WO2016013240A1 - 鋼帯の冷却方法及び冷却装置 - Google Patents

鋼帯の冷却方法及び冷却装置 Download PDF

Info

Publication number
WO2016013240A1
WO2016013240A1 PCT/JP2015/055012 JP2015055012W WO2016013240A1 WO 2016013240 A1 WO2016013240 A1 WO 2016013240A1 JP 2015055012 W JP2015055012 W JP 2015055012W WO 2016013240 A1 WO2016013240 A1 WO 2016013240A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel strip
temperature
mist
facility
Prior art date
Application number
PCT/JP2015/055012
Other languages
English (en)
French (fr)
Inventor
晃一 西沢
宏 峰原
靖洋 森
杉山 誠司
匡史 松本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP15824065.5A priority Critical patent/EP3156512B1/en
Priority to BR112017000200-0A priority patent/BR112017000200B1/pt
Priority to US15/326,912 priority patent/US10465262B2/en
Priority to CA2951791A priority patent/CA2951791C/en
Priority to CN201580039117.3A priority patent/CN106661710B/zh
Priority to MX2016016567A priority patent/MX2016016567A/es
Priority to JP2016535808A priority patent/JP6350663B2/ja
Priority to KR1020177001730A priority patent/KR101863012B1/ko
Publication of WO2016013240A1 publication Critical patent/WO2016013240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes

Definitions

  • the present invention relates to a cooling method and a cooling device for a steel strip in a galvanizing alloying furnace.
  • the steel strip passes through a pretreatment tank such as degreasing and washing, and then passes through an annealing furnace and a zinc pot containing molten zinc, and is pulled up vertically.
  • the pulled steel strip is alloyed in an alloying furnace.
  • a heating zone and a cooling zone are arranged from the upstream side in the pulling direction of the steel strip.
  • the cooling zone of the alloying furnace is arranged vertically above the heating zone.
  • gas cooling or mist cooling is used so as not to affect dripping water or the like on the equipment arranged vertically below the cooling zone.
  • mist cooling air-water cooling
  • it is effective to apply mist cooling (air-water cooling) having a high cooling capacity.
  • mist cooling when a high amount of water is sprayed to strongly cool the steel strip, temperature unevenness occurs in the width direction of the steel strip. Due to this temperature unevenness, quality defects such as wrinkles and alloy windings occur.
  • Patent Literature 1 discloses an alloying furnace outlet side air-water cooling method that suppresses temperature deviation in the width direction due to overcooling by adjusting the cooling pattern of the steel strip.
  • the steel strip is cooled so that the rear stage is slowly cooled by changing the cooling ratio of the front stage and the rear stage of the cooling zone so that the cooling variation due to drooping water is suppressed and the bending limit temperature unevenness is not more than. .
  • Patent Document 2 discloses a cooling method in an alloying process that avoids transition boiling and suppresses temperature deviation in the width direction by properly using gas cooling and air-water cooling according to the cooling load.
  • Patent Document 3 discloses a technique in which a nozzle at the center in the width direction of a steel strip is densely arranged and a shutter that shields the nozzle is provided.
  • Patent Document 4 a tension value and temperature unevenness are predetermined in order to set the outlet side temperature of the cooling zone to 240 ° C. or less in order to prevent the drawing on the outlet side of the air-water cooling facility and the buckling of the steel plate.
  • a technique of controlling based on the relational expression is disclosed.
  • Patent Document 5 in order to make the Fe concentration amount in the plating layer an appropriate amount, air / water cooling and gas cooling are performed for each zone so as not to enter a transition boiling region in which cooling variation occurs. Different techniques are disclosed.
  • JP 2006-1111945 A Japanese Patent Laid-Open No. 11-43758 Japanese Examined Patent Publication No. 7-65153 JP-A-9-268358 JP 2000-256818 A
  • Patent Document 1 is a method for eliminating temperature unevenness by a cooling pattern in which the former stage is subjected to high-load cooling and the latter stage is slowly cooled, both the cooling capacity of the cooling zone is secured and temperature unevenness is eliminated. There is a limit to doing it.
  • gas cooling and air-water cooling are used separately, but in this case as well, it is clear that the cooling capacity of the cooling zone is reduced by gas cooling. That is, both the methods of Patent Document 1 and Patent Document 2 are limited in effect for eliminating temperature unevenness under high-speed threading conditions, and as a result, they cannot be threaded at high speed, resulting in productivity. descend.
  • the shutter cannot be applied because it inhibits the flow of mist or causes dripping water.
  • the nozzle arranged densely in the central portion increases the water density in the central portion in the vicinity of the quench point, and raises the quench point temperature to cause cooling unevenness in the width direction.
  • Patent Document 4 is a technique for setting an allowable temperature unevenness based on the tension value of the steel sheet, but the tension value of the steel sheet cannot be changed extremely, and is therefore applicable to actual operations. Can not.
  • Patent Document 5 Even if the technique disclosed in Patent Document 5 is used, it is difficult to completely suppress the occurrence of cooling unevenness due to the influence of dripping water.
  • a method for cooling a steel strip by mist cooling in a cooling facility of an alloying furnace for alloying a hot-dip galvanized steel strip In order to solve the above problems, according to one aspect of the present invention, there is provided a method for cooling a steel strip by mist cooling in a cooling facility of an alloying furnace for alloying a hot-dip galvanized steel strip.
  • the amount of mist injected to the steel strip passing through the cooling facility is adjusted at the edge in the width direction of the steel strip by the adjustment cooling facility provided on the upstream side in the sheet passing direction of the cooling facility.
  • the cooling facility Injecting mist to the steel strip passing through the cooling facility so that the mist injection amount is smaller than the mist injection amount in the center part, and at least by the mist suction facility provided on the downstream side in the plate direction of the cooling facility, At least a part of the mist injected to the steel strip is sucked, and the temperature of the steel strip is within the film boiling temperature range from the start of cooling of the steel strip to the end of cooling, and the total cooling length of the cooling equipment Among them, at least in the range of 2/3 or more from the upstream side in the plate passing direction, the steel strip is cooled at a plate passing speed at which the temperature of the edge portion in the width direction of the steel strip is equal to or higher than the temperature of the center portion.
  • the steel strip speed may be set to be equal to or lower than the upper limit speed V max [m / s] calculated by the following formula (a) with respect to the equipment length L [m] of the adjusted cooling equipment.
  • V max (L ⁇ (T in ⁇ ′) ⁇ m ⁇ (T in ⁇ ′)) / ( ⁇ ′ ⁇ th) (a)
  • T in [° C.] is the temperature of the center of the steel strip at the inlet of the cooling facility
  • th [m] is the thickness of the steel strip.
  • a cooling facility by mist cooling of an alloying furnace for alloying a hot-dip galvanized steel strip.
  • a cooling device is provided on the upstream side of the cooling equipment in the sheet passing direction, and is equipped with an adjustment cooling equipment capable of adjusting the mist injection amount injected to the steel strip passing through the cooling equipment in the width direction of the steel strip and at least cooling
  • a mist suction facility that is provided downstream of the facility in the plate passing direction and sucks at least a part of the mist injected to the steel strip, and the adjustment cooling facility is for the steel strip that passes through the cooling facility.
  • the mist injection amount is adjusted so that the mist injection amount at the edge in the width direction of the steel strip is smaller than the mist injection amount at the center portion, and from the start of cooling of the steel strip to the end of cooling.
  • the temperature of the edge in the width direction of the steel strip is the center in the range where the temperature of the steel strip is within the film boiling temperature range and at least 2/3 or more of the total cooling length of the cooling equipment from the upstream side in the plate passing direction. Part The above degrees, with a facility length in the sheet passing direction of the steel strip.
  • the adjusted cooling equipment may be provided so that the equipment length L [m] of the adjusted cooling equipment in the sheet passing direction of the steel strip satisfies the following formula (b).
  • T in [° C.] is the temperature of the center of the steel strip at the inlet of the cooling facility
  • V [m / s] is the speed of the steel strip
  • th [m] is the thickness of the steel strip.
  • ⁇ , ⁇ , ⁇ , and m are constants and are set according to the hot dip galvanizing equipment.
  • the adjustment cooling equipment includes a plurality of headers including a plurality of nozzles arranged in the width direction in the plate direction, and each header is not sprayed with mist on the steel strip at the edge in the width direction of the steel strip. It may be configured as follows.
  • Each header of the adjustment cooling facility may be configured such that the number of nozzles for injecting mist to the steel strip at the center portion in the width direction of the steel strip increases from upstream to downstream in the sheet passing direction.
  • FIG. 1 is a schematic explanatory diagram illustrating a schematic configuration of a hot dip galvanizing facility provided with a cooling facility according to the present embodiment.
  • Examples of steel types processed by the hot dip galvanizing facility according to this embodiment include ultra-low carbon steel and high-tensile steel plate.
  • a steel material having a thickness of 0.4 to 3.2 mm and a width of 600 to 1900 mm is processed.
  • the hot dip galvanizing equipment includes a zinc pot 10 containing hot dip zinc 5 for plating the surface of the steel strip S and a pair of plates for adjusting the amount of plating attached to the steel strip S.
  • a gas nozzle 30 and an alloying furnace including a heating zone 40, a tropical zone 50, and a cooling zone 60 are provided.
  • the hot dip galvanizing equipment which concerns on this embodiment is provided with the tropical retentive 50, this invention is not limited to this example, It is applicable also to the hot dip galvanizing equipment which is not equipped with the tropical retentive 50.
  • the steel strip S is made to enter the zinc pot 10 containing the hot dip zinc 5 and is pulled up vertically by the sink roll 20 immersed in the hot dip zinc 5.
  • the amount of plating attached to the surface of the steel strip S is adjusted to a predetermined amount by the wiping gas sprayed from the gas nozzle 30.
  • the steel strip S is further alloyed in an alloying furnace while being pulled up vertically.
  • the heating zone 40 is heated so that the plate temperature of the steel strip S becomes substantially uniform, and then the alloying time is secured in the retentive zone 50 to produce an alloy layer.
  • the steel strip S is cooled in the cooling zone 60 and conveyed to the next step by the top roll 70.
  • the cooling zone 60 of the alloying furnace includes a cooling zone front stage 61 provided on the upstream side of the steel strip S in the sheet passing direction (that is, a vertically lower side (zinc pot 10 side)), and a cooling zone front stage. It consists of a cooling zone rear stage portion 62 provided on the downstream side in the sheet feeding direction of the steel strip S with respect to the portion 61 (that is, vertically upward side).
  • air-water headers reference numeral 63 in FIGS. 8 and 9 are arranged in multiple stages.
  • Each air-water header is provided with a plurality of air-water injection nozzles (reference numeral 64 in FIG. 9) for injecting cooling water in a mist form.
  • the mist sprayed from the steam-water spray nozzle is sprayed on the surface of the steel strip S.
  • the amount of cooling water supplied to each steam header is controlled by the control device 65.
  • the cooling zone 60 is provided with at least one pair of mist suction facilities (reference numeral 67 in FIG. 6) disposed so as to face the edge of the steel strip S in the width direction.
  • the mist suction facility is provided at least on the downstream side in the plate passing direction of the cooling zone 60, and sucks at least a part of the mist injected to the steel strip S.
  • Mist cooling mechanism> Conventionally, mist cooling with a high cooling capacity has been used to improve production capacity, but when mist cooling is sprayed with a high amount of water to strongly cool the steel strip S, temperature unevenness occurs in the width direction of the steel strip S. This was a factor causing quality defects.
  • FIG. 2 the plate temperature distribution in the width direction and longitudinal direction of the steel strip S which has passed the cooling zone 60 is shown.
  • the center temperature Cb and the edge temperature Eb before the countermeasure of the present application, and the center temperature Ca and the edge temperature Ea after the countermeasure of the present application are shown. Further, the temperature distribution in the width direction of FIG.
  • Position A is a cooling start position of the steel strip S by the cooling zone 60
  • position B is a position between the cooling zone front stage 61 and the cooling zone rear stage 62
  • position C is a cooling end position of the steel strip S by the cooling zone 60. is there.
  • the central portion in the width direction of the steel strip S is defined as a center portion, and both ends in the width direction are defined as edge portions.
  • edge portions With an edge part, let the range to the boundary position 100 mm away from the width direction edge part of the steel strip S be an edge part.
  • the temperature of the steel strip S in the longitudinal direction is such that the temperature Eb of the edge portion is lower than the temperature Cb of the center portion.
  • the temperature of the steel strip S gradually decreases at both the center part and the edge part, and the temperature difference between them gradually increases. That is, when the temperature distribution in the width direction is seen, the temperature of the edge portion becomes lower than the temperature of the center portion as the steel strip S is transported, and the temperature distribution is upward at the position C on the cooling band 60 exit side. It becomes a convex shape.
  • mist cooling is adopted as a cooling means in the cooling zone 60 in order to improve production capacity.
  • the inventors of the present invention as a result of intensive studies, suppressed the overcooling of the edge portion of the steel strip S, and the temperature in the width direction of the steel strip S. Finally, the distribution of the cooling equipment was made uniform and the cooling instability was avoided.
  • the plate temperature at which the mist adhering to the steel strip S becomes film boiling is maintained.
  • the temperature of the steel strip S is in a temperature range where water becomes film boiling on the inlet side of the cooling zone 60 of the alloying furnace. Then, as the temperature of the steel strip S decreases, when a region where water transitions from film boiling to partial boiling occurs on the surface of the steel strip S, unstable cooling occurs, and the temperature unevenness of the steel strip S occurs. Arise. Therefore, in the present embodiment, the cooling zone 60 is cooled so as to maintain the plate temperature at which the mist adhering to the steel strip S becomes film boiling.
  • the mist injection quantity injected to the steel strip S on the upstream side in the sheet passing direction is the mist injection quantity of the edge portion in the width direction of the steel strip S. It is adjusted to be less than the center part.
  • the mist injected into the steel strip S is adjusted to suppress the cooling of the edge portion of the steel strip S, and the excessive mist at the edge portion of the steel strip S is eliminated.
  • a reduction in the plate temperature at the edge of the steel strip S in the plate is prevented.
  • overcooling of the edge portion is prevented, and the temperature of the steel strip S is within the film boiling temperature range from the start of cooling by the cooling zone 60 to the end as shown in FIG.
  • the temperature of the edge portion of the band S is set to be equal to or higher than the temperature of the center portion.
  • the temperature distribution in the width direction of the steel strip S is a temperature curve in which the temperature of the edge portion is higher than the center portion in the width direction of the steel strip S as in the state at the position B, for example. Then, as the steel strip S is transported, as shown in the distribution in the longitudinal direction of the steel strip S in FIG. 2, the temperature deviation between the temperature Ea of the edge portion and the temperature Ca of the center portion becomes smaller and finally cooled.
  • the temperature distribution in the width direction of the steel strip S on the exit side of the strip 60 can be made substantially uniform. That is, the temperature of the steel strip S is between the film boiling temperature range and the temperature of the edge of the steel strip S until the cooling zone 60 starts cooling and ends. By making it become more than the temperature of a center part, the unstable transition boiling state of the edge part of the steel strip S is avoided, and the quality defect of the steel strip S is prevented.
  • the temperature of the edge portion of the steel strip S does not necessarily have to be higher than the temperature of the center portion in the entire range from the start of cooling by the cooling zone 60 to the end thereof.
  • the temperature of the edge part of the steel strip S should just be more than the temperature of a center part in the range of 2/3 or more from the upstream in the plate passing direction with respect to the total cooling length in the plate passing direction of the cooling zone 60 at least. If the temperature of the edge part of the steel strip S is equal to or higher than the temperature of the center part in this range, the quality of the steel strip S can be within an allowable range.
  • the temperature of the edge portion of the steel strip S is 20 ° C. or more higher than the temperature of the center portion at the cooling intermediate position of the total cooling length.
  • the temperature distribution in the width direction of the steel strip S on the exit side of the cooling zone 60 can be made substantially uniform.
  • FIG. 3 the outline of the plate temperature control by the cooling zone 60 of the alloying furnace which concerns on this embodiment is shown.
  • the steel strip S is cooled to the target end point temperature by passing through the cooling zone 60.
  • the inlet temperature of the cooling zone 60 of the alloying furnace of the steel strip S is about 450 to 600 ° C.
  • the end point temperature is about 300 to 400 ° C.
  • the quench temperature Tq shown in FIG. 3 is a boundary temperature between the water film boiling region and the transition boiling region.
  • a temperature range higher than the quench temperature Tq is a film boiling temperature range in which water boils on the surface of the steel strip S.
  • the quench temperature Tq varies depending on the cooling conditions, and tends to increase when the steel strip S is strongly cooled by a high amount of water.
  • the temperature difference between the end point temperature and the quench temperature Tq is smaller than the temperature difference between the plate temperature and the quench temperature Tq on the inlet side of the cooling zone 60. Therefore, if the steel strip S is strongly cooled by the cooling zone rear stage 62, the quench temperature Tq rises, and the temperature difference between the end point temperature and the quench temperature Tq becomes smaller. If it does so, possibility that a mist will carry out transition boiling in the cooling zone latter stage part 62 will become high, and the temperature nonuniformity may generate
  • the steel plate S is actively cooled with a high amount of water on the upstream side in the sheet passing direction of the cooling zone 60, and the plate temperature is not always kept below the quench temperature Tq.
  • the adjustment cooling in which the amount of mist injected to the steel strip S passing through the cooling zone 60 is adjusted in the width direction of the steel strip S on the upstream side in the plate passing direction of the cooling zone front part 61.
  • the facility 61a is provided.
  • the adjusted cooling facility 61a is a cooling facility adjusted to actively cool the center portion in the width direction of the steel strip S and suppress the cooling of the edge portion.
  • the adjusted cooling facility 61a is provided on the upstream side in the plate passing direction of the cooling zone front part 61, as described above, the temperature control width of the steel strip S has more margin than the downstream side in the plate passing direction of the cooling zone 60. It is. Since the target end point temperature of the steel strip S is in the vicinity of the quench temperature of water, a high control accuracy is required for the control device 65 in order to prevent the temperature of the steel strip S from being equal to or lower than the quench temperature. For this reason, it is desirable to provide the adjustment cooling equipment 61a on the upstream side in the sheet passing direction of the cooling zone front stage portion 61, and actively cool the steel strip S with a high amount of water.
  • the cooling zone 60 at least a part of the mist injected to the steel strip S is present in the cooling zone 60 in order to minimize the influence of the position change of the quench point.
  • a mist suction facility 67 for suctioning with air is provided. Thereby, surplus mist which becomes a factor of dripping water is attracted
  • This mist suction facility 67 is preferably provided in the vicinity of at least the portion of the cooling zone 60 that faces the edge of the steel strip S. By providing the mist suction facility 67 at such a position, it is possible to more effectively suck excess mist that may cause dripping water at the edge portion.
  • the mist suction device 67 is preferably provided at least on the downstream side of the cooling zone 60 in the plate passing direction. On the downstream side in the sheet passing direction in which the temperature of the steel strip S is lower, the quench point position is changed by drooping water, and the boiling state is likely to shift from the film boiling state to the transition boiling state. Therefore, by providing the mist suction facility 67 intensively on the downstream side of the cooling zone 60 in the sheet passing direction, it is possible to more effectively suppress temperature variations caused by dripping water.
  • the number of mist suction devices 67 provided in the cooling zone 60 is not particularly limited, and may be appropriately set according to the size of the cooling zone 60, the amount of mist to be sucked from the cooling zone 60, and the like. That's fine.
  • the amount of excess mist sucked by the mist suction facility 67 is controlled by the control device 65.
  • the control device 65 controls both the adjustment cooling facility 61a and the mist suction facility 67, so that the cooling state of the steel strip S can be managed more efficiently.
  • the amount of mist sucked by the mist suction facility 67 should be within a predetermined range in which sufficient cooling of the steel strip S can be performed while preventing dripping water from being generated. preferable.
  • Control of the amount of exhaust air and mist sucked by the mist suction facility 67 can be performed by a known method.
  • a pressure gauge provided near the mist suction port of the mist suction facility 67 (reference numeral in FIG. 6). 69). That is, the pressure value provided in the vicinity of the mist suction port is used to measure the pressure value at the center portion of the steel strip S near the mist suction port, and the mist suction facility 67 is set so that the measured pressure value becomes a negative pressure. What is necessary is just to adjust the damper opening degree of the provided exhaust blower.
  • the adjusted cooling equipment 61a needs to be used with a high amount of water in order to adjust the temperature distribution in the width direction with the equipment length of the limited adjusted cooling equipment 61a in the plate passing direction.
  • the adjusted cooling equipment 61a in the film boiling region it is desirable to use a small amount of water in order to avoid an increase in the quench temperature Tq.
  • simply installing the adjustment cooling equipment 61a makes the conditions for adjusting the temperature distribution in the width direction and the stable cooling in the film boiling region contradictory requirements, and it is not easy to achieve both.
  • the inventors of the present application have found that the equipment length L [m] of the adjustment cooling equipment 61a is expressed by the following equation (1). I found that it should be satisfied.
  • the inventors of the present application investigated the temperature distribution adjustment capability in the width direction and the cooling stability with respect to the amount of water in the adjusted cooling facility 61a under various operating conditions. As a result, it has been found that there is an amount of water having the smallest temperature distribution in the width direction under the conditions capable of maintaining the film boiling region. It was also found that the amount of water was related to the temperature of the steel strip S at the inlet of the cooling zone 60, the speed of the steel strip S, the thickness of the steel strip S, and the equipment length L of the adjustment cooling equipment 61a. Therefore, using this relationship, the above formula (1) that defines the equipment length L of the adjustment cooling equipment 61a necessary to obtain the width direction temperature distribution adjustment effect was derived.
  • Equation (1) is derived as follows. First, the quench temperature Tq tends to increase when the steel strip S is strongly cooled with a high amount of water as described above. This relationship can be obtained by evaluating the cooling characteristics of the steel strip using test equipment simulating actual equipment. For example, as shown in FIG. 4, the quench temperature Tq is expressed by a linear function of the cooling water amount Q as shown in the following equation (1-1). In the formula (1-1), a and b are constants.
  • the temperature T in on the steel strip S side, the thickness th of the steel strip S, the speed V of the steel strip S, and the adjusted cooling at the center portion (the center in the width direction) of the adjusted cooling equipment 61a Assuming that the equipment length L of the equipment 61a is constant, the cooling water amount Q and the temperature T at the center portion of the steel strip S are, as shown in FIG. 4, the temperature T at the center portion of the steel strip S as the cooling water amount Q increases. Are in a relationship that declines.
  • improvement ⁇ T of the temperature difference between the center portion and the edge portion of the steel strip S by adjusting cooling system 61a is any passage in the temperature T in the center portion inlet side of the steel strip S modulated cooling facilities in 61a there the difference between the temperature T 1 of the plate direction position proportional. That is, the temperature distribution improvement effect ⁇ T in the width direction is expressed by the following equation (1-2). In the formula (1-2), ⁇ is a constant.
  • the temperature distribution improvement effect ⁇ T in the width direction increases as the cooling water amount Q increases between the point P A and the point P B indicating the position where the quench temperature Tq is reached.
  • the temperature T of the steel strip S is below the quench temperature Tq, a state where the steel strip S is locally supercooling, as shown in FIG. 5, it is toward the point P B ⁇ P C in the width direction
  • the improvement effect ⁇ T of the temperature distribution rapidly decreases.
  • the temperature distribution in the adjustable width direction by adjusting cooling system 61a is a film boiling temperature range in which the temperature is equal to or higher than the quench temperature Tq of the steel strip S (range of point P A ⁇ P B). Therefore, if the improvement effect of the temperature distribution in the width direction at the quench temperature Tq is ⁇ T max , it can be expressed by the following formula (1-3) from the formula (1-2).
  • the equipment length L of the adjusted cooling equipment 61a is determined for the temperature distribution deviation that needs to be adjusted.
  • the upper limit ⁇ T max of the temperature distribution improvement effect that can be adjusted is the temperature T in of the center portion on the inlet side of the steel strip S and the thickness th of the steel strip S as shown in the following formula (1-4).
  • the speed V thereof and the equipment length L of the adjusted cooling equipment 61a are determined for the temperature distribution deviation that needs to be adjusted.
  • T ave is the average sheet temperature, for example, represented by the average value of the temperature T in the quenching temperature Tq of the center portion of the inlet side of the steel strip S.
  • Tw is the cooling water temperature
  • is the steel material density
  • Cp is the steel material specific heat.
  • the temperature T of the steel strip S at the inlet of the cooling zone 60, the speed V of the steel strip S, and the thickness th of the steel strip S are values determined by the steel type, the production amount, and the order size.
  • the value of L calculated by the above is not a fixed value. Therefore, the equipment length L of the adjusted cooling equipment 61a is determined on the assumption of typical operating conditions, for example.
  • V max (L ⁇ (T in ⁇ ′) ⁇ m ⁇ (T in ⁇ ′)) / ( ⁇ ′ ⁇ th) (2)
  • the predetermined temperature range is about 30 ° C.
  • the end point temperature on the outlet side of the cooling zone 60 is about 300 to 400 ° C.
  • the surface of the steel strip S may be wound around the top roll 70. is there. Therefore, the maximum temperature of the temperature in the width direction of the steel strip S on the outlet side of the cooling zone 60 is controlled so as not to be higher than 300 to 400 ° C.
  • FIG. 6 is an explanatory diagram showing a configuration example of the cooling zone 60 according to the present embodiment.
  • FIG. 7 is an explanatory diagram illustrating a configuration example of the cooling zone front-stage portion 61 including the adjusted cooling facility 61a according to the present embodiment.
  • FIG. 8 is an explanatory diagram showing a configuration example of the air-water header 63.
  • FIG. 9 is an explanatory diagram for explaining the equipment length of the adjusted cooling facility 61a when the adjusted cooling facility 61a is composed of the one-stage steam-water header 63.
  • the cooling zone 60 is configured by arranging a plurality of air-water headers 63 in which a plurality of air-water injection nozzles 64 are arranged along the width direction of the steel strip S as shown in FIG. Is done.
  • a plurality of (for example, about 30) air-water headers 63 are provided in each of the cooling zone front stage 61 and the cooling zone rear stage 62.
  • the cooling zones 60 as shown in FIG. 7 are arranged symmetrically across the plate direction of the steel strip S. Thereby, the steel strip S is cooled from the front surface and the back surface.
  • the amount of mist injection from the steam-water spray nozzle 64 (that is, the amount of water in the steam-water header 63) can be adjusted by opening and closing the valves 66a and 66b shown in FIG.
  • the opening and closing of the valves 66 a and 66 b can be adjusted for each stage by the control device 65.
  • the adjustment cooling facility 61 a closes the air-water injection nozzle 64 on the edge portion side in the width direction of the steel strip S among the air-water injection nozzles 64 arranged in each air-water header 63 with a cap. It can be configured by preventing mist injection.
  • the edge portions of the 1st to n-th stage steam-water headers 63 located on the upstream side in the plate passing direction of the cooling zone front stage portion 61 are closed by the caps, thereby forming the uninjected region 63b. Therefore, while passing the adjustment cooling equipment 61a, as for the steel strip S, the center part corresponding to the injection area
  • the number n of the steam-water headers 63 constituting the adjusted cooling facility 61a is the facility length L of the adjusted cooling facility 61a set by the above formula (1), or the length of the constant adjusted cooling facility 61a set in advance. Set based on L.
  • the equipment length L of the adjusted cooling equipment 61a is represented by the following formula (3).
  • the range in which the mist is ejected at an angle ⁇ of 45 ° up and down with respect to the direction perpendicular to the vertical direction is the equipment length L of the adjustment cooling equipment 61a.
  • n the pitch between the steam headers 63 adjacent in the plate passing direction
  • d the distance between the steel strip S and the steam headers 63.
  • the adjustment cooling facility 61 a has a large number of non-injection areas 63 b by closing many air-water injection nozzles 64 corresponding to both edge portions of the steel strip S with caps on the upstream side in the sheet passing direction. You may make it reduce the number of the non-injection area
  • regions 63b by reducing the number of the air-water injection nozzles 64 plugged up with a cap from the center part side toward the side. That is, the jet region 63a in which the mist is jetted onto the surface of the steel strip S by the steam jet nozzle 64 of the steam / water header 63 is increased from upstream to downstream in the sheet passing direction.
  • the equipment length L of the adjustment cooling equipment 61a required when the steel strip S has a thickness of 0.6 mm and the steel strip temperature at the inlet of the cooling zone 60 is 500 ° C. is set as shown in Table 1 below.
  • the air / water header 63 on the downstream side of the adjustment cooling facility 61 a in the plate-feeding direction that is, all the air / water headers 63 after the (n + 1) -th stage of the cooling zone front part 61 and the rear part 62 of the cooling zone. Mist is ejected from the air / water spray nozzle 64.
  • the mist suction facility 67 is provided on the downstream side of the cooling zone front stage portion 61 and the downstream side of the cooling zone rear stage portion 62 so as to face the edge portion of the steel strip S. .
  • the mist suction equipment 67 sucks a mist injected from the steam-water header 63 in a predetermined amount according to the pressure value measured by the pressure gauge 69 so that the pressure value of the center portion becomes a negative pressure.
  • the configuration of the adjusted cooling facility 61a of the cooling zone 60 according to the present embodiment is not limited to this example.
  • the cooling of the edge portion may be stopped by not providing the air / water injection nozzle 64 which is blocked by the cap 65 in FIGS.
  • the cooling of the edge portion may not be stopped completely, and a lower amount of water may be sprayed than the center portion.
  • the adjustment cooling equipment 61a of FIG. 6 and FIG. 7 is comprised so that the cooling range of the center part of the steel strip S may be enlarged toward the downstream from the sheet passing direction, the center part by the adjustment cooling equipment 61a is comprised.
  • the cooling range may be constant.
  • the cooling zone 60 of the alloying furnace in the hot dip galvanizing processing facility according to the present embodiment has been described.
  • the cooling zone 60 of the alloying furnace according to the present embodiment is configured such that the amount of mist injected to the steel strip S passing through the cooling zone 60 is set on the upstream side in the plate passing direction of the cooling zone front stage 61.
  • the adjustment cooling equipment 61a adjusted in the width direction is provided.
  • the center portion of the steel strip S is actively cooled, while the cooling of the edge portion is stopped or the low water amount is jetted.
  • a pair of mist suction equipment 67 is provided in the vicinity of at least a portion of the cooling zone 60 that faces the edge of the steel strip S.
  • the equipment length L of the adjustment cooling equipment 61a increases the temperature deviation in the width direction of the steel strip S and prevents the occurrence of temperature unevenness, and at the same time, the plate temperature of the steel strip S does not become the quench temperature Tq or less.
  • the steel strip S can be cooled stably by setting it as the length which can be cooled. Since the cooling zone 60 of the alloying furnace according to the present embodiment can stably cool the steel strip by mist cooling, it can be processed by passing the steel strip at a high speed, thereby improving productivity. Is possible.
  • the mist suction facility 67 at the above position, it is possible to more effectively suck excess mist that may cause dripping water at the edge portion.
  • the temperature difference at the intermediate position of the cooling zone is the position between the cooling zone front part 61 and the cooling zone rear part 62, and shows the value obtained by subtracting the temperature of the center part from the temperature of the edge part. Yes.
  • the temperature difference on the cooling zone exit side also shows a value obtained by subtracting the temperature of the center portion from the temperature of the edge portion.
  • the temperature of the edge portion is the surface temperature at a position 100 mm from the end in the width direction of the steel strip
  • the temperature of the center portion is the surface temperature at the center position in the width direction of the steel strip.
  • Comparative Example 0 is a case where the 1st to 9th stage steam-water headers which are the adjustment cooling equipment are not used, that is, the entire width direction of the steel strip is mist cooled. In Comparative Example 0, no mist suction equipment is used. At this time, the plate temperature of the edge portion was greatly reduced as compared with the center portion in the width direction of the steel strip. Zinc plating on the surface of the steel strip adhered to the top roll, and wrinkles were also generated. Comparative Example 1 is a case where mist suction equipment is installed in the state of Comparative Example 0. In this case, although wrinkles were not generated, galvanization of the steel strip surface to the top roll was observed.
  • Examples 1 to 3 are cases in which the 1st to 9th stage steam-water headers, which are regulated cooling facilities, are used.
  • the lengths of the adjusted cooling facilities in Examples 1 to 3 are set longer than the lower limit value so as to satisfy the above formula (1).
  • the entire width direction of the steel strip is mist-cooled by the air-water header on the downstream side of the adjustment cooling facility.
  • the temperature drop at the edge portion was reduced. There was no galvanization of the steel strip surface to the top roll, and no wrinkles were generated.
  • Comparative Example 2 is the case where the 1st to 9th stage steam-water headers which are the adjustment cooling equipment are used, and the length of the adjustment cooling equipment satisfies the above formula (1), but the mist suction equipment is provided. If not. In this case, as in Comparative Example 0, the plate temperature of the edge portion is greatly reduced as compared with the center portion in the width direction of the steel strip, the zinc plating on the steel strip surface adheres to the top roll, and wrinkles are also generated. It was.
  • Comparative Examples 3 to 5 are cases in which the number of air-water headers in the 1st to 9th stages, which are adjustment cooling equipment, is reduced. In any case, the length of the adjusted cooling equipment does not satisfy the above formula (1) and is set shorter than the lower limit value thereof.
  • Comparative Example 3 since the relationship of the above formula (1) was not satisfied, galvanization slightly adhered to the surface of the steel strip of the top roll. Although the temperature of the steel strip did not fall below the quench temperature during cooling, the temperature of the center portion in the width direction of the steel strip at the middle position of the cooling zone was slightly higher than the temperature of the edge portion. This is probably due to the large temperature difference on the outing side.
  • Comparative Examples 4 and 5 in order to suppress the influence of reducing the temperature difference elimination cost between the center part and the edge part as a result of reducing the number of use of the steam headers of the regulated cooling equipment, This is a case where the amount of water supplied to the header is increased to reduce the temperature difference between the center portion and the edge portion on the cooling zone exit side.
  • Comparative Example 4 although the temperature difference between the center portion and the edge portion on the cooling zone exit side was small, wrinkles were generated because the temperature of the steel strip was below the quench temperature during cooling.
  • Comparative Example 5 the temperature difference between the center portion and the edge portion could not be sufficiently reduced even if the amount of water supplied to each steam header of the adjusted cooling facility was increased.
  • Comparative Example 6 is a case where the adjusted cooling equipment is installed on the last stage side of the cooling zone.
  • the length of the adjustment cooling facility satisfies the above formula (1), and the mist suction facility is also installed. That is, as shown in FIG. 10, a pair of mist suction devices 67 arranged so as to face the edge portions in the width direction of the steel strip S are provided in the cooling zone, at the intermediate position in the plate passing direction of the cooling zone 60 and the outlet. At least a part of the mist that is provided on the side and sprayed to the steel strip S is sucked.
  • the adjustment cooling equipment is comprised toward the upstream in the sheet passing direction from the cooling zone exit side.
  • the adjustment cooling facility is configured by closing the air-water injection nozzle on the edge portion side in the width direction of the steel strip S with a cap so that mist is not injected from the air-water injection nozzle. At this time, the non-injection area
  • an air / water nozzle (two-liquid nozzle) that injects mist is used as the cooling equipment for cooling the steel strip, but the present invention is not limited to such an example.
  • the cooling facility may be configured using a one-liquid nozzle that ejects water. From the viewpoint of water quality management, it is preferable to use a two-liquid nozzle rather than a one-liquid nozzle that is difficult to manage water quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

【課題】合金化炉の冷却帯において鋼帯をミスト冷却しつつ生産性と品質を両立することの可能な合金化炉における鋼帯の冷却方法を提供する。 【解決手段】冷却設備の通板方向上流側に設けられた調整冷却設備により、当該冷却設備を通過する鋼帯に対して噴射されるミスト噴射量が、鋼帯の幅方向のエッジ部におけるミスト噴射量がセンター部におけるミスト噴射量よりも小さくなるように、冷却設備を通過する鋼帯に対してミストを噴射し、少なくとも冷却設備の通板方向下流側に設けられたミスト吸引設備により、鋼帯に対して噴射されたミストの少なくとも一部を吸引し、鋼帯の冷却開始から冷却終了までの間、鋼帯の温度が膜沸騰温度範囲であり、かつ、冷却設備の総冷却長のうち少なくとも通板方向上流側から2/3以上の範囲においては鋼帯の幅方向におけるエッジ部の温度がセンター部の温度以上となる通板速度で鋼帯を冷却する。

Description

鋼帯の冷却方法及び冷却装置
 本発明は、溶融亜鉛めっきの合金化炉における鋼帯の冷却方法及び冷却装置に関する。
 鋼帯の溶融亜鉛めっき処理工程では、鋼帯は脱脂、洗浄等の前処理槽を通過した後、焼鈍炉、溶融亜鉛が入った亜鉛ポットを通過し、垂直に引き上げられる。引き上げられた鋼帯は合金化炉で合金化処理される。合金化炉は、鋼帯の引き上げ方向に上流側から加熱帯、冷却帯が配置されてなる。
 すなわち、合金化炉の冷却帯は、加熱帯より鉛直上方に配置されている。このため、冷却帯における鋼帯の冷却には、冷却帯の鉛直下方に配置されている設備に垂れ水などの影響を与えないようにガス冷却やミスト冷却が使用されている。特に、生産能力向上のためには、冷却能力の高いミスト冷却(気水冷却)を適用することが効果的である。しかし、ミスト冷却を用いると、鋼帯を強冷却するために高水量を噴霧した場合、鋼帯の幅方向に温度ムラが生じる。この温度ムラに起因して、しわ疵や合金巻き等の品質不良が発生してしまう。
 このような問題に対して、例えば特許文献1には、鋼帯の冷却パターンを調整することで過冷による幅方向温度偏差を抑制する合金化炉出側気水冷却方法が開示されている。特許文献1では、垂れ水による冷却ばらつきが抑制され、折れ限界温度ムラ以下となるように、冷却帯の前段及び後段の冷却比を変えて後段が緩冷されるように鋼帯が冷却される。
 また、特許文献2には、冷却負荷に応じて、ガス冷却と気水冷却を使い分けることにより、遷移沸騰を回避し幅方向温度偏差を抑制する合金化処理過程の冷却方法が開示されている。
 さらに、特許文献3には、鋼帯の幅方向中央部のノズルを密に配置するとともに、ノズルを遮蔽するシャッターを設ける技術が開示されている。
 また、下記特許文献4には、気水冷却設備の出側での絞りや鋼板の腰折れを防止すべく冷却帯の出側温度を240℃以下とするために、張力値と温度ムラとを所定の関係式に基づいて制御する技術が開示されている。
 また、下記特許文献5には、めっき層中のFe濃度量を適正な量とするために、冷却ばらつきを生む遷移沸騰域に入らないように、ゾーン毎に気水冷却と気体による冷却とを使い分ける技術が開示されている。
特開2006-111945号公報 特開平11-43758号公報 特公平7-65153号公報 特開平9-268358号公報 特開2000-256818号公報
 しかし、上記特許文献1に記載の冷却方法では、前段を高負荷冷却し後段を緩冷却する冷却パターンによる温度ムラの解消方法であるために、冷却帯の冷却能力確保と温度ムラの解消を両立させるには限界がある。また、上記特許文献2に記載の冷却方法では、ガス冷却と気水冷却を使い分けているが、この場合もガス冷却では冷却帯の冷却能力が低下するのは明らかである。すなわち、上記特許文献1および特許文献2のいずれの方法も、高速通板条件での温度ムラ解消には効果が限定されてしまい、その結果、高速で通板することができず、生産性が低下する。
 また、上記特許文献3に開示の技術を用いた場合、シャッターはミストの流れを阻害したり、垂れ水を引き起こしたりするため、適用することはできない。また、中央部に密に配置したノズルは、クエンチ点近傍で中央部の水量密度を増加させてしまい、クエンチ点温度を上昇させて幅方向の冷却ムラの原因となってしまう。
 さらに、上記特許文献4に開示の技術は、鋼板の張力値を基に許容できる温度ムラを設定する技術であるが、鋼板の張力値を極端に変えることはできないため、実際の操業には適用できない。
 また、上記特許文献5に開示の技術を用いても垂れ水の影響による冷却ムラの発生を完全に抑えることは困難であった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、合金化炉の冷却帯において鋼帯をミスト冷却しつつ生産性と品質を両立することが可能な、新規かつ改良された鋼帯の冷却方法及び冷却装置を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、溶融亜鉛めっきされた鋼帯を合金化処理する合金化炉の冷却設備におけるミスト冷却による鋼帯の冷却方法が提供される。かかる冷却方法では、冷却設備の通板方向上流側に設けられた調整冷却設備により、当該冷却設備を通過する鋼帯に対して噴射されるミスト噴射量が、鋼帯の幅方向のエッジ部におけるミスト噴射量がセンター部におけるミスト噴射量よりも小さくなるように、冷却設備を通過する鋼帯に対してミストを噴射し、少なくとも冷却設備の通板方向下流側に設けられたミスト吸引設備により、鋼帯に対して噴射されたミストの少なくとも一部を吸引し、鋼帯の冷却開始から冷却終了までの間、鋼帯の温度が膜沸騰温度範囲であり、かつ、冷却設備の総冷却長のうち少なくとも通板方向上流側から2/3以上の範囲においては鋼帯の幅方向におけるエッジ部の温度がセンター部の温度以上となる通板速度で鋼帯を冷却する。
 調整冷却設備の設備長L[m]に対して、鋼帯の速度は下記式(a)により算出される上限速度Vmax[m/s]以下となるように設定してもよい。
 Vmax=(L×(Tin-β’)^m×(Tin-γ’))/(α’×th)   ・・・(a)
 ここで、Tin[℃]は冷却設備の入口における鋼帯のセンター部の温度、th[m]は鋼帯の厚みとする。α’、β’、γ’、mは定数であり、溶融亜鉛めっき設備に応じて設定される。定数は、それぞれα‘=1870000、β’=330、γ‘=45、m=0.6としてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、溶融亜鉛めっきされた鋼帯を合金化処理する合金化炉のミスト冷却による冷却設備が提供される。かかる冷却装置は、冷却設備の通板方向上流側に設けられ、当該冷却設備を通過する鋼帯に対して噴射するミスト噴射量を鋼帯の幅方向に調整可能な調整冷却設備と、少なくとも冷却設備の通板方向下流側に設けられ、鋼帯に対して噴射されたミストの少なくとも一部を吸引するミスト吸引設備と、を備え、調整冷却設備は、当該冷却設備を通過する鋼帯に対して噴射されるミスト噴射量が、鋼帯の幅方向のエッジ部におけるミスト噴射量がセンター部におけるミスト噴射量よりも小さくなるように調整されており、鋼帯の冷却開始から冷却終了までの間、鋼帯の温度を膜沸騰温度範囲内とし、かつ、冷却設備の総冷却長のうち少なくとも通板方向上流側から2/3以上の範囲においては鋼帯の幅方向におけるエッジ部の温度がセンター部の温度以上となる、鋼帯の通板方向における設備長を有する。
 調整冷却設備は、鋼帯の通板方向における当該調整冷却設備の設備長L[m]が下記式(b)を満たすように設けてもよい。
 L≧(α×V×th)/((Tin-β)^m)×(Tin-γ))   ・・・(b)
 ここで、Tin[℃]は冷却設備の入口における鋼帯のセンター部の温度、V[m/s]は鋼帯の速度、th[m]は鋼帯の厚みとする。α、β、γ、mは定数であり、溶融亜鉛めっき設備に応じて設定される。定数は、それぞれα=1700000、β=330、γ=45、m=0.6としてもよい。
 また、調整冷却設備は、幅方向に沿って配置された複数のノズルからなるヘッダーを通板方向に複数備え、各ヘッダーは、鋼帯の幅方向エッジ部において鋼帯に対してミストが噴射されないように構成されてもよい。
 調整冷却設備の各ヘッダーは、鋼帯の幅方向センター部において鋼帯に対してミストを噴射するノズルの数が通板方向上流から下流に向かって増加するように構成してもよい。
 以上説明したように本発明によれば、合金化炉の冷却帯において鋼帯をミスト冷却しつつ生産性と品質を両立することが可能な鋼帯の冷却方法及び冷却装置を提供することができる。
本発明の実施形態に係る冷却設備が設けられる溶融亜鉛めっき設備の概略構成を示す概略説明図である。 冷却帯を通過している鋼帯の幅方向および長手方向における板温分布を示す説明図である。 同実施形態に係る合金化炉の冷却帯による板温制御の概略を示す説明図である。 冷却水量とクエンチ温度との関係、および冷却水量と鋼帯のセンター部の温度との関係を示すグラフである。 冷却水量と幅方向における温度分布の改善効果との関係を示すグラフである。 本実施形態に係る冷却帯60の一構成例を示す説明図である。 同実施形態に係る調整冷却設備を備える冷却帯前段部の一構成例を示す説明図である。 気水ヘッダーの一構成例を示す説明図である。 調整冷却設備が1段の気水ヘッダーから構成されるときの調整冷却設備の設備長を説明する説明図である。 比較例6として、冷却帯の最終段側から調整冷却設備を設けた場合の、冷却帯を通過している鋼帯の幅方向および長手方向における板温分布を示す説明図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 <1.溶融亜鉛めっき設備の概要>
 まず、図1を参照して、本発明の実施形態に係る冷却設備が設けられる溶融亜鉛めっき設備の概略構成について説明する。図1は、本実施形態に係る冷却設備が設けられる溶融亜鉛めっき設備の概略構成を示す概略説明図である。
 本実施形態に係る溶融亜鉛めっき設備により処理される鋼種としては、例えば極低炭素鋼や高張力鋼板等がある。一般に、厚さ0.4~3.2mm、幅600~1900mmの鋼材が処理される。
 溶融亜鉛めっき設備は、図1に示すように、鋼帯Sの表面をめっきするための溶融亜鉛5が入った亜鉛ポット10と、鋼帯Sに付着しためっきの量を調整するための一対のガスノズル30と、加熱帯40、保熱帯50および冷却帯60からなる合金化炉とを備える。なお、本実施形態に係る溶融亜鉛めっき設備は保熱帯50を備えているが、本発明はかかる例に限定されず、保熱帯50を備えていない溶融亜鉛めっき設備についても適用可能である。溶融亜鉛めっき設備では、溶融亜鉛5が入った亜鉛ポット10に鋼帯Sを侵入させて、溶融亜鉛5に浸漬されたシンクロール20によって垂直に引き上げられる。引き上げられた鋼帯Sは、ガスノズル30から噴射されるワイピングガスにより、鋼帯Sの表面に付着しためっきの量が所定量に調整される。
 その後、鋼帯Sはさらに垂直に引き上げられながら、合金化炉で合金化処理される。合金化炉では、まず、加熱帯40によって鋼帯Sの板温が略均一となるように加熱した後、保熱帯50にて合金化時間を確保し合金層を生成させる。その後、鋼帯Sは冷却帯60にて冷却され、トップロール70によって次の工程へ搬送される。
 本実施形態に係る合金化炉の冷却帯60は、鋼帯Sの通板方向上流側(すなわち、鉛直下方側(亜鉛ポット10側))に設けられた冷却帯前段部61と、冷却帯前段部61に対して鋼帯Sの通板方向下流側(すなわち、鉛直上方側)に設けられた冷却帯後段部62とからなる。冷却帯前段部61および冷却帯後段部62は、それぞれ多段に気水ヘッダー(図8、図9の符号63)が配置されている。各気水ヘッダーには、冷却水をミスト状で噴射する気水噴射ノズル(図9の符号64)が複数設けられている。気水噴射ノズルから噴射されたミストは鋼帯Sの表面に吹き付けられる。各気水ヘッダーに供給される冷却水量は、制御装置65によって制御される。
 また、冷却帯60には、鋼帯Sの幅方向のエッジ部に対向するように配置される一対のミスト吸引設備(図6の符号67)が少なくとも1つ設けられている。ミスト吸引設備は、少なくとも冷却帯60の通板方向下流側に設けられ、鋼帯Sに対して噴射されたミストの少なくとも一部を吸引する。
 <2.ミスト冷却のメカニズム>
 従来、生産能力向上のために、冷却能力の高いミスト冷却が使用されているが、ミスト冷却は鋼帯Sを強冷却するために高水量を噴霧すると、鋼帯Sの幅方向に温度ムラを生じさせ、品質不良を引き起こす要因となっていた。図2に、冷却帯60を通過している鋼帯Sの幅方向および長手方向における板温分布を示す。図2の長手方向における温度分布では、本願対策前のセンター部の温度Cb及びエッジ部の温度Ebと、本願対策後のセンター部の温度Ca及びエッジ部の温度Eaとを示している。また、図2の幅方向における温度分布では、長手方向の位置A、B、Cおける本願対策前の温度分布と本願対策後の温度分布とを示している。位置Aは冷却帯60による鋼帯Sの冷却開始位置、位置Bは冷却帯前段部61と冷却帯後段部62との間の位置、位置Cは冷却帯60による鋼帯Sの冷却終了位置である。
 ここで、鋼帯Sの幅方向における中央部分をセンター部、幅方向両端側をエッジ部とする。エッジ部とは、鋼帯Sの幅方向端部から100mm離れた境界位置までの範囲をエッジ部とする。 
 本願対策前は、長手方向における鋼帯Sの温度は、図2に示すように、エッジ部の温度Ebがセンター部の温度Cbよりも低くなる。冷却帯前段部61から冷却帯後段部62へ移動するにつれて、鋼帯Sの温度はセンター部およびエッジ部ともに徐々に温度は低下し、これらの温度差は徐々に大きくなる。すなわち、幅方向における温度分布をみると、鋼帯Sが搬送されるにつれてエッジ部の温度がセンター部の温度と比較して低くなり、冷却帯60出側である位置Cにおいて温度分布は上に凸の形状となる。
 幅方向に温度分布が生じる要因の1つに、冷却帯内部での板端部方向に向かうガス流れがあげられる。板幅方向中央付近に配したノズルからのガスが排気口へ向かう際、冷却帯60の幅方向端部を経由する流れが生じ、そのガス流れにより鋼帯Sの表面上に付着したミストが鋼帯Sの両端に向かって流されるため、鋼帯Sのエッジ部の板温が低下する。鋼帯Sの温度が高い部分はトップロール70に鋼帯表面のめっきが付着し品質不良の原因となる一方、鋼帯Sの温度が低い部分は水の膜沸騰領域と遷移沸騰領域との境界温度であるクエンチ温度を下回って局部的な過冷却となりしわ疵を発生させることになる。このため、鋼帯Sの幅方向の温度分布を最終的に均一にする必要がある。
 本実施形態においても、生産能力向上のため冷却帯60における冷却手段としてミスト冷却を採用する。ミスト冷却の採用によって生産能力を高めるとともに、品質不良を発生させないために、本願発明者らは、鋭意検討の結果、鋼帯Sのエッジ部の過冷却を抑制し、鋼帯Sの幅方向温度分布を最終的に均一にするとともに冷却不安定を回避する冷却設備の構成に至った。
 すなわち、本実施形態に係る合金化炉の冷却帯60では、鋼帯Sを安定して冷却するために、冷却帯60においては鋼帯Sに付着したミストが膜沸騰となる板温を維持する。液体は沸騰状態において高温になるにつれて核沸騰、遷移沸騰、膜沸騰とその形態が変化する。通常、鋼帯Sの温度は、合金化炉の冷却帯60の入側において水が膜沸騰となる温度域にある。その後、鋼帯Sの温度の低下に伴い、鋼帯Sの表面において水が膜沸騰から遷移沸騰する領域が部分的に発生するようになると、不安定な冷却となり、鋼帯Sに温度ムラが生じる。そこで、本実施形態では、冷却帯60においては鋼帯Sに付着したミストが膜沸騰となる板温を維持するように冷却する。
 さらに、鋼帯Sのエッジ部の過冷却を抑制するため、通板方向上流側において、鋼帯Sに対して噴射するミスト噴射量が、鋼帯Sの幅方向のエッジ部のミスト噴射量がセンター部より少なくなるように調整される。鋼帯Sの幅方向全体にわたって同一のミスト噴射量で鋼帯Sを冷却すると、上述のように鋼帯Sのエッジ部の温度が大きく低下し、センター部との温度偏差が大きくなってしまう。
 そこで、通板方向上流側においては、鋼帯Sに噴射されるミストを調整して鋼帯Sのエッジ部の冷却を抑制するとともに、鋼帯Sのエッジ部の過剰なミストを排除し、通板中の鋼帯Sのエッジ部の板温の低下を防止する。これにより、エッジ部の過冷却を防ぎ、図2に示すように冷却帯60により冷却が開始されてから終了するまでの間は、鋼帯Sの温度が膜沸騰温度範囲であり、かつ、鋼帯Sのエッジ部の温度がセンター部の温度以上となるようにする。
 鋼帯Sの幅方向の温度分布をみると、例えば位置Bでの状態のように、鋼帯Sの幅方向センター部に対してエッジ部の温度高くなった温度カーブとなる。そして、鋼帯Sが搬送されるにつれて、図2の鋼帯Sの長手方向の分布に示すように、エッジ部の温度Eaとセンター部の温度Caとの温度偏差が小さくなり、最終的に冷却帯60の出側における鋼帯Sの幅方向の温度分布を略均一にすることができる。すなわち、鋼帯Sの温度を、冷却帯60により冷却が開始されてから終了するまでの間は、鋼帯Sの温度が膜沸騰温度範囲であり、かつ、鋼帯Sのエッジ部の温度がセンター部の温度以上となるようにすることで、鋼帯Sのエッジ部の不安定な遷移沸騰状態を回避し、鋼帯Sの品質不良を防止する。
 なお、必ずしも冷却帯60により冷却が開始されてから終了するまでのすべての範囲において、鋼帯Sのエッジ部の温度がセンター部の温度以上である必要はない。少なくとも冷却帯60の通板方向における総冷却長に対して、通板方向上流側から2/3以上の範囲で鋼帯Sのエッジ部の温度がセンター部の温度以上であればよい。この範囲において鋼帯Sのエッジ部の温度がセンター部の温度以上であれば、鋼帯Sの品質を許容範囲に収めることができる。
 図2のように最終温度差ゼロが理想的ではあるが、現実には、しわ疵が発生する温度上限と合金巻きが発生する温度下限との間には余裕が存在し、その温度余裕は、一般的に40℃程度である。したがって、通板方向上流側から総冷却長の2/3以上の範囲で鋼帯Sのエッジ部の温度がセンター部の温度以上であれば、最終温度偏差をしわ疵と合金巻きとを回避できる温度範囲内に収めることが可能である。なお、本知見は、鋼帯Sの温度偏差の生成量を実ラインで調査した結果に基づき考察した結果である。
 このとき、総冷却長の冷却中間位置において、鋼帯Sのエッジ部の温度がセンター部の温度より20℃以上高いのが望ましい。すなわち、総冷却長の冷却中間位置において、図2の位置Bのように、鋼帯Sの幅方向センター部に対してエッジ部の温度高くなった温度カーブとなるようにすることで、最終的に冷却帯60の出側における鋼帯Sの幅方向の温度分布を略均一にすることができる。
 <3.冷却帯の冷却設備による鋼帯冷却>
 (3-1.鋼帯の冷却方法)
 図3に、本実施形態に係る合金化炉の冷却帯60による板温制御の概略を示す。図3に示すように、鋼帯Sは冷却帯60を通過することで目標終点温度まで冷却される。一般に、溶融亜鉛めっき処理において鋼帯Sの合金化炉の冷却帯60の入側温度は約450~600℃であり、終点温度は300~400℃程度である。また、図3に示すクエンチ温度Tqは、水の膜沸騰領域と遷移沸騰領域との境界温度である。クエンチ温度Tqより大きい温度範囲が鋼帯Sの表面において水が膜沸騰する膜沸騰温度範囲となる。クエンチ温度Tqは、冷却条件によって変化し、鋼帯Sを高水量によって強冷却すると上昇する傾向にある。
 図3に示すように、終点温度とクエンチ温度Tqとの温度差は、冷却帯60の入側における板温とクエンチ温度Tqとの温度差よりも小さい。したがって、冷却帯後段部62で鋼帯Sを強冷却するとクエンチ温度Tqが上昇してしまい、終点温度とクエンチ温度Tqとの温度差がより小さくなってしまう。そうすると、冷却帯後段部62でミストが遷移沸騰する可能性が高くなり、鋼帯Sに温度ムラが発生する可能性がある。本実施形態に係る冷却帯60では、冷却帯60の通板方向上流側にて高水量で積極的に鋼帯Sを冷却しつつ、板温が常にクエンチ温度Tq以下とならないようにしている。
 具体的には、冷却帯前段部61の通板方向上流側に、冷却帯60を通過する鋼帯Sに対して噴射されるミストの噴射量が鋼帯Sの幅方向に調整された調整冷却設備61aを備える。調整冷却設備61aは、鋼帯Sの幅方向のセンター部を積極的に冷却し、エッジ部の冷却を抑制するように調整された冷却設備である。調整冷却設備61aの設置によって、鋼帯Sの温度を水が膜沸騰から遷移沸騰となるクエンチ温度以下とならないようにしつつ、鋼帯Sの幅方向の温度分布が大きくならないようにする。
 調整冷却設備61aを冷却帯前段部61の通板方向上流側に設ける理由としては、上述したように、冷却帯60の通板方向下流側よりも鋼帯Sの温度制御幅に余裕があるためである。鋼帯Sの目標終点温度は水のクエンチ温度近傍にあるため、鋼帯Sの温度がクエンチ温度以下とならないようにするためには制御装置65に高い制御精度が要求される。このため、冷却帯前段部61の通板方向上流側に調整冷却設備61aを設け、高水量によって鋼帯Sを積極的に冷却することが望ましい。
 また、本実施形態に係る冷却帯60には、クエンチ点の位置変化の影響を最小化するために、鋼帯Sに対して噴射されたミストの少なくとも一部を、冷却帯60内に存在する空気とともに吸引するミスト吸引設備67が設けられている。これにより、垂れ水の要因となる余剰のミストを吸引し、余剰のミストが垂れ水として鋼帯Sに掛かることを防止できる。
 このミスト吸引設備67は、少なくとも冷却帯60における鋼帯Sのエッジ部に対向する部分の近傍に設けられることが好ましい。かかる位置にミスト吸引設備67を設けることで、エッジ部において垂れ水の要因となりうる余剰のミストを、より効果的に吸引することが可能となる。
 また、このミスト吸引設備67は、少なくとも冷却帯60の通板方向下流側に設けることが好ましい。鋼帯Sの温度がより低い状態にある通板方向の下流側では、垂れ水によってクエンチ点位置の変化が生じ、沸騰状態が膜沸騰状態から遷移沸騰状態に移行する可能性が高い。したがって、冷却帯60の通板方向下流側に重点的にミスト吸引設備67を設けることで、垂れ水に起因する温度ばらつきをより効果的に抑制することが可能となる。なお、冷却帯60に設けられるミスト吸引設備67の個数については、特に限定されるものではなく、冷却帯60の大きさや、冷却帯60から吸引すべきミストの量等に応じて、適宜設定すればよい。
 ミスト吸引設備67による余剰ミストの吸引量は、制御装置65によって制御される。制御装置65が、調整冷却設備61a及びミスト吸引設備67の双方を制御することで、より効率良く鋼帯Sの冷却状態の管理を実施することが可能となる。
 ここで、ミスト吸引設備67によって吸引されるミストの量が少なすぎると、残存する余剰ミストに起因する垂れ水が発生することとなり、吸引されるミストの量が多すぎると、鋼帯Sの冷却が十分に行われなくなってしまう。そのため、制御装置65の制御下においてミスト吸引設備67が吸引するミストの量は、垂れ水の発生を防止しつつ十分な鋼帯Sの冷却を行うことが可能な、所定の範囲とすることが好ましい。
 ミスト吸引設備67により吸引する排気エア及びミストの量の制御は、公知の方法により行うことが可能であるが、例えば、ミスト吸引設備67によるミスト吸込口近傍に設けた圧力計(図6の符号69)の値により制御することが可能である。すなわち、ミスト吸引口近傍に設けた圧力計によって、ミスト吸引口の近傍の鋼帯Sのセンター部における圧力値を計測し、計測される圧力値が負圧となるように、ミスト吸引設備67に設けられた排気ブロワのダンパー開度を調整すればよい。
 また、調整冷却設備61aは、通板方向における限られた調整冷却設備61aの設備長で幅方向温度分布を調整するためには高水量で使用する必要がある。一方、調整冷却設備61aを膜沸騰域で使用するには、クエンチ温度Tqの上昇を回避するために少水量で使用するのが望ましい。このように、調整冷却設備61aを設置するのみでは、幅方向温度分布の調整と膜沸騰域での安定冷却を実現する条件は相反する要件となってしまい両立は容易ではない。調整冷却設備61aの設備長を不必要に長くすることは、設備が複雑になり設置コストが大きくなるという課題や、幅方向温度分布を調整する必要がない対象材においては逆にエッジ部の温度が高くなってしまうという課題がある。
 そこで、本願発明者らは、幅方向温度分布の抑制と膜沸騰条件の維持を実現するための設備を検討した結果、調整冷却設備61aの設備長L[m]が以下の式(1)を満たせばよいことを見出した。
 L≧(α×V×th)/((Tin-β)^m)×(Tin-γ))   ・・・(1)
 ここで、冷却帯60の入口における鋼帯Sのセンター部の温度をTin[℃]、鋼帯Sの速度をV[m/s]、鋼帯の厚みをth[m]とする。また、α、β、γ、mは定数であり、溶融亜鉛めっき設備に応じて設定される。
 本願発明者らは、種々の操業条件において、調整冷却設備61aの水量に対する幅方向温度分布調整能力と冷却安定性を調査した。その結果、膜沸騰域を維持できる条件の中で、最も幅方向温度分布が小さくなる水量が存在することを見出した。また、その水量は、冷却帯60の入口における鋼帯Sの温度、鋼帯Sの速度、鋼帯Sの厚み、および調整冷却設備61aの設備長Lと関係があることが分かった。そこで、この関係を利用して、幅方向温度分布調整効果を得るために必要な調整冷却設備61aの設備長Lを規定する上記式(1)を導出した。
 式(1)は以下のように導出される。まず、クエンチ温度Tqについて、上述したように鋼帯Sを高水量によって強冷却すると上昇する傾向にある。この関係は、実機設備を模擬した試験設備を用いて鋼帯の冷却特性を評価することにより得ることができる。例えば図4に示すように、クエンチ温度Tqは、下記式(1-1)のような冷却水量Qの一次関数で表される。式(1-1)においてa、bは定数である。
 Tq=aQ+b    ・・・(1-1)
 また、図4に示すように、調整冷却設備61aのセンター部(幅方向の中心)における鋼帯Sの入側の温度Tin、鋼帯Sの厚みth、鋼帯Sの速度Vおよび調整冷却設備61aの設備長Lを一定としたとき、冷却水量Qと鋼帯Sのセンター部の温度Tとは、図4に示すように、冷却水量Qが大きくなるほど鋼帯Sのセンター部の温度Tは低下するような関係にある。ここで、調整冷却設備61aによる鋼帯Sのセンター部とエッジ部との温度差の改善効果ΔTは、鋼帯Sのセンター部入側の温度Tinと調整冷却設備61a内での任意の通板方向位置の温度Tとの差と比例関係にある。すなわち、幅方向における温度分布の改善効果ΔTは下記式(1-2)で表される。式(1-2)においてαは定数である。
 ΔT=α(Tin-T)   ・・・(1-2)
 一方、鋼帯Sの温度をクエンチ温度Tq未満に冷却しないようにするため、調整冷却設備61aにより調整可能な幅方向における温度分布には上限がある。すなわち、図5に示すように、点Pからクエンチ温度Tqとなる位置を示す点Pの間においては、冷却水量Qが増加するほど、幅方向における温度分布の改善効果ΔTは高くなる。しかし、鋼帯Sの温度Tがクエンチ温度Tqを下回ると、鋼帯Sが局所的に過冷却される状態となり、図5に示すように、点P~Pに向かっては幅方向における温度分布の改善効果ΔTが急激に低下する。
 したがって、調整冷却設備61aにより調整可能な幅方向における温度分布は、鋼帯Sの温度がクエンチ温度Tq以上となる膜沸騰温度範囲(点P~Pの範囲)となる。そこで、クエンチ温度Tqにおける幅方向における温度分布の改善効果をΔTmaxとすると、式(1-2)より下記式(1-3)で表すことができる。
 ΔTmax=α(Tin-Tq)   ・・・(1-3)
 さらに、調整冷却設備61aの設備長Lは、調整が必要な温度分布偏差に対して決定される。ここで、上述した調整可能な温度分布の改善効果の上限ΔTmaxは、下記式(1-4)のように、鋼帯Sの入側のセンター部の温度Tin、鋼帯Sの厚みthとその速度V、および調整冷却設備61aの設備長Lによっても表される。
 ΔTmax=(α・2・h・L・(Tave-T))/(ρ・Cp・V・th)
                              ・・・(1-4)
 ここで、Taveは平均板温であり、例えば鋼帯Sの入側のセンター部の温度Tinとクエンチ温度Tqとの平均値で表される。また、Tは冷却水温、ρは鋼材密度、Cpは鋼材比熱である。
 この式(1-4)の関係と、上記式(1-1)、(1-3)および冷却水量Q[l/m・min]と熱伝達係数h[W/m・℃]との関係を表す式(1-5)を整理すると、上記式(1)を得ることができる。式(1-5)において、kは定数である。
 h=kQ   ・・・(1-5)
 なお、このとき上記式(1)の定数α、β、γは以下のようになる。
 α=20280×a/k   ・・・(1-7)
 β=33+b   ・・・(1-8)
 γ=45   ・・・(1-9)
 定数α、β、γは実機設備を模擬した試験設備を用いて鋼帯の冷却特性を評価した結果を用いて設定され、例えばα=1700000、β=330、γ=45、m=0.6とすることができる。
 なお、冷却帯60の入口における鋼帯Sの温度Tや、鋼帯Sの速度V、鋼帯Sの厚みthは、鋼種や生産量、注文サイズによって決まる値であることから、式(1)により算出されるLの値は固定の値とはならない。したがって、調整冷却設備61aの設備長Lは、例えば代表的な操業条件を前提にして決定される。
 また、調整冷却設備61aの設備長Lが一定であるときには、上記式(1)の関係に基づき、下記式(2)から算出される鋼帯Sの上限速度Vmax以下で鋼帯Sを生産してもよい。α’、β’、γ’、mは定数であり、溶融亜鉛めっき設備に応じて設定される。例えば、α’=1700000、β’=330、γ’=45、m=0.6とすることができる。鋼帯Sの速度Vは通板対象により変化するため、これらの定数は過渡状態を考慮して設定している。
 Vmax=(L×(Tin-β’)^m×(Tin-γ’))/(α’×th)   ・・・(2)
 このように、調整冷却設備61aの設備長Lを変更できない場合にも、鋼種や生産量、注文サイズによって鋼帯Sの上限速度Vmaxを変更し、上限速度Vmax以下の速度Vで鋼帯Sを生産することで、冷却ムラに起因する品質不良を回避しつつ、高い生産性を得ることができる。鋼帯Sの速度Vは、例えばガイダンスシステムを用いてオペレータに通知され、変更される。
 また、鋼帯Sの幅方向の温度分布に関しては、温度分布がないようにすることが望ましいが、所定の温度範囲内に収まっていれば、品質に大きな影響はない。例えば、所定の温度範囲は30℃程度である。なお、冷却帯60の出側における終点温度について、上述したように終点温度は300~400℃程度であるが、これより高くなると鋼帯Sの表面のめっきがトップロール70に巻きつく可能性がある。したがって、冷却帯60の出側における鋼帯Sの幅方向の温度のうち最高温度は300~400℃より高くならないように制御される。
 [3-2.調整冷却設備の構成例]
 調整冷却設備61aの一構成について、図6~図9に基づき説明する。図6は、本実施形態に係る冷却帯60の一構成例を示す説明図である。図7は、本実施形態に係る調整冷却設備61aを備える冷却帯前段部61の一構成例を示す説明図である。図8は、気水ヘッダー63の一構成例を示す説明図である。図9は、調整冷却設備61aが1段の気水ヘッダー63から構成されるときの調整冷却設備61aの設備長を説明する説明図である。
 本実施形態に係る冷却帯60は、図8に示すような、鋼帯Sの幅方向に沿って複数の気水噴射ノズル64が配列された気水ヘッダー63を長手方向に複数配置して構成される。冷却帯前段部61および冷却帯後段部62には気水ヘッダー63がそれぞれ複数段(例えば約30段)ずつ設けられている。図7に示すような冷却帯60は鋼帯Sの通板方向を挟んで対称に配置されている。これにより、鋼帯Sを表面および裏面から冷却している。気水噴射ノズル64からのミスト噴射量(すなわち、気水ヘッダー63の水量)は、図8に示すバルブ66a、66bの開閉によって調節できる。バルブ66a、66bの開閉は制御装置65によって段毎に調整可能である。
 調整冷却設備61aは、例えば各気水ヘッダー63に配列された気水噴射ノズル64のうち鋼帯Sの幅方向のエッジ部側の気水噴射ノズル64をキャップにより塞ぎ、気水噴射ノズル64からミスト噴射されないようにすることで構成することができる。図7の例では、冷却帯前段部61の通板方向上流側に位置する1~n段目の気水ヘッダー63のエッジ部がキャップにより塞がれ、未噴射領域63bを形成している。したがって、調整冷却設備61aを通過する間、鋼帯Sは、噴射領域63aに対応するセンター部が積極的に冷却され、両エッジ部の冷却は抑制される。
 なお、調整冷却設備61aを構成する気水ヘッダー63の数nは、上記式(1)で設定される調整冷却設備61aの設備長L、あるいは予め設定された一定の調整冷却設備61aの設備長Lに基づき設定される。具体的には、調整冷却設備61aの設備長Lは、下記式(3)で表される。ここで、調整冷却設備61aが1段の気水ヘッダー63から構成されるとき(すなわち、n=1のとき)には、図9に示すように、気水噴射ノズル64から鋼帯Sの表面に向かって垂直な方向に対して上下45°の角度θをもってミストが噴射される範囲を調整冷却設備61aの設備長Lとする。
Figure JPOXMLDOC01-appb-M000001
 ここで、pは通板方向に隣接する気水ヘッダー63のピッチ、dは鋼帯Sと気水ヘッダー63との距離を表す。上記式(3)に基づき、調整冷却設備61aを構成する気水ヘッダー63の数nや設置位置を決定することができる。
 調整冷却設備61aは、例えば図7に示すように、通板方向上流側において鋼帯Sの両エッジ部にあたる部分の気水噴射ノズル64をキャップで多く塞いで未噴射領域63bを多くし、下流側に向かうにつれてセンター部側からキャップで塞ぐ気水噴射ノズル64の数を減少させ未噴射領域63bを少なくするようにしてもよい。すなわち、気水ヘッダー63の気水噴射ノズル64によってミストを鋼帯Sの表面に噴射する噴射領域63aを、通板方向上流から下流に向かって大きくするようにする。
 例えば、鋼帯Sの厚み0.6mm、冷却帯60の入口の鋼帯温度500℃において必要な調整冷却設備61aの設備長Lは、以下の表1のように設定される。鋼帯Sの速度Vが大きいほど、長い調整冷却設備61aが必要になる。
Figure JPOXMLDOC01-appb-T000002
 これにより、冷却開始時に鋼帯Sのエッジ部の過冷却を効果的に抑制しつつ、その後徐々に鋼帯Sの冷却範囲を広げて全面的に冷却されようにする。特に、冷却開始段階では鋼帯Sのセンター部を集中的に冷却し、エッジ部の冷却を停止することで、図2に示すように、冷却帯60を通過中、鋼帯Sのエッジ部の温度がセンター部の温度以上となるようにすることができる。したがって、冷却帯60における冷却終了時において、鋼帯Sの幅方向の温度分布が大きくならず、略均一に冷却することができる。
 冷却帯60のうち、調整冷却設備61aより通板方向下流側の気水ヘッダー63、すなわち、冷却帯前段部61のn+1段目以降および冷却帯後段部62のすべての気水ヘッダー63は、すべての気水噴射ノズル64からミストが噴射される。
 なお、図6に示すように、調整冷却設備61aは、冷却帯60の通板方向最上流1本目の気水ヘッダー63から設置することが必須ではないが、本発明の効果を享受するためにはなるべく上流側、可能であれば1本目から設置するのが望ましい。
 また、ミスト吸引設備67は、図6および図7に示すように、冷却帯前段部61の下流側及び冷却帯後段部62の下流側に、鋼帯Sのエッジ部と対向するように設けられる。このミスト吸引設備67により、気水ヘッダー63から噴射されたミストを、圧力計69により計測される圧力値に応じて、センター部の圧力値が負圧となるように所定量吸引する。これにより、冷却帯前段部61の内部には、垂れ水の発生を防止しつつ十分な鋼帯の冷却を行うことが可能なだけのミストが存在することとなり、垂れ水による冷却ムラの発生を防止できる。
 図6および図7に示す調整冷却設備61aの構成は一例であって、本実施形態に係る冷却帯60の調整冷却設備61aの構成はかかる例に限定されない。例えば、図6および図7においてキャップ65で塞がれる気水噴射ノズル64をそもそも設けないようにして、エッジ部の冷却を停止させてもよい。あるいは、エッジ部の冷却を完全に停止させず、センター部よりも低水量を噴霧するようにしてもよい。また、図6および図7の調整冷却設備61aは、通板方向上流から下流に向かって鋼帯Sのセンター部の冷却範囲を大きくするように構成されているが、調整冷却設備61aによるセンター部の冷却範囲は一定であってもよい。
 以上、本実施形態に係る溶融亜鉛めっき処理設備における合金化炉の冷却帯60について説明した。本実施形態に係る合金化炉の冷却帯60は、冷却帯前段部61の通板方向上流側に、冷却帯60を通過する鋼帯Sに対して噴射されるミストの噴射量を鋼帯Sの幅方向に調整した調整冷却設備61aを備える。調整冷却設備61aでは、鋼帯Sのセンター部を積極的に冷却する一方、エッジ部の冷却を停止あるいは低水量の噴射とする。また、少なくとも冷却帯60における鋼帯Sのエッジ部に対向する部分の近傍には、一対のミスト吸引設備67が設けられる。
 このとき、調整冷却設備61aの設備長Lを、鋼帯Sの幅方向の温度偏差が大きくなり、温度ムラが発生するのを防止すると同時に、鋼帯Sの板温がクエンチ温度Tq以下とならないように冷却できる長さとすることで、安定して鋼帯Sを冷却することができる。本実施形態に係る合金化炉の冷却帯60は、ミスト冷却により安定して鋼帯を冷却することができるので、高速に鋼帯を通過させて処理することが可能となり、生産性を高めることが可能となる。また、上記位置にミスト吸引設備67を設けることで、エッジ部において垂れ水の要因となりうる余剰のミストを、より効果的に吸引することが可能となる。
 実施例として、溶融亜鉛めっき処理設備における合金化炉の冷却帯において調整冷却設備の使用ヘッダー数を変化させて調整冷却設備の設備長Lを変え、溶融亜鉛めっき鋼帯を冷却したときの冷却後の鋼帯の幅方向温度分布および製品の外観品位を調べた。冷却帯の構成は図6と同様であり、36段の気水ヘッダーを備えているとする。このうち、1~9段目の気水ヘッダーは調整冷却設備を構成している。本例では、調整冷却設備のエッジ部の水量はゼロであり、センター部のみミスト噴射を行った。結果を表2に示す。
 なお、表2において、冷却帯中間位置での温度差は、冷却帯前段部61と冷却帯後段部62との間の位置とし、エッジ部の温度からセンター部の温度を引いた値を示している。冷却帯出側での温度差も、エッジ部の温度からセンター部の温度を引いた値を示している。エッジ部の温度は、鋼帯の幅方向端部から100mmの位置における表面温度、センター部の温度は、鋼帯の幅方向中心位置での表面温度とする。
Figure JPOXMLDOC01-appb-T000003
        ◎:無(良好)、△:僅かに有(不可)、×:有(不可)
 比較例0は、調整冷却設備である1~9段目の気水ヘッダーを使用しない場合、すなわち、鋼帯の幅方向全体をミスト冷却した場合である。比較例0では、ミスト吸引設備も使用しない。このとき、鋼帯の幅方向のセンター部に比べてエッジ部の板温が大きく低下した。トップロールに鋼帯表面の亜鉛めっきが付着し、しわ疵も発生していた。比較例1は、比較例0の状態にミスト吸引設備を設置した場合である。この場合、しわ疵は発生しないものの、トップロールへの鋼帯表面の亜鉛めっきの付着が見受けられた。
 実施例1~3は、調整冷却設備である1~9段目の気水ヘッダーを使用した場合である。実施例1~3の調整冷却設備の長さは上記式(1)を満たすようにその下限値よりも長く設定されている。これらの場合、調整冷却設備よって鋼帯の幅方向のセンター部を積極的に冷却した後、調整冷却設備より下流側の気水ヘッダーによって鋼帯の幅方向全体をミスト冷却することで、比較例0及び比較例1と比較してエッジ部温度低下が軽減されていた。トップロールへの鋼帯表面の亜鉛めっきの付着もなく、しわ疵の発生もなかった。
 比較例2は、調整冷却設備である1~9段目の気水ヘッダーを使用した場合であり、調整冷却設備の長さは上記式(1)を満たしているが、ミスト吸引設備が設けられていない場合である。この場合、比較例0と同様、鋼帯の幅方向のセンター部に比べてエッジ部の板温が大きく低下し、トップロールに鋼帯表面の亜鉛めっきが付着するとともに、しわ疵も発生していた。
 比較例3~5は、調整冷却設備である1~9段目の気水ヘッダーの使用本数を減らした場合である。いずれも調整冷却設備の長さは上記式(1)を満たさず、その下限値よりも短く設定されている。なお、比較例3については、上記式(1)の関係を満たしていないため僅かにトップロールの鋼帯表面に亜鉛めっきが付着した。冷却中に鋼帯の温度がクエンチ温度を下回ることはなかったが、冷却帯中間位置での鋼帯の幅方向のセンター部の温度がエッジ部の温度よりも僅かに高い程度であったため、冷却帯出側での温度差が大きくなったことが要因と考えられる。
 比較例4および5については、調整冷却設備の気水ヘッダーの使用本数を減らした結果、センター部とエッジ部の温度差解消代が少なくなる影響を抑制するために、調整冷却設備の各気水ヘッダーへ供給される水量を多くして冷却帯出側のセンター部とエッジ部との温度差を小さくしようとした場合である。比較例4では冷却帯出側のセンター部とエッジ部との温度差は小さくなったものの、冷却中に鋼帯の温度がクエンチ温度を下回ったためにしわ疵が発生した。比較例5では調整冷却設備の各気水ヘッダーへ供給される水量を多くしても、十分にセンター部とエッジ部の温度差を小さくすることができなかった。その結果、冷却帯出口での、鋼帯の幅方向のセンター部は温度が高くなってしまった。一方、鋼帯の幅方向のエッジ部の温度は低下してしまい、クエンチ温度を下回っていた。その結果、比較例5では、トップロールに鋼帯表面の亜鉛めっきが付着し、しわ疵も発生していた。
 比較例6は、調整冷却設備を冷却帯の最終段側に設置した場合である。比較例6では、調整冷却設備の長さは上記式(1)を満たしており、ミスト吸引設備も設置されている。すなわち、図10に示すように、冷却帯には、鋼帯Sの幅方向のエッジ部に対向するように配置される一対のミスト吸引設備67が、冷却帯60の通板方向中間位置及び出側に設けられ、鋼帯Sに対して噴射されたミストの少なくとも一部が吸引される。また、冷却帯出側から通板方向上流側に向かって調整冷却設備が構成されている。調整冷却設備は、鋼帯Sの幅方向のエッジ部側の気水噴射ノズルをキャップにより塞ぎ、気水噴射ノズルからミスト噴射されないようにすることで構成されている。このとき、冷却帯出側から通板方向上流側に向かうにつれて、未噴射領域63cが小さくなるようにされている。
 比較例6では、冷却帯前段部61において鋼帯Sの幅方向が万遍なく冷却されるため、冷却帯の中間位置において鋼帯の幅方向のエッジ部の温度がセンター部の温度よりも低くなる。その結果、冷却帯後段部62においてエッジ部の冷却を抑制してもエッジ部の不安定な遷移沸騰を回避することができず、トップロールに鋼帯表面の亜鉛めっきが付着し、しわ疵も発生した。
 本実施例より、冷却設備の通板方向上流側に調整冷却設備を設けた際に、上記式(1)を満たすようにすることで、鋼帯の幅方向のエッジ部の温度低下が軽減されて温度ムラの発生が抑制され、しわ疵のない良好な製品を製造できることが分かった。また、トップロールへの鋼帯表面の亜鉛めっきの付着もなくすことができることが示された。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、鋼帯を冷却する冷却設備には、ミストを噴射する気水ノズル(二液ノズル)を用いたが、本発明はかかる例に限定されない。例えば、水を噴射する一液ノズルを用いて冷却設備を構成してもよい。なお、水質管理の観点より、水質管理の難しい一液ノズルより二液ノズルを用いる方が好ましい。
 5   溶融亜鉛
 10  亜鉛ポット
 20  シンクロール
 30  ガスノズル
 40  加熱帯
 50  保熱帯
 60  冷却帯
 61  冷却帯前段部
 62  冷却帯後段部
 63  気水ヘッダー
 63a 噴射領域
 63b 未噴射領域
 64  気水噴射ノズル
 65  制御装置
 70  トップロール
 S   鋼帯

Claims (8)

  1.  溶融亜鉛めっきされた鋼帯を合金化処理する合金化炉の冷却設備におけるミスト冷却による鋼帯の冷却方法であって、
     前記冷却設備の通板方向上流側に設けられた調整冷却設備により、当該冷却設備を通過する前記鋼帯に対して噴射されるミスト噴射量が、前記鋼帯の幅方向のエッジ部におけるミスト噴射量がセンター部におけるミスト噴射量よりも小さくなるように、前記冷却設備を通過する前記鋼帯に対してミストを噴射し、
     少なくとも前記冷却設備の通板方向下流側に設けられたミスト吸引設備により、前記鋼帯に対して噴射されたミストの少なくとも一部を吸引し、
     前記鋼帯の冷却開始から冷却終了までの間、前記鋼帯の温度が膜沸騰温度範囲であり、かつ、前記冷却設備の総冷却長のうち少なくとも通板方向上流側から2/3以上の範囲においては前記鋼帯の幅方向におけるエッジ部の温度がセンター部の温度以上となる通板速度で前記鋼帯を冷却する、鋼帯の冷却方法。
  2.  前記調整冷却設備の設備長L[m]に対して、前記鋼帯の速度は下記式(a)により算出される上限速度Vmax[m/s]以下となるように設定される、請求項1に記載の鋼帯の冷却方法。
     Vmax=(L×(Tin-β’)^m×(Tin-γ’))/(α’×th)  ・・・(a)
     ここで、Tin[℃]は冷却設備の入口における鋼帯のセンター部の温度、th[m]は鋼帯の厚みとする。α’、β’、γ’、mは定数であり、溶融亜鉛めっき設備に応じて設定される。
  3.  前記定数は、それぞれα‘=1870000、β’=330、γ‘=45、m=0.6である、請求項2に記載の鋼帯の冷却方法。
  4.  溶融亜鉛めっきされた鋼帯を合金化処理する合金化炉のミスト冷却による冷却設備であって、
     前記冷却設備の通板方向上流側に設けられ、当該冷却設備を通過する前記鋼帯に対して噴射するミスト噴射量を前記鋼帯の幅方向に調整可能な調整冷却設備と、
     少なくとも前記冷却設備の通板方向下流側に設けられ、前記鋼帯に対して噴射されたミストの少なくとも一部を吸引するミスト吸引設備と、
    を備え、
     前記調整冷却設備は、当該冷却設備を通過する前記鋼帯に対して噴射されるミスト噴射量が、前記鋼帯の幅方向のエッジ部におけるミスト噴射量がセンター部におけるミスト噴射量よりも小さくなるように調整されており、
     前記鋼帯の冷却開始から冷却終了までの間、前記鋼帯の温度を膜沸騰温度範囲内とし、かつ、前記冷却設備の総冷却長のうち少なくとも通板方向上流側から2/3以上の範囲において前記鋼帯の幅方向におけるエッジ部の温度がセンター部の温度以上となる、前記鋼帯の通板方向における設備長を有する、冷却設備。
  5.  前記調整冷却設備は、前記鋼帯の通板方向における当該調整冷却設備の設備長L[m]が下記式(b)を満たすように設けられる、請求項4に記載の冷却設備。
     L≧(α×V×th)/((Tin-β)^m)×(Tin-γ))   ・・・(b)
     ここで、Tin[℃]は冷却設備の入口における鋼帯のセンター部の温度、V[m/s]は鋼帯の速度、th[m]は鋼帯の厚みとする。α、β、γ、mは定数であり、溶融亜鉛めっき設備に応じて設定される。
  6.  前記定数は、それぞれα=1700000、β=330、γ=45、m=0.6である、請求項5に記載の冷却設備。
  7.  前記調整冷却設備は、幅方向に沿って配置された複数のノズルからなるヘッダーを通板方向に複数備え、
     前記各ヘッダーは、前記鋼帯の幅方向エッジ部において前記鋼帯に対してミストが噴射されないように構成されている、請求項4~6のいずれか1項に記載の冷却設備。
  8.  前記調整冷却設備の前記各ヘッダーは、鋼帯の幅方向センター部において前記鋼帯に対してミストを噴射する前記ノズルの数が通板方向上流から下流に向かって増加するように構成されている、請求項7に記載の冷却設備。
     
PCT/JP2015/055012 2014-07-24 2015-02-23 鋼帯の冷却方法及び冷却装置 WO2016013240A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP15824065.5A EP3156512B1 (en) 2014-07-24 2015-02-23 Method for cooling steel strip and cooling installation
BR112017000200-0A BR112017000200B1 (pt) 2014-07-24 2015-02-23 Método de resfriamento e instalação de resfriamento para aço em tira
US15/326,912 US10465262B2 (en) 2014-07-24 2015-02-23 Method for cooling steel strip and cooling apparatus
CA2951791A CA2951791C (en) 2014-07-24 2015-02-23 Method for cooling steel strip and cooling apparatus
CN201580039117.3A CN106661710B (zh) 2014-07-24 2015-02-23 钢带的冷却方法和冷却设备
MX2016016567A MX2016016567A (es) 2014-07-24 2015-02-23 Metodo de enfriamiento y dispositivo de enfriamiento para banda de acero.
JP2016535808A JP6350663B2 (ja) 2014-07-24 2015-02-23 鋼帯の冷却方法及び冷却設備
KR1020177001730A KR101863012B1 (ko) 2014-07-24 2015-02-23 강대의 냉각 방법 및 냉각 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150932 2014-07-24
JP2014-150932 2014-07-24

Publications (1)

Publication Number Publication Date
WO2016013240A1 true WO2016013240A1 (ja) 2016-01-28

Family

ID=55162779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055012 WO2016013240A1 (ja) 2014-07-24 2015-02-23 鋼帯の冷却方法及び冷却装置

Country Status (9)

Country Link
US (1) US10465262B2 (ja)
EP (1) EP3156512B1 (ja)
JP (1) JP6350663B2 (ja)
KR (1) KR101863012B1 (ja)
CN (1) CN106661710B (ja)
BR (1) BR112017000200B1 (ja)
CA (1) CA2951791C (ja)
MX (1) MX2016016567A (ja)
WO (1) WO2016013240A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222900A (ja) * 2016-06-15 2017-12-21 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
EP3550054A4 (en) * 2016-12-02 2020-01-15 Posco METAL MATERIAL COOLER

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661710B (zh) * 2014-07-24 2019-04-09 新日铁住金株式会社 钢带的冷却方法和冷却设备
KR101988751B1 (ko) * 2017-12-07 2019-06-12 주식회사 포스코 강판 냉각 장치
KR102065229B1 (ko) * 2017-12-26 2020-01-10 주식회사 포스코 강판 냉각 장치
KR102209602B1 (ko) * 2018-12-07 2021-01-28 주식회사 포스코 강판 냉각 장치
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279831A (ja) * 1992-03-30 1993-10-26 Nisshin Steel Co Ltd 溶融亜鉛めっき用合金化炉の冷却制御方法
JP2000297357A (ja) * 1999-04-09 2000-10-24 Nippon Steel Corp 熱処理炉の冷却装置
JP2013245376A (ja) * 2012-05-25 2013-12-09 Jfe Steel Corp 溶融亜鉛めっき鋼板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765153B2 (ja) 1990-07-19 1995-07-12 新日本製鐵株式会社 溶融合金化亜鉛めっき鋼板のしわ防止方法
JPH04118447U (ja) 1991-03-28 1992-10-22 日新製鋼株式会社 連続溶融めつきラインにおけるめつき鋼板冷却用気水冷却装置
JPH0765153A (ja) 1993-08-31 1995-03-10 Canon Inc 情報処理装置及び方法
JP3221315B2 (ja) 1996-04-02 2001-10-22 日本鋼管株式会社 合金化溶融亜鉛めっき鋼帯の製造方法
JP3209408B2 (ja) 1997-07-24 2001-09-17 川崎製鉄株式会社 合金化処理過程の冷却方法
JPH11172401A (ja) 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd 帯材の冷却方法及び装置
JP3888784B2 (ja) 1998-09-21 2007-03-07 日新製鋼株式会社 溶融Zn基めっき鋼板のエッジしわ防止法
JP2000256818A (ja) * 1999-03-05 2000-09-19 Kawasaki Steel Corp 溶融亜鉛めっき鋼板の冷却方法及び装置
JP4410653B2 (ja) 2004-10-18 2010-02-03 新日本製鐵株式会社 合金化炉出側気水冷却方法
FR2940978B1 (fr) 2009-01-09 2011-11-11 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
IN2012DN00945A (ja) * 2009-12-16 2015-04-10 Nippon Steel & Sumitomo Metal Corp
JP5356616B1 (ja) * 2012-11-27 2013-12-04 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法
CN106661710B (zh) * 2014-07-24 2019-04-09 新日铁住金株式会社 钢带的冷却方法和冷却设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279831A (ja) * 1992-03-30 1993-10-26 Nisshin Steel Co Ltd 溶融亜鉛めっき用合金化炉の冷却制御方法
JP2000297357A (ja) * 1999-04-09 2000-10-24 Nippon Steel Corp 熱処理炉の冷却装置
JP2013245376A (ja) * 2012-05-25 2013-12-09 Jfe Steel Corp 溶融亜鉛めっき鋼板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017222900A (ja) * 2016-06-15 2017-12-21 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
EP3550054A4 (en) * 2016-12-02 2020-01-15 Posco METAL MATERIAL COOLER

Also Published As

Publication number Publication date
CN106661710B (zh) 2019-04-09
EP3156512A1 (en) 2017-04-19
CN106661710A (zh) 2017-05-10
EP3156512A4 (en) 2018-02-28
CA2951791C (en) 2018-11-20
BR112017000200B1 (pt) 2021-06-01
BR112017000200A2 (pt) 2017-10-31
US20170211165A1 (en) 2017-07-27
JPWO2016013240A1 (ja) 2017-04-27
CA2951791A1 (en) 2016-01-28
KR20170021310A (ko) 2017-02-27
KR101863012B1 (ko) 2018-05-30
US10465262B2 (en) 2019-11-05
EP3156512B1 (en) 2022-01-12
MX2016016567A (es) 2017-04-25
JP6350663B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6350663B2 (ja) 鋼帯の冷却方法及び冷却設備
KR101910756B1 (ko) 연속 용융 금속 도금 방법 및 용융 아연 도금 강대와 연속 용융 금속 도금 설비
US8404062B2 (en) Device and method for cooling hot strip
JP5099265B2 (ja) 連続溶融めっき及び連続焼鈍の兼用設備
JP2009062563A (ja) 溶融金属めっき鋼帯の製造装置
JP5470932B2 (ja) 溶融金属めっき鋼帯製造設備及び溶融金属めっき鋼帯の製造方法
JP5169307B2 (ja) 溶融金属めっき鋼帯の製造方法
JP5928412B2 (ja) 鋼板の竪型冷却装置、およびそれを用いた溶融亜鉛めっき鋼板の製造方法
JP6500846B2 (ja) 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
JP4677846B2 (ja) 溶融金属めっき鋼帯の製造方法
JP5386779B2 (ja) 溶融めっき鋼板の製造方法及び装置
JP6394578B2 (ja) 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
JP5067428B2 (ja) 電気錫めっき鋼板の製造方法
JP6870659B2 (ja) 溶融金属めっき設備用ガスワイピングノズル、溶融金属めっきのガスワイピング方法、及び溶融金属めっき鋼板の製造方法
JP6635086B2 (ja) 溶融金属めっき鋼帯の製造方法
WO2020121646A1 (ja) 溶融金属めっき鋼板の製造方法、溶融金属めっき鋼板の製造装置
KR101353547B1 (ko) 용융 아연 도금 설비의 냉각장치
JP6760002B2 (ja) 鋼板の冷却方法
JPH03287752A (ja) 鋼帯の連続溶融めっき装置
KR20150024678A (ko) 도금강판 제조장치
JP2000256818A (ja) 溶融亜鉛めっき鋼板の冷却方法及び装置
JP2003253415A (ja) 連続溶融亜鉛めっき鋼板の製造方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535808

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2951791

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016567

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015824065

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824065

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000200

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15326912

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177001730

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112017000200

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170105