具体的には、炭化ケイ素粒子、窒化ケイ素粒子、窒化ホウ素粒子等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機粒子の中では、熱伝導性に優れる炭化ケイ素粒子が望ましい。
上記接着材ペーストに含まれる無機繊維および/またはウィスカとしては、例えば、シリカ-アルミナ、ムライト、アルミナ、シリカ等からなる無機繊維および/またはウィスカ等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。無機繊維の中では、アルミナファイバが望ましい。また、無機繊維は、生体溶解性ファイバであってもよい。
さらに、上記接着材ペーストには、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等を添加してもよい。バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。
(5)次に、ハニカム集合体を加熱することにより接着材ペーストを加熱固化して接着材層とし、四角柱状のセラミックブロックを作製する。
接着材ペーストの加熱固化の条件は、従来からハニカムフィルタを作製する際に用いられている条件を適用することができる。
(6)セラミックブロックに切削加工を施す切削加工工程を行う。
具体的には、ダイヤモンドカッターを用いてセラミックブロックの外周を切削することにより、外周が略円柱状に加工されたセラミックブロックを作製する。
(7)略円柱状のセラミックブロックの外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する外周コート層形成工程を行う。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストとして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
なお、外周コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。
外周コート層を設けることによって、セラミックブロックの外周の形状を整えて、円柱状のハニカムフィルタとすることができる。
以上の工程によって、ハニカム焼成体を含むハニカムフィルタを作製することができる。
上記工程では、切削加工工程を行うことにより所定形状のハニカムフィルタを作製していたが、ハニカム焼成体を作製する工程において、外周全体に外周壁を有する複数形状のハニカム焼成体を作製し、それら複数形状のハニカム焼成体を、接着材層を介して組み合わせることにより円柱等の所定形状となるようにしてもよい。この場合には、切削加工工程を省略することができる。
以下、本発明のハニカムフィルタの作用効果について列挙する。
(1)本実施形態のハニカムフィルタでは、排ガス排出セルの周囲全体に、多孔質のセル隔壁を隔てて排ガス導入セルを配置しているので、排ガス排出セルの周囲にあるセル隔壁全体を完全に利用することができる。
(2)本実施形態のハニカムフィルタでは、それぞれの排ガス導入セルの断面積が、それぞれの排ガス排出セルの断面積よりも小さいことに起因して、(b)排ガス導入セルの通過抵抗は、若干大きくなるが、この通過抵抗により排ガス導入セルに流れ込む排ガスの流速が低下するとともに均一化し、排ガスがハニカムフィルタのセルの長手方向に対して広い範囲のセル隔壁を透過して排ガス排出セルに流れ込むようになる。また、それぞれの排ガス排出セルの断面積は、それぞれの排ガス導入セルの断面積よりも大きいので、(e)排ガス排出セルの通過抵抗、および、(f)排ガスがハニカムフィルタから流出する際の流出抵抗の低減効果が大きく、その結果、従来のハニカムフィルタに比べて圧力損失を低くすることができる。
(3)本実施形態のハニカムフィルタでは、排ガス導入セル12のそれぞれの断面積は、いずれも同じで、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍と多い。その結果、より初期の段階からPMが均一に堆積するように、すなわち、排ガスが初期の段階からより多くのセル隔壁を透過しやすくなるため、初期の圧力損失を低減できる。
(4)また、本実施形態のハニカムフィルタでは、排ガス導入セル12のそれぞれの断面積は、いずれも同じで、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍と多いため、排ガス導入セルの総容積は大きく、実質的な濾過面積を充分に大きくとることができ、排ガス導入セルを構成するセル隔壁に堆積するPM層の厚さは薄く、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗は大きくならない。その結果、本発明のハニカムフィルタでは、初期において圧力損失が低く、PMが堆積しても圧力損失が上昇しにくいハニカムフィルタとすることができる。
(5)本実施形態のハニカムフィルタでは、上記排ガス排出セルの長手方向に垂直方向の断面の断面積を、上記排ガス導入セルの長手方向に垂直方向の断面の断面積よりも大きくし、上記外周壁に隣接するセルは、上記排ガス導入セルと、該排ガス導入セルと交互に配置された上記排ガス排出セルとからなる構成とすることにより、外周壁に隣接する排ガス導入セルから断面積の大きい排ガス排出セルに排ガスがより流れやすくなり、外周壁に隣接する排ガス導入セルを区画するセル隔壁は勿論のこと、上記排ガス導入セルを区画する外周壁にも排ガスの透過が可能となり、実質的な濾過面積を最大限に大きくとることができ、初期において圧力損失がより低く、PMが堆積しても圧力損失がより上昇しにくいハニカムフィルタとすることができる。
(6)本実施形態のハニカムフィルタでは、セルの長手方向に垂直な断面に関し、上記排ガス導入セルをいずれも五角形、上記排ガス排出セルを正方形もしくは八角形とし、実質的な上記排ガス導入セルの個数と上記排ガス排出セルの個数との比を、排ガス導入セル:排ガス排出セル=4:1の割合とし、さらに、上記排ガス導入セルは、外周壁に隣接する排ガス導入セルを除いて同じ形状となるように構成することにより、初期からPMが限界に近い量堆積するまでの全体にわたって、全ての排ガス導入セルに均一にPMが堆積する結果、排ガス導入セルに堆積するPM層の厚さが均一で薄くなり、圧力損失がより増大しにくい。また、PM燃焼後に排ガス導入セルに残留するアッシュがハニカムフィルタ内に均一に堆積しやすくなるため、アッシュ堆積後であっても、ハニカムフィルタ内により均一に排ガスが流入しやすくなり、アッシュ堆積後の圧力損失も低減することができる。
(7)本実施形態のハニカムフィルタでは、セルの長手方向に垂直な断面に関し、上記排ガス導入セルをいずれも五角形とし、上記排ガス排出セルを正方形もしくは八角形とすることにより、ハニカムフィルタを構成するハニカム焼成体の断面形状を設計しやすく、濾過面積がより広い排ガス導入セルを形成することができ、圧力損失がより低いハニカムフィルタとすることができる。
(8)本実施形態のハニカムフィルタでは、ハニカム焼成体の構成材料として、炭化ケイ素またはケイ素含有炭化ケイ素とすることができ、耐熱性に優れたハニカムフィルタとすることができる。
(9)本発明のハニカムフィルタでは、上記ハニカムフィルタのセル同士を隔てるセル隔壁の厚さを、全ての場所において等しくすることにより、排ガスがセル隔壁全体をより均一に透過しやすく、PMを均一に堆積させることができることから、圧力損失を低くすることができる。
(10)本発明のハニカムフィルタでは、複数のハニカム焼成体が接着材層を介して接着されていると、再生時等において、接着材層が緩衝層となり、熱応力によりハニカムフィルタが破壊されるのを防止することができる。また、接着材層により機械的な強度を増加させることができる。
(11)本発明のハニカムフィルタでは、セル隔壁の厚さを、0.075mm~0.310mmと薄くすることにより、排ガスのセル隔壁の透過抵抗を低減させることができ、圧力損失をより低下させることができる。
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日油社製 ユニルーブ)0.8重量%、グリセリン1.3重量%、造孔材(アクリル樹脂)1.9重量%、オレイン酸2.8重量%、および、水13.2重量%を加えて混練して湿潤混合物を得た後、押出成形する成形工程を行った。
本工程では、図3(a)に示したハニカム焼成体10と同様の形状であって、セルの目封止をしていない生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させることにより、ハニカム成形体の乾燥体を作製した。その後、ハニカム成形体の乾燥体の所定のセルに封止材ペーストを充填してセルの目封止を行った。
具体的には、排ガス入口側の端部および排ガス出口側の端部が図3(a)に示す位置で目封止されるようにセルの目封止を行った。
なお、上記湿潤混合物を封止材ペーストとして使用した。セルの目封止を行った後、封止材ペーストを充填したハニカム成形体の乾燥体を再び乾燥機を用いて乾燥させた。
続いて、セルの目封止を行ったハニカム成形体の乾燥体を400℃で脱脂する脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行った。
これにより、四角柱のハニカム焼成体を作製した。
以下、辺の長さおよび断面積を先に説明した電子顕微鏡写真および画像解析式粒度分布ソフトウエア(株式会社マウンテック(Mountech)製)MAC-View (Version3.5)なる計測ソフトウエアを用いて計測することができる。
作製したハニカム焼成体は、気孔率が45%、平均気孔径が15μm、大きさが34.3mm×34.3mm×150mm、単位面積当たりのセルの数(セル密度)が345個/inch、セル隔壁13の厚さが0.25mmの炭化ケイ素焼結体からなる図3(a)、(b)に示すハニカム焼成体10であった。
作製したハニカム焼成体10のセルの長手方向に垂直な断面に関し、排ガス排出セル11の周囲全体には排ガス導入セル12が隣接していた。
排ガス導入セル12、12Aの断面形状は、それぞれ隣り合う3つの90°の内角と、隣り合わない2つの135°の内角とを有する五角形からなり、排ガス導入セル12の断面形状を構成する辺12aの長さは0.700mmであり、辺12bの長さは、0.972mmであり、辺12dの長さは、0.687mmであり、排ガス導入セル12の断面積は、0.916mmであった。また、外周壁17に隣接する排ガス導入セル12Aにおいて、辺12fの長さは、1.311mmであり、排ガス導入セル12の断面積は、1.510mmであった。(図4参照)。
また、排ガス排出セル11の断面形状は、正方形であり、1辺11aの長さは、1.503mmであり、排ガス排出セル11の断面積は、2.259mmであった。
なお、ハニカム焼成体10の四隅に位置する排ガス排出セル11Bに関し、断面積は、1.478mmであった。
一方、排ガス排出セル11Aに関し、外周壁17に対して垂直な辺11Aaの長さは、1.237mmであった。
また、排ガス導入セル12によるハニカムフィルタの開口率は、39.9%であり、排ガス排出セルによるハニカムフィルタの開口率は、26.0%であった。
なお、ハニカム焼成体10は、端面における角部が曲線形状となるように面取りが施された四角柱形状であった。
続いて、平均繊維長20μmのアルミナファイバ30重量%、平均粒子径0.6μmの炭化ケイ素粒子21重量%、シリカゾル15重量%、カルボキシメチルセルロース5.6重量%、および、水28.4重量%を含む耐熱性の接着材ペーストを用いてハニカム焼成体を多数結束させ、さらに、接着材ペーストを120℃で乾燥固化させて接着材層を形成して角柱状のセラミックブロックを作製した。
続いて、角柱状のセラミックブロックの外周を、ダイヤモンドカッターを用いて切断することにより略円柱状のセラミックブロックを作製した。
続いて、接着材ペーストと同様の組成からなるシール材ペーストをセラミックブロックの外周面に塗布し、シール材ペーストを120℃で乾燥固化させて外周コート層を形成することにより、円柱状のハニカムフィルタの製造を完了した。
排ガス導入セル12によるハニカムフィルタの開口率は、37.3%であり、排ガス排出セル11によるハニカムフィルタの開口率は、24.3%であった。
ハニカムフィルタの直径は143.8mm、長手方向の長さは150mmであった。
(比較例1)
成形体の排ガス導入セルと排ガス排出セルとの断面形状のパターンを、図12(b)に示すパターンで、目封止されていないものと同様にしたほかは、実施例1と同様に成形工程を行い、生のハニカム成形体を得て、次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させることにより、ハニカム成形体の乾燥体を作製した。その後、ハニカム成形体の乾燥体の所定のセルに封止材ペーストを充填してセルの目封止を行った。ここで、セルの目封止を行う位置は、図12(b)に示す位置である。
その結果、排ガス入口側の端部および排ガス出口側の端部が図12(b)に示す位置で目封止されたハニカム成形体となった。
以後、実施例1と同様の工程を行い、図12(a)、(b)に示すハニカム焼成体150を作製し、ハニカムフィルタ140を作製した。
作製したハニカム焼成体150のセルの長手方向に垂直な断面に関し、排ガス導入セル152は、外周壁157に隣接する排ガス導入セル152A、152Bを除き、全て八角形であった。
排ガス排出セル151と対面している辺は縦横辺であり、その長さは1.11mmであった。
他の排ガス導入セル152、152A、152Bと対面している辺は斜辺であり、その長さは0.27mmであった。
排ガス排出セル151、151Aは、全て正方形であり、排ガス排出セル151、151Aの断面形状を構成する辺の長さは0.96mmであった。
なお、四隅に位置する排ガス導入セル152Bに関し、外周壁157と隣接する辺の長さは、1.23mmであり、縦横の辺の長さは、1.04mmであり、斜辺の長さは、0.27mmであり、断面積は、1.48mmであった。
一方、排ガス導入セル152Aに関し、外周壁157と隣接する辺の長さは、1.49mmであり、外周壁157と隣接する辺と平行な縦の辺の長さは、1.11mmであり、外周壁157と隣接する辺と直角に結合している横の辺の長さは、1.04mmであり、斜辺の長さは、0.27mmであり、断面積は、1.79mmであった。
また、セル隔壁153の厚さは、0.25mmであり、外周壁157の厚さは、0.35mmであった。
排ガス導入セル152の断面積は、2.17mmであり、排ガス排出セル151の断面積は0.93mmであった。すなわち、排ガス導入セル152の断面積は、排ガス排出セル151の断面積よりも大きくなっていた。
(比較例2)
セルの目封止を行う位置を図11に示す位置とした他は比較例1と同様にして、ハニカム焼成体およびハニカムフィルタを作製した。
実施例1および比較例1~2で製造したハニカム焼成体について、図5に示したような圧力損失測定装置を用いて初期およびハニカム焼成体に8g/LのPMが堆積した時の圧力損失を測定した。なお、ハニカム焼成体へのPMの堆積は別途ディーゼルエンジンを用いて行った。
(圧力損失の測定)
図5は、圧力損失測定装置を模式的に示す説明図である。
この圧力損失測定装置210は、送風機211と、送風機211に接続された排気ガス管212と、ハニカム焼成体10がその内部に固定配置された金属ケーシング213と、ハニカム焼成体10の前後の圧力を検出可能になるように配管が配設された圧力計214から構成されている。すなわち、この圧力損失測定装置210では、ガスをハニカム焼成体10の内部に流通させ、その前後の圧を測定することにより圧力損失を測定する。
そして、送風機211をガスの流量が10m/hになるように稼働させ、圧力損失を測定した。
比較例1に係るハニカム焼成体では、初期およびPMが8g/L堆積した時の圧力損失が、それぞれ5.87kPa、7.49kPaであり、比較例2に係るハニカム焼成体では、それぞれ4.02kPa、6.04kPaであったのに対し、実施例1に係るハニカム焼成体では、初期およびPMが8g/L堆積した時の圧力損失が、それぞれ3.60kPa、5.95kPaと初期およびPM堆積時の圧力損失が比較例1および比較例2に比べて低くなっていた。
(第二実施形態)
以下、本発明の第二実施形態に係るハニカムフィルタについて説明する。
第二実施形態に係るハニカムフィルタは、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルと、外周に形成された外周壁とを備えたハニカム焼成体から構成されてなる。
また、上記外周壁に隣接するセル以外のセルに関し、上記排ガス排出セルの周囲全体に、上記多孔質のセル隔壁を隔てて上記排ガス導入セルが隣接してなり、上記外周壁に隣接するセルは、上記排ガス導入セルと上記排ガス排出セルとからなり、実質的な上記排ガス導入セルの個数と上記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であり、上記排ガス導入セルの長手方向に垂直方向の断面のそれぞれの断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、上記排ガス排出セルの長手方向に垂直な断面の断面積よりも小さい。
本実施形態における排ガス導入セルの断面形状は、いずれも五角形で同じ形状であり、排ガス排出セルの断面形状は、正方形の角部が面取りされ、八角形となっている。
なお、上記外周壁に隣接するセルは、上記排ガス導入セルと該排ガス導入セルと交互に配置された上記排ガス排出セルとからなる。
また、上記排ガス導入セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、上記排ガス排出セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から上記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じである。
すなわち、第二実施形態に係るハニカムフィルタは、第一実施形態に係るハニカムフィルタと同様のハニカムフィルタであり、基本的なセルの形状および配置は、第一実施形態に係るハニカムフィルタと同様であるが、排ガス排出セルの断面形状が、正方形の角部が面取りされた形状で、八角形となっている点が第一実施形態に係るハニカムフィルタと異なる。
図6(a)は、本発明の第二実施形態に係るハニカムフィルタを構成するハニカム焼成体を模式的に示す斜視図であり、図6(b)は、図6(a)に示したハニカム焼成体を示すB-B線断面図である。図7は、図6に示したハニカム焼成体の本発明の第二実施形態に係るハニカムフィルタの端面の一部を拡大して示した拡大端面図である。なお、ハニカムフィルタの構成は、ハニカム焼成体を構成する排ガス排出セルの形状が図6(a)、(b)に示した構成となっているほかは、ハニカムフィルタ20と同様であるので、ここでは、図面を省略する。
図6(a)、(b)に示すハニカム焼成体30では、排ガス排出セル31の断面形状が、正方形の角部が面取りされた形状で、八角形となっている点が異なるほかは、図3(a)に示すハニカムフィルタ20を構成するハニカム焼成体10と基本的に同様であり、断面が八角形状の排ガス排出セル31の周囲全体に、多孔質のセル隔壁33を隔てて断面が五角形で、辺32a、32b、32c、32d、32eを有する排ガス導入セル32が8個隣接している(図7参照)。排ガス導入セル32の形状は、外周壁37に隣接するセルを除いていずれも同一であり、3つの90°の内角と、隣り合わない2つの135°の内角とを有する五角形であり、矩形と直角二等辺三角形とを足し合わせた形状となっている。また、排ガス排出セル31の断面を構成する1辺に隣接する2個の排ガス導入セル32の断面形状は、互いに反対の方向を向いており、直角二等辺三角形の直角部分が互いに対向するように4つの五角形が配置されている。なお、排ガス排出セル31も外周壁37に隣接するセルを除いて、同じ形状である。
この配置パターンを、図1(a)に示すように、4つの排ガス排出セル11の重心を結んだ四角形を1つのユニットとして考えると、このユニットは、その中心に直角二等辺三角形の直角部分が対向するように4つの排ガス導入セル12が配置され、十字形状となっており、上記四角形の四隅の空いた部分に、1/4に分割された排ガス排出セル11が4つ配置されている。従って、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍である。なお、排ガス導入セル12のそれぞれの断面積は、いずれも同じである。
外周壁37に関し、外周壁37は、第一実施形態に係るハニカムフィルタ20と同様に構成されている。
また、外周壁37に隣接するセルに関し、図7に示すように、排ガス導入セル32Aと排ガス排出セル31Aとは交互に配置されており、排ガス導入セル32Aは、五角形であるが、外周壁37に隣接していない排ガス導入セル32と比べると、矩形の部分の面積が増加している。一方、外周壁32に隣接する排ガス排出セル31Aの面積は、外周壁37に隣接していない排ガス排出セル31と同一の形状であり、その面積も同一である。
外周壁37に隣接する排ガス排出セル31Aの面積は、外周壁37に隣接する排ガス排出セル31A以外の排ガス排出セル31の面積の65~90%であることが望ましく、70~85%であることがより望ましい。
また、外周壁37に隣接する排ガス導入セル32Aの面積は、外周壁37に隣接する排ガス導入セル32A以外の排ガス導入セル32の面積の130~200%であることが望ましく、150~180%であることがより望ましい。
ハニカム焼成体30の角部に存在する排ガス排出セル31Bも、他の排ガス排出セル31と同様の形状である。
本実施形態のハニカムフィルタは、上述したように、それぞれの排ガス導入セル32の断面積が、それぞれの排ガス排出セル31の断面積よりも小さいことに起因して、排ガス導入セル32の通過抵抗は、若干大きくなるが、この通過抵抗により排ガス導入セル32に流れ込む排ガスの流速が低下するとともに均一化し、排ガスがハニカムフィルタのセルの長手方向に対して広い範囲のセル隔壁33を透過して排ガス排出セル31に流れ込むようになる。また、排ガス導入セル32によるハニカムフィルタの開口率が排ガス排出セル31によるハニカムフィルタの開口率よりも大きく、それぞれの排ガス排出セル31の断面積は、それぞれの排ガス導入セル32の断面積よりも大きいので、(e)排ガス排出セル31の通過抵抗、および、(f)排ガスがハニカムフィルタから流出する際の流出抵抗の低減効果が大きく、その結果、従来のハニカムフィルタ90に比べて圧力損失を低くすることができる。
また、排ガス排出セル31の断面形状は、八角形となっているので、(e)排ガス排出セル31の通過抵抗、および(f)排ガスがハニカムフィルタから流出する際の流出抵抗が第一実施形態に係るハニカムフィルタ20よりもさらに低減される。
また、排ガス排出セル31の面取り形状となっている部分では、セル隔壁33の厚さが厚くなっているため、ハニカム焼成体の機械的強度が増加し、堆積したPMを燃焼させる際に熱応力が作用しても、クラックが発生しにくい。
排ガス排出セル31の断面形状に関し、排ガス排出セル31の頂点部分は、面取りされた八角形の形状となっており、排ガス排出セル31は、下記の(1)式で表される面取り率Rが50~100%であることが望ましい。
面取り率R(%)=(β/α)×100・・・(1)
(但し、上記(1)式において、αはセルの長手方向に垂直な断面における排ガス排出セル31の1辺31aの長さをさし、βはセルの長手方向に垂直な断面における排ガス排出セル31の1辺のうち面取りされている部分の長さをさす。)
図7により、本実施形態の面取り率Rについて説明すると、排ガス排出セル31の断面は、面取りされることにより八角形の形状を有しているが、この八角形は、重心に対して点対称であり、面取りされている部分(斜辺、図7において、31bで示す)の長さが全て等しく、排ガス排出セル31の1辺(縦横の辺、図7において、31aで示す)の長さが全て等しい形状の八角形である。また、上記八角形は、4つの斜辺と4つの縦横の辺とが交互に配置された形状となっており、斜辺と縦横の辺とのなす角度が135°である。
この場合、上記面取り率Rは、下記の(2)式により表すことができる。
面取り率R(%)=(斜辺31bの長さ/縦横の辺31aの長さ)×100・・・(2)
となり、その値の範囲としては、50~100%であることが望ましい。
なお、「斜辺」とは一般的には直角三角形の直角と相対するもっと長い辺をいうが、この明細書中では、説明の便宜のために、四角形が面取りされた部分の辺を斜辺と表現し、斜辺以外の辺を、縦横の辺ということにする。
また、本実施形態のハニカムフィルタでは、初期においては、排ガス導入セル32と排ガス排出セル31とを隔てる排ガス導入セル32側のセル隔壁33に主にPM堆積層が形成されるが、ごく短い期間の後、排ガスは、排ガス導入セル32同士を隔てるセル隔壁33にも入った後、該セル隔壁33を透過して排ガス排出セル31に入るようになり、排ガス導入セル32同士を隔てるセル隔壁33にも次第にPMが堆積し、結果的には、排ガス導入セル32を構成するセル隔壁33の全体にほぼ均一にPMが堆積する。本発明では、より初期の段階からPMが均一に堆積するように、すなわち、排ガスが初期の段階からより多くのセル隔壁33を透過しやすくなるため、初期の圧力損失を低減できる。
また、排ガス導入セル12のそれぞれの断面積は、いずれも同じで、排ガス導入セル12の個数が排ガス排出セル11の個数の4倍と多いので、実質的な濾過面積を充分に大きくとることができ、排ガス導入セル32を構成するセル隔壁33に堆積するPM層の厚さは薄く、(d)堆積したPM層を排ガスが透過する際に生じる透過抵抗は大きくならない。その結果、本発明のハニカムフィルタでは、初期において圧力損失が低く、PMが堆積しても圧力損失が上昇しにくいハニカムフィルタとすることができる。
本実施形態に係るハニカムフィルタでは、上記効果に加え、外周壁37及び外周壁37に隣接する排ガス排出セル31及び排ガス導入セル32を上記のように構成することにより、外周壁37によりハニカム焼成体30の強度が向上すると共に、ハニカム焼成体30における排ガス排出セル31と排ガス導入セル32の容積比率の部分的なバラツキがより抑えられ、より排ガスの流れが均一になり、外周壁37近傍においても、排ガス導入セル32に排ガスがスムーズに流れ込み、セル隔壁33および外周壁37がフィルタとしての機能を果たすため、圧力損失をさらに低減させることができる。
図6(a)、(b)に示すハニカム焼成体を有する本実施形態のハニカムフィルタにおいて、それぞれの排ガス排出セル31の断面積に対するそれぞれの排ガス導入セル32の断面積の割合(%)は、30~50%が好ましく、35~45%がより好ましい。
第二実施形態に係るハニカムフィルタでは、ハニカムフィルタのセル隔壁の厚さ、上記セル隔壁の気孔率は、上記セル隔壁に含まれる気孔の平均気孔径は、第一実施形態のハニカムフィルタと同様であることが好ましい。
第二実施形態に係るハニカムフィルタは、複数のハニカム焼成体により構成されていてもよく、単一のハニカム焼成体からなるものであってもよい。ハニカム焼成体の構成材料は、第一実施形態に係るハニカム焼成体の構成材料と同じであることが望ましく、ハニカム焼成体30の断面におけるセルの単位面積あたりの数も、第一実施形態に係るハニカム焼成体と同様であることが望ましい。
本発明の第一実施形態に係るハニカムフィルタでは、ハニカムフィルタの外周に外周コート層を備えていてもよいが、外周コート層の材料は、接着材の材料と同じであることが望ましい。
外周コート層の厚さは、0.1~3.0mmが好ましい。
本実施形態のハニカムフィルタは、押出成形工程において用いる金型の形状を変更する他は、本発明の第一実施形態で説明した方法と同様の方法を用いて製造することができる。
本実施形態に係るハニカムフィルタは、基本的なセルの配置、形状、目封止の態様等が第一実施形態に係るハニカムフィルタと同様であるので、第一実施形態に記載した(1)~(11)の作用・効果と同様の作用・効果を奏することができ、さらに、排ガス排出セルの断面形状が、八角形となっているので、(e)排ガス排出セルの通過抵抗、および(f)排ガスがハニカムフィルタから流出する際の流出抵抗が第一実施形態に係るハニカムフィルタ20よりもさらに低減される。
また、排ガス排出セル31の面取り形状となっている部分では、セル隔壁の厚さが厚くなっているため、ハニカム焼成体の機械的強度が増加し、堆積したPMを燃焼させる際に熱応力が作用しても、クラックが発生しにくいという効果を奏する。
10、30 ハニカム焼成体
20 ハニカムフィルタ
11、11A、11B、31、31A、31B 排ガス排出セル
11a、11Aa、31a、31b 辺(排ガス排出セルの辺)
12、12A、32、32A 排ガス導入セル
12a、12b、12c、12d、12e、12f、32a、32b、32c、32d、32e 辺(排ガス導入セルの辺)
13、13a、13b、13c、33 セル隔壁
15 接着材層
16 外周コート層
17、37 外周壁
18 セラミックブロック

Claims (13)

  1. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端部が開口され且つ排ガス出口側の端部が目封止された排ガス導入セルと、排ガス出口側の端部が開口され且つ排ガス入口側の端部が目封止された排ガス排出セルと、外周に形成された外周壁とを備えたハニカム焼成体から構成されてなるハニカムフィルタであって、
    前記排ガス導入セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から前記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、
    前記排ガス排出セルの長手方向に垂直方向の断面の形状は、目封止部分を除き排ガス入口側の端部から前記排ガス出口側の端部にかけて、それぞれのセルにおける全ての場所において同じであり、
    前記外周壁に隣接するセルを除き、前記排ガス排出セルの周囲全体に、前記多孔質のセル隔壁を隔てて前記排ガス導入セルが隣接してなり、
    前記外周壁に隣接するセルは、前記排ガス導入セルと前記排ガス排出セルとからなり、
    実質的な前記排ガス導入セルの個数と前記排ガス排出セルの個数との比は、排ガス導入セル:排ガス排出セル=4:1の割合であり、
    前記排ガス導入セルの長手方向に垂直方向の断面のそれぞれの断面積は、外周壁に隣接するセルを除いて、いずれも同じであり、前記排ガス排出セルの長手方向に垂直な断面の断面積よりも小さいことを特徴とするハニカムフィルタ。
  2. 前記ハニカムフィルタのセルの長手方向に垂直な断面において、4つの隣り合う排ガス排出セルの重心を結んだ四角形の中に、4つ分の排ガス導入セルと1つ分の排ガス排出セルとを含んでいることを特徴とする請求項1に記載のハニカムフィルタ。
  3. 前記外周壁に隣接するセルは、前記排ガス導入セルと、該排ガス導入セルと交互に配置された前記排ガス排出セルとからなる請求項1または2に記載のハニカムフィルタ。
  4. セルの長手方向に垂直な断面に関し、
    前記排ガス導入セルは、いずれも五角形であり、前記排ガス排出セルは、正方形もしくは八角形である請求項1~3のいずれかに記載のハニカムフィルタ。
  5. セルの長手方向に垂直な断面に関し、
    前記排ガス導入セルは、3つの90°の角と、隣り合わない2つの135°の角からなる五角形であり、前記排ガス排出セルは正方形であり、
    前記排ガス排出セルの周囲に8つの前記排ガス導入セルが配置されている請求項4に記載のハニカムフィルタ。
  6. 前記ハニカムフィルタのセル同士を隔てるセル隔壁の厚さは、全ての場所において等しい請求項4または5に記載のハニカムフィルタ。
  7. セルの長手方向に垂直な断面に関し、
    前記セルの頂点部分は、面取りされた形状となっており、
    前記セルは、
    下記(1)式で表される面取り率Rが50~100%である請求項1~5のいずれかに記載のハニカムフィルタ。
    面取り率R(%)=(β/α)×100・・・(1)
    (但し、上記(1)式において、αはセルの長手方向に垂直な断面におけるセルの1辺の長さをさし、βはセルの長手方向に垂直な断面におけるセルの1辺のうち面取りされている部分の長さをさす。)
  8. 前記外周壁は、角部を有し、該角部以外の外周壁の厚さが均一になるように、セルの長手方向に垂直な断面における前記外周壁に接する排ガス導入セルおよび排ガス排出セルの前記外周壁に接する辺は、前記外周壁の外壁をなす辺と平行かつ直線的に形成されている請求項1~5のいずれかに記載のハニカムフィルタ。
  9. 複数の前記ハニカム焼成体が接着材層を介して接着されることにより形成されており、前記排ガス導入セルの個数は、排ガス排出セルの個数の3.2~4.0倍である請求項1~8のいずれかに記載のハニカムフィルタ。
  10. セル隔壁の厚さは、0.075mm~0.310mmである請求項1~9いずれかに記載のハニカムフィルタ。
  11. 前記セル隔壁の気孔率は、40~65%である請求項1~10のいずれかに記載のハニカムフィルタ。
  12. 前記ハニカム焼成体は、炭化ケイ素、または、ケイ素含有炭化ケイ素からなる請求項1~11のいずれかに記載のハニカムフィルタ。
  13. 外周には、外周コート層が形成されている請求項1~12のいずれかに記載のハニカムフィルタ。
PCT/JP2015/070545 2014-07-23 2015-07-17 ハニカムフィルタ WO2016013513A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15825380.7A EP3173139B1 (en) 2014-07-23 2015-07-17 Honeycomb filter
US15/412,058 US10335727B2 (en) 2014-07-23 2017-01-23 Honeycomb filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150047 2014-07-23
JP2014-150047 2014-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/412,058 Continuation US10335727B2 (en) 2014-07-23 2017-01-23 Honeycomb filter

Publications (1)

Publication Number Publication Date
WO2016013513A1 true WO2016013513A1 (ja) 2016-01-28

Family

ID=55163039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070545 WO2016013513A1 (ja) 2014-07-23 2015-07-17 ハニカムフィルタ

Country Status (3)

Country Link
US (1) US10335727B2 (ja)
EP (1) EP3173139B1 (ja)
WO (1) WO2016013513A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224812A (zh) * 2016-03-23 2017-10-03 日本碍子株式会社 蜂窝过滤器
CN107269347A (zh) * 2016-03-30 2017-10-20 日本碍子株式会社 封孔蜂窝结构体
CN107916970A (zh) * 2016-10-11 2018-04-17 日本碍子株式会社 封孔蜂窝结构体
JP2018066315A (ja) * 2016-10-19 2018-04-26 日本碍子株式会社 目封止ハニカム構造体
WO2019187126A1 (ja) * 2018-03-30 2019-10-03 日本碍子株式会社 目封止ハニカムセグメント、及び目封止ハニカム構造体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10328376B2 (en) 2016-03-30 2019-06-25 Ngk Insulators, Ltd. Plugged honeycomb structure
JP6824780B2 (ja) * 2017-03-01 2021-02-03 日本碍子株式会社 ハニカムフィルタ
JP6862245B2 (ja) * 2017-03-30 2021-04-21 日本碍子株式会社 ハニカムフィルタ
JP2018167200A (ja) * 2017-03-30 2018-11-01 日本碍子株式会社 ハニカムフィルタ
JP6880989B2 (ja) * 2017-04-26 2021-06-02 日立金属株式会社 吸着構造体ユニット及びそれらの製造方法
JP7274395B2 (ja) * 2019-10-11 2023-05-16 日本碍子株式会社 ハニカム構造体
JP7353218B2 (ja) * 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7449721B2 (ja) * 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196820A (ja) * 1982-02-22 1983-11-16 コ−ニング・グラス・ワ−クス ハニカムフイルタ−
JP2010053697A (ja) * 2008-08-26 2010-03-11 Denso Corp ディーゼルパティキュレートフィルタ
JP2014028327A (ja) * 2012-07-31 2014-02-13 Meidensha Corp モノリス型のセラミックスフィルタ用基材とその製造方法
JP2014050793A (ja) * 2012-09-06 2014-03-20 Ngk Insulators Ltd 目封止ハニカム構造体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276071A (en) * 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
JP4471452B2 (ja) * 2000-05-29 2010-06-02 日本碍子株式会社 フィルターエレメントの製造方法
JPWO2004024294A1 (ja) 2002-09-13 2006-01-05 イビデン株式会社 フィルタ
DE602004006204T2 (de) * 2003-06-23 2008-01-10 Ibiden Co., Ltd., Ogaki Wabenstrukturkörper
US20050274097A1 (en) * 2004-06-14 2005-12-15 Beall Douglas M Diesel particulate filter with filleted corners
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
DE102006026161A1 (de) * 2006-05-23 2007-11-29 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
JP5272733B2 (ja) * 2006-12-27 2013-08-28 日立金属株式会社 セラミックハニカムフィルタ、及びその製造方法
DE102008042372A1 (de) 2007-09-26 2009-04-23 Denso Corporation, Kariya Abgasreinigungsfilter
FR2925353B1 (fr) * 2007-12-20 2009-12-11 Saint Gobain Ct Recherches Structure de filtration d'un gaz a canaux hexagonaux asymetriques
JP5390438B2 (ja) * 2010-03-11 2014-01-15 日本碍子株式会社 ハニカム触媒体
EP2368619B1 (en) * 2010-03-26 2014-06-25 Imerys Ceramic honeycomb structures
WO2012157421A1 (ja) 2011-05-17 2012-11-22 住友化学株式会社 ハニカムフィルタ
JP2013039514A (ja) 2011-08-12 2013-02-28 Sumitomo Chemical Co Ltd ハニカム構造体
JP5771549B2 (ja) * 2012-03-14 2015-09-02 日本碍子株式会社 フィルタエレメント
JP5916487B2 (ja) 2012-04-05 2016-05-11 住友化学株式会社 ハニカム構造体
WO2013175552A1 (ja) * 2012-05-21 2013-11-28 イビデン株式会社 ハニカムフィルタ、排ガス浄化装置、及び、排ガス浄化方法
WO2013186923A1 (ja) * 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) * 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP6140509B2 (ja) * 2013-04-04 2017-05-31 日本碍子株式会社 ウォールフロー型排ガス浄化フィルタ
JP6239305B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196820A (ja) * 1982-02-22 1983-11-16 コ−ニング・グラス・ワ−クス ハニカムフイルタ−
JP2010053697A (ja) * 2008-08-26 2010-03-11 Denso Corp ディーゼルパティキュレートフィルタ
JP2014028327A (ja) * 2012-07-31 2014-02-13 Meidensha Corp モノリス型のセラミックスフィルタ用基材とその製造方法
JP2014050793A (ja) * 2012-09-06 2014-03-20 Ngk Insulators Ltd 目封止ハニカム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3173139A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224812B (zh) * 2016-03-23 2020-12-29 日本碍子株式会社 蜂窝过滤器
CN107224812A (zh) * 2016-03-23 2017-10-03 日本碍子株式会社 蜂窝过滤器
CN107269347B (zh) * 2016-03-30 2020-09-11 日本碍子株式会社 封孔蜂窝结构体
CN107269347A (zh) * 2016-03-30 2017-10-20 日本碍子株式会社 封孔蜂窝结构体
CN107916970A (zh) * 2016-10-11 2018-04-17 日本碍子株式会社 封孔蜂窝结构体
JP2018062871A (ja) * 2016-10-11 2018-04-19 日本碍子株式会社 目封止ハニカム構造体
CN107916970B (zh) * 2016-10-11 2021-05-18 日本碍子株式会社 封孔蜂窝结构体
US10765986B2 (en) 2016-10-11 2020-09-08 Ngk Insulators, Ltd. Plugged honeycomb structure
US10857498B2 (en) 2016-10-19 2020-12-08 Ngk Insulators, Ltd. Plugged honeycomb structure
CN107965367A (zh) * 2016-10-19 2018-04-27 日本碍子株式会社 封孔蜂窝结构体
JP2018066315A (ja) * 2016-10-19 2018-04-26 日本碍子株式会社 目封止ハニカム構造体
CN107965367B (zh) * 2016-10-19 2021-06-15 日本碍子株式会社 封孔蜂窝结构体
WO2019187126A1 (ja) * 2018-03-30 2019-10-03 日本碍子株式会社 目封止ハニカムセグメント、及び目封止ハニカム構造体
JPWO2019187126A1 (ja) * 2018-03-30 2021-01-14 日本碍子株式会社 目封止ハニカムセグメント、及び目封止ハニカム構造体
US11426716B2 (en) 2018-03-30 2022-08-30 Ngk Insulators, Ltd. Plugged honeycomb segment, and plugged honeycomb structure

Also Published As

Publication number Publication date
EP3173139A1 (en) 2017-05-31
US20170197168A1 (en) 2017-07-13
EP3173139B1 (en) 2024-04-03
US10335727B2 (en) 2019-07-02
EP3173139A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
WO2016013513A1 (ja) ハニカムフィルタ
US9550175B2 (en) Honeycomb filter
US10286358B2 (en) Honeycomb filter
US9650928B2 (en) Honeycomb filter
US9919255B2 (en) Honeycomb filter
WO2013187444A1 (ja) ハニカムフィルタ
WO2016013511A1 (ja) ハニカムフィルタ
US10300424B2 (en) Honeycomb filter
US20150033691A1 (en) Honeycomb filter
US9975076B2 (en) Honeycomb filter
JP2017000930A (ja) ハニカムフィルタ
JP6239502B2 (ja) ハニカムフィルタ
JP6170492B2 (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015825380

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015825380

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP