WO2016010146A1 - 可変電動機システム、及び電動装置 - Google Patents
可変電動機システム、及び電動装置 Download PDFInfo
- Publication number
- WO2016010146A1 WO2016010146A1 PCT/JP2015/070580 JP2015070580W WO2016010146A1 WO 2016010146 A1 WO2016010146 A1 WO 2016010146A1 JP 2015070580 W JP2015070580 W JP 2015070580W WO 2016010146 A1 WO2016010146 A1 WO 2016010146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- variable
- speed
- motor
- shaft
- constant
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 164
- 238000003780 insertion Methods 0.000 claims abstract description 24
- 230000037431 insertion Effects 0.000 claims abstract description 24
- 230000008878 coupling Effects 0.000 claims description 184
- 238000010168 coupling process Methods 0.000 claims description 184
- 238000005859 coupling reaction Methods 0.000 claims description 184
- 230000002093 peripheral effect Effects 0.000 claims description 59
- 230000008859 change Effects 0.000 claims description 29
- 210000000078 claw Anatomy 0.000 claims description 26
- 238000001816 cooling Methods 0.000 claims description 25
- 229920001971 elastomer Polymers 0.000 claims description 13
- 239000005060 rubber Substances 0.000 claims description 13
- 230000002441 reversible effect Effects 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 230000004323 axial length Effects 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 10
- 239000004020 conductor Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000006698 induction Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/74—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
- H02P5/747—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
- F16H3/724—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/003—Couplings; Details of shafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/02—Arrangements for cooling or ventilating by ambient air flowing through the machine
- H02K9/04—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
- H02K9/06—Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
- H02P5/48—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing mechanical values representing the speeds
- H02P5/485—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing mechanical values representing the speeds using differential movement of the two motors, e.g. using differential gearboxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/04—Arrangements for controlling or regulating the speed or torque of more than one motor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/10—Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
Definitions
- the present invention relates to a variable motor system and an electric device.
- This application claims priority to PCT / JP2014 / 069253 filed on July 18, 2014 and PCT / JP2015 / 055064 filed on February 23, 2015, the contents of which are incorporated herein by reference.
- the variable motor system includes an electric device that generates rotational driving force, a transmission that shifts the rotational driving force generated by the electric device and transmits the rotational driving force to a driving target, and a driving target that is driven by the rotational driving force of the electric device.
- Patent Document 1 discloses a variable motor system as described above.
- the transmission of this variable motor system is a planetary gear transmission.
- This transmission supports a sun gear that rotates about an axis, a plurality of planetary gears that engage with the sun gear and revolve about the axis, and that rotate about its own centerline, and a plurality of planetary gears.
- an internal gear that engages with the planetary gear with a plurality of teeth arranged in an annular shape about the axis.
- An arm shaft extending in the axial direction about the axis is fixed to the arm. This arm shaft forms an output shaft connected to the drive target.
- the electric device of the variable motor system includes a sub motor that rotates the sun gear around the axis, a transmission mechanism that transmits the rotational driving force of the sub motor to the sun gear, and a main motor that rotates the internal gear around the axis. And a transmission mechanism for transmitting the rotational driving force of the main motor to the internal gear.
- Both the rotor shaft of the sub motor and the rotor shaft of the main motor are arranged in parallel to the axis of the transmission and at positions away from the axis in the radial direction.
- Each transmission mechanism has a belt and a pulley.
- the rotation speed of the output shaft connected to the drive target can be changed by changing the rotation speed of the auxiliary motor.
- variable motor system described in Patent Document 1 has a problem in that the size of the variable motor system increases as a whole because two motors are arranged at positions away from the transmission line in the radial direction. Furthermore, this variable motor system requires the provision of a transmission mechanism having a belt, a pulley, etc. for each of the two motors because of the arrangement of the two motors in positions radially away from the axis of the transmission. However, there is a problem that the manufacturing cost is increased.
- an object of the present invention is to provide a variable motor system that can be reduced in size and reduced in manufacturing cost, and an electric device therefor.
- the variable motor system as one aspect according to the invention for solving the above problems is An electric device that generates a rotational driving force; a transmission that shifts the rotational driving force generated by the electric device; and a drive target that is driven by the rotational driving force of the electric device.
- a planetary gear that rotates about a line, a plurality of teeth arranged in an annular shape about the axis, an internal gear that engages with the planetary gear, and a planetary gear carrier shaft that extends in the axial direction about the axis.
- a planetary gear carrier that supports the planetary gear so that it can revolve around the axis and that can rotate around the centerline of the planetary gear itself, and extends in the axial direction around the axis.
- One of these shafts forms an output shaft connected to the rotor to be driven, the other shaft forms a constant speed input shaft, and the remaining one shaft forms a variable speed input shaft.
- the electric device rotates about the axis and rotates around the axis with a constant speed motor having a constant speed rotor connected directly or indirectly to the constant speed input shaft of the transmission.
- a variable-speed electric motor having a variable-speed rotor connected directly or indirectly to the variable-speed input shaft of the transmission, and the first rotor of the variable-speed rotor and the constant-speed rotor Has a cylindrical shape centered on the axis. Shaft insertion hole penetrating in the axial direction is formed, the second rotor is inserted into the shaft insertion hole of the first rotor, the driven rotor is arranged on the axis.
- the constant speed rotor of the constant speed motor and the variable speed rotor of the variable speed motor are arranged on the transmission line, so that the constant speed rotor and the variable speed motor
- the overall size can be reduced as compared with the case where the variable speed rotor is arranged.
- a transmission mechanism such as a belt or a pulley. Can also be reduced.
- variable speed rotor is a first rotor
- constant speed rotor is divided into a constant speed rotor main body shaft and a constant speed rotor extension shaft inserted through the shaft insertion hole
- a constant speed flexible coupling for connecting the constant speed rotor main body shaft and the constant speed rotor extension shaft may be provided.
- the variable speed electric motor includes a variable speed stator disposed on an outer peripheral side of the variable speed rotor, and a variable speed electric motor casing in which the variable speed stator is fixed on an inner peripheral side
- the apparatus includes the sun gear, the sun gear shaft, the planetary gear, the internal gear, the planetary gear carrier shaft, the planetary gear carrier, the internal gear carrier, and a speed change casing that covers them, and
- the transmission casing may be fixed to the transmission motor casing.
- the constant speed motor includes a constant speed stator disposed on an outer peripheral side of the constant speed rotor, a constant speed motor casing in which the constant speed stator is fixed on an inner peripheral side, And having an electric device supporting portion for supporting the constant speed motor casing.
- variable motor system may further include a transmission support portion that supports the variable speed motor casing.
- the support unit can reliably fix the constant-speed motor and the variable-speed motor, which are heavy objects.
- the speed change casing may be fixed to the variable speed motor casing.
- variable speed motor and the transmission may be supported on a common base.
- variable speed motor and the transmission device are integrated by the gantry, so that, for example, when installing the variable motor system, one unit without separating the variable speed motor and the transmission device. Can be transported as Thereby, the work of aligning the output shaft of the variable speed motor and the input shaft of the transmission can be omitted at the installation location of the variable motor system.
- variable-speed rotor is a first rotor, a constant-speed flexible coupling that connects the constant-speed rotor and the constant-speed input shaft, the variable-speed rotor, and the variable-speed input. And a gear coupling that connects the shaft.
- variable speed rotor is a first rotor, and includes a gear coupling that connects the variable speed rotor and the variable speed input shaft, the constant speed rotor and the constant speed input shaft; May be connected via a flange formed on the constant speed rotor and the constant speed input shaft, or may be integrated.
- the gears constituting the gear coupling may be corrected with a tooth trace.
- variable-speed rotor is a first rotor, a constant-speed flexible coupling that connects the constant-speed rotor and the constant-speed input shaft, the variable-speed rotor, and the variable-speed input.
- a damper coupling for connecting a shaft, the damper coupling comprising: a damper coupling first part fixed to the variable speed rotor; and a damper coupling second part fixed to the variable speed input shaft.
- a claw portion provided on at least one of the damper coupling first part and the damper coupling second part, a damper rubber covering the claw part, the damper coupling first part and the damper coupling second And a claw receiving hole provided in at least one of the two parts and into which a claw part covered with the damper rubber is fitted.
- variable motor system a constant speed flexible coupling for connecting the constant speed rotor and the constant speed input shaft, and a variable speed flexible cup for connecting the variable speed rotor and the variable speed input shaft. And a ring.
- the eccentricity, declination, and runout between the constant speed rotor of the electric device and the constant speed input shaft of the transmission can be allowed by the constant speed flexible coupling. Further, in the variable motor system, eccentricity, declination, and deflection between the variable speed rotor of the electric device and the variable speed input shaft of the transmission can be allowed by the variable speed flexible coupling. For this reason, in the variable motor system, it is possible to minimize the effort of centering the transmission with respect to the electric device, and to transmit the shaft runout from the electric device to the transmission, and the shaft from the transmission to the electric device. The transmission of vibration can be suppressed.
- the first rotor of the constant speed flexible coupling and the variable speed flexible coupling is provided.
- a flexible coupling connected to the first flexible coupling, and of the constant speed input shaft and the variable speed input shaft, the input shaft rotated by the rotation of the first rotor is the first input shaft.
- the rotor is connected to the first flexible coupling at the end on the transmission side of the first rotor, and the first input is connected to the first flexible coupling.
- An end portion of the shaft on the electric device side has an annular shape centering on the axis, and is opposed to the rotor-side connection portion in the axial direction, so that the first flange Carboxymethyl transmission-side connection part connected to the table coupling may be formed.
- the rotor-side connection portion of the first rotor disposed on the outer peripheral side of the second rotor, and the transmission-side connection of the first input shaft connected to the first rotor via the first flexible coupling.
- the part opposes in the axial direction.
- a general, that is, a general-purpose flexible coupling can be adopted as the first flexible coupling.
- the constant-speed flexible coupling and the variable-speed flexible coupling the constant-speed flexible coupling and the variable-speed flexible coupling
- the flexible coupling connected to the first rotor forms a first flexible coupling
- the flexible coupling connected to the second rotor forms a second flexible coupling
- the first flexible coupling Is arranged on the outer peripheral side of the second flexible coupling with respect to the axis
- the axial length of the second flexible coupling is the axial length of the first flexible coupling. It may be the following.
- the second flexible coupling is arranged on the inner peripheral side of the first flexible coupling, but the axial length of the second flexible coupling is the axial dimension of the first flexible coupling. Since it is below a length dimension, the attachment operation
- the constant-speed motor includes a constant-speed stator disposed on the outer peripheral side of the constant-speed rotor, and a constant speed in which the constant-speed stator is fixed on the inner peripheral side.
- An electric motor casing, and the variable speed electric motor includes a variable speed stator disposed on an outer peripheral side of the variable speed rotor, a variable speed electric motor casing in which the variable speed stator is fixed on an inner peripheral side, And the variable speed motor casing may be fixed to the constant speed motor casing.
- variable speed motor casing In the variable motor system, the variable speed motor casing is fixed to the constant speed motor casing. Therefore, in the variable motor system, the variable speed rotor can be accurately positioned (centered) with respect to the constant speed rotor before shipment from the manufacturing factory of the variable motor system. Therefore, in the variable motor system, the positioning operation of the variable speed rotor with respect to the constant speed rotor can be omitted at the installation site.
- variable motor system may include an electric device support portion that supports the constant speed motor casing.
- variable motor system may further include a variable speed motor support portion that supports the variable speed motor casing.
- variable motor system may further include a transmission support unit that supports the transmission casing.
- the cooling motor is attached to an end of the second rotor opposite to the transmission,
- the constant speed motor casing and the variable speed motor casing may communicate with each other so that a gas flow is generated by rotation of the cooling fan in the constant speed motor casing and the variable speed motor casing.
- variable motor system when the second rotor rotates, the cooling fan provided at the end of the second rotor also rotates. By the rotation of the cooling fan, external air flows into one of the constant-speed motor casing and the variable-speed motor casing, and cools the rotor, stator, etc. in the one casing. Further, in the variable motor system, since the constant speed motor casing and the variable speed motor casing communicate with each other, the air flowing into one casing also flows into the other casing, and the rotor in the other casing And the stator are cooled. Therefore, in the variable motor system, two motors can be cooled by one cooling fan, and from this viewpoint, the apparatus can be reduced in size and the manufacturing cost can be reduced.
- a frequency conversion device that changes a frequency of power supplied to the variable speed motor, a first switch that switches the constant speed motor between a power supply state and a power cut-off state, A second switch for setting the variable speed motor to a power supply state and a power cut-off state; and instructing a frequency of power supplied to the variable speed motor to the frequency converter, and the first switch and the second switch And a controller for instructing the switch to turn on and off.
- the variable motor system can control the driving and stopping of the constant speed motor and the variable speed motor, and can also control the rotation speed of the variable speed motor.
- the sun gear shaft forms the output shaft
- the planetary gear carrier shaft forms the variable speed input shaft
- the internal gear carrier shaft forms the constant speed input.
- the rotational speed of the output shaft when only the variable speed motor is rotated at the minimum rotational speed is compared with the rotational speed range of the output shaft when both the constant speed motor and the variable speed motor are rotating.
- the rotation speed becomes small. Therefore, in the variable motor system, at the time of startup, the output shaft is rotated by rotating only the variable speed motor at the minimum rotational speed, thereby reducing the startup load torque of the electric device.
- the sun gear shaft forms the output shaft
- the planetary gear carrier shaft forms the variable speed input shaft
- the internal gear carrier shaft forms the constant speed input.
- the controller receives an activation instruction
- the controller supports the first switch to turn on, sets the constant speed motor to the power supply state, and the constant speed motor rotates at a predetermined speed.
- the second switch is instructed to be turned on, the variable speed motor is in the power supply state, and the frequency converter is instructed with a predetermined minimum frequency. May be.
- variable motor system as one aspect according to another invention is An output shaft connected to the drive target, a constant speed input shaft that is rotated at a constant speed, and a variable speed input shaft that is rotated at a variable speed, the rotation speed of the variable speed input shaft and the constant speed input shaft
- An electric device comprising: a transmission in which the rotational speed of the output shaft is determined in accordance with the rotational speed of the output shaft; a constant speed motor that rotationally drives the constant speed input shaft; and a variable speed motor that rotationally drives the variable speed input shaft.
- a frequency converter that changes a frequency of power supplied to the variable speed motor, a first switch that sets the constant speed motor to a power supply state and a power cut-off state, and the variable speed motor to a power supply state and a power cut-off.
- the second switch to be in a state and the frequency conversion device are instructed about the frequency of the electric power supplied to the variable speed motor, and the first switch and the second switch are instructed to be turned on and off.
- the transmission includes a sun gear that rotates about an axis, a sun gear shaft that is fixed to the sun gear and extends in the axial direction about the axis, and engages with the sun gear, and the axis is A planetary gear revolving around the center and rotating around its own centerline, a plurality of teeth arranged in an annular shape around the axis, an internal gear engaging with the planetary gear, and an axial direction around the axis
- a planetary gear carrier shaft extending; and a planetary gear carrier supporting the planetary gear so as to be revolved about the axis and capable of rotating about the centerline of the planetary gear itself, and an axial direction about the axis
- An internal gear carrier shaft extending to the internal gear carrier and supporting the internal gear so as to be capable of rotating about the axis, the sun gear shaft forming the output shaft,
- the star gear carrier shaft forms the constant speed input shaft
- the internal gear carrier shaft forms the variable speed input shaft
- the controller turns on the second switch when receiving an activ
- variable speed motor Instructing the variable speed motor to be in the power supply state, instructing the frequency converter to a predetermined minimum frequency, and starting the variable speed motor to be driven at the minimum rotational speed,
- the first switch is instructed to be turned on, and the constant speed motor is set to the power supply state.
- the variable motor system can control the driving and stopping of the constant speed motor and the variable speed motor, and can also control the rotation speed of the variable speed motor.
- the rotation speed of the output shaft when only the variable speed motor is rotated at the minimum rotation speed is the rotation speed range of the output shaft when both the constant speed motor and the variable speed motor are rotating. The number of revolutions is small compared to. Therefore, in the variable motor system, at the time of startup, the output shaft is rotated by rotating only the variable speed motor at the minimum rotational speed, thereby reducing the startup load torque of the electric device.
- variable motor system as one aspect according to another invention is An output shaft connected to the drive target, a constant speed input shaft that is rotated at a constant speed, and a variable speed input shaft that is rotated at a variable speed, the rotation speed of the variable speed input shaft and the constant speed input shaft
- An electric device comprising: a transmission in which the rotational speed of the output shaft is determined in accordance with the rotational speed of the output shaft; a constant speed motor that rotationally drives the constant speed input shaft; and a variable speed motor that rotationally drives the variable speed input shaft.
- a frequency converter that changes a frequency of power supplied to the variable speed motor, a first switch that sets the constant speed motor to a power supply state and a power cut-off state, and the variable speed motor to a power supply state and a power cut-off.
- the second switch to be in a state and the frequency conversion device are instructed about the frequency of the electric power supplied to the variable speed motor, and the first switch and the second switch are instructed to be turned on and off.
- the transmission includes a sun gear that rotates about an axis, a sun gear shaft that is fixed to the sun gear and extends in the axial direction about the axis, and engages with the sun gear, and the axis is A planetary gear revolving around the center and rotating around its own centerline, a plurality of teeth arranged in an annular shape around the axis, an internal gear engaging with the planetary gear, and an axial direction around the axis
- a planetary gear carrier shaft extending; and a planetary gear carrier supporting the planetary gear so as to be revolved about the axis and capable of rotating about the centerline of the planetary gear itself, and an axial direction about the axis
- An internal gear carrier shaft extending to the internal gear carrier and supporting the internal gear so as to be capable of rotating about the axis, the sun gear shaft forming the output shaft,
- the star gear carrier shaft forms the constant speed input shaft
- the internal gear carrier shaft forms the variable speed input shaft
- the controller turns on the first switch when receiving an activ
- the second switch is instructed to be turned on, and the variable speed motor is The power supply state is set, and a predetermined minimum frequency is instructed to the frequency converter.
- variable motor system by starting a constant-speed motor having a larger output before the variable-speed motor, the load applied to the variable-speed motor is reduced as compared with the case of starting the variable-speed motor first. be able to.
- the frequency converter is a reversible frequency converter capable of changing a direction of a current supplied to the variable speed motor
- the controller When the rotation speed change of the output shaft is accepted, it is determined whether or not the direction of the current supplied to the variable speed motor needs to be changed in order to realize the rotation speed after the change of the rotation speed of the output shaft. If it is determined that it is necessary to change the direction of the current supplied to the variable speed motor, a switch-off instruction that instructs the second switch to turn off and puts the variable speed motor into the power-off state.
- Target frequency indicating step for indicating the frequency required to realize the rotation speed after changing the rotation speed of the output shaft as the frequency of the electric power supplied to the variable speed motor after the variable speed motor starts to rotate in reverse. And may be executed.
- variable motor system when changing the direction of current supplied to the variable speed motor and changing the direction of rotation of the variable speed motor, the power supplied to the variable speed motor is temporarily cut off, and the rotational driving force from the variable speed motor is reduced. Cut off the occurrence. In the variable motor system, thereafter, the direction of the current supplied to the variable speed motor is changed, electric power is supplied to the variable speed motor, and the variable speed motor is driven to rotate. For this reason, in the variable motor system, when the direction of the current supplied to the variable speed motor is changed, a sudden load applied to the variable speed motor can be reduced.
- the transmission includes a brake that restrains the variable speed input shaft to be unrotatable, and the controller includes the switch-off instruction step.
- variable motor system when changing the direction of current supplied to the variable speed motor and changing the direction of rotation of the variable speed motor, the power supplied to the variable speed motor is temporarily cut off, and the rotational driving force from the variable speed motor is reduced. Cut off the occurrence.
- the variable speed input shaft is restrained so as not to rotate by a brake, and the variable speed motor is stopped.
- the direction of the current supplied to the variable speed motor is changed, electric power is supplied to the variable speed motor, and the variable speed motor is driven to rotate. For this reason, in the variable motor system, when the direction of the current supplied to the variable speed motor is changed, a sudden load applied to the variable speed motor can be further reduced.
- the controller needs to change the direction of the current supplied to the variable speed motor in the determination step. Determining that, prior to the execution of the switch-off instruction step, a first minimum frequency instruction step for instructing the frequency conversion device a predetermined minimum frequency as a frequency of electric power to be supplied to the variable speed electric motor 71; In the execution of the switch-off instruction step, the minimum frequency is set as the frequency of the electric power to be supplied to the variable speed motor after the variable speed motor is turned off and before the target frequency instruction step is executed. And a second minimum frequency instruction step for instructing.
- variable motor system when changing the direction of current supplied to the variable speed motor and changing the direction of rotation of the variable speed motor, the variable speed motor is set to the minimum number of revolutions, and then the electric power supplied to the variable speed motor is temporarily set. Cut off the generation of rotational driving force from the variable speed motor. In the variable motor system, thereafter, the direction of the current supplied to the variable speed motor is changed, electric power of the minimum frequency is supplied to the variable speed motor, and the variable speed motor is rotationally driven at the minimum rotational speed. For this reason, in the variable motor system, when the direction of the current supplied to the variable speed motor is changed, a sudden load applied to the variable speed motor can be further reduced.
- the sun gear shaft forms the output shaft
- the planetary gear carrier shaft forms the variable speed input shaft
- the internal gear carrier shaft forms the constant speed input shaft. You may make it.
- the rotation speed of the output shaft can be increased with respect to the rotation speed of the constant speed input shaft.
- the planetary gear carrier can revolve around the planetary gear carrier shaft and the planetary gear about the axis and around the centerline of the planetary gear itself.
- a shaft gear is formed on an outer peripheral surface of the carrier body, an idle gear that engages with the carrier shaft gear and rotates, and a transmission that extends in the axial direction and engages with the idle gear and the carrier body gear.
- variable motor system the components of the planetary gear carrier are small, so that the transmission can be easily assembled.
- the visibility of the planetary gears and the like constituting the transmission is increased, maintenance can be easily performed.
- the number of poles of the variable speed motor may be greater than the number of poles of the constant speed motor.
- the sun gear shaft and the second rotor may be arranged side by side in the horizontal axis direction.
- variable motor system the constant speed motor, the variable speed motor, the transmission, and the drive target may be arranged in a straight line.
- the drive target may be a compressor.
- An electric device as one aspect according to the invention for solving the above problems is An output shaft connected to the rotor to be driven, a constant speed input shaft that is rotated at a constant speed, and a variable speed input shaft that is rotated at a variable speed, and the rotational speed of the variable speed input shaft and the constant speed
- an electric device connected to a transmission in which the rotation speed of the output shaft is determined according to the rotation speed of the input shaft a constant speed motor that rotates the constant speed input shaft and a variable speed input shaft that can be driven to rotate.
- a constant-speed rotor that rotates about an axis and is connected directly or indirectly to the constant-speed input shaft of the transmission, and an outer peripheral side of the constant-speed rotor.
- the first rotor has a cylindrical shape centered on the axis, and has a shaft insertion hole penetrating in the axial direction.
- the second rotor is the first rotor.
- the rotor to be driven is disposed on the axis, and the variable speed motor casing is fixed to the constant speed motor casing.
- the constant speed rotor of the constant speed motor and the variable speed rotor of the variable speed motor are arranged on the same axis, the constant speed rotor and the variable speed rotor are arranged at positions away from the axis in the radial direction. Compared to the case, the overall size can be reduced. Furthermore, since the electric device does not need to be provided with a transmission mechanism such as a belt or a pulley as in the case where the constant-speed rotor and the variable-speed rotor are disposed at positions radially away from the axis, the device from this viewpoint It is possible to reduce the manufacturing cost by reducing the size and the number of parts.
- the electric device does not require a transmission mechanism such as a belt or a pulley, so that a bending load is not applied to the shaft positioned on the axis from the belt or the like, and vibration is reduced. be able to.
- variable speed motor casing In the electric device, the variable speed motor casing is fixed to the constant speed motor casing. For this reason, in the electric device, the variable speed rotor can be accurately positioned (centered) with respect to the constant speed rotor before shipment from the electric device manufacturing factory. Therefore, in the electric apparatus, the positioning work of the variable speed rotor with respect to the constant speed rotor can be omitted at the installation site.
- the electric device further includes a cooling fan attached to an end of the second rotor opposite to the transmission, and the cooling fan is installed in the constant-speed electric motor casing and in the variable-speed electric motor casing.
- the constant speed motor casing and the variable speed motor casing may communicate with each other so that a gas flow is generated by rotation.
- the cooling fan provided at the end of the second rotor also rotates.
- the cooling fan By the rotation of the cooling fan, external air flows into one of the constant-speed motor casing and the variable-speed motor casing, and cools the rotor, stator, etc. in the one casing.
- the constant speed motor casing and the variable speed motor casing communicate with each other, the air flowing into one casing also flows into the other casing, and the rotor in the other casing Cool the stator and the like. Therefore, in the electric device, the two electric motors can be cooled by one cooling fan, and the size reduction and the manufacturing cost can be reduced.
- the apparatus can be reduced in size and the manufacturing cost can be reduced.
- variable motor system in 1st embodiment which concerns on this invention. It is sectional drawing of the transmission in 1st embodiment which concerns on this invention. It is sectional drawing of the electrically-driven apparatus in 1st embodiment which concerns on this invention. It is a schematic diagram which shows the structure of the transmission in 1st embodiment which concerns on this invention. It is a flowchart which shows operation
- variable motor system According to the present invention, various embodiments and various modifications of the variable motor system according to the present invention will be described in detail with reference to the drawings.
- the variable motor system includes an electric device 50 that generates rotational driving force, and a transmission device 10 that shifts the rotational driving force generated by the electric device 50 and transmits it to a drive target.
- the variable motor system can be applied to a fluid mechanical system such as a compressor system, for example.
- the variable motor system is used at a high rotation speed of, for example, 5000 rpm to 20000 rpm. Therefore, for example, if there is a vibration factor such as a slight alignment error, it leads to a large vibration.
- the electric device 50 is supported on the gantry 90 (predetermined structure) by the electric device support portion 50S.
- the transmission 10 is supported on the gantry 90 by the transmission support 10S. By these support portions, the electric device 50 and the transmission 10 which are heavy objects can be securely fixed.
- the gantry 90 may be divided for the electric device 50, the transmission 10 and the compressor C, or may be integrated by any combination.
- the transmission 10 is a planetary gear transmission. As shown in FIG. 2, the transmission 10 includes a sun gear 11 that rotates about an axis Ar that extends in the horizontal direction, a sun gear shaft 12 that is fixed to the sun gear 11, and the sun gear 11. In addition, a plurality of planetary gears 15 revolving around the axis Ar and rotating around the centerline Ap, and a plurality of teeth arranged in an annular shape around the axis Ar are engaged with the plurality of planetary gears 15.
- the planetary gear carrier 21 that supports the internal gear 17, the plurality of planetary gears 15 so as to be revolved about the axis Ar and the centerline Ap of the planetary gear 15 itself, and the internal gear 17 are And an internal gear carrier 31 that is supported so as to be able to rotate, and a transmission casing 41 that covers these.
- the direction in which the axis Ar extends is the axial direction
- one side of the axial direction is the output side
- the opposite side of the output side is the input side.
- the radial direction around the axis Ar is simply referred to as the radial direction.
- the sun gear shaft 12 has a cylindrical shape centered on the axis Ar, and extends from the sun gear 11 to the output side in the axial direction.
- a flange 13 is formed at the output side end of the sun gear shaft 12.
- a rotor of a compressor C as a driving target is connected to the flange 13.
- the sun gear shaft 12 is supported by a sun gear bearing 42 disposed on the output side of the sun gear 11 so as to be rotatable about the axis Ar.
- the sun gear bearing 42 is attached to the transmission casing 41.
- the planetary gear carrier 21 includes a planetary gear shaft 22 provided for each of the plurality of planetary gears 15, a carrier body 23 that fixes the positions of the plurality of planetary gear shafts 22, and is fixed to the carrier body 23 and is centered on the axis Ar. And a planetary gear carrier shaft 27 extending in the axial direction.
- the planetary gear shaft 22 penetrates the center line Ap of the planetary gear 15 in the axial direction, and supports the planetary gear 15 so as to be rotatable about the centerline.
- the carrier body 23 has an output side arm portion 24 extending radially outward from the plurality of planetary gear shafts 22 and a cylindrical shape centering on the axis Ar and extending from the radially outer end of the output side arm portion 24 to the input side. Part 25 and an input side arm part 26 extending radially inward from the output side end of the cylindrical part 25.
- the planetary gear carrier shaft 27 includes an output side planetary gear carrier shaft 27o extending from the output side arm portion 24 to the output side, and an input side planetary gear carrier shaft 27i extending from the input side arm portion 26 to the input side.
- Each of the planetary gear carrier shafts 27o and 27i has a cylindrical shape with the axis line Ar as the center.
- the output-side planetary gear carrier shaft 27o is supported by a planetary gear carrier bearing 43 disposed on the output side with respect to the output-side arm portion 24 so as to be rotatable about the axis Ar.
- the planetary gear carrier bearing 43 is attached to the transmission casing 41.
- the sun gear shaft 12 is inserted into the inner peripheral side of the output side planetary gear carrier shaft 27o.
- the input-side planetary gear carrier shaft 27i is supported by a planetary gear carrier bearing 44 disposed on the input side with respect to the input-side arm portion 26 so as to be rotatable about the axis Ar.
- the planetary gear carrier bearing 44 is attached to the transmission casing 41.
- An annular flange 28 is formed on the input side end of the input side planetary gear carrier shaft 27i so as to expand outward in the radial direction.
- the internal gear carrier 31 has a carrier main body 33 to which the internal gear 17 is fixed, and an internal gear carrier shaft 37 that is fixed to the carrier main body 33 and extends in the axial direction about the axis Ar.
- the carrier body 33 has a cylindrical shape centered on the axis Ar, a cylindrical portion 35 in which the internal gear 17 is fixed on the inner peripheral side, and an input side arm portion that extends radially inward from the input side end of the cylindrical portion 35. 36.
- the internal gear carrier shaft 37 has a cylindrical shape centered on the axis Ar, and is disposed on the input side of the sun gear shaft 12 that also has a cylindrical shape centered on the axis Ar.
- the internal gear carrier shaft 37 is fixed to the input side arm portion 36 of the carrier body 33.
- an annular or disk-shaped flange 38 is formed that extends outward in the radial direction.
- the input side portion of the internal gear carrier shaft 37 is inserted into the inner peripheral side of the cylindrical input side planetary gear carrier shaft 27i.
- the axial position of the flange 38 of the internal gear carrier shaft 37 and the flange 28 of the input side planetary gear carrier shaft 27i substantially coincide with each other.
- the electric device 50 rotates a constant speed motor 51 that rotates and drives an internal gear carrier shaft 37 as a constant speed input shaft Ac, and an input planetary gear carrier shaft 27i as a variable speed input shaft Av.
- a variable speed electric motor 71 to be driven, a cooling fan 91 for cooling them, and a fan cover 92 covering the cooling fan 91 are provided.
- the constant speed motor 51 is, for example, a four-pole induction motor.
- the variable speed motor 71 is a 12-pole induction motor having more poles than the constant speed motor 51.
- the constant speed motor 51 rotates around the axis Ar, and is connected to an internal gear carrier shaft 37 that is a constant speed input shaft Ac.
- the constant speed motor 51 is disposed on the outer peripheral side of the constant speed rotor 52. It has a stator 66 and a constant-speed motor casing 61 in which the constant-speed stator 66 is fixed on the inner peripheral side.
- the constant speed rotor 52 has a constant speed rotor shaft 53 and a conductor 56 fixed to the outer periphery of the constant speed rotor shaft 53.
- the constant speed rotor shaft 53 has a cylindrical shape with the axis Ar as a center, and a constant speed rotor main body shaft 54 having a conductor 56 fixed to the outer periphery thereof, and has a cylindrical shape with the axis Ar as a center.
- a constant-speed rotor extension shaft 55 fixed to the output side of the high-speed rotor main body shaft 54. At both ends in the axial direction of the constant speed rotor extension shaft 55, annular or disk-shaped flanges 55i and 55o are formed, respectively, spreading outward in the radial direction.
- an annular or disk-shaped flange 54o is formed that extends outward in the radial direction.
- the constant-speed rotor extension shaft 55 and the constant-speed rotor main body shaft 54 are integrated by connecting their flanges 55i, 55o, 54o with bolts or the like.
- the aforementioned cooling fan 91 is fixed to the input side end of the constant speed rotor body shaft 54.
- the constant speed stator 66 is disposed on the radially outer side of the conductor 56 of the constant speed rotor 52.
- the constant speed stator 66 is formed by a plurality of coils.
- the constant-speed motor casing 61 has a cylindrical shape centered on the axis Ar, a casing main body 62 in which a constant-speed stator 66 is fixed on the inner peripheral side, and a lid that covers both ends of the cylindrical casing main body 62 in the axial direction. 63i, 63o.
- Constant-speed rotor bearings 65i and 65o that support the constant-speed rotor main body shaft 54 so as to be rotatable about the axis Ar are attached to the lids 63i and 63o.
- Each of the lids 63i, 63o is formed with a plurality of openings 64 penetrating in the axial direction at positions radially outside the constant speed rotor bearings 65i, 65o.
- the input side end of the constant speed rotor body shaft 54 protrudes from the input side lid 63 i of the constant speed motor casing 61 to the input side.
- the cooling fan 91 is fixed to the input side end of the constant speed rotor body shaft 54. For this reason, when the constant speed rotor 52 rotates, the cooling fan 91 also rotates integrally with the constant speed rotor 52.
- the fan cover 92 includes a cylindrical cover main body 93 disposed on the outer peripheral side of the cooling fan 91, and an air circulation plate 94 attached to an opening on the inlet side of the cover main body 93 and formed with a plurality of air holes. Have.
- the fan cover 92 is fixed to the input-side lid 63 i of the constant speed motor casing 61.
- variable speed motor 71 rotates around the axis Ar, and is disposed on the outer peripheral side of the variable speed rotor 72 and the variable speed rotor 72 connected to the input side planetary gear carrier shaft 27i that is the variable speed input shaft Av.
- a variable speed stator 86 and a variable speed motor casing 81 in which the variable speed stator 86 is fixed on the inner peripheral side are provided.
- the variable speed rotor 72 has a variable speed rotor shaft 73 and a conductor 76 fixed to the outer periphery of the constant speed rotor shaft 53.
- the variable speed rotor shaft 73 has a cylindrical shape centered on the axis Ar, and is formed with a shaft insertion hole 74 penetrating in the axial direction.
- a constant speed rotor extension shaft 55 is inserted into the shaft insertion hole 74 of the variable speed rotor shaft 73.
- An annular flange 73o is formed at the output side end of the variable speed rotor shaft 73 so as to expand outward in the radial direction.
- the position of the flange 73o of the variable speed rotor shaft 73 and the flange 55o formed at the output side end of the constant speed rotor extension shaft 55 substantially coincide with each other in the axial direction.
- variable speed rotor 72 in which the shaft insertion hole 74 is formed forms a first rotor
- constant speed rotor 52 inserted through the shaft insertion hole 74 forms a second rotor
- variable speed stator 86 is disposed on the radially outer side of the conductors 56 and 76 of the variable speed rotor 72.
- the variable speed stator 86 is formed of a plurality of coils.
- the variable speed motor casing 81 has a cylindrical shape centered on the axis Ar, a casing main body 82 in which a variable speed stator 86 is fixed on the inner peripheral side, and an output side that closes an output side end of the cylindrical casing main body 82. It has a lid 83o and an inlet side lid 83i that is arranged on the input side of the variable speed stator 86 and is fixed to the inner peripheral side of the cylindrical casing body 82.
- Variable speed rotor bearings 85i and 85o that support the variable speed rotor shaft 73 so as to be rotatable about the axis Ar are attached to the lids 83i and 83o.
- Each lid 83i, 83o is formed with a plurality of openings 84 penetrating in the axial direction at positions radially outside the variable speed rotor bearings 85i, 85o.
- the space in the variable speed motor casing 81 and the space in the constant speed motor casing 61 communicate with each other.
- variable motor system of the present embodiment the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis.
- variable motor system of the present embodiment is further arranged between the input planetary gear carrier shaft 27i, which is the variable speed input shaft Av, and the variable speed rotor 72, and connects the variable speed flexible coupling 95,
- a constant speed flexible coupling 97 is provided between the internal gear carrier shaft 37, which is the constant speed input shaft Ac, and the constant speed rotor 52, and connects the two.
- variable speed flexible coupling 95 has a cylindrical shape, a cylindrical portion 96 having flexibility in each direction at least perpendicular to the central axis Ar of the cylinder, and an annular shape provided on both sides of the cylindrical portion 96. Flanges 95i and 95o.
- the constant speed flexible coupling 97 has a cylindrical shape or a columnar shape, and has a cylindrical portion 98 having flexibility in each direction at least perpendicular to the central axis Ar of the cylinder or the column, and both sides of the cylindrical portion 98. And provided with annular or disc-shaped flanges 97i, 97o.
- variable speed flexible coupling 95 is arranged on the outer peripheral side of the constant speed flexible coupling 97.
- the axial dimension of the constant speed flexible coupling 97 and the axial dimension of the variable speed flexible coupling 95 are the same.
- the outer diameter of the flanges 95i and 95o of the flexible coupling 95 for variable speed, the outer diameter of the flange 28 of the planetary gear carrier 21, and the outer diameter of the flange 73o of the variable speed rotor 72 are the same. Therefore, the flanges 28, 73o, 95i, and 95o are opposed to each other in the axial direction. Therefore, the flange 28 of the planetary gear carrier 21 and the flange 73o of the variable speed rotor 72 can be connected by a general flexible coupling.
- the output side flange 95o of the variable speed flexible coupling 95 and the flange 28 of the planetary gear carrier 21 are connected to each other by bolts or the like.
- the input side flange 95i of the variable speed flexible coupling 95 and the flange 73o of the variable speed rotor 72 are connected to each other by bolts or the like.
- each flange 97i, 97o of the constant speed flexible coupling 97 the outer diameter of the flange 38 of the internal gear carrier 31, the outer diameter of the output side flange 55o of the constant speed rotor extension shaft 55, are the same. Therefore, the flanges 38, 55o, 97i, and 97o are also opposed to each other in the axial direction. Therefore, the flange 38 of the internal gear carrier 31 and the output side flange 55o of the constant speed rotor extension shaft 55 can be connected by a general flexible coupling.
- the output side flange 97o of the constant speed flexible coupling 97 and the flange 38 of the internal gear carrier 31 are connected to each other by bolts or the like.
- the input side flange 97i of the constant speed flexible coupling 97 and the output side flange 55o of the constant speed rotor extension shaft 55 are connected to each other by bolts or the like.
- the cylindrical portion 96 of the variable speed flexible coupling 95 and the cylindrical portion 98 of the constant speed flexible coupling 97 are both possible in each direction at least perpendicular to the central axis Ar of the cylinder or column. It has flexibility. However, the cylindrical portions 96 and 98 of these couplings 95 and 97 are flexible as long as the output side can move relative to the input side in each direction at least perpendicular to the central axis Ar of the cylinder or column. It does not have to have sex.
- variable speed flexible coupling 95 connected to the variable speed rotor 72 that is the first rotor forms the first flexible coupling and is connected to the constant speed rotor 52 that is the second rotor.
- the constant speed flexible coupling 97 forms the second flexible coupling.
- variable speed input shaft Av connected to the variable speed rotor 72, which is the first rotor, via the variable speed flexible coupling 95, which is the first flexible coupling forms the first input shaft.
- the constant speed input shaft Ac connected to the constant speed rotor 52, which is the second rotor, via the constant speed flexible coupling 97, which is the second flexible coupling forms the second input shaft.
- the flange 73o of the variable speed rotor 72, which is the first rotor forms the rotor side connection portion
- the flange 28 of the variable speed input shaft Av, which is the first input shaft forms the transmission side connection portion.
- the constant speed rotor shaft 53 (constant speed rotor extension shaft 55) is passed through the shaft insertion hole 74 of the variable speed rotor shaft 73, and the constant speed motor 51, variable speed motor from the left side of FIG. 71, the transmission, and the compressor C are arranged linearly in this order.
- variable motor system further changes the frequency converter 100 that changes the frequency of power supplied to the variable speed motor 71 and the constant speed motor 51 into a power supply state and a power cut-off state.
- a first switch 111 that controls the operation of the frequency converter 100, the first switch 111, and the second switch 112. And.
- the first switch 111 is electrically connected to the power line 110 and the constant speed motor 51.
- the second switch 112 is electrically connected to the power line 110 and the frequency conversion device 100.
- the frequency converter 100 is electrically connected to the variable speed motor 71.
- the controller 120 is composed of a computer.
- the controller 120 receives an instruction from an operator directly or receives an instruction from a host controller, an interface 122 that gives an instruction to the first switch 111, the second switch 112, and the frequency converter 100, And a calculation unit 123 that generates instructions for the first switch 111, the second switch 112, and the frequency conversion device 100 in accordance with the instructions received by the unit 121.
- the first switch 111 is turned on by an on instruction from the controller 120 and turned off by an off instruction from the controller 120.
- the first switch 111 When the first switch 111 is turned on, the power from the power line 110 is supplied to the constant speed motor 51, and the constant speed motor 51 is in a power supply state.
- the first switch 111 When the first switch 111 is turned off, the power supply from the power line 110 to the constant speed motor 51 is cut off, and the constant speed motor 51 enters a power cut-off state.
- the second switch 112 is turned on by an on instruction from the controller 120 and turned off by an off instruction from the controller 120.
- the electric power from the power line 110 is supplied to the variable speed electric motor 71 via the frequency conversion device 100, and the variable speed electric motor 71 is in the electric power supply state.
- the second switch 112 is turned off, the power supply from the power line 110 to the frequency converter 100 and the variable speed motor 71 is cut off, and the variable speed motor 71 enters a power cut-off state.
- the frequency converter 100 supplies the variable speed electric motor 71 with the electric power of the frequency instruct
- the variable speed rotor 72 of the variable speed motor 71 rotates at a rotational speed corresponding to this frequency.
- the rotation speed of the variable speed rotor 72 changes, the rotation speed of the planetary gear carrier 21 of the transmission 10 connected to the variable speed rotor 72 also changes.
- the rotational speed of the sun gear shaft 12 that is the output shaft Ao of the transmission 10 also changes.
- the constant-speed motor 51 is a four-pole induction motor as described above and the power supply frequency is 50 Hz
- the rotational speed of the constant-speed rotor 52 and the rotational speed ⁇ i of the constant-speed input shaft Ac are 1500 rpm.
- the maximum rotational speed of the variable speed rotor 72 and the maximum rotational speed ⁇ h of the variable speed input shaft Av are 500 rpm.
- the number of teeth Zs of the sun gear 11 the number of teeth Zi of the internal gear 17, and the ratio Zi / Zs are eight.
- the output shaft Ao The rotation speed is -16500 rpm.
- the rotation speed of the output shaft Ao Is -7500 rpm.
- the rotation speed of the output shaft Ao is ⁇ 12000 rpm.
- the number of rotations of the output shaft Ao is -12524 rpm.
- the rotation speed of the output shaft Ao is -11550 rpm.
- the rotation speed of the constant speed rotor 52 is +1500 rpm and the rotation speed of the variable speed rotor 72 can be controlled in the range of ⁇ 50 to ⁇ 500 rpm by frequency control by the frequency converter 100, in other words, the variable speed
- the rotation speed of the output shaft Ao can be controlled in the range of -12450 to -16500 rpm.
- the controller 120 When the controller 120 receives an instruction to start the variable motor system from the outside (S10), the controller 120 outputs an ON instruction to the second switch 112 (S11) and instructs the frequency converter 100 on the minimum frequency (S12).
- the minimum frequency is the minimum frequency that can be set by the frequency conversion device 100 or the minimum frequency that is set in advance by an operator or the like.
- 1/10 of the power supply frequency (50 Hz) is set to the minimum frequency (5 Hz).
- the second switch 112 When the second switch 112 receives an ON instruction from the controller 120, the second switch 112 is turned ON, and the power from the power line 110 is supplied to the frequency conversion device 100.
- the frequency converter 100 receives the minimum frequency as the frequency indication value from the controller 120, the frequency converter 100 converts the frequency of the power from the power supply line 110 into the minimum frequency and supplies it to the variable speed electric motor 71.
- the variable speed motor 71 is in a power supply state in which the power of the minimum frequency is supplied.
- the variable speed electric motor 71 of the present embodiment receives electric power having the same frequency as the power supply frequency (maximum frequency: 50 Hz), as described above, the rotational speed is 500 rpm, which is the maximum rotational speed.
- the rotational speed of the variable speed electric motor 71 becomes the minimum rotational speed of 50 rpm as described above.
- the rotation direction of the variable speed motor 71 is opposite to the rotation direction of the constant speed motor 51.
- the rotational speed of the variable speed motor 71 becomes ⁇ 50 rpm when the direction of the rotation of the constant speed motor 51 is a positive rotation.
- the rotation speed ⁇ s of the output shaft Ao when only the variable speed motor 71 is rotated at the minimum rotation speed is determined by the constant speed motor 51 and the variable speed motor 71.
- the rotational speed is much smaller than the rotational speed range (-12450 to -16500 rpm) of the output shaft Ao ⁇ s when both are rotating.
- the driven object is connected to the output shaft Ao is that if the compressor C, even if the GD 2 is large, it is possible to reduce the starting load torque of the electric device 50.
- the controller 120 outputs an ON instruction to the first switch 111 when the variable speed rotor 72 of the variable speed motor 71 starts rotating and the output shaft Ao starts rotating (S13).
- the first switch 111 When the first switch 111 receives an ON instruction from the controller 120, the first switch 111 is turned ON, and the power from the power line 110 is supplied to the constant speed motor 51.
- the constant speed motor 51 is in a power supply state. become.
- the rotation speed is, for example, 1500 rpm.
- the rotation speed of the constant speed motor 51 and the constant speed input shaft Ac connected thereto is 1500 rpm
- the rotation speed of the variable speed motor 71 and the variable speed input shaft Av connected thereto is 50 rpm (however, the constant speed motor 51 and the constant speed input shaft Ac connected thereto)
- the rotational speed of the output shaft Ao is, for example, 12450 rpm which is the minimum controllable rotational speed (however, the rotation of the constant speed input shaft Ac). The opposite direction).
- the controller 120 waits for reception of an instruction for the target rotation speed of the output shaft Ao (S14) or reception of a stop instruction (S16).
- the controller 120 receives an instruction for the target rotation speed
- the controller 120 responds to the received target rotation speed.
- the obtained frequency is instructed to the frequency converter 100 (S15).
- the frequency converter 100 When the frequency converter 100 receives this instruction, the frequency converter 100 supplies the variable speed electric motor 71 with power having a frequency corresponding to the received target rotational speed.
- the rotational speed of the variable speed motor 71 and the variable speed input shaft Av connected thereto is a rotational speed (-50 to -500 rpm) corresponding to the target rotational speed of the output shaft Ao.
- the output shaft Ao The rotation speed becomes a target rotation speed (-12450 to -16500 rpm).
- the controller 120 instructs the frequency converter 100 to specify a frequency corresponding to the received target rotational speed (S15), and then again receives an instruction for the target rotational speed of the output shaft Ao (S14) or accepts a stop instruction. Wait for (S16).
- the controller 120 receives a stop instruction in this state, the controller 120 outputs an off instruction to the first switch 111 and the second switch 112 (S17).
- the first switch 111 and the second switch 112 are both turned off when receiving an off instruction from the controller 120. For this reason, the power from the power supply line 110 is not supplied to the constant speed motor 51 and the variable speed motor 71, and the constant speed motor 51 and the variable speed motor 71 are in a power-off state. As a result, the output shaft Ao stops.
- the starting load torque of the electric device 50 can be reduced.
- the constant speed rotor 52 of the constant speed motor 51 and the variable speed rotor 72 of the variable speed motor 71 are disposed on the axis Ar of the transmission 10, so that the radial direction from the axis Ar of the transmission 10 Compared with the case where the constant-speed rotor 52 and the variable-speed rotor 72 are arranged at positions apart from each other, the overall size can be reduced. Further, in the present embodiment, it is not necessary to provide a transmission mechanism such as a belt or a pulley as in the case where the constant speed rotor 52 and the variable speed rotor 72 are disposed at a position radially away from the axis Ar of the transmission 10.
- the constant speed flexible coupling (second flexible coupling) 97 is arranged on the inner peripheral side of the variable speed flexible coupling (first flexible coupling) 95, but for constant speed. Since the length dimension in the axial direction of the flexible coupling (second flexible coupling) 97 is equal to or less than the length dimension in the axial direction of the flexible coupling for variable speed (first flexible coupling) 95, each flexible coupling 97 , 95 can be easily performed.
- variable speed motor casing 81 is fixed to the constant speed motor casing 61.
- variable speed rotor 72 can be accurately positioned (centered) with respect to the constant speed rotor 52 before shipment from the manufacturing factory of the variable motor system. Therefore, in this embodiment, the positioning work of the variable speed rotor 72 with respect to the constant speed rotor 52 can be omitted at the installation site.
- the cooling fan 91 provided at the end of the constant speed rotor 52 also rotates.
- the constant speed motor casing 61 and the variable speed motor casing 81 communicate with each other, so that the air that has flowed into the constant speed motor casing 61 also flows into the variable speed motor casing 81 and is allowed.
- the transmission rotor 72 and the variable speed stator 86 are cooled. Therefore, in this embodiment, the two electric motors can be cooled by the single cooling fan 91. From this viewpoint, the apparatus can be reduced in size and the manufacturing cost can be reduced.
- the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis, thereby reducing the installation space (installation space) of the variable motor system. be able to.
- parts (such as bevel gears) for transmitting rotation are not necessary, and the increase in the number of parts can be suppressed and the manufacturing cost can be reduced.
- a constant speed rotor shaft 53 (constant speed rotor extension shaft 55) that is a rod-shaped shaft is inserted into a variable speed rotor shaft 73 that is a cylindrical shaft in which a shaft insertion hole 74 is formed. .
- the constant speed rotor shaft 53 of the constant speed motor 51 having a large output is inserted into the variable speed rotor shaft 73 of the variable speed motor 71 having a smaller output than the constant speed motor 51.
- the thing with a bigger output can be employ
- variable motor system of the present embodiment is similar to the driving force application device of the first embodiment, in which the electric device 50, the transmission 10 a, the frequency conversion device 100 a, the first switch 111, and the second switch 112. And a controller 120a.
- the electric device 50, the first switch 111, and the second switch 112 are the same as those in the first embodiment.
- the transmission 10a of the present embodiment includes a brake 39 that restrains the rotation of the planetary gear carrier 21 around the axis Ar.
- the planetary gear carrier 21 has a brake disk 29 that extends from the carrier body 23 to the outer peripheral side and forms an annular shape.
- the brake 39 is attached to the transmission casing 41 and sandwiches the brake disk 29 of the planetary gear carrier 21 to restrain the planetary gear carrier 21 so as not to rotate.
- the frequency conversion device 100a of the present embodiment can change the frequency of the electric power supplied to the variable speed electric motor 71 and can change the direction of the current supplied to the variable speed electric motor 71. That is, power can be generated using the variable speed motor 71. Therefore, the frequency converter 100a of this embodiment is a reversible frequency converter and can change the direction of rotation of the variable speed rotor 72 of the variable speed motor 71.
- the controller 120a of this embodiment controls the operation of the frequency conversion device 100a, the first switch 111, and the second switch 112 in the same manner as the controller 120 of the first embodiment. Furthermore, the controller 120a of this embodiment instructs the frequency converter 100a to change the direction of the current supplied to the variable speed electric motor 71. Further, the controller 120a of the present embodiment instructs rotation restraint of the planetary gear carrier 21 by the brake 39 of the transmission 10a, and instructs release of this restraint.
- the rotation speed of the constant-speed rotor 52 is +1500 rpm
- the rotation speed of the variable-speed rotor 72 is controlled in the range of ⁇ 50 to ⁇ 500 rpm by the frequency control by the frequency converter 100, and the output shaft Ao
- the rotational speed is controlled within the range of -12450 to -16500 rpm. If the direction of the current supplied to the variable speed motor 71 can be changed, the rotation speed of the variable speed rotor 72 can be set to +50 to +500 rpm. As described above, the rotation speed of the output shaft Ao is set to ⁇ 11550 to -7500 rpm.
- a reversible frequency conversion device that can change the direction of the current supplied to the variable speed motor 71 is adopted as the frequency conversion device 100a, and the variable range of the rotation speed of the output shaft Ao is expanded. .
- the start and stop operations of the variable motor system of the present embodiment are the same as the operations of the variable motor system of the first embodiment.
- the variable motor system of the present embodiment is the same as that of the variable motor system of the first embodiment in that the operation when changing the rotational speed of the output shaft Ao to a desired rotational speed after the output shaft Ao of the transmission 10a starts to rotate. Different from operation.
- variable motor system when changing the rotation speed of the output shaft Ao to a desired rotation speed will be described with reference to the flowchart of FIG.
- the controller 120a outputs an ON instruction to the first switch 111 (S13), and after the constant speed motor 51 starts to rotate at, for example, 1500 rpm, the controller 120a sets the target rotational speed of the output shaft Ao.
- the instruction is accepted (S14), it is determined whether or not it is necessary to change the direction of the current supplied to the variable speed motor 71 in order to realize the target rotational speed (S20: determination step).
- the controller 120a determines that the direction of the current supplied to the variable speed motor 71 needs to be changed, the controller 120a instructs the minimum frequency to the frequency converter 100a (S21: first minimum frequency instruction step).
- the frequency converter 100a When the frequency converter 100a receives the minimum frequency as the frequency indication value from the controller 120a, the frequency converter 100a converts the frequency of the power from the power supply line 110 into the minimum frequency and supplies it to the variable speed motor 71. As a result, the variable speed motor 71 is in a power supply state in which the power of the minimum frequency is supplied. For this reason, when the variable speed motor 71 rotates in the direction opposite to the rotation direction of the constant speed motor 51, the minimum speed becomes ⁇ 50 rpm, and the variable speed motor 71 rotates in the same direction as the rotation direction of the constant speed motor 51. If it is, the minimum rotation speed is +50 rpm.
- the rotation speed of the output shaft Ao of the transmission 10a is -12450 rpm when the variable speed motor 71 rotates in the direction opposite to the rotation direction of the constant speed motor 51, and the variable speed motor 71 is constant. In the case of rotating in the same direction as the rotation direction of the high-speed motor 51, ⁇ 11550 rpm.
- the controller 120a When the rotation speed of the variable speed motor 71 reaches the minimum rotation speed ( ⁇ 50 rpm or +50 rpm), the controller 120a outputs an OFF instruction to the second switch 112 (S22: switch-off instruction process), and also to the brake 39. On the other hand, the rotation restriction of the planetary gear carrier 21 (or the variable speed input shaft Av) is instructed (S23). For this reason, the variable speed motor 71 is in a power-off state, and the rotation about the axis Ar of the planetary gear carrier 21 (or the variable speed input shaft Av) connected to the variable speed motor 71 is stopped.
- the controller 120a instructs the brake 39 to release the rotation constraint of the planetary gear carrier 21 (or the variable speed input shaft Av) ( S24), an ON instruction is output to the second switch 112 (S25). Further, the controller 120a instructs the frequency conversion device 100a to change the direction of the current supplied to the variable speed motor 71 (S26) and instructs the minimum frequency (S27: second minimum frequency instruction step). . For this reason, the variable speed electric motor 71 is in a power supply state in which the direction of the supplied current is reversed, the rotation speed is the minimum rotation speed, and the rotation direction is reversed.
- the processing steps in S25 and S26 described above constitute a switch-on / current direction change instruction step.
- the processing steps in S23 and S24 described above constitute a brake operation instruction step.
- the controller 120a converts the frequency corresponding to the target rotational speed of the output shaft Ao received in step 14 (S14) to the frequency conversion device, as in the first embodiment. 100a is instructed (S15: target frequency instruction step).
- the controller 120a also converts the frequency according to the target rotational speed of the output shaft Ao received in step 14 (S14) even when it is determined in step 20 (S20) that it is not necessary to change the direction of the current.
- the apparatus 100a is instructed (S15: target frequency instruction process).
- the frequency converter 100a When the frequency converter 100a receives this instruction, the frequency converter 100a supplies the variable speed electric motor 71 with electric power having a frequency corresponding to the received target rotational speed.
- the rotation speed of the variable speed motor 71 and the variable speed input shaft Av connected thereto is a rotation speed (+50 to +500 rpm or ⁇ 50 to ⁇ 500 rpm) corresponding to the target rotation speed of the output shaft Ao.
- the rotation speed of the output shaft Ao becomes the target rotation speed ( ⁇ 7500 to ⁇ 11550 rpm ⁇ 12450 to ⁇ 16500 rpm).
- the frequency converter 100a employs the reversible frequency converter that can change the direction of the current supplied to the variable speed motor 71, and thus the output shaft Ao.
- the variable range of the number of rotations can be expanded.
- the rotation of the variable speed motor 71 and the variable speed input shaft Av connected thereto is restrained.
- the rotation direction of the variable speed electric motor 71 is made opposite to the previous rotation direction, and the rotation speed is set to the minimum rotation speed. Therefore, the rotational speed is set to the rotational speed corresponding to the target rotational speed of the output shaft Ao.
- the variable speed input shaft Av connected to the variable speed electric motor 71 by the brake 39 when the brake 39 is provided in the transmission 10 a and the direction of the current supplied to the variable speed electric motor 71 is changed, the variable speed input shaft Av connected to the variable speed electric motor 71 by the brake 39. Is temporarily constrained. However, when the direction of the current supplied to the variable speed electric motor 71 is changed without providing the brake 39 in the transmission 10a, the rotation of the variable speed input shaft Av connected to the variable speed electric motor 71 may not be restricted. . However, in this case, the load applied to the variable speed electric motor 71 increases when the direction of the current supplied to the variable speed electric motor 71 is changed as compared with the case of the present embodiment.
- variable motor casing 61 of the constant speed motor 51 and the variable speed motor casing 81 of the variable speed motor 71 constituting the electric device 50 are separated, and the variable speed motor The electric motor casing 81 and the transmission casing 41 of the transmission 10 are integrated.
- the electric device 50 is fixed to the gantry 90 by the electric device support portion 50S.
- the variable speed motor 71 is fixed to the gantry 90 by a variable speed motor support portion 71S.
- the transmission 10 is fixed to the gantry 90 by the transmission support 10S.
- the compressor C as a driving target is also fixed to the gantry 90 by a support portion (not shown).
- variable speed motor casing 81 and the speed change casing 41 of the present embodiment are integrated, it is only necessary that the support portion is provided with at least one of the variable speed motor support portion 71S and the transmission device support portion 10S. .
- the gantry 90 may be divided for the electric device 50, the variable speed electric motor 71 and the transmission 10, and the compressor C, or may be integrated in any combination.
- variable speed motor casing 81 and the transmission casing 41 are firmly connected. That is, the output side cover 83o of the variable speed electric motor casing 81 and the transmission casing 41 are firmly joined by, for example, bolts or welding.
- a constant speed rotor main body shaft 54 constituting the constant speed rotor shaft 53 and a constant speed rotor extension shaft 55 inserted through the shaft insertion hole 74 of the variable speed rotor shaft 73 are connected by a constant speed flexible coupling 97.
- the constant speed rotor shaft 53 of this embodiment includes a constant speed rotor main body shaft 54, a constant speed rotor extension shaft 55, and a constant speed flexible coupling 97.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 are fixed via a flange 55 o of the constant speed rotor extension shaft 55 and a flange 38 of the internal gear carrier shaft 37.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be integrated without using the flange 38. That is, the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 of the present embodiment are not connected by a flexible coupling.
- the variable speed rotor shaft 73 of the variable speed rotor 72 and the input side planetary gear carrier shaft 27i of the planetary gear carrier shaft 27 are not connected by a flexible coupling, but are directly connected by a bolt or the like or a gear coupling. Connected through.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be integrated without providing the flange 55o and the flange 38.
- controller 120 When controller 120 receives an instruction to start the variable motor system from the outside (S10), controller 120 outputs an ON instruction to first switch 111 (S11a). Here, the controller 120 instructs the brake 39 to restrain the rotation of the planetary gear carrier 21 (or the variable speed input shaft Av) (S28). The controller 120 outputs an ON instruction to the second switch 112 when the rotation speed of the constant speed motor 51 reaches a predetermined rotation speed (for example, 1500 rpm) (S12a), and the controller 120 minimizes the frequency conversion apparatus 100. The frequency is instructed (S13a). Next, an instruction to release the rotation restriction of the planetary gear carrier 21 (or the variable speed input shaft Av) by the brake 39 is output (S29).
- a predetermined rotation speed for example, 1500 rpm
- the manufacturing cost can be further reduced.
- the variable speed flexible coupling 95 can be omitted. As a result, the manufacturing cost can be further reduced.
- the constant speed motor 51 having a larger output is started before the variable speed motor 71, so that the variable speed motor 71 is given to the variable speed motor 71 compared to the case where the variable speed motor 71 is started first. Can be reduced. That is, when starting up the variable speed motor 71 first, the variable speed motor 71 cannot cope with the sudden torque fluctuation when the constant speed motor 51 is started up. Can be avoided.
- the method of starting the constant speed motor 51 prior to the variable speed motor 71 is also applicable to the variable motor system of the first embodiment and the variable motor system of the second embodiment.
- variable motor casing 61 of the constant speed motor 51 and the variable speed motor casing 81 of the variable speed motor 71 constituting the electric device 50 are separated, and the variable speed motor The electric motor casing 81 and the transmission casing 41 of the transmission 10 are separated.
- the variable speed motor 71 and the transmission 10 are arranged on a common second frame 99. In other words, the variable speed electric motor 71 and the transmission 10 are integrated via the second frame 99.
- the second frame 99 is supported by the frame 90.
- the constant speed rotor body shaft 54 and the constant speed rotor extension shaft 55 are connected via a constant speed flexible coupling 97.
- variable speed rotor shaft 73 and the planetary gear carrier shaft 27 are connected via a variable speed flexible coupling 95.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 are connected via a constant speed flexible coupling 97, as in the first and second embodiments.
- variable speed motor 71 and the transmission 10 are integrated by the second frame 99, for example, when the variable motor system is installed. Can be transported as one unit without separation. Thereby, the work of aligning the output shaft of the variable speed motor 71 and the input shaft of the transmission 10 at the installation location of the variable motor system can be omitted.
- variable motor system of this embodiment differs from the variable motor system of the fourth embodiment in the connection method of the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 are the same as the variable motor system of the third embodiment, and the flange 55o of the constant speed rotor extension shaft 55 and the internal gear carrier shaft. It is fixed via 37 flanges 38.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be integrated without using the flange 38.
- variable motor system A sixth embodiment of the variable motor system according to the present invention will be described with reference to FIG. In this embodiment, the differences from the fourth and fifth embodiments described above will be mainly described, and the description of the same parts will be omitted.
- the variable motor system of the present embodiment is used to connect the variable speed rotor shaft 73 and the planetary gear carrier shaft 27 of the fourth and fifth embodiments, instead of the variable speed flexible coupling 95.
- the outer gear 103 extends in the circumferential direction on the outer peripheral surface of the coupling body 101.
- the coupling body 101 may be eliminated, and the outer gear 103 may be provided directly on the outer peripheral surfaces of the variable speed rotor shaft 73 and the planetary gear carrier shaft 27.
- the coupling case 102 includes a cylindrical coupling case main body 105 and a flange portion 106 that protrudes in the radial direction from the axial end of the coupling case main body 105.
- An inner gear 104 that engages with the outer gear 103 of the coupling body 101 is formed on the inner peripheral surface of the coupling case body 105.
- the gear coupling 95A includes a coupling body 101 and a coupling case 102 attached to one shaft (here, the variable speed rotor shaft 73) and a coupling attached to the other shaft (here, the planetary gear carrier shaft 27).
- the main body 101 and the coupling case 102 are connected via a pair of flange portions 106.
- the pair of flange portions 106 are fastened by a fastening member such as a bolt 115.
- the shaft and the coupling body 101 of the gear coupling 95A are fixed via a key (not shown).
- the shaft and the coupling body 101 of the gear coupling 95A may be fixed by an interference fit or the like.
- the coupling body 101 may be eliminated, and the outer gear 103 may be provided directly on the outer peripheral surfaces of the variable speed rotor shaft 73 and the planetary gear carrier shaft 27.
- the streak correction is performed on the outer gear 103 of the gear coupling according to the modified example of the sixth embodiment.
- the outer gear 103 is crowned. That is, the outer gear 103 is formed such that the thickness T1 at the center in the tooth width direction X (the axial direction of the gear coupling body 101) is thicker than the thickness T2 at both ends in the tooth width direction. In other words, the outer gear 103 swells at the center in the tooth width direction X as compared with both ends.
- the tooth contact is concentrated at the central portion in the tooth width direction X, so that the allowable shaft angle error can be increased.
- crowning is used for correcting tooth traces.
- the present invention is not limited to this as long as the shaft angle error between the shafts can be tolerated.
- the end that processes only both end portions in the tooth width direction is used. Relief technology can also be employed.
- variable motor system A seventh embodiment of the variable motor system according to the present invention will be described with reference to FIG.
- the variable motor system of the present embodiment is replaced with the variable speed flexible coupling 95 used for connecting the variable speed rotor shaft 73 and the planetary gear carrier shaft 27 of the fourth and fifth embodiments, as shown in FIG.
- a damper coupling 95B as shown is used.
- the damper coupling 95B includes a damper coupling first part 131 attached to the variable speed rotor shaft 73, a damper coupling second part 132 attached to the planetary gear carrier shaft 27, and a damper coupling.
- a plurality of damper rubbers 107 are provided between the first part 131 and the damper coupling second part 132.
- the damper coupling second portion 132 includes a cylindrical second cylindrical portion 133, a disk-shaped second protruding portion 134 that protrudes radially outward from the outer peripheral surface of the second cylindrical portion 133, and a second protruding portion And a plurality of claw portions 135 protruding from one surface of 134.
- the claw portion 135 has a cylindrical shape, and a plurality of claw portions 135 are provided at intervals in the circumferential direction.
- the damper coupling first portion 131 includes a cylindrical first cylindrical portion 136 and a first protruding portion 137 that protrudes radially outward from the outer peripheral surface of the first cylindrical portion 136.
- a plurality of claw receiving holes 138 are formed in the first protrusion 137.
- the damper rubber 107 is a shock-absorbing member having a bottomed cylindrical shape made of rubber.
- the damper rubber 107 is attached to the claw portion 135 of the damper coupling second portion 132.
- the damper rubber 107 is attached so as to cover the outer peripheral surface and the front end surface of the claw portion 135.
- the claw accommodation hole 138 has a shape in which the claw portion 135 to which the damper rubber 107 is attached fits. That is, the damper rubber 107 is interposed between the claw portion 135 and the claw receiving hole 138.
- the claw portion 135 is formed in the damper coupling second portion 132 and the claw receiving hole 138 is formed in the damper coupling first portion 131.
- the present invention is not limited to this.
- the claw part 135 may be formed in the damper coupling first part 131 and the claw accommodating hole 138 may be formed in the damper coupling second part 132.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be fixed via the flange 55o of the constant speed rotor extension shaft 55 and the flange 38 of the internal gear carrier shaft 37.
- the constant speed rotor extension shaft 55 and the internal gear carrier shaft 37 may be integrated without using the flange 38.
- the amount of torque fluctuation can be absorbed by the damper rubber.
- the load concerning the internal components and coupling of a variable speed electric motor and a transmission can be reduced.
- misalignment at the time of connecting the shafts and alignment errors due to thermal deformation can be absorbed.
- the transmission 10A of the variable motor system of the present embodiment is different in the structure of the planetary gear carrier.
- the planetary gear carrier 21A of the present embodiment includes a planetary gear carrier shaft 27A, a planetary gear shaft 22 provided for each of the plurality of planetary gears 15, and positions of the plurality of planetary gear shafts 22 relative to each other. And a transmission portion 117 for transmitting the rotation of the planetary gear carrier shaft 27A to the carrier body 116. That is, in the planetary gear carrier 21A of the present embodiment, the planetary gear carrier shaft 27A and the carrier body 116 are not integrated.
- a carrier shaft gear 118 is formed on the outer peripheral surface of the planetary gear carrier shaft 27A of the present embodiment.
- a carrier body gear 119 is formed on the outer peripheral surface of the carrier body 116 of the present embodiment.
- the transmission portion 117 rotates by engaging with the carrier shaft gear 118 formed on the outer peripheral surface of the planetary gear carrier shaft 27A, the carrier main body gear 119 formed on the outer peripheral surface of the carrier main body 116, and the carrier shaft gear 118.
- a pair of idle gears 125 and a pair of transmission shaft gears 126 extending in the axial direction and engaging with the idle gear 125 and the carrier main body gear 119 are provided.
- the idle gear 125 is a gear that can rotate around an idle gear shaft 127 that extends in the horizontal direction, and is disposed at a position that engages with the carrier shaft gear 118.
- the idle gear 125 of this embodiment is disposed in the horizontal left-right direction of the carrier shaft gear 118.
- the transmission shaft gear 126 is a shaft-shaped gear that engages with the idle gear 125 and the carrier main body gear 119.
- the transmission shaft gear 126 of this embodiment is provided at both ends of the main body shaft 128, the first transmission shaft gear 129 a that engages with the idle gear 125, and the second that engages with the carrier main body gear 119.
- the transmission shaft gear 126 is arranged to the left of the horizontal left idle gear 125 and to the right of the horizontal right idle gear 125.
- the components of the planetary gear carrier are reduced, so that the transmission 10A can be easily assembled. Further, since the visibility of the planetary gear 15 and the like constituting the transmission 10A is increased as compared with the planetary gear carrier 21 of the first to seventh embodiments, maintenance can be easily performed.
- the drive target is the compressor C, and the compressor C is rotated at a high speed of 7500 rpm or more.
- the rotational speed of the constant-speed motor 51 is increased by the transmissions 10 and 10a in order to rotate the drive target at a high speed as described above.
- the sun gear shaft 12 is the output shaft Ao
- the internal gear carrier shaft 37 is the constant speed input shaft Ac
- the input planetary gear carrier shaft 27i is the variable speed input.
- the axis Av is used.
- the transmission of the rotational driving force transmission apparatus may be, for example, for decelerating the rotational speed of the constant speed motor 51.
- the sun gear shaft 12 may be the constant speed input shaft Ac
- the planetary gear carrier shaft 27 may be the variable speed input shaft Av
- the internal gear carrier shaft 37 may be the output shaft Ao.
- the sun gear shaft 12 may be the output shaft Ao as in the above embodiment
- the internal gear carrier shaft 37 may be the variable speed input shaft Av
- the planetary gear carrier shaft 27 may be the constant speed input shaft Ac.
- any one of the sun gear shaft 12, the planetary gear carrier shaft 27, and the internal gear carrier shaft 37 is the output shaft Ao, the other shaft is the constant speed input shaft Ac, and the remaining shafts are
- the variable speed input shaft Av is set as appropriate depending on whether or not the output is increased with respect to the input, the change range of the output acceleration and deceleration, and the like.
- any one of the sun gear shaft 12, the planetary gear carrier shaft 27, and the internal gear carrier shaft 37 is the output shaft Ao
- the other shaft is the constant speed input shaft Ac
- the remaining shafts are Even in the case of the variable speed input shaft Av
- the constant speed rotor 52 connected to the constant speed input shaft Ac and the variable speed rotor 72 connected to the variable speed input shaft Av are coaxially arranged.
- a four-pole induction motor is exemplified as the constant speed motor 51 suitable for rotating the compressor C at a high speed, and the rotational speed of the compressor C is variable within a certain range. Therefore, a 12-pole induction motor is illustrated as a suitable variable speed motor 71.
- a 12-pole induction motor is illustrated as a suitable variable speed motor 71.
- other types of electric motors may be used as the constant speed electric motor 51 and the variable speed electric motor 71.
- variable speed rotor 72 formed with the shaft insertion hole 74 forms the first rotor
- the constant speed rotor 52 inserted through the shaft insertion hole 74 forms the second rotor.
- the constant speed rotor forms the first rotor
- the variable speed rotor forms the second rotor.
- variable speed flexible coupling 95 that connects the variable speed rotor 72 and the variable speed input shaft Av forms the first flexible coupling
- constant speed rotor 52 and the constant speed input shaft Ac forms the constant-speed flexible coupling
- the constant-speed flexible coupling 97 that connects the two forms a second flexible coupling.
- the constant speed flexible coupling is disposed on the outer peripheral side of the variable speed flexible coupling
- the constant speed flexible coupling forms the first flexible coupling
- variable speed flexible coupling is the second flexible. A coupling will be made.
- the apparatus can be reduced in size and the manufacturing cost can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Structure Of Transmissions (AREA)
- Retarders (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
本願は、2014年7月18日に出願されたPCT/JP2014/069253、及び2015年2月23日に出願されたPCT/JP2015/055064について優先権を主張し、その内容をここに援用する。
回転駆動力を発生する電動装置と、前記電動装置で発生した回転駆動力を変速させる変速装置と、前記電動装置の回転駆動力によって駆動される駆動対象と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象のロータに接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、前記電動装置は、前記軸線を中心として自転し、前記変速装置の前記定速入力軸に直接又は間接的に接続されている定速ロータを有する定速電動機と、前記軸線を中心として自転し、前記変速装置の前記可変速入力軸に直接又は間接的に接続されている可変速ロータを有する可変速電動機と、を有し、前記可変速ロータと前記定速ロータとのうち、第一ロータには、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、第二ロータは、前記第一ロータの前記軸挿通孔に挿通され、前記駆動対象のロータは、前記軸線上に配置されている。
駆動対象に接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置と、前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を有する電動装置と、前記可変速電動機に供給する電力の周波数を変える周波数変換装置と、前記定速電動機を電力供給状態と電力断状態とにする第一スイッチと、前記可変速電動機を電力供給状態と電力断状態とにする第二スイッチと、前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数を指示すると共に、前記第一スイッチ及び前記第二スイッチに対してオン、オフを指示する制御器と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記定速入力軸を成し、前記内歯車キャリア軸が前記可変速入力軸を成し、前記制御器は、起動の指示を受け付けると、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示し、前記可変速電動機が最少回転数で駆動し始めた後に、前記第一スイッチに対してオンを指示して、前記定速電動機を前記電力供給状態にする。
駆動対象に接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置と、前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を有する電動装置と、前記可変速電動機に供給する電力の周波数を変える周波数変換装置と、前記定速電動機を電力供給状態と電力断状態とにする第一スイッチと、前記可変速電動機を電力供給状態と電力断状態とにする第二スイッチと、前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数を指示すると共に、前記第一スイッチ及び前記第二スイッチに対してオン、オフを指示する制御器と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記定速入力軸を成し、前記内歯車キャリア軸が前記可変速入力軸を成し、前記制御器は、起動の指示を受け付けると、前記第一スイッチに対してオンを支持して、前記定速電動機を前記電力供給状態にして、前記定速電動機が所定の回転数で駆動し始めた後に、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示する。
駆動対象のロータに接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置に接続される電動装置において、前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を備え、前記定速電動機は、軸線を中心として自転し、前記変速装置の前記定速入力軸に直接又は間接的に接続される定速ロータと、前記定速ロータの外周側に配置されている定速ステータと、前記定速ステータが内周側に固定されている定速電動機ケーシングと、を有し、前記可変速電動機は、前記軸線を中心として自転し、前記変速装置の前記可変速入力軸に直接又は間接的に接続される可変速ロータと、前記可変速ロータの外周側に配置されている可変速ステータと、前記可変速ステータが内周側に固定されている可変速電動機ケーシングと、を有し、前記可変速ロータと前記定速ロータとのうち、第一ロータには、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、第二ロータは、前記第一ロータの前記軸挿通孔に挿通され、前記駆動対象のロータは、前記軸線上に配置され、前記定速電動機ケーシングに対して前記可変速電動機ケーシングが固定されている。
本発明に係る可変電動機システムの第一実施形態について、図1~図5を用いて説明する。
電動装置50は、電動装置支持部50Sによって架台90(所定の構造物)に支持されている。変速装置10は、変速装置支持部10Sによって架台90に支持されている。これら支持部により、重量物である電動装置50及び変速装置10の確実な固定が可能となる。
なお、架台90は、電動装置50用、変速装置10用、及び圧縮機C用に分割されていてもよいし、又はいずれかの組み合わせで一体化されていてもよい。
また、本実施形態では、定速ロータ軸53(定速ロータ延長軸55)を可変速ロータ軸73の軸挿通孔74に貫通させており、図1の左側より定速電動機51、可変速電動機71、変速装置、圧縮機Cの順に直線状に配置している。
ωs/ωi = ωh/ωi -(1-ωh/ωi )×Zi/Zs ・・・・・(1)
ωs/ωh=Zi/Zs+1 ・・・・・(2)
また、本実施形態では、軸挿通孔74が形成された円筒状の軸である可変速ロータ軸73に棒状の軸である定速ロータ軸53(定速ロータ延長軸55)が挿通されている。即ち、出力の大きな定速電動機51の定速ロータ軸53が定速電動機51よりも出力の小さい可変速電動機71の可変速ロータ軸73に挿通されている。これにより、定速電動機51としてより大きな出力(馬力)のあるものを採用することができる。
また、本実施形態では、定速電動機51、可変速電動機71、変速装置、圧縮機Cの順に直線状に配置していることにより、装置全体をよりコンパクトにすることができる。
本発明に係る可変電動機システムの第二実施形態について、図6及び図7を用いて説明する。
本発明に係る可変電動機システムの第三実施形態について、図8及び図9を用いて説明する。
電動装置50は、電動装置支持部50Sによって架台90に固定されている。可変速電動機71は、可変速電動機支持部71Sによって架台90に固定されている。変速装置10は、変速装置支持部10Sによって架台90に固定されている。また、駆動対象としての圧縮機Cも図示しない支持部によって架台90に固定されている。なお、本実施形態の可変速電動機ケーシング81と変速ケーシング41とは一体とされているため、支持部は、可変速電動機支持部71Sと変速装置支持部10Sの少なくとも一方が設けられていればよい。
なお、架台90は、電動装置50用、可変速電動機71と変速装置10用、及び圧縮機C用に分割されていてもよいし、又はいずれかの組み合わせで一体化されていてもよい。
定速ロータ軸53を構成する定速ロータ本体軸54と、可変速ロータ軸73の軸挿通孔74に挿通されている定速ロータ延長軸55とは、定速用フレキシブルカップリング97によって接続されている。即ち、本実施形態の定速ロータ軸53は、定速ロータ本体軸54と、定速ロータ延長軸55と、定速用フレキシブルカップリング97と、を有する。
即ち、本実施形態の定速ロータ延長軸55と内歯車キャリア軸37とはフレキシブルカップリングによって接続されていない。また、可変速ロータ72の可変速ロータ軸73と、遊星歯車キャリア軸27の入力側遊星歯車キャリア軸27iとは、フレキシブルカップリングによって接続されてなく、ボルト等による直接接続またはギアカップリング等を介して接続されている。なお、フランジ55o、フランジ38を設けることなく、定速ロータ延長軸55と内歯車キャリア軸37とを一体化させてもよい。
ここで、制御器120は、ブレーキ39に対して遊星歯車キャリア21(又は可変速入力軸Av)の回転拘束を指示する(S28)。
制御器120は、定速電動機51の回転数が所定の回転数(例えば、1500rpm)に達した段階で、第二スイッチ112に対してオン指示を出力し(S12a)、周波数変換装置100へ最少周波数を指示する(S13a)。次いで、ブレーキ39による遊星歯車キャリア21(又は可変速入力軸Av)の回転拘束を解除する指示を出力する(S29)。
また、可変速用フレキシブルカップリング95を省略することができる。これにより、更なる製造コストの低減を図ることができる。
なお、定速電動機51を可変速電動機71よりも先に起動する方法は、第一実施形態の可変電動機システム、第二実施形態の可変電動機システムにも適用可能である。
本発明に係る可変電動機システムの第四実施形態について、図10を用いて説明する。
可変速電動機71と変速装置10は共通の第二架台99上に配置されている。換言すれば、可変速電動機71と変速装置10とは、第二架台99を介して一体化されている。第二架台99は、架台90によって支持されている。第三実施形態の可変電動機システムと同様に、定速ロータ本体軸54と定速ロータ延長軸55とは、定速用フレキシブルカップリング97を介して接続されている。
また、第一実施形態の可変電動機システムと同様に、可変速ロータ軸73と遊星歯車キャリア軸27とは、可変速用フレキシブルカップリング95を介して接続されている。また、定速ロータ延長軸55と内歯車キャリア軸37とは、第一、第二実施形態と同様、定速用フレキシブルカップリング97を介して接続されている。
本発明に係る可変電動機システムの第五実施形態について、図11を用いて説明する。本実施形態では、上述した第四実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
本実施形態の可変電動機システムは、第三実施形態の可変電動機システムと同様に、定速ロータ延長軸55と内歯車キャリア軸37とは、定速ロータ延長軸55のフランジ55oと内歯車キャリア軸37のフランジ38を介して固定されている。又は、定速ロータ延長軸55と、内歯車キャリア軸37とは、フランジ38を介さず一体化してもよい。
本発明に係る可変電動機システムの第六実施形態について、図12を用いて説明する。本実施形態では、上述した第四、及び第五実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
本実施形態の可変電動機システムは、第四、及び第五実施形態の可変速ロータ軸73と遊星歯車キャリア軸27の接続に使用されているとは可変速用フレキシブルカップリング95に替えて、図12に示すようなギアカップリング95Aを使用している。
図12に示すように、ギアカップリング95Aは、円筒形状の一対のカップリング本体101と、一対のカップリングケース102とを備えている。カップリング本体101の外周面には、外側歯車103が形成されている。外側歯車103は、カップリング本体101の外周面に周方向に延在している。
なお、カップリング本体101をなくし、外側歯車103を可変速ロータ軸73及び遊星歯車キャリア軸27の外周面に直接設けてもよい。
なお、カップリング本体101をなくし、外側歯車103を可変速ロータ軸73及び遊星歯車キャリア軸27の外周面に直接設けてもよい。
図13に示すように、第六実施形態の変形例のギアカップリングの外側歯車103には、歯すじ修正が行われている。具体的には、外側歯車103には、クラウニングが施されている。即ち、外側歯車103は、歯幅方向X(ギアカップリング本体101の軸方向)の中央部の厚さT1が歯幅方向の両端部の厚さT2よりも厚くなるように形成されている。換言すれば、外側歯車103は、歯幅方向Xの中央部が両端部と比較して膨らんでいる。
なお、上記変形例では、歯すじ修正としてクラウニングを用いたが、軸同士の軸角誤差を許容することができれば、これに限ることはなく、例えば、歯幅方向の両端部のみを加工するエンドレリーフの技術も採用することができる。
本発明に係る可変電動機システムの第七実施形態について、図14を用いて説明する。
本実施形態の可変電動機システムは、第四、及び第五実施形態の可変速ロータ軸73と遊星歯車キャリア軸27の接続に使用されている可変速用フレキシブルカップリング95に替えて、図14に示すようなダンパーカップリング95Bを使用している。
ダンパーラバー107は、ゴムによって形成された有底円筒状をなす緩衝部材である。ダンパーラバー107は、ダンパーカップリング第二部132の爪部135に取り付けられている。ダンパーラバー107は、爪部135の外周面及び先端面を覆うように取り付けられる。
なお、上記実施形態では、ダンパーカップリング第二部132に爪部135を形成するとともに、ダンパーカップリング第一部131に爪収容孔138を形成する構成としたが、これに限ることはない。例えば、ダンパーカップリング第一部131に爪部135を形成するとともに、ダンパーカップリング第二部132に爪収容孔138を形成してもよい。また、ダンパーカップリング第一部131とダンパーカップリング第二部132の両方に、爪部135と爪収容孔138を設ける構成としてもよい。
また、第五実施形態と同様に、定速ロータ延長軸55と内歯車キャリア軸37とは、定速ロータ延長軸55のフランジ55oと内歯車キャリア軸37のフランジ38を介して固定してもよい。又は、定速ロータ延長軸55と、内歯車キャリア軸37とは、フランジ38を介さず一体化してもよい。
本発明に係る可変電動機システムの第八実施形態について、図15を用いて説明する。
本実施形態の可変電動機システムの変速装置10Aは、遊星歯車キャリアの構造が異なっている。図15に示すように、本実施形態の遊星歯車キャリア21Aは、遊星歯車キャリア軸27Aと、複数の遊星歯車15毎に設けられている遊星歯車軸22と、複数の遊星歯車軸22相互の位置を固定するキャリア本体116と遊星歯車キャリア軸27Aの回転をキャリア本体116に伝達する伝達部117と、を有している。
即ち、本実施形態の遊星歯車キャリア21Aは、遊星歯車キャリア軸27Aと、キャリア本体116とが一体となっていない。
伝達部117は、遊星歯車キャリア軸27Aの外周面に形成されたキャリア軸歯車118と、キャリア本体116の外周面に形成されたキャリア本体歯車119と、キャリア軸歯車118と係合して自転する一対のアイドル歯車125と、軸方向に延び、アイドル歯車125とキャリア本体歯車119とに係合する一対の伝達軸歯車126と、を備えている。
伝達軸歯車126は、アイドル歯車125及びキャリア本体歯車119に係合する軸状の歯車である。本実施形態の伝達軸歯車126は、本体軸128と、本体軸128の両端に設けられて、アイドル歯車125に係合する第一伝達軸歯車129aと、キャリア本体歯車119に係合する第二伝達軸歯車129bと、を備えている。伝達軸歯車126は、水平左方のアイドル歯車125の左方、及び水平右方のアイドル歯車125の右方に配置されている。
また、第一実施形態から第七実施形態の遊星歯車キャリア21と比較して、変速装置10Aを構成する遊星歯車15等の視認性が高まるため、メンテナンスを容易に行うことができる。
以上で説明した可変電動機システムの各実施形態の変形例について説明する。
Claims (35)
- 回転駆動力を発生する電動装置と、
前記電動装置で発生した回転駆動力を変速させる変速装置と、
前記電動装置の回転駆動力によって駆動される駆動対象と、
を備え、
前記変速装置は、
軸線を中心として自転する太陽歯車と、
前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、
前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、
前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
を有し、
前記太陽歯車軸と前記遊星歯車キャリア軸と前記内歯車キャリア軸とのうち、いずれか一つの軸が前記駆動対象のロータに接続される出力軸を成し、他の一つの軸が定速入力軸を成し、残りの一つの軸が可変速入力軸を成し、
前記電動装置は、
前記軸線を中心として自転し、前記変速装置の前記定速入力軸に直接又は間接的に接続されている定速ロータを有する定速電動機と、
前記軸線を中心として自転し、前記変速装置の前記可変速入力軸に直接又は間接的に接続されている可変速ロータを有する可変速電動機と、
を有し、
前記可変速ロータと前記定速ロータとのうち、第一ロータには、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、第二ロータは、前記第一ロータの前記軸挿通孔に挿通され、
前記駆動対象のロータは、前記軸線上に配置されている、
可変電動機システム。 - 請求項1に記載の可変電動機システムにおいて、
前記可変速ロータが第一ロータであり、
前記定速ロータは、定速ロータ本体軸と前記軸挿通孔に挿通される定速ロータ延長軸とに分割され、
前記定速ロータ本体軸と前記定速ロータ延長軸とを接続する定速用フレキシブルカップリング、
を備えている可変電動機システム。 - 請求項1又は2に記載の可変電動機システムにおいて、
前記可変速電動機は、前記可変速ロータの外周側に配置されている可変速ステータと、前記可変速ステータが内周側に固定されている可変速電動機ケーシングと、を有し、
前記変速装置は、前記太陽歯車、前記太陽歯車軸、前記遊星歯車、
前記内歯車、遊星歯車キャリア軸、前記遊星歯車キャリア、及び前記内歯車キャリアと、これらを覆う変速ケーシングと、を有し、
前記可変速電動機ケーシングに対して前記変速ケーシングが固定されている、
可変電動機システム。 - 請求項3に記載の可変電動機システムにおいて、
前記定速電動機は、前記定速ロータの外周側に配置されている定速ステータと、前記定速ステータが内周側に固定されている定速電動機ケーシングと、有し、
前記定速電動機ケーシングを支持する電動装置支持部を有する、
可変電動機システム。 - 請求項4に記載の可変電動機システムにおいて、
前記可変速電動機ケーシングを支持する可変速電動機支持部を有する、
可変電動機システム。 - 請求項4又は5に記載の可変電動機システムにおいて、
前記変速ケーシングを支持する変速装置支持部を有する、
可変電動機システム。 - 請求項4又は5に記載の可変電動機システムにおいて、
前記変速ケーシングは前記可変速電動機ケーシングへ固定されている、
可変電動機システム。 - 請求項1又は2に記載の可変電動機システムにおいて、
前記可変速電動機と前記変速装置とは、共通の架台に支持されている、
可変電動機システム。 - 請求項8に記載の可変電動機システムにおいて、
前記可変速ロータが第一ロータであり、
前記定速ロータと前記定速入力軸とを接続する定速用フレキシブルカップリングと、
前記可変速ロータと前記可変速入力軸とを接続するギアカップリングと、
を備えている可変電動機システム。 - 請求項8に記載の可変電動機システムにおいて、
前記可変速ロータが第一ロータであり、
前記可変速ロータと前記可変速入力軸とを接続するギアカップリングを備え、
前記定速ロータと前記定速入力軸とは、前記定速ロータと前記定速入力軸とに形成されたフランジを介して接続されているか、又は一体化されている可変電動機システム。 - 請求項9又は請求項10に記載の可変電動機システムにおいて、
前記ギアカップリングを構成する歯車には歯すじ修正が施されている、可変電動機システム。 - 請求項8に記載の可変電動機システムにおいて、
前記可変速ロータが第一ロータであり、
前記定速ロータと前記定速入力軸とを接続する定速用フレキシブルカップリングと、
前記可変速ロータと前記可変速入力軸とを接続するダンパーカップリングと、
を備え、
前記ダンパーカップリングは、
前記可変速ロータに固定されたダンパーカップリング第一部と、
前記可変速入力軸に固定されたダンパーカップリング第二部と、
前記ダンパーカップリング第一部と前記ダンパーカップリング第二部の少なくとも一方に設けられた爪部と、前記爪部を覆うダンパーラバーと、
前記ダンパーカップリング第一部と前記ダンパーカップリング第二部の少なくとも一方に設けられて前記ダンパーラバーに覆われた爪部が嵌合する爪収容孔と、を備えている可変電動機システム。 - 請求項1に記載の可変電動機システムにおいて、
前記定速ロータと前記定速入力軸とを接続する定速用フレキシブルカップリングと、
前記可変速ロータと前記可変速入力軸とを接続する可変速用フレキシブルカップリングと、
を備えている可変電動機システム。 - 請求項13に記載の可変電動機システムにおいて、
前記定速用フレキシブルカップリングと前記可変速用フレキシブルカップリングとのうち、前記第一ロータと接続されるフレキシブルカップリングが第一フレキシブルカップリングを成し、
前記定速入力軸と前記可変速入力軸とのうち、前記第一ロータの回転で回転させられる入力軸が第一入力軸を成し、
前記第一ロータの前記変速装置側の端部には、前記軸線を中心として環状を成し、前記第一フレキシブルカップリングと接続されるロータ側接続部が形成され、
前記第一入力軸の前記電動装置側の端部には、前記軸線を中心として環状を成し、前記ロータ側接続部と軸方向で対向して、前記第一フレキシブルカップリングと接続される変速装置側接続部が形成されている、
可変電動機システム。 - 請求項13又は14に記載の可変電動機システムにおいて、
前記定速用フレキシブルカップリングと前記可変速用フレキシブルカップリングとのうち、前記第一ロータと接続されるフレキシブルカップリングが第一フレキシブルカップリングを成し、前記第二ロータと接続されるフレキシブルカップリングが第二フレキシブルカップリングを成し、
前記第一フレキシブルカップリングは、前記軸線を基準にして、前記第二フレキシブルカップリングの外周側に配置され、
前記第二フレキシブルカップリングの軸方向の長さ寸法は、前記第一フレキシブルカップリングの軸方向の長さ寸法以下である、
可変電動機システム。 - 請求項1、13、14、及び15のいずれか一項に記載の可変電動機システムにおいて、
前記定速電動機は、前記定速ロータの外周側に配置されている定速ステータと、前記定速ステータが内周側に固定されている定速電動機ケーシングと、を有し、
前記可変速電動機は、前記可変速ロータの外周側に配置されている可変速ステータと、前記可変速ステータが内周側に固定されている可変速電動機ケーシングと、を有し、
前記定速電動機ケーシングに対して前記可変速電動機ケーシングが固定されている、
可変電動機システム。 - 請求項16に記載の可変電動機システムにおいて、
前記定速電動機ケーシングを支持する電動装置支持部を有する、
可変電動機システム。 - 請求項16又は17に記載の可変電動機システムにおいて、
前記可変速電動機ケーシングを支持する可変速電動機支持部を有する、
可変電動機システム。 - 請求項16から18のいずれか一項に記載の可変電動機システムにおいて、
前記第二ロータの前記変速装置と反対側の端部に取り付けられている冷却ファンを有し、
前記定速電動機ケーシング内及び前記可変速電動機ケーシング内で前記冷却ファンの回転によりガス流れが発生するよう、前記定速電動機ケーシングと前記可変速電動機ケーシングとが互いに連通している、
可変電動機システム。 - 請求項1から19のいずれか一項に記載の可変電動機システムにおいて、
前記可変速電動機に供給する電力の周波数を変える周波数変換装置と、
前記定速電動機を電力供給状態と電力断状態とにする第一スイッチと、
前記可変速電動機を電力供給状態と電力断状態とにする第二スイッチと、
前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数を指示すると共に、前記第一スイッチ及び前記第二スイッチに対してオン、オフを指示する制御器と、
を備えている可変電動機システム。 - 請求項20に記載の可変電動機システムにおいて、
前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記可変速入力軸を成し、前記内歯車キャリア軸が前記定速入力軸を成し、
前記制御器は、起動の指示を受け付けると、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示し、前記可変速電動機が最少回転数で駆動し始めた後に、前記第一スイッチに対してオンを指示して、前記定速電動機を前記電力供給状態にする、
可変電動機システム。 - 請求項20に記載の可変電動機システムにおいて、
前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記可変速入力軸を成し、前記内歯車キャリア軸が前記定速入力軸を成し、
前記制御器は、起動の指示を受け付けると、前記第一スイッチに対してオンを指示して、前記定速電動機を前記電力供給状態にして、前記定速電動機が所定の回転数で駆動し始めた後に、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示する、
可変電動機システム。 - 駆動対象に接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置と、
前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を有する電動装置と、
前記可変速電動機に供給する電力の周波数を変える周波数変換装置と、
前記定速電動機を電力供給状態と電力断状態とにする第一スイッチと、
前記可変速電動機を電力供給状態と電力断状態とにする第二スイッチと、
前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数を指示すると共に、前記第一スイッチ及び前記第二スイッチに対してオン、オフを指示する制御器と、
を備え、
前記変速装置は、
軸線を中心として自転する太陽歯車と、
前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、
前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、
前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
を有し、
前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記定速入力軸を成し、前記内歯車キャリア軸が前記可変速入力軸を成し、
前記制御器は、起動の指示を受け付けると、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示し、前記可変速電動機が最少回転数で駆動し始めた後に、前記第一スイッチに対してオンを指示して、前記定速電動機を前記電力供給状態にする、
可変電動機システム。 - 駆動対象に接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置と、
前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を有する電動装置と、
前記可変速電動機に供給する電力の周波数を変える周波数変換装置と、
前記定速電動機を電力供給状態と電力断状態とにする第一スイッチと、
前記可変速電動機を電力供給状態と電力断状態とにする第二スイッチと、
前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数を指示すると共に、前記第一スイッチ及び前記第二スイッチに対してオン、オフを指示する制御器と、
を備え、
前記変速装置は、
軸線を中心として自転する太陽歯車と、
前記太陽歯車に固定され、前記軸線を中心として、軸方向に延びる太陽歯車軸と、
前記太陽歯車と係合し、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
前記軸線を中心として環状に複数の歯は並び、前記遊星歯車と係合する内歯車と、
前記軸線を中心として軸方向に延びる遊星歯車キャリア軸を有し、前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
を有し、
前記太陽歯車軸が前記出力軸を成し、前記遊星歯車キャリア軸が前記定速入力軸を成し、前記内歯車キャリア軸が前記可変速入力軸を成し、
前記制御器は、起動の指示を受け付けると、前記第一スイッチに対してオンを支持して、前記定速電動機を前記電力供給状態にして、前記定速電動機が所定の回転数で駆動し始めた後に、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、予め定められた最少周波数を指示する、
可変電動機システム。 - 請求項20から24のいずれか一項に記載の可変電動機システムにおいて、
前記周波数変換装置は、前記可変速電動機に供給する電流の向きを変えることができる可逆周波数変換装置であり、
前記制御器は、
前記出力軸の回転数変更を受け付けると、前記出力軸の回転数変更後の回転数を実現するためには、前記可変速電動機に供給する電流の向きを変える必要があるか否かを判断する判断工程と、
前記可変速電動機に供給する電流の向きを変える必要があると判断すると、前記第二スイッチに対してオフを指示して、前記可変速電動機を前記電力断状態にするスイッチオフ指示工程と、
前記可変速電動機が前記電力断状態になった後、前記第二スイッチに対してオンを指示して、前記可変速電動機を前記電力供給状態にすると共に、前記周波数変換装置に対して、前記可変速電動機に供給する電流の向きの変更を指示するスイッチオン・電流向き変更指示工程と、
前記可変速電動機に供給する電流の向きが変更になったことにより前記可変速電動機が逆回転駆動し始めた後に、前記可変速電動機に供給する電力の周波数として、前記出力軸の回転数変更後の回転数を実現するために必要な周波数を指示する目標周波数指示工程と、
を実行する、
可変電動機システム。 - 請求項25に記載の可変電動機システムにおいて、
前記変速装置は、前記可変速入力軸を回転不能に拘束するブレーキを有し、
前記制御器は、
前記スイッチオフ指示工程の実行で前記可変速電動機が前記電力断状態になった後、前記ブレーキに対して前記可変速入力軸の拘束を指示した後、前記可変速電動機を逆回転駆動させる前に、前記ブレーキに対して前記可変速入力軸の拘束解除を指示するブレーキ動作指示工程を実行する、
可変電動機システム。 - 請求項25又は26に記載の可変電動機システムにおいて、
前記制御器は、
前記判断工程で、前記可変速電動機に供給する電流の向きを変える必要があると判断すると、前記スイッチオフ指示工程の実行前に、前記周波数変換装置に対して、前記可変速電動機に供給する電力の周波数として予め定めた最少周波数を指示する第一最少周波数指示工程と、
前記スイッチオフ指示工程の実行で、前記可変速電動機を前記電力断状態にした後であって、前記目標周波数指示工程を実行する前に、前記可変速電動機に供給する電力の周波数として前記最少周波数を指示する第二最少周波指示工程と、
を実行する、
可変電動機システム。 - 請求項1から20のいずれか一項に記載の可変電動機システムにおいて、
前記太陽歯車軸が前記出力軸を成し、
前記遊星歯車キャリア軸が前記可変速入力軸を成し、
前記内歯車キャリア軸が前記定速入力軸を成す、
可変電動機システム。 - 請求項1から請求項28のいずれか一項に記載の可変電動機システムにおいて、
前記遊星歯車キャリアは、
前記遊星歯車キャリア軸と、
前記遊星歯車を、前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持するキャリア本体と、
前記遊星歯車キャリア軸の回転を前記キャリア本体に伝達する伝達部と、を有し
前記伝達部は、
前記遊星歯車キャリア軸の外周面に形成されたキャリア軸歯車と、
前記キャリア本体の外周面に形成されたキャリア本体歯車と、
前記キャリア軸歯車と係合して自転するアイドル歯車と、
前記軸方向に延び、前記アイドル歯車と前記キャリア本体歯車とに係合する伝達軸歯車と、
を備える可変電動機システム。 - 請求項1から29のいずれか一項に記載の可変電動機システムにおいて、
前記可変速電動機の極数は、前記定速電動機の極数よりも多い、
可変電動機システム。 - 請求項1から30のいずれか一項に記載の可変電動機システムにおいて、
前記太陽歯車軸と前記第二ロータとは水平な前記軸線方向に並んで配置されている、
可変電動機システム。 - 請求項1から31のいずれか一項に記載の可変電動機システムにおいて、
前記定速電動機、前記可変速電動機、前記変速装置、前記駆動対象の順に、直線状に配置されている、
可変電動機システム。 - 請求項1から32のいずれか一項に記載の可変電動機システムにおいて、
前記駆動対象は圧縮機である、
可変電動機システム。 - 駆動対象に接続される出力軸と、定速回転させられる定速入力軸と、可変速回転させられる可変速入力軸と、を有し、前記可変速入力軸の回転数及び前記定速入力軸の回転数に応じて前記出力軸の回転数が定まる変速装置に接続される電動装置において、
前記定速入力軸を回転駆動させる定速電動機と、前記可変速入力軸を回転駆動させる可変速電動機と、を備え、
前記定速電動機は、軸線を中心として自転し、前記変速装置の前記定速入力軸に直接又は間接的に接続される定速ロータと、前記定速ロータの外周側に配置されている定速ステータと、前記定速ステータが内周側に固定されている定速電動機ケーシングと、を有し、
前記可変速電動機は、前記軸線を中心として自転し、前記変速装置の前記可変速入力軸に直接又は間接的に接続される可変速ロータと、前記可変速ロータの外周側に配置されている可変速ステータと、前記可変速ステータが内周側に固定されている可変速電動機ケーシングと、を有し、
前記可変速ロータと前記定速ロータとのうち、第一ロータには、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、第二ロータは、前記第一ロータの前記軸挿通孔に挿通され、
前記定速電動機ケーシングに対して前記可変速電動機ケーシングが固定されている、
電動装置。 - 請求項34に記載の電動装置において、
前記第二ロータの前記変速装置と反対側の端部に取り付けられている冷却ファンを有し、
前記定速電動機ケーシング内及び前記可変速電動機ケーシング内で前記冷却ファンの回転によりガス流れが発生するよう、前記定速電動機ケーシングと前記可変速電動機ケーシングとが互いに連通している、
電動装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580032534.5A CN106464082B (zh) | 2014-07-18 | 2015-07-17 | 可变电动机系统 |
EP15822523.5A EP3171490B1 (en) | 2014-07-18 | 2015-07-17 | Variable electric motor system and electrically powered device |
US15/320,905 US10177692B2 (en) | 2014-07-18 | 2015-07-17 | Variable electric motor system and electrically powered device |
RU2016150416A RU2654496C1 (ru) | 2014-07-18 | 2015-07-17 | Система регулируемого электрического двигателя и устройство с электрическим приводом |
JP2016534505A JP6384973B2 (ja) | 2014-07-18 | 2015-07-17 | 可変電動機システム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/069253 WO2016009564A1 (ja) | 2014-07-18 | 2014-07-18 | 回転駆動力付与装置、及びその電動装置 |
JPPCT/JP2014/069253 | 2014-07-18 | ||
JPPCT/JP2015/055064 | 2015-02-23 | ||
PCT/JP2015/055064 WO2016009668A1 (ja) | 2014-07-18 | 2015-02-23 | 可変電動機システム、及びその電動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016010146A1 true WO2016010146A1 (ja) | 2016-01-21 |
Family
ID=55078080
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069253 WO2016009564A1 (ja) | 2014-07-18 | 2014-07-18 | 回転駆動力付与装置、及びその電動装置 |
PCT/JP2015/055064 WO2016009668A1 (ja) | 2014-07-18 | 2015-02-23 | 可変電動機システム、及びその電動装置 |
PCT/JP2015/070580 WO2016010146A1 (ja) | 2014-07-18 | 2015-07-17 | 可変電動機システム、及び電動装置 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069253 WO2016009564A1 (ja) | 2014-07-18 | 2014-07-18 | 回転駆動力付与装置、及びその電動装置 |
PCT/JP2015/055064 WO2016009668A1 (ja) | 2014-07-18 | 2015-02-23 | 可変電動機システム、及びその電動装置 |
Country Status (6)
Country | Link |
---|---|
US (3) | US10454394B2 (ja) |
EP (3) | EP3157146B1 (ja) |
JP (3) | JP6381151B2 (ja) |
CN (3) | CN106537734A (ja) |
RU (2) | RU2639319C1 (ja) |
WO (3) | WO2016009564A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017145351A1 (ja) * | 2016-02-26 | 2017-08-31 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017195321A1 (ja) * | 2016-05-12 | 2017-11-16 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017199428A1 (ja) * | 2016-05-20 | 2017-11-23 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017217483A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機及び可変速増速機の始動方法 |
WO2017216899A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機、及び可変速増速機の制御方法 |
WO2017216897A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2018016097A1 (ja) * | 2016-07-20 | 2018-01-25 | 三菱重工コンプレッサ株式会社 | 可変速増速機、可変速増速機の制御装置、及び可変速増速機の制御方法 |
WO2018016019A1 (ja) * | 2016-07-20 | 2018-01-25 | 三菱重工コンプレッサ株式会社 | 変速装置の設計方法、変速装置の製造方法、及び可変速増速機の製造方法 |
WO2018030087A1 (ja) * | 2016-08-10 | 2018-02-15 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2018042485A1 (ja) * | 2016-08-29 | 2018-03-08 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
US10454394B2 (en) | 2014-07-18 | 2019-10-22 | Mitsubishi Heavy Industries Compressor Corporation | Rotational driving force imparting device and electric motor device for the same |
US10544862B2 (en) | 2015-09-04 | 2020-01-28 | Mitsubishi Heavy Industries Compressor Corporation | Starting method for variable speed accelerator and starting control device for variable speed accelerator |
US10605339B2 (en) | 2016-02-26 | 2020-03-31 | Mitsubishi Heavy Industries Compressor Corporation | Variable speed accelerator and control method for variable speed accelerator |
JP2020148328A (ja) * | 2019-03-15 | 2020-09-17 | 住友重機械ギヤボックス株式会社 | 遊星歯車装置 |
KR20200117673A (ko) * | 2019-04-05 | 2020-10-14 | 고려대학교 세종산학협력단 | 자동 제동 액츄에이터 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017145350A1 (ja) * | 2016-02-26 | 2017-08-31 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017145367A1 (ja) * | 2016-02-26 | 2017-08-31 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
DE102017207519A1 (de) * | 2017-05-04 | 2018-11-08 | GETRAG B.V. & Co. KG | Getriebe mit Schaltwalzenanordnung |
JP7014638B2 (ja) | 2018-02-27 | 2022-02-01 | 三菱重工コンプレッサ株式会社 | 可変速増速機及び可変速増速機の制御方法 |
CN108667210B (zh) * | 2018-06-29 | 2024-08-27 | 无锡新宏泰电器科技股份有限公司 | 一种制动式电机 |
FR3087058B1 (fr) * | 2018-10-03 | 2020-10-23 | Ge Energy Power Conversion Technology Ltd | Rotor a arbre non traversant, assemblage de rotors, rotor a masses magnetiques multiples et machine electrique tournante associee |
JP7136671B2 (ja) * | 2018-11-26 | 2022-09-13 | 三菱重工コンプレッサ株式会社 | 可変速増速機の製造方法及びシャフト用治具 |
US11613375B2 (en) | 2019-05-16 | 2023-03-28 | Textron Innovations Inc. | Dual motor input with overrunning clutch |
WO2021176657A1 (ja) | 2020-03-05 | 2021-09-10 | 平田機工株式会社 | 制御装置、モータユニット、搬送装置、電動シリンダ、記憶媒体及びプログラム |
EP3890163A1 (fr) * | 2020-04-01 | 2021-10-06 | GE Energy Power Conversion Technology Ltd. | Procede de dimensionnement d'un rotor a arbre non traversant, rotor et motocompresseur associes |
US11342808B2 (en) * | 2020-05-14 | 2022-05-24 | Abb Schweiz Ag | Well damped or critically damped motor |
US20220010734A1 (en) * | 2020-07-08 | 2022-01-13 | Ge Energy Power Conversion Technology Limited | Mechanical drive system and associated motor compressor |
JP7511649B2 (ja) * | 2020-07-31 | 2024-07-05 | 三菱電機株式会社 | 回転電機 |
CN112054641A (zh) * | 2020-09-10 | 2020-12-08 | 吕建伟 | 全相双驱动自变速无刷直流电动机 |
CN112020293B (zh) * | 2020-10-19 | 2021-01-26 | 山东奥卓电气科技发展有限公司 | 一种耐高温的开关磁阻电机控制器 |
US12030651B2 (en) | 2021-01-05 | 2024-07-09 | Pratt & Whitney Canada Corp. | Parallel hybrid power plant with hollow motor |
KR102532659B1 (ko) * | 2021-01-22 | 2023-05-16 | (주)모토닉 | 오일펌프 모터 제어장치 및 제어방법 |
JP2022121874A (ja) * | 2021-02-09 | 2022-08-22 | 三菱重工コンプレッサ株式会社 | 可変速増速機、及び可変速増速機の始動方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5970497A (ja) * | 1982-10-14 | 1984-04-20 | Aida Eng Ltd | プレス変速駆動装置 |
JPH01176247U (ja) * | 1988-06-02 | 1989-12-15 | ||
JPH0373745U (ja) * | 1989-11-21 | 1991-07-24 | ||
US5947854A (en) * | 1997-05-08 | 1999-09-07 | Worksmart Energy Enterprises, Inc. | Combined variable-speed drive and speed reducer for pumps and fans |
JP2000324607A (ja) * | 1999-04-30 | 2000-11-24 | Toyota Motor Corp | ハイブリッド車両およびその制御方法 |
JP2001152901A (ja) * | 1999-11-19 | 2001-06-05 | Toyota Motor Corp | 車両のエンジン始動制御装置 |
WO2001085483A1 (fr) * | 2000-05-08 | 2001-11-15 | Hitachi, Ltd. | Mecanisme de transmission de puissance composite et vehicule |
JP2003034153A (ja) * | 2001-07-23 | 2003-02-04 | Nissan Motor Co Ltd | 駆動装置 |
WO2003071160A1 (fr) * | 2002-02-21 | 2003-08-28 | Ebara Corporation | Dispositif de train planetaire de differentiel, element et procede de mise en marche de dispositif de train planetaire de differentiel |
JP2004116542A (ja) * | 2002-09-24 | 2004-04-15 | Nsk Ltd | 無段変速装置 |
JP2005153727A (ja) * | 2003-11-26 | 2005-06-16 | Suzuki Motor Corp | 電動式船外機 |
JP2006038228A (ja) * | 2004-07-26 | 2006-02-09 | Thermo King Corp | たわみ継手 |
JP2006521517A (ja) * | 2003-03-29 | 2006-09-21 | ドライブテク(ユーケー)リミテッド | 4分岐差動伝動システム |
WO2013035172A1 (ja) * | 2011-09-07 | 2013-03-14 | 三菱電機株式会社 | ギアカップリング |
JP2014087170A (ja) * | 2012-10-24 | 2014-05-12 | Seiko Epson Corp | 電気機械装置、並びに、これを備える移動体およびロボット |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB407760A (en) | 1932-10-20 | 1934-03-29 | George Ryder Adamson | Improvements in electrically operated cranes, windlasses and the like |
FR822746A (fr) | 1936-06-15 | 1938-01-06 | Messerschmitt Boelkow Blohm | Dispositif pour entraîner une machine de travail au moyen de deux machines motrices |
US2578015A (en) | 1945-07-10 | 1951-12-11 | Gustav A Reinhard | Transmission |
US2916642A (en) | 1956-04-16 | 1959-12-08 | Air Glide Inc | Fluid dynamic device |
US3575805A (en) | 1968-12-18 | 1971-04-20 | Atomic Energy Commission | Nuclear reactor control rod drive assembly |
FR2094518A5 (ja) * | 1970-06-23 | 1972-02-04 | Inst Francais Du Petrole | |
GB1401958A (en) | 1971-08-18 | 1975-08-06 | Nat Res Dev | Thrust bearing |
DE2236588A1 (de) | 1972-07-26 | 1974-02-07 | Mueller Fa Arnold | Elektromotorischer antrieb mit stufenloser drehzahlregelung |
GB8801509D0 (en) | 1988-01-22 | 1988-02-24 | Prokopius J P | Multifunction speed changing & reversing mechanism for gearboxes |
FR2638801A1 (fr) * | 1988-11-09 | 1990-05-11 | Combastet Michel | Convertisseur de puissance |
JP3291871B2 (ja) | 1993-11-10 | 2002-06-17 | 株式会社エクォス・リサーチ | ハイブリッド型車両 |
RU2076255C1 (ru) * | 1996-01-09 | 1997-03-27 | Прилуков Анатолий Петрович | Электропривод запорной арматуры |
DE19751231A1 (de) | 1997-11-19 | 1999-06-10 | Abb Research Ltd | Antriebsvorrichtung |
US5989142A (en) * | 1998-04-27 | 1999-11-23 | Caterpillar Inc. | Planetary steering differential |
US6450083B1 (en) * | 2001-01-22 | 2002-09-17 | Dawson Hydraulics Inc. | Telescopic hydraulic hoist |
DE60216373T2 (de) * | 2001-07-23 | 2007-03-15 | Nissan Motor Co., Ltd., Yokohama | Hybridantriebsstrang eines Kraftfahrzeugs |
JP4183481B2 (ja) | 2002-11-01 | 2008-11-19 | 有限会社クチダギアリング | 変速装置 |
JP3858904B2 (ja) | 2004-03-11 | 2006-12-20 | 日産自動車株式会社 | ハイブリッド変速機のエンジンクラッチ締結方法 |
JP4239923B2 (ja) | 2004-08-02 | 2009-03-18 | 日産自動車株式会社 | 電動力伝達装置 |
JP4943699B2 (ja) | 2005-03-02 | 2012-05-30 | 株式会社神戸製鋼所 | 混練機および混練制御方法 |
EP1961602A4 (en) | 2005-12-12 | 2009-01-07 | Bridgestone Corp | MOTOR SYSTEM IN THE WHEEL |
JP4312767B2 (ja) | 2006-02-13 | 2009-08-12 | 株式会社日本製鋼所 | 押出機用駆動装置 |
DE112007001580T5 (de) | 2006-06-28 | 2009-05-20 | Kabushiki Kaisha Yaskawa Denki, Kitakyushu | Wechselrichtersteuereinrichtung und Verfahren zu deren Betrieb |
US7322891B1 (en) | 2006-10-05 | 2008-01-29 | Terry Prewitt | Golf putting training device |
JP2010242811A (ja) | 2009-04-02 | 2010-10-28 | Kuchida Gearing:Kk | 変速装置 |
WO2012063299A1 (ja) * | 2010-11-08 | 2012-05-18 | トヨタ自動車株式会社 | ハイブリッド自動車 |
GB2489503A (en) | 2011-03-31 | 2012-10-03 | Ge Aviat Systems Ltd | Rotary actuator and method of operation with failsafe mechanism |
AT514589B1 (de) * | 2013-05-17 | 2015-02-15 | Gerald Dipl Ing Hehenberger | Verfahren zum Betreiben eines Triebstranges und Triebstrang |
EP2830110A1 (en) * | 2013-07-22 | 2015-01-28 | Heraeus Precious Metals GmbH & Co. KG | Patterning of a composition comprising silver nanowires |
WO2015017377A1 (en) * | 2013-07-29 | 2015-02-05 | W.L. Gore & Associates, Inc. | Vent system |
US10454394B2 (en) * | 2014-07-18 | 2019-10-22 | Mitsubishi Heavy Industries Compressor Corporation | Rotational driving force imparting device and electric motor device for the same |
JP6500872B2 (ja) | 2016-10-19 | 2019-04-17 | トヨタ自動車株式会社 | 駆動装置および自動車 |
-
2014
- 2014-07-18 US US15/325,927 patent/US10454394B2/en active Active
- 2014-07-18 EP EP14897644.2A patent/EP3157146B1/en active Active
- 2014-07-18 CN CN201480080574.2A patent/CN106537734A/zh active Pending
- 2014-07-18 WO PCT/JP2014/069253 patent/WO2016009564A1/ja active Application Filing
- 2014-07-18 JP JP2016534078A patent/JP6381151B2/ja active Active
-
2015
- 2015-02-23 US US15/320,228 patent/US10601347B2/en active Active
- 2015-02-23 WO PCT/JP2015/055064 patent/WO2016009668A1/ja active Application Filing
- 2015-02-23 JP JP2016534292A patent/JP6384972B2/ja active Active
- 2015-02-23 CN CN201580028511.7A patent/CN106416013B/zh active Active
- 2015-02-23 RU RU2016151487A patent/RU2639319C1/ru active
- 2015-02-23 EP EP15822415.4A patent/EP3142230B1/en active Active
- 2015-07-17 JP JP2016534505A patent/JP6384973B2/ja active Active
- 2015-07-17 CN CN201580032534.5A patent/CN106464082B/zh active Active
- 2015-07-17 US US15/320,905 patent/US10177692B2/en active Active
- 2015-07-17 EP EP15822523.5A patent/EP3171490B1/en active Active
- 2015-07-17 WO PCT/JP2015/070580 patent/WO2016010146A1/ja active Application Filing
- 2015-07-17 RU RU2016150416A patent/RU2654496C1/ru active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5970497A (ja) * | 1982-10-14 | 1984-04-20 | Aida Eng Ltd | プレス変速駆動装置 |
JPH01176247U (ja) * | 1988-06-02 | 1989-12-15 | ||
JPH0373745U (ja) * | 1989-11-21 | 1991-07-24 | ||
US5947854A (en) * | 1997-05-08 | 1999-09-07 | Worksmart Energy Enterprises, Inc. | Combined variable-speed drive and speed reducer for pumps and fans |
JP2000324607A (ja) * | 1999-04-30 | 2000-11-24 | Toyota Motor Corp | ハイブリッド車両およびその制御方法 |
JP2001152901A (ja) * | 1999-11-19 | 2001-06-05 | Toyota Motor Corp | 車両のエンジン始動制御装置 |
WO2001085483A1 (fr) * | 2000-05-08 | 2001-11-15 | Hitachi, Ltd. | Mecanisme de transmission de puissance composite et vehicule |
JP2003034153A (ja) * | 2001-07-23 | 2003-02-04 | Nissan Motor Co Ltd | 駆動装置 |
WO2003071160A1 (fr) * | 2002-02-21 | 2003-08-28 | Ebara Corporation | Dispositif de train planetaire de differentiel, element et procede de mise en marche de dispositif de train planetaire de differentiel |
JP2004116542A (ja) * | 2002-09-24 | 2004-04-15 | Nsk Ltd | 無段変速装置 |
JP2006521517A (ja) * | 2003-03-29 | 2006-09-21 | ドライブテク(ユーケー)リミテッド | 4分岐差動伝動システム |
JP2005153727A (ja) * | 2003-11-26 | 2005-06-16 | Suzuki Motor Corp | 電動式船外機 |
JP2006038228A (ja) * | 2004-07-26 | 2006-02-09 | Thermo King Corp | たわみ継手 |
WO2013035172A1 (ja) * | 2011-09-07 | 2013-03-14 | 三菱電機株式会社 | ギアカップリング |
JP2014087170A (ja) * | 2012-10-24 | 2014-05-12 | Seiko Epson Corp | 電気機械装置、並びに、これを備える移動体およびロボット |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10601347B2 (en) | 2014-07-18 | 2020-03-24 | Mitsubishi Heavy Industries Compressor Corporation | Variable electric motor system and electrically powered device thereof |
US10454394B2 (en) | 2014-07-18 | 2019-10-22 | Mitsubishi Heavy Industries Compressor Corporation | Rotational driving force imparting device and electric motor device for the same |
US10544862B2 (en) | 2015-09-04 | 2020-01-28 | Mitsubishi Heavy Industries Compressor Corporation | Starting method for variable speed accelerator and starting control device for variable speed accelerator |
US10605339B2 (en) | 2016-02-26 | 2020-03-31 | Mitsubishi Heavy Industries Compressor Corporation | Variable speed accelerator and control method for variable speed accelerator |
WO2017145351A1 (ja) * | 2016-02-26 | 2017-08-31 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
US10605338B2 (en) | 2016-02-26 | 2020-03-31 | Mitsubishi Heavy Industries Compressor Corporation | Variable-speed speed increaser |
JPWO2017145351A1 (ja) * | 2016-02-26 | 2019-01-17 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
US11060587B1 (en) | 2016-05-12 | 2021-07-13 | Mitsubishi Heavy Industries Compressor Corporation | Variable-speed speed-up mechanism |
JPWO2017195321A1 (ja) * | 2016-05-12 | 2018-12-13 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017195321A1 (ja) * | 2016-05-12 | 2017-11-16 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017200099A1 (ja) * | 2016-05-20 | 2017-11-23 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2017199428A1 (ja) * | 2016-05-20 | 2017-11-23 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
EP3419147A4 (en) * | 2016-05-20 | 2019-02-27 | Mitsubishi Heavy Industries Compressor Corporation | VARIABLE SPEED ACCELERATOR |
JPWO2017200099A1 (ja) * | 2016-05-20 | 2019-02-14 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
US10663039B2 (en) | 2016-06-15 | 2020-05-26 | Mitsubishi Heavy Industries Compressor Corporation | Variable speed accelerator and method for controlling variable speed accelerator |
JPWO2017217483A1 (ja) * | 2016-06-15 | 2019-04-11 | 三菱重工コンプレッサ株式会社 | 可変速増速機及び可変速増速機の始動方法 |
WO2017217483A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機及び可変速増速機の始動方法 |
US11025180B2 (en) | 2016-06-15 | 2021-06-01 | Mitsubishi Heavy Industries Compressor Corporation | Variable speed accelerator |
US10975936B2 (en) | 2016-06-15 | 2021-04-13 | Mitsubishi Heavy Industries Compressor Corporation | Variable-speed accelerator and method for starting variable-speed accelerator |
WO2017216888A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機及び可変速増速機の始動方法 |
JPWO2017216897A1 (ja) * | 2016-06-15 | 2019-03-07 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
JPWO2017216899A1 (ja) * | 2016-06-15 | 2019-03-07 | 三菱重工コンプレッサ株式会社 | 可変速増速機、及び可変速増速機の制御方法 |
WO2017216899A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機、及び可変速増速機の制御方法 |
WO2017216897A1 (ja) * | 2016-06-15 | 2017-12-21 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2018016097A1 (ja) * | 2016-07-20 | 2018-01-25 | 三菱重工コンプレッサ株式会社 | 可変速増速機、可変速増速機の制御装置、及び可変速増速機の制御方法 |
US10738858B2 (en) | 2016-07-20 | 2020-08-11 | Mitsubishi Heavy Industries Compressor Corporation | Variable-speed speed increaser, variable-speed speed increaser control device, and variable-speed speed increaser control method |
WO2018016019A1 (ja) * | 2016-07-20 | 2018-01-25 | 三菱重工コンプレッサ株式会社 | 変速装置の設計方法、変速装置の製造方法、及び可変速増速機の製造方法 |
WO2018016021A1 (ja) * | 2016-07-20 | 2018-01-25 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
JPWO2018016021A1 (ja) * | 2016-07-20 | 2019-04-04 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
JPWO2018016097A1 (ja) * | 2016-07-20 | 2019-03-28 | 三菱重工コンプレッサ株式会社 | 可変速増速機、可変速増速機の制御装置、及び可変速増速機の制御方法 |
JPWO2018016019A1 (ja) * | 2016-07-20 | 2019-02-28 | 三菱重工コンプレッサ株式会社 | 変速装置の設計方法、変速装置の製造方法、及び可変速増速機の製造方法 |
WO2018030087A1 (ja) * | 2016-08-10 | 2018-02-15 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2018029804A1 (ja) * | 2016-08-10 | 2018-02-15 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
JPWO2018030087A1 (ja) * | 2016-08-10 | 2019-01-31 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
WO2018042485A1 (ja) * | 2016-08-29 | 2018-03-08 | 三菱重工コンプレッサ株式会社 | 可変速増速機 |
US10865855B2 (en) | 2016-08-29 | 2020-12-15 | Mitsubishi Heavy Industries Compressor Corporation | Variable-speed speed-up gear |
JP2020148328A (ja) * | 2019-03-15 | 2020-09-17 | 住友重機械ギヤボックス株式会社 | 遊星歯車装置 |
JP7319797B2 (ja) | 2019-03-15 | 2023-08-02 | 住友重機械ギヤボックス株式会社 | 遊星歯車装置 |
KR20200117673A (ko) * | 2019-04-05 | 2020-10-14 | 고려대학교 세종산학협력단 | 자동 제동 액츄에이터 |
KR102209898B1 (ko) | 2019-04-05 | 2021-02-01 | 고려대학교 세종산학협력단 | 자동 제동 액츄에이터 |
Also Published As
Publication number | Publication date |
---|---|
EP3142230A4 (en) | 2017-11-01 |
WO2016009564A1 (ja) | 2016-01-21 |
US20170170755A1 (en) | 2017-06-15 |
US10177692B2 (en) | 2019-01-08 |
CN106464082A (zh) | 2017-02-22 |
CN106537734A (zh) | 2017-03-22 |
EP3157146B1 (en) | 2018-12-26 |
JP6384972B2 (ja) | 2018-09-05 |
WO2016009668A1 (ja) | 2016-01-21 |
EP3171490A1 (en) | 2017-05-24 |
CN106416013A (zh) | 2017-02-15 |
US10601347B2 (en) | 2020-03-24 |
CN106464082B (zh) | 2019-03-29 |
JPWO2016009668A1 (ja) | 2017-05-25 |
JP6381151B2 (ja) | 2018-08-29 |
JPWO2016009564A1 (ja) | 2017-04-27 |
EP3171490A4 (en) | 2017-11-15 |
EP3142230B1 (en) | 2020-05-20 |
JP6384973B2 (ja) | 2018-09-05 |
RU2654496C1 (ru) | 2018-05-21 |
EP3171490B1 (en) | 2018-12-19 |
US20170155345A1 (en) | 2017-06-01 |
EP3157146A1 (en) | 2017-04-19 |
EP3157146A4 (en) | 2017-11-15 |
RU2639319C1 (ru) | 2017-12-21 |
US10454394B2 (en) | 2019-10-22 |
JPWO2016010146A1 (ja) | 2017-04-27 |
EP3142230A1 (en) | 2017-03-15 |
CN106416013B (zh) | 2019-08-13 |
US20170141706A1 (en) | 2017-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384973B2 (ja) | 可変電動機システム | |
JP6508853B2 (ja) | 可変速増速機の始動方法及び可変速増速機の始動制御装置 | |
JP6582350B2 (ja) | 可変速増速機の始動方法及び可変速増速機の始動制御装置 | |
JP6489628B2 (ja) | 可変速電動機システムの制御方法及び可変速電動機システムの制御装置 | |
US10663039B2 (en) | Variable speed accelerator and method for controlling variable speed accelerator | |
JP6548101B2 (ja) | 可変速増速機 | |
JP2019148293A (ja) | 可変速増速機及び可変速増速機の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15822523 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015822523 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015822523 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15320905 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016534505 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016150416 Country of ref document: RU Kind code of ref document: A |