WO2016010119A1 - 分化細胞の抽出方法 - Google Patents

分化細胞の抽出方法 Download PDF

Info

Publication number
WO2016010119A1
WO2016010119A1 PCT/JP2015/070425 JP2015070425W WO2016010119A1 WO 2016010119 A1 WO2016010119 A1 WO 2016010119A1 JP 2015070425 W JP2015070425 W JP 2015070425W WO 2016010119 A1 WO2016010119 A1 WO 2016010119A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
mrna
mir
cell
mirna
Prior art date
Application number
PCT/JP2015/070425
Other languages
English (en)
French (fr)
Inventor
博英 齊藤
慧 遠藤
翔太 片山
キャラム パー
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to EP15822080.6A priority Critical patent/EP3170893B1/en
Priority to CN201580049747.9A priority patent/CN107002031B/zh
Priority to JP2016534491A priority patent/JP6893633B2/ja
Priority to US15/326,083 priority patent/US10604770B2/en
Publication of WO2016010119A1 publication Critical patent/WO2016010119A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/65MicroRNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Definitions

  • the present invention relates to a method for extracting differentiated cells using miRNA specifically expressed in pluripotent stem cells as an index.
  • Non-Patent Document 1 Non-Patent Document 1
  • cell surface markers that are highly expressed in pluripotent stem cells are not necessarily expressed in differentiated cells, and even if cells that are negative for cell surface markers highly expressed in pluripotent stem cells are extracted, they are completely undifferentiated. Cells may not be removed. In addition, the types of such cell surface markers are limited, and it is difficult to find more specific markers.
  • a method for extracting differentiated cells from a cell population comprising undifferentiated cells differentiated from pluripotent stem cells is desired.
  • the present inventors have found that by using miRNA specifically expressed in pluripotent stem cells, it is possible to extract only differentiated cells using mRNA whose expression of the marker gene is suppressed by the expression of the miRNA.
  • the invention has been completed.
  • the present invention has the following features: [1] A method for extracting differentiated cells from a cell population after differentiation induction from pluripotent stem cells, comprising the following steps: (1) Specific to pluripotent stem cells Introducing a mRNA comprising a marker gene operably linked to a target sequence of miRNA expressed in the cell population, and (2) extracting a cell into which the marker gene has been translated. [2] The method according to [1], wherein the pluripotent stem cell is a human pluripotent stem cell.
  • the pluripotent stem cell is a human pluripotent stem cell.
  • the miRNA specifically expressed in the human pluripotent stem cell is hsa-miR-302b, hsa-miR-302a, or hsa-miR-367.
  • differentiated cells can be selectively extracted by using mRNA having a marker gene operably linked to miRNA specific to pluripotent stem cells. Since the method according to the present invention can be achieved by selecting cells that are positive for the marker, it is particularly advantageous in that it is not affected by the efficiency of mRNA introduction. In addition, the method of the present invention can be carried out by introducing mRNA into a cell, and this mRNA is decomposed with a half-life of about 1 day and rapidly removed from the cell. There is no problem of damaging the genome due to viral infection or residual DNA. It is also advantageous in that differentiated cells can be selected by a simple detection method using a cytometer or drug selection by introduction of a drug resistance gene.
  • FIG. 1 shows the results of measuring the fluorescence intensity of EGFP in iPS cells cultured in a medium to which EGFP, 1xT302b-EGFP and EGFP-4xT302b were introduced and each mirVana miRNA inhibitor was added.
  • FIG. 2 shows the result of measuring the fluorescence intensity of EGFP with respect to the fluorescence intensity of mCherry in iPS cells cultured in a medium to which mCherry and EGFP, or mCherry and 1xT302b-EGFP were co-introduced, and each mirVana miRNA inhibitor concentration was added. Show.
  • FIG. 3 shows the results of flow cytometry measurement of the fluorescence intensity of EGFP in the cells in which 1xT302b-EGFP was not introduced or was introduced after culturing iPS cells in retinoic acid medium (upper figure), iPS cells or iPS Results of flow cytometry measurement of Tra-1-60 expression in cells cultured in retinoic acid medium (middle figure), and SSEA5 expression in iPS cells or cells cultured in retinoic acid medium Shows the results of the measurement by flow cytometry (below). The numbers in the figure indicate the percentage of total cells in the described fraction. Fig.
  • FIG. 4 shows the expression level of OCT3 / 4 in EGFP positive cells (+) or EGFP negative cells (-) in cells transfected with 1xT302b-EGFP after culturing iPS cells in retinoic acid medium (left figure), iPS Expression of OCT3 / 4 in Tra-1-60 negative cells (-) or Tra-1-60 positive cells (+) in cells after culturing the cells in retinoic acid medium (middle figure), iPS cells are retinoin
  • cultivating with an acid culture medium is shown.
  • FIG. 5 shows that after culturing iPS cells in a retinoic acid medium, EGFP positive cells or Tra-1-60 negative cells in cells introduced with 1xT302b-EGFP are expressed in mTeSR1 (upper figure) or retinoic acid medium (lower figure). An alkaline phosphatase staining image of cells cultured for 5 days is shown.
  • FIG. 6A shows the results of measuring the expression level of EGFP in cells transfected with 1xT302b-EGFP after culturing iPS cells in a retinoic acid medium.
  • FIG. 6B shows that after culturing iPS cells in a retinoic acid medium, upper 10% EGFP positive cells or upper 20% EGFP positive cells in cells into which 1xT302b-EGFP has been introduced are mTeSR1 (upper figure) or retinoic acid medium (lower figure).
  • mTeSR1 upper figure
  • retinoic acid medium lower figure
  • staining image of the cell cultured for 5 days is shown.
  • FIG. 7a shows that the feeder-free human iPS cell line (201B7, 1231A3, 1383D7) and HeLa cells were co-introduced with Ctrl-hmAG1, 302a-5p-hmAG1 or 367-3p-hmAG1, and the translation of hmAG1 was BD FACS aria- It is a dot plot figure which shows the result analyzed using II.
  • FIG. 7b shows that 302a-5p-responsive mRNA and 367-3p -responsive mRNA are specifically translationally suppressed in human iPS cells, and that Hela cells (rightmost bar) are unchanged.
  • FIG. 7c is a graph (left figure) showing the ratio of the fluorescence intensity of hmAG1 to the fluorescence intensity of tagBFP when 302a-5p-responsive mRNA and 302a-5p inhibitor with varying addition amount were co-introduced into Ff-201B7.
  • FIG. 4 is a dot plot diagram (right diagram) of cyan, orange, green, blue, and red in order from the inhibitor concentration of 0.003 nM (in order from the bottom to the top of the plot).
  • FIG. 4 is a dot plot diagram (right diagram) of cyan, orange, green, blue, and red in order from the inhibitor concentration of 0.003 nM (in order from the bottom to the top of the plot).
  • FIG. 7d is a graph (left figure) showing the ratio of the fluorescence intensity of hmAG1 to the fluorescence intensity of tagBFP, in which 302a-5p-responsive mRNA and 302a-5p mimic with different addition amounts were co-introduced into Hela cells.
  • FIG. 6 is a dot plot diagram (right diagram) of orange, cyan, purple, blue, and red in order from the mimic concentration of 0.003 nM (in order from the top to the bottom of the plot). Error bars indicate the standard error of 3 repeated trials.
  • FIG. 8 shows the results of tracking the differentiation from Ff-human iPS cells to midbrain dopaminergic cells using 302a-5pa-responsive mRNA and 367-3p-responsive mRNA, and FIG.
  • FIG. 8b shows the distribution of 302a-5p or 367-3p responsive cells during the differentiation of Ff-human iPS cells (blue region) and the distribution of non-responsive cells 302a-5p or 367-3p (red region). Indicates.
  • FIG. 9 shows the expression level of hsa-miR-302a-5p in each cell from day 0 to day 21 of differentiation from human iPS cells to mDA cells (midbrain dopamine neuron cells), and in Hela cells and hepatocytes (FIG. 9a) and The ratio of the expression level of hsa-miR-367-3 (FIG. 9b) is normalized with RNU6B and is shown on a log10 scale.
  • FIG. 10 is a diagram showing that cells obtained by adding Ff-human iPS cells to a fully differentiated mDA cell line can be detected with high sensitivity. In a 24-well plate, a minimum of 100 Ff-201B7 human iPS cells were added to mDA cells. The total number of cells was 200,000.
  • TagBFP and hmAG1 mRNA or 302a-5p-hmAG1 mRNA were introduced into the cells.
  • 302a-5p-responsive mRNA was introduced only into mDA cell, 302pos (miR-302a-5p positive) gate (repeat 1) and P5 gate (repeat 2) were installed, miR-302a-5p positive cells It was confirmed that there was no (dot plot in the left panel).
  • the measured value of the ratio of human iPS cells identified by 302a-5p-responsive mRNA to mDA cells was very close to the predicted value.
  • FIG. 11a shows a removal scheme of residual iPS cells by addition of puromycin.
  • FIG. 11a shows a removal scheme of residual iPS cells by addition of puromycin.
  • FIG. 11b shows the experimental timeline of the single culture system (upper figure) and the results of cytotoxicity assay (lower figure, graph).
  • the left two panels are Ff-201B7 human iPS cells, the right two panels are , Furo-R1 mRNA (Ctrl-PuroR) and 302a-5p-responsive puroR mRNA (302-PuroR) were introduced into mDA cells derived from Ff-201B7 human iPS cells, respectively. The results are shown.
  • 11c shows the introduction of PuroR mRNA (Ctrl-PuroR) or 302a-5p-responsive puroR mRNA, puromycin added, and staining with Alexa-488 conjugated anti-human TRA-1-60 antibody (BD laboratories) Results of measurement of human iPS cells (upper left panel), mixed cells of human iPS cells and mDA cells (upper center panel), mDA cells (upper right panel) with BD Accuri, and TRA-1-60 in each condition It is a bar graph (lower panel) which shows the absolute number of positive cells.
  • the present invention relates to a method for extracting differentiated cells from a cell population that can contain undifferentiated cells after differentiation induction from pluripotent stem cells, comprising the following steps: (1) Multipotency Introducing a mRNA comprising a marker gene operably linked to a target sequence of miRNA specifically expressed in a sex stem cell, and (2) extracting a cell into which the marker gene has been translated.
  • a pluripotent stem cell is a stem cell that has pluripotency that can be differentiated into all cells present in a living body and also has proliferative ability, and includes, for example, an embryonic stem (ES ) Cells (JA Thomson et al. (1998), Science 282: 1145-1147; JA Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; JA Thomson et al. 1996), Biol. Reprod., 55: 254-259; JA Thomson and VS Marshall (1998), Curr. Top. Dev.
  • ES embryonic stem
  • the pluripotent stem cell is a human pluripotent stem cell.
  • differentiation induction includes not only differentiation into specific tissue cells and their progenitor cells, but also differentiation into cell populations containing many types of cells such as endoderm cells, mesoderm cells, and ectoderm cells.
  • tissues targeted by the present invention include skin, blood vessel, cornea, kidney, heart, liver, umbilical cord, intestine, nerve, lung, placenta, pancreas, brain, cartilage, peripheral limbs, and retina. It is not limited.
  • This differentiation-inducing method can be a method well known to those skilled in the art, and is not particularly limited.Neutral stem cells are disclosed in JP-A-2002-291469, pancreatic stem-like cells are disclosed in JP-A-2004-121165, Special table 2003-505006 is exemplified. In addition to this, JP 2003-523766 is exemplified as a method for inducing differentiation by formation of embryoid bodies.
  • the cell population after differentiation induction from pluripotent stem cells shall mean the cell population after performing the method for differentiation induction with respect to the said pluripotent stem cell.
  • the method of the present invention similarly applies even when it is unknown whether or not the cell population contains undifferentiated cells.
  • the cell population after differentiation induction from pluripotent stem cells is a cell population in which undifferentiated cells after differentiation induction from pluripotent stem cells are mixed.
  • miRNA is also referred to as micro-RNA, and is RNA having a length of 18 to 25 bases present in cells.
  • miRNA is one of the double-stranded RNAs produced by cleaving pre-miRNA, which is produced by partial cleavage of pri-mRNA, a single-stranded RNA transcribed from DNA, with a nuclear enzyme called Drosha. Means one strand of The number of bases of miRNA is, for example, 18 to 25, preferably 20 to 25, and more preferably 21 to 23.
  • a database storing about 1,000 miRNA information can be used (for example, miRBase, http://microrna.sanger.ac.uk/sequences/index.shtml).
  • a person skilled in the art can extract arbitrary miRNA information from this database, and miRNAs specifically expressed in pluripotent stem cells can be easily extracted.
  • miRNAs specifically expressed in pluripotent stem cells can be easily extracted.
  • the difference in miRNA expression between pluripotent stem cells and cells after differentiation induction can be confirmed using techniques available to those skilled in the art such as miRNA microarray and real-time PCR.
  • miRNA microarray and real-time PCR As a result, it is possible to easily identify miRNAs that are highly expressed in pluripotent stem cells as miRNAs that are specifically expressed in pluripotent stem cells.
  • miRNA expressed in pluripotent stem cells means that in pluripotent stem cells, any one strand of the double-stranded RNA cleaved by Dicer interacts with a predetermined plurality of proteins, and RNA- miRNA in the state where induced silencing complex (RISC) is formed.
  • RISC induced silencing complex
  • the miRNA specifically expressed in the pluripotent stem cell is not particularly limited as long as it is known to be specifically expressed in the pluripotent stem cell by literature or the like, for example, , Hsa-mir-302a, hsa-mir-302b, hsa-mir-302c, hsa-mir-302d, hsa-mir-367, hsa-5201, hsa-mir-92b, hsa-mir-106a, hsa-mir -18b, hsa-mir-20b, hsa-mir-19b-2, hsa-mir-92a-2, hsa-mir-363, hsa-mir-20a, hsa-mir-17, hsa-mir-18a, hsa -mir-19a, hsa-mir-19b-1, hsa-mir-373, hsa-mir-330, hsa-mir-520c, hsa-mir
  • miRNAs appropriately selected from miRNAs described in Tobias S. Greve, et al., Annu. Rev. Cell Dev. Biol. 2013.29: 213-239 are exemplified.
  • Preferred miRNAs are hsa-mir-302a, hsa-mir-302b, or hsa-mir-367, more preferably hsa-miR-302b-3p, hsa-mir-302a-5p, hsa-mir-367 -3p.
  • the miRNA target sequence specifically expressed in pluripotent stem cells refers to a sequence that can specifically bind to the miRNA.
  • the miRNA target sequence is preferably a sequence complementary to, for example, miRNA specifically expressed in pluripotent stem cells.
  • the miRNA target sequence may have a mismatch (mismatch) with a completely complementary sequence as long as it can be recognized in the miRNA.
  • the mismatch from the sequence that is completely complementary to the miRNA may be any mismatch that can be normally recognized by the miRNA in the desired cell. In the original function in the cell in vivo, the mismatch is about 40 to 50%. There is no problem.
  • mismatch is not particularly limited, but 1 base, 2 bases, 3 bases, 4 bases, 5 bases, 6 bases, 7 bases, 8 bases, 9 bases, or 10 bases or 1% of the total recognition sequence, 5% %, 10%, 20%, 30%, or 40% discrepancy.
  • the portion other than the seed region that is, the 5 ′ side in the target sequence corresponding to about 16 bases on the 3 ′ side of the miRNA.
  • a region may contain a number of mismatches, and portions of the seed region may contain no mismatches, or may contain 1 base, 2 bases, or 3 bases mismatches.
  • the marker gene is an RNA sequence that encodes an arbitrary marker protein that is translated in a cell, functions as a marker, and enables differentiation cells to be extracted, and can also be referred to as a sequence corresponding to the marker protein.
  • proteins that can be translated into cells and function as markers include, for example, proteins that can be visualized and quantified by assisting fluorescence, luminescence, coloration, or fluorescence, issuance, or coloration. It may be a membrane localized protein, a drug resistant protein, etc., but is not limited thereto.
  • fluorescent proteins blue fluorescent proteins such as Sirius and EBFP; cyan fluorescent proteins such as mTurquoise, TagCFP, AmCyan, mTFP1, MidoriishiCyan, and CFP; TurboGFP, AcGFP, TagGFP, Azami-Green (for example, hmAG1), ZsGreen, EmGFP, Green fluorescent proteins such as EGFP, GFP2, and HyPer; Yellow fluorescent proteins such as TagYFP, EYFP, Venus, YFP, PhiYFP, PhiYFP-m, TurboYFP, ZsYellow, and mBanana; Orange fluorescent proteins such as KusabiraOrange (eg, hmKO2) and mOrange Red fluorescent proteins such as TurboRFP, DsRed-Express, DsRed2, TagRFP, DsRed-Monomer, AsRed2, mStrawberry, etc .; TurboFP602, mRFP1, JRed, KillerRed, mCherry, H
  • a photoprotein can be exemplified by aequorin, but is not limited thereto.
  • proteins that assist fluorescence, luminescence, or coloration include, but are not limited to, enzymes that decompose fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • enzymes that decompose fluorescence, luminescence, or color precursors such as luciferase, phosphatase, peroxidase, and ⁇ -lactamase.
  • the corresponding precursor is brought into contact with the cell, or the corresponding precursor is introduced into the cell. Can be done by doing.
  • the membrane-localized protein is not particularly limited as long as it is a membrane-localized protein that is not endogenously expressed in pluripotent stem cells.
  • P-gp, MRP1, MRP2 (cMOAT), MRP3, MRP4, MRP5, MRP6, MDR2, and MDR3 proteins can be exemplified.
  • a membrane-localized protein translated from the introduced mRNA serves as an index, and therefore a membrane-localized protein that is not endogenously expressed in the target differentiated cell is more preferable.
  • drug resistant proteins examples include antibiotic resistance such as kanamycin resistance protein, ampicillin resistance protein, puromycin resistance protein, blasticidin resistance protein, gentamicin resistance protein, kanamycin resistance protein, tetracycline resistance protein, chloramphenicol resistance protein, etc. Although protein can be illustrated, it is not limited to these.
  • the mRNA used for introduction into the cell population by the method of the present invention contains a marker gene operably linked to a target sequence of miRNA that is specifically expressed in pluripotent stem cells.
  • a marker gene operably linked to a target sequence of miRNA that is specifically expressed in pluripotent stem cells.
  • such mRNA is also referred to as miRNA-responsive reporter mRNA.
  • the miRNA target sequence and the marker gene are functionally linked in the 5′UTR, 3′UTR, and / or the open reading frame (including the start codon) encoding the marker protein. Means comprising at least one miRNA target sequence within an open reading frame.
  • the mRNA preferably comprises a Cap structure (7-methylguanosine 5 ′ phosphate), an open reading frame encoding a marker protein, and a poly A tail in the 5 ′ to 3 ′ direction from the 5 ′ end.
  • At least one miRNA target sequence is provided in the UTR, in the 3′UTR, and / or in the open reading frame.
  • the location of the miRNA target sequence in the mRNA may be 5'UTR or 3'UTR, may be within the open reading frame (3'side of the start codon), An array may be provided.
  • the number of miRNA target sequences may be one, two, three, four, five, six, seven, eight or more.
  • one miRNA target sequence is present in the 5 ′ UTR. This is because efficient translation suppression can be achieved.
  • the number of bases and the types of bases between the Cap structure and the miRNA target sequence may be arbitrary as long as they do not include AUG as an initiation codon and do not constitute a stem structure or a three-dimensional structure.
  • the number of bases between the Cap structure and the miRNA target sequence can be designed to be 0 to 50 bases, preferably 10 to 30 bases.
  • the number of bases and the type of base between the miRNA target sequence and the start codon may be arbitrary as long as they do not constitute a stem structure or a three-dimensional structure, and the number of bases between the miRNA target sequence and the start codon is 0 to It can be designed to be 50 bases, preferably 10 to 30 bases. It has been confirmed that translational suppression can be achieved even when four miRNA target sequences are present in the 3′UTR.
  • the miRNA-responsive reporter mRNA preferably contains a modified base such as pseudouridine or 5-methylcytidine instead of ordinary uridine and cytidine. This is to reduce cytotoxicity.
  • the positions of the modified bases can be all or part of the uridine and cytidine independently, and if they are part of the base, they can be random positions at an arbitrary ratio.
  • the miRNA-responsive reporter mRNA can be synthesized by those skilled in the art by any method known in genetic engineering if the sequence is determined according to the above. In particular, it can be obtained by an in vitro synthesis method using a template DNA containing a promoter sequence as a template.
  • only one type of miRNA-responsive reporter mRNA may be used, or two or more types, for example, three, four, five, six, seven, or eight or more types may be used. There is also.
  • two or more miRNA-responsive reporter mRNAs that correspond to two or more miRNAs, respectively. preferable. For example, when two or more miRNA-responsive reporter mRNAs are used, it is desirable that each miRNA-responsive reporter mRNA is different for both the miRNA target sequence and the marker gene.
  • the number of miRNA target sequences contained in the miRNA-responsive reporter mRNA, the distance from the 5 ′ end of the miRNA target sequence, and other structures in the miRNA-responsive reporter mRNA may be different for each miRNA-responsive reporter mRNA.
  • the step of introducing a miRNA-responsive reporter mRNA into a cell population comprises a lipofection method, a liposome method, an electroporation method, a calcium phosphate coprecipitation method, a DEAE dextran method,
  • One or more miRNA-responsive reporter mRNAs are directly introduced into cells contained in a cell population using a microinjection method, a gene gun method, or the like.
  • the introduction amount at this time varies depending on the cell population to be introduced, the mRNA to be introduced, the introduction method and the type of introduction reagent, and those skilled in the art can appropriately select these in order to obtain a desired translation amount.
  • the miRNA-responsive reporter mRNA of the present invention when the miRNA-responsive reporter mRNA of the present invention is introduced into a cell population in which undifferentiated cells after differentiation induction are mixed from pluripotent stem cells, a predetermined miRNA is given to the cells within the differentiated cells. Does not exist as RISC, the translation amount of the marker gene encoded by the miRNA-responsive reporter mRNA is not suppressed. That is, translation of the marker gene is performed only in differentiated cells. Accordingly, in one embodiment of the present invention, by extracting cells in which the marker gene is translated, only differentiated cells are selectively extracted from a cell population in which undifferentiated cells after differentiation induction are mixed from pluripotent stem cells. It becomes possible to do.
  • a step of extracting cells in which the marker gene is translated is performed (hereinafter referred to as an extraction step).
  • the cells in which the marker gene is translated and the expression of the marker protein is confirmed are extracted as differentiated cells. That is, the cell population introduced with mRNA containing a marker gene operably linked to the miRNA target sequence is compared with the cell population not introduced with mRNA containing the marker gene operably linked to the miRNA target sequence. This can be achieved by extracting a cell expressing a marker protein from a cell population into which mRNA containing a marker gene operably linked to a target sequence has been introduced.
  • the extraction step can be performed by detecting a signal from the marker protein using a predetermined detection device. Detection of the signal from the marker protein may be performed by digitizing the signal and quantifying it, or detecting only the presence or absence of the signal. Examples of the detection device include, but are not limited to, a flow cytometer, an imaging cytometer, a fluorescence microscope, a light emission microscope, and a CCD camera. As such a detection apparatus, those suitable for those skilled in the art can be used depending on the marker protein.
  • the marker protein is a fluorescent protein or a luminescent protein
  • the presence or absence of marker protein can be confirmed and / or quantified using a detection device such as a flow cytometer, imaging cytometer, fluorescence microscope, or CCD camera. It is.
  • a detection device such as a flow cytometer, imaging cytometer, fluorescence microscope, or CCD camera. It is.
  • the marker protein is a protein that assists fluorescence, luminescence, or coloration
  • the presence or absence of marker protein expression and / or a quantification method using a detection device such as a luminescence microscope, a CCD camera, or a luminometer is possible. is there.
  • the marker protein is a membrane-localized protein
  • a cell surface protein-specific detection reagent such as an antibody
  • the presence / absence of marker protein expression can be confirmed and / or quantified using the above detection apparatus.
  • a method for isolating cells that does not undergo the marker protein quantification process such as a magnetic cell separator (MACS)
  • a method of isolating a living cell by detecting the expression of the marker protein by drug administration is possible.
  • miRNA-responsive reporter mRNA and control mRNA are co-introduced into undifferentiated cells and / or differentiated cells, and the translation efficiency of miRNA-responsive reporter mRNA in the cells It is also possible to carry out a step of confirming. By confirming and calculating the translation efficiency, it is possible to compare whether mRNA is introduced into the target cell and whether translation is suppressed by miRNA expression or whether the mRNA itself is difficult to introduce into the cell. By such comparative examination, mRNA used in the present invention can be appropriately selected.
  • Control mRNA refers to mRNA that does not have a miRNA target site and encodes a marker gene different from the marker gene encoded by the miRNA-responsive reporter mRNA. Control mRNA expresses a marker protein regardless of miRNA expression. This is because the miRNA target sequence does not exist, and even when introduced into a cell, translational control is not performed according to the miRNA expression level.
  • the present invention further relates to a differentiated cell extraction kit comprising mRNA containing a marker gene operably linked to a target sequence of miRNA specifically expressed in the above-described pluripotent stem cells.
  • the kit of the present invention may further contain a control mRNA.
  • the kit of the present invention also includes discriminant analysis means, for example, written documents and instructions describing the procedure for extracting differentiated cells, a program for causing a computer to execute the procedure for extracting differentiated cells, the program list,
  • discriminant analysis means for example, written documents and instructions describing the procedure for extracting differentiated cells
  • a program for causing a computer to execute the procedure for extracting differentiated cells the program list
  • a computer-readable recording medium for example, a flexible disk, an optical disk, a CD-ROM, a CD-R, and a CD-RW
  • an apparatus or a system computer, etc.
  • EGFP mRNA (SEQ ID NO: 1), which encodes the fluorescent reporter gene EGFP and contains the 5 'end (5'UTR) and 3' end untranslated region (3'UTR) of ⁇ -globin, is modified to 5'UTR MiR-302b-responsive reporter mRNA (1xT302b-EGFP) (SEQ ID NO: 2) containing 1 copy of miR-302b target sequence, miR-302b responsiveness containing 4 copies of miR-302b target sequence in 3'UTR A reporter mRNA (EGFP-4xT302b) (SEQ ID NO: 3) was designed. Furthermore, mCherry mRNA (SEQ ID NO: 4) containing 5′UTR and 3′UTR of ⁇ -globin used as a control was designed. These gene sequences are shown below.
  • EGFP-mRNA gene sequence (SEQ ID NO: 1) GGGCGAAUUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACACCGGUCGCCACC UCUAGACCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • mCherry-mRNA gene sequence (SEQ ID NO: 4) GGGCGAAUUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACACCGGUCGCCACC UCUAGACCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • IVT template DNA was prepared by mixing the 5 ′ UTR fragment, the ORF region fragment of the marker gene, and the 3 ′ UTR fragment and ligating by PCR (fusion PCR). These fragments were prepared by PCR amplification or purchased as oligo DNA for use. Details of a method for preparing four IVT template DNAs of EGFP mRNA, mCherry mRNA, 1xT302b-EGFP and EGFP-4xT302b are described below. PCR amplification of the EGFP and mCherry gene ORF regions was performed as follows. PCR using pCTp-EGFP (Saito H, et al., Nat Commun.
  • TAPEGFP_IVTfwd KEC-67
  • TAP_IVTrev KEC-23)
  • Amplification was performed to prepare an EGFP_ORF fragment.
  • mCherry_IVTfwd KEC-888
  • mCherry_IVTrev KEC-
  • PCR amplification was performed using (SEQ ID NO: 8) to prepare an mCherry_ORF fragment. Furthermore, PCR amplification of 5 ′ UTR fragment and 3 ′ UTR fragment not containing the target sequence was performed as follows. The 5'UTR fragment was obtained using IVT 5primeUTR (KEC-62) (SEQ ID NO: 9) as a template and TAP_T7_1G (KEC-876) (SEQ ID NO: 10) and Rev5UTR (KEC-1) (SEQ ID NO: 11) as primers. PCR amplified.
  • the 3′UTR fragment was obtained using IVT 3primeUTR (KEC-63) (SEQ ID NO: 12) as a template and Fwd3UTR (KEC-4) (SEQ ID NO: 13) and Rev3UTR2T20 (KEC-65) (SEQ ID NO: 14) as primers.
  • PCR amplified For the IVT template DNA of EGFP mRNA and mCherry mRNA, the 5′UTR fragment, 3′UTR fragment and EGFP_ORF fragment or mCherry_ORF fragment described above are mixed, and TAP_T7_1G and 3UTR120A (KEC-308) (SEQ ID NO: 15) are used as primers.
  • a fusion PCR was performed.
  • Ix template DNA of 1xT302b-EGFP is mixed with 5UTR-T302b-3p (KTC-004) (SEQ ID NO: 16), EGFP_ORF fragment and 3'UTR fragment, and GCT7CMV_del4 (KEC-97) (SEQ ID NO: 17) and 3UTR120A are mixed. It was prepared by performing fusion PCR using primers.
  • the IVT template DNA of EGFP-4xT302b was prepared by performing fusion PCR using 5'UTR fragment, EGFP_ORF fragment, and 3UTRtemp_4xT302b-3p (KTC-001) oligo DNA (SEQ ID NO: 18) using TAP_T7_1G and 3UTR120A as primers.
  • Oligo DNAs such as the primers and templates described above were used by appropriately consigning production.
  • the sequence is shown in Table 1.
  • the IVT template DNA obtained by PCR amplification as described above was purified using MinElute PCR purification kit (QIAGEN) according to the manufacturer's instructions.
  • mRNA IVT synthesis was performed using a protocol modified from the method of Warren L., et al., Cell Stem Cell, 7 (5): 618-30, 2010. In detail, it prepared using MegaScript T7 kit (Ambion) from the IVT template mentioned above. At this time, pseudouridine-5′-triphosphate and 5-methylcytidine-5′-triphosphate (TriLink BioTechnologies) were used instead of uridine triphosphate and cytidine triphosphate. Prior to the reaction, guanosine-5′-triphosphate was used diluted 5-fold with Anti Reverse Cap Analog (New England Biolabs).
  • the reaction mixture was incubated at 37 degrees for 4 hours, TURBO DNase (Ambion) was added and then incubated at 37 degrees for an additional 30 minutes.
  • the obtained mRNA was purified by FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech), and incubated at 37 degrees for 30 minutes using Antarctic Phosphatase (New England Biolabs). Then, it further refine
  • Human iPS cells (201B7, 409B2 and 427F1) were obtained from Shinya Yamanaka, Kyoto University. Human iPS cells were cultured on MMC-treated SNL feeder cells with Prime ES cell medium (Reprocell), 5 ng / ml bFGF (Reprocell), 0.5% penicilin-streptomysisn (Invitrogen). Passage was performed when the iPS cell colonies grew to some extent.
  • EGFP mRNA and each miR-302b-responsive reporter mRNA were transfected into human iPS cells, cultured in the presence of mirVana miRNA inhibitor, and analyzed by flow cytometry.
  • the fluorescence amount of EGFP changed according to the concentration of mirVana miRNA inhibitor (FIG. 1). That is, 1xT302b-EGFP and EGFP-4xT302b suggest that the translation amount of EGFP is reduced by the activity of miR-302b that is highly expressed in pluripotent human iPS cells. Therefore, it was shown that the use of miR-302b-responsive reporter mRNA can specifically recognize cells that have been induced to differentiate and have lost pluripotency in the cell population.
  • iPS cells Human iPS cells are seeded in a Matrigel (BD) -coated 10cm dish and retinoic acid medium (0.5uM retinoic acid (sigma), 10% FBS (GIBCO), 0.5% Penicilin-streptomycin (Invitrogen), 1% Glutamax (Invitrogen) And DMEM-F12 (Invitrogen) containing 1% NEAA (invitrogen)) for 3 days (Tang C, et al., Nature biotechnology, 29 (9): 829-34, 2011).
  • retinoic acid medium 0.5uM retinoic acid (sigma), 10% FBS (GIBCO), 0.5% Penicilin-streptomycin (Invitrogen), 1% Glutamax (Invitrogen) And DMEM-F12 (Invitrogen) containing 1% NEAA (invitrogen)
  • the cultured cells were separated from the culture dish and replated on a Matrigel-coated 10 cm dish using mTeSR1 medium (Stem cell technologies) or the same medium. Furthermore, 1xT302b-EGFP was transfected on the next day. Transfections were performed using 24 ⁇ l stemfect (stemgent) according to the manufacturer's instructions. Cells were separated from the culture dish 24 hours after transfection, and the fluorescence intensity of EGFP was analyzed by flow cytometry. At this time, cells treated with or not treated with anti-Tra-1-60 antibody (Alexa647, BD) or anti-SSEA5 antibody (8e11, GeneTex) were also measured, and each surface marker was also analyzed. .
  • the expression ratio of negative cells to Tra-1-60 positive cells or the expression ratio of positive cells to negative cells of EGFP was lower than the expression ratio of negative cells to SSEA5 positive cells. From this, it was shown that the extraction of differentiated cells by EGFP using 1xT302b-EGFP can be extracted with higher sensitivity than the anti-Tra-1-60 antibody or the anti-SSEA5 antibody.
  • the separated EGFP positive cells or Tra-1-60 negative cells were seeded on a matrigel-coated 6 well-plate by flow cytometry, and cultured in mTeSR1 medium or retinoic acid medium for 5 days. At this time, the medium was changed once every two days. The obtained cells were stained using an alkaline phosphatase staining kit (sigma). In EGFP positive cells transfected with 1xT302b-EGFP, the residual amount of alkaline phosphatase staining positive cells (undifferentiated cells) was remarkably reduced (FIG. 5).
  • differentiated cells can be selectively selected from a cell population in which undifferentiated cells and differentiated cells coexist without contamination of undifferentiated cells.
  • undifferentiated cells may be mixed in sorted Tra-1-60 negative cells.
  • the top 10% EGFP positive and top 20% EGFP positive cells were sorted by flow cytometry (FIG. 6A). Sort samples were cultured for 5 days by the method described above and stained with alkaline phosphatase. As a result, no undifferentiated cells stained with alkaline phosphatase were observed in any of the upper 10% EGFP positive cells and the upper 20% EGFP cells (FIG. 6B). Therefore, it was shown that undifferentiated cells were not mixed even in the top 20% EGFP positive cells.
  • tagBFP mRNA (SEQ ID NO: 22) containing ⁇ -globin 5′UTR and 3′UTR was designed to be used as a control for standardization of transfection.
  • PuromycinR-mRNA containing a puromycin resistance gene (SEQ ID NO: 23) was modified as a drug resistance gene, and 302a-5p responsive PuromycinR-mRNA containing 1 miR-302a-5p target sequence in 5'UTR ( SEQ ID NO: 24) was designed. The mRNA shows these gene sequences below.
  • hmAG1-mRNA gene sequence (SEQ ID NO: 20) GGTTCCGCGATCGCGGATCCagcaagtacatccacgtttaagtAGATCCACCGGTCGCCACC ATCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • hmAG1-mRNA gene sequence (SEQ ID NO: 21) GGTTCCGCGATCGCGGATCCtcaccattgctaaagtgcaattAGATCACACCGGTCGCCACC ATCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCGCAGTGTACCTCTTGGTAATTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • Responsive PuromycinR-mRNA gene sequence (SEQ ID NO: 24) GGTTCCGCGATCGCGGATCCagcaagtacatccacgtttaagtAGATCCACCGGTCGCCACC TCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
  • IVT template DNA was prepared by mixing the 5 'UTR fragment, the ORF region fragment of the marker gene, and the 3' UTR fragment and ligating them by PCR (fusion PCR). ). These fragments are prepared by PCR amplification. Details of the method for preparing six IVT template DNAs of hmAG1, 302a-5p responsive hmAG1, 367-3p responsive hmAG1, tagBFP, PuromycinR, 302a-5p responsive PuromycinR are described. PCR amplification of hmAG1, tagBFP and PuromycinR gene ORF regions was performed as follows.
  • Plasmid template S / G2 / M Green (Amalgam MBL) as a template, PCR amplification using hmAG1_IVTfwd (KEC-330) (SEQ ID NO: 25) and hmAG1_IVTrev (KEC-331) (SEQ ID NO: 26), and hmAG1_ORF fragment was made.
  • pTAP_tagBFP (Miki et al., Cell Stem Cell, volume 16, Issue 6, 4 June 2015, Pages 699-711) as a template
  • tagBFP_fwd (KED-90)
  • TAP_IVTrev PCR amplification was performed using KEC-23) to produce a tagBFP_ORF fragment.
  • PCR amplification was performed using Plasmid template: pPyCAG-Nanog-IP (plasmid 13838, Addgene) as a template, ORF_PuroR_fwd (STC-035) (SEQ ID NO: 31) and ORF_PuroR_rev (STC-036) (SEQ ID NO: 32).
  • the tagBFP_ORF fragment was prepared.
  • the 5′UTR fragment was prepared by PCR amplification using IVT 5primeUTR (KEC-62) as a template and TAP_T73GC (SKC-111) (SEQ ID NO: 30) and Rev5UTR (KEC-1) (SEQ ID NO: 11) as primers. .
  • the 3′UTR fragment was prepared by PCR amplification using IVT 3primeUTR (KEC-63) as a template and Fwd3UTR (KEC-4) and Rev3UTR2T20 (KEC-65) as primers.
  • PCR amplification of 5′UTR containing 302a-5p target sequence and 5′UTR containing 367-3p target sequence was performed as follows.
  • the 302a-5p-5'UTR fragment was prepared using 5UTRtemp_T302a-5p (KEC-653) (SEQ ID NO: 27) as a template and GCT7pro_5UTR2 (KEC-948) (SEQ ID NO: 29) and Rev5UTR (KEC-1) as primers. PCR amplified.
  • the 367-3p-5'UTR fragment was prepared by PCR amplification using 5UTRtemp_T367-3p (KEC-845) (SEQ ID NO: 28) as a template and GCT7pro_5UTR2 (KEC-948) and Rev5UTR (KEC-1) as primers. .
  • the IVT template DNAs of hmAG1 mRNA, tagBFP mRNA, and PuromycinR mRNA are mixed with the 5'UTR fragment, 3'UTR fragment and hmAG1_ORF fragment, tagBFP_ORF fragment or PuromycinR_ORF fragment described above, and TAP_T73GC (SKC-111) and 3UTR120A (KEC -308) was used as a primer to perform fusion PCR.
  • 302a-5p responsive hmAG1, 367-3p responsive hmAG1 IVT template DNA is mixed the 302a-5p-5′UTR fragment or 367-3p-5′UTR fragment, 3′UTR fragment and hmAG1_ORF fragment described above, Fusion PCR was performed using GCT7pro_5UTR2 (KEC-948) and 3UTR120A (KEC-308) as primers.
  • 302a-5p Responsive PuromycinR IVT template DNA was prepared by mixing the above 302a-5p-5'UTR fragment 3'UTR fragment and PuromycinR_ORF fragment, and using GCT7pro_5UTR2 (KEC-948) and 3UTR120A (KEC-308) as primers.
  • Feeder-free human iPS cells (Ff-hiPSC) were maintained on iMatrix-511 (E8) (Nippi) in StemFit (+ bGF) medium according to the protocol of Nakagawa et al., 2014. Human iPS cells were passaged every 8 days. Prior to passage, 6-well plates were coated with iMatrix-511 (E8) diluted to 0.5 ⁇ g / cm 2 with sterile PBS at 37 ° C. for at least 1 hour. After coating, PBS was aspirated and quickly replaced with 1.5 ml StemFit containing 10 ⁇ M ROCK inhibitor (Y-26732).
  • the cell density was calculated using trypan blue staining and Cell Countess (Invitrogen), seeded at 1.3 ⁇ 10 4 / well, and the cells were uniformly distributed. After 24 hours, StemFit without ROCK inhibitor was replaced, and thereafter replaced every other day.
  • Day 0 differentiation medium to day 2 differentiation medium 4 ml per well, day 3 differentiation medium to day 6 differentiation medium 6 ml per well, day 7 differentiation medium to day 8 differentiation medium 8 ml per well, day 9 differentiation medium 10 ml of day 11 differentiation medium was added per well.
  • the number of cells doubled to approximately 10 ⁇ 10 6 / well.
  • Cells were passaged on day 12, day 20, and day 29 and seeded in 6-well plates at 5 ⁇ 10 6 / well. After day 12, cells were always maintained in Neurobasal B27 medium. The medium was changed every day and 5 ml / well was added each time.
  • composition of medium used for induction of differentiation into midbrain dopamine neuron cells Day 0 8GMK, 10 ⁇ M Y-26732 (Wako), 100nM LDN-193189 (Stemgent), 500nM A83-01 (Wako) Day 1-2 8GMK, 100 nM LDN-193189, 500 nM A83-01, 2 ⁇ M Purmorphamine (Calbiochem), 100 ng / ml human recombinant FGF-8 (Wako) Day 3-7 8GMK, 100 nM LDN-193189, 500 nM A83-01, 2 ⁇ M Purmorphamine, 100 ng / ml human recombinant FGF-8, 30 ⁇ M CHIR99021 (Stemgent) Day 7-11 8GMK, 100 nM LDN-193189, 30 ⁇ M CHIR99021 Day 12 and later Neurobasal B27, 200 ⁇ M ascorbic acid (Sigma Aldrich), 400 ⁇ M dbcAMP (cAMP), 20 ⁇ M
  • Tube B was dropped into tube A, flick-mixed, and incubated at room temperature for 10 minutes.
  • the transfection complex was added dropwise to the cells, stirred and placed in an incubator. After 4 hours, the old medium containing the transfection complex was aspirated and fresh differentiation medium without ROCK inhibitor added. The next day, cells were analyzed by FACS analysis with BD FACS aria-II or BD Accuri using standard filters as above. Transfection efficiency was evaluated for mock transfected cells.
  • Feeder-free human iPS cell lines (201B7, 1231A3 and 1383D7) and HeLa cells with 50 ng hmAG1 mRNA (ctrl-hmAG1), 302a-5p-responsive hmAG1 mRNA (302a-5p-hmAG1) or 367-3p-responsive hmAG1 mRNA (367-3p-hmAG1) was introduced with 100 ng of tagBFP, 24 hours later, cells were harvested and analyzed using BD FACS aria-II. The results are shown in FIG. 7a as a dot plot. Even with these miRNA-responsive mRNAs, specific translational repression in human iPS cells 201B7 was identified in flow cytometry analysis.
  • FIG. 7c In 201B7, 302a-5p-responsive mRNA and 302a-5p inhibitor with different amounts added were co-introduced (FIG. 7c).
  • the 302a-5p inhibitor concentration was varied in the range of 0.003 nM to 30 nM, and was shown in dot plots of cyan, orange, green, blue, and red in order from 0.003 nM (the right diagram in FIG. 7c).
  • inhibitor was added at 3 nM and 30 nM, translational suppression by 302a-5p-responsive mRNA was partially and completely inhibited.
  • 302a-5p-responsive mRNA and each added amount of 302a-5p mimic were co-introduced into HeLa cells that did not respond to 302a-5p-responsive mRNA (FIG. 7d).
  • the 302a-5p mimic concentration was varied in the range of 0.003 nM to 6 nM, and the dot plots of orange, cyan, purple, blue, and red were shown in order from 0.003 nM (the right figure in FIG. 7d). From these results, it was shown that 302a-5p mimic suppresses translation of 302a-5p-responsive mRNA. From the above, it is shown that 302a-5p-responsive mRNA is specific for the target miRNA.
  • Hela cells and hepatocytes are shown as negative controls on day 0. It shows that the expression level of hsa-miR-302a-5p and hsa-miR-367-3p in each cell is down-regulated during differentiation from human iPS cells to mDA cells.
  • Ff-human iPS cells in differentiated cells For a fully differentiated mDA cell line to which a known amount of Ff-human iPS cells was added, the amount added using miRNA-responsive mRNA was measured (spike test) (FIG. 10). In 24-well plates, 0, 100, and 500 Ff-201B7 human iPS cells were added to mDA cells. The total number of cells was 200,000. These cells were co-introduced with 100 ng of tagBFP with 50 ng of hmAG1 mRNA or 302a-5p responsive mRNA.
  • FIG. 11a shows a removal scheme of residual iPS by addition of puromycin.
  • 302a-5p-responsive puroR mRNA was introduced into a co-cultured strain of 201B7 cell line and mDA cells, cells that were not introduced, and hsa-miR A cell in which -302a-5p is highly expressed does not have a puromycin resistance gene or shows that the expression of the resistance gene is suppressed, leading to cell death.
  • FIG. 11b shows the experimental timeline of a single culture system.
  • a 24-well plate is seeded with a single culture of Ff-201B7 human iPS cells or mDA cells derived therefrom, or a co-culture thereof, and the corresponding iPS cell culture medium or mDA cell culture medium, or two mixed media Incubated with ROCK inhibitor. The next day, the medium was changed to one without ROCK inhibito, and 50 ng of puroR mRNA or 302a-5p-responsive puroR mRNA was introduced into the cells. After 4 hours of expression, the medium was changed and 2 ⁇ g / ml puromycin was added.
  • FIG. 11c shows the result of gating the living cells as measured by BD Accuri.
  • the FL-1 (TRA-1-60) histogram was large for almost all backgrounds. While it decreased, there was no effect when puroR mRNA was introduced.
  • the histogram obtained from the co-culture system into which 302a-5p-responsive puroR mRNA was introduced the TRA-1-60 positive peak was significantly reduced.
  • the figure below shows the absolute number of TRA-1-60 positive cells in all conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Transplantation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

多能性幹細胞から分化誘導後の未分化細胞が混在する細胞集団から、分化細胞を抽出する方法。以下の工程を含む、分化細胞を抽出する方法;(1)多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを細胞集団に導入する工程、および(2)当該マーカー遺伝子が翻訳された細胞を抽出する工程。

Description

分化細胞の抽出方法

 本発明は、多能性幹細胞に特異的に発現するmiRNAを指標として分化細胞を抽出する方法に関する。 

 iPS細胞やES細胞など多能性幹細胞を所望の細胞へと分化誘導し、当該細胞を体内に投与することによって行われる細胞治療が注目されている。しかし、分化誘導を行った後であっても、未分化の細胞が残存する可能性があり、当該未分化の細胞を含んでなる細胞集団を投与した場合、癌化のおそれが指摘されている(非特許文献1)。 

 そこで、このような残存する未分化細胞として、多能性幹細胞に高発現する細胞表面マーカーを指標として未分化細胞を除く方法が検討されている。しかし、多能性幹細胞に高発現する細胞表面マーカーが分化細胞に発現しないとは限らず、多能性幹細胞に高発現する細胞表面マーカーが陰性である細胞を抽出しても、完全に未分化細胞を除去することができない可能性がある。また、このような細胞表面マーカーの種類には限りがあり、より特異的なマーカーを見つけることは困難である。

Miura K, et al., Nat Biotechnol. 2009 27:743-745

 多能性幹細胞から分化誘導した未分化細胞を含んでなる細胞集団より、分化細胞を抽出する方法が望まれている。

 本発明者らは、多能性幹細胞に特異的に発現するmiRNAを利用して、当該miRNAの発現によってマーカー遺伝子の発現が抑制されるmRNAを用いて、分化細胞のみを抽出できることを見出し、本発明を完成するに至った。 

 すなわち、本発明は以下の特徴を有する:[1]以下の工程を含む、多能性幹細胞から分化誘導後の細胞集団から、分化細胞を抽出する方法;(1)多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを細胞集団に導入する工程、および(2)当該マーカー遺伝子が翻訳された細胞を抽出する工程。
[2]前記多能性幹細胞が、ヒト多能性幹細胞である、[1]に記載の方法。
[3]前記ヒト多能性幹細胞に特異的に発現するmiRNAが、hsa-miR-302b、hsa-miR-302a、またはhsa-miR-367である、[2]に記載の方法。
[4]前記抽出する工程が、フローサイトメーターを用いて行われる、[1]から[3]のいずれか一項に記載の方法。
[5]多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを含んでなる、分化細胞抽出キット。
[6]前記多能性幹細胞が、ヒト多能性幹細胞である、[5]に記載のキット。
[7]前記ヒト多能性幹細胞に特異的に発現するmiRNAが、hsa-miR-302b、hsa-miR-302a、またはhsa-miR-367である、[6]に記載のキット。

 本発明によれば、多能性幹細胞に特異的なmiRNAと機能的に連結したマーカー遺伝子を有するmRNAを利用することで、分化細胞を選択的に抽出することができる。本発明による方法は、マーカーの陽性である細胞を選択することによって成し得るため、当該mRNAの導入効率に影響を受けない点で特に有利である。また、本発明の方法は、細胞にmRNAを導入することにより実施することができ、このmRNAは約1日程度の半減期で分解されて、細胞内から速やかに除去されるため、細胞内におけるウイルス感染やDNAの残存により、ゲノムに損傷を与えるといった問題を生ずることがない。また、サイトメーターを利用した簡便な検出の方法や薬剤耐性遺伝子の導入による薬剤選択によって分化細胞を選択できる点においても有利である。

図1は、EGFP、1xT302b-EGFPおよびEGFP-4xT302bを導入し、各mirVana miRNA inhibitorの濃度を添加した培地で培養したiPS細胞における、EGFPの蛍光強度を測定した結果を示す。図中、エラーバーは、平均±標準偏差(n=3)を示す。 図2は、mCherryおよびEGFP、またはmCherryおよび1xT302b-EGFPを共導入し、各mirVana miRNA inhibitorの濃度を添加した培地で培養したiPS細胞における、mCherryの蛍光強度に対するEGFPの蛍光強度を測定した結果を示す。図中、エラーバーは、平均±標準偏差(n=3)を示す。 図3は、iPS細胞をレチノイン酸培地で培養した後、1xT302b-EGFPを導入しなかった、または導入した細胞におけるEGFPの蛍光強度をフローサイトメトリーで測定した結果(上図)、iPS細胞またはiPS細胞をレチノイン酸培地で培養した細胞におけるTra-1-60の発現量をフローサイトメトリーで測定した結果(中図)、およびiPS細胞またはiPS細胞をレチノイン酸培地で培養した細胞におけるSSEA5の発現量をフローサイトメトリーで測定した結果(下図)を示す。図中の数字は、記載された分画における全細胞に対する含有率を示す。 図4は、iPS細胞をレチノイン酸培地で培養した後、1xT302b-EGFPを導入した細胞中のEGFP陽性細胞(+)またはEGFP陰性細胞(-)におけるOCT3/4の発現量(左図)、iPS細胞をレチノイン酸培地で培養した後の細胞中のTra-1-60陰性細胞(-)またはTra-1-60陽性細胞(+)におけるOCT3/4の発現量(中図)、iPS細胞をレチノイン酸培地で培養した後の細胞中のSSEA5陰性細胞(-)またはSSEA5陽性細胞(+)におけるOCT3/4の発現量(右図)を示す。 図5は、iPS細胞をレチノイン酸培地で培養した後、1xT302b-EGFPを導入した細胞中のEGFP陽性細胞またはTra-1-60陰性細胞をmTeSR1(上図)またはレチノイン酸培地(下図)中で5日間培養した細胞のアルカリフォスファターゼ染色像を示す。 図6Aは、iPS細胞をレチノイン酸培地で培養した後、1xT302b-EGFPを導入した細胞におけるEGFPの発現量をフローサイトメトリーで測定した結果を示す。図6Bは、iPS細胞をレチノイン酸培地で培養した後、1xT302b-EGFPを導入した細胞中の上位10%EGFP陽性細胞または上位20%EGFP陽性細胞をmTeSR1(上図)またはレチノイン酸培地(下図)中で5日間培養した細胞のアルカリフォスファターゼ染色像を示す。 図7aは、フィーダーフリー ヒトiPS細胞ライン(201B7, 1231A3, 1383D7) 及びHeLa細胞に、Ctrl-hmAG1, 302a-5p-hmAG1または367-3p-hmAG1を共導入し、hmAG1の翻訳をBD FACS aria-IIを用いて分析した結果を示すドットプロット図である。図7bは、302a-5p応答性mRNA及び367-3p 応答性mRNAが、ヒトiPS細胞中で特異的に翻訳抑制され、Hela細胞(右端のバー)は不変であることを示す図である。図7cは、302a-5p応答性mRNA及び添加量を変化させた302a-5p inhibitor をFf-201B7に共導入し、hmAG1の蛍光強度をtagBFPの蛍光強度に対する比率を示したグラフ(左図)、及びinhibitor 濃度0.003nMから順に(プロット下方から上方に、順に)、シアン、オレンジ、緑、青、赤のドットプロット図(右図)である。図7dは、302a-5p応答性mRNA及び添加量を変化させた 302a-5p mimicをHela細胞に共導入し、hmAG1の蛍光強度をtagBFPの蛍光強度に対する比率を示したグラフ(左図)、及び、mimic濃度0.003nMから順に(プロット上方から下方に、順に)オレンジ、シアン、紫、青、赤のドットプロット図(右図)である。エラーバーは、3回の繰り返し試行の標準誤差を示す。 図8は、Ff-ヒトiPS細胞から中脳ドーパミン作動性細胞への分化を、302a-5p 応答性mRNA及び367-3p応答性mRNAを用いてトラッキングした結果を示す図であり、図8aは、左から順に、day0、day 5、day 7、day 14における、302a-5p応答性mRNAを導入したFf-201B7細胞の代表的なドットプロットを示し、day0では、青いドットプロット(チャート中、下方のドット群)が、302a-5p応答性mRNAによる高い翻訳抑制を示しており、分化が進むにつれ、ドット群の重なりが大きくなり、翻訳抑制効果が低くなることがわかる。図8bは、Ff-ヒトiPS細胞の分化の間の、302a-5pまたは367-3p応答性細胞の分布 (青色領域)、及び 302a-5pまたは367-3p非応答性細胞の分布 (赤色領域)を示す。図8cは、分化の間に、302a-5p 応答性mRNAに対して応答する細胞のパーセンテージ(左図)、367-3p応答性mRNAに対して応答する細胞のパーセンテージの経時変化を(右図)示す。エラーバーは、3回の繰り返し試行の標準誤差を示す。 図9は、ヒトiPS細胞からmDA細胞(中脳ドーパミンニューロン細胞)への分化のday0からday21の各細胞、及びHela細胞及び肝細胞におけるhsa-miR-302a-5pの発現量(図9a)及びhsa-miR-367-3の発現量(図9b)の比を、RNU6Bで標準化して、log10スケールで示すグラフであり、Hela細胞及び肝細胞はいずれのmiRNAも殆ど発現していない陰性対照として示し、ヒトiPS細胞からmDAへ分化が進むにしたがって、hsa-miR-302a-5pおよびhsa-miR-367-3は、ともに発現量がダウンレギュレートされることを示す。エラーバーは、3回の繰り返し試行の標準誤差を示す。 図10は、完全に分化したmDA細胞株へFf-ヒトiPS細胞を添加した細胞を高感度で検出できることを示す図である。24-wellプレート中で、mDA細胞に、最小100個のFf-201B7 ヒトiPS細胞を添加した。総細胞数は、200,000個とした。細胞に、tagBFPと、hmAG1 mRNAまたは302a-5p-hmAG1 mRNAを導入した。mDA 細胞 のみに302a-5p応答性mRNAを導入した場合には、302pos(miR-302a-5p陽性) ゲート(repeat 1)及び P5ゲート (repeat 2)を設置したところ、miR-302a-5p陽性細胞がないことを確認した(左側パネルのドットプロット)。repeat 1、repeat 2の両者とも、mDA細胞に対する302a-5p応答性mRNAにより識別したヒトiPS細胞の割合の測定値が、予測値に非常に近接していた。 図11aは、残存iPS細胞のピューロマイシン添加による除去スキームを示す。図11bは、単培養系の実験タイムライン(上図)、及び細胞毒性アッセイの結果(下図、グラフ)を示し、左の2つのパネルが、Ff-201B7 ヒトiPS細胞、右の2つのパネルが、Ff-201B7 ヒトiPS細胞から誘導されたmDA細胞に、それぞれ、PuroR mRNA(Ctrl-PuroR)、302a-5p-応答性puroR mRNA(302-PuroR)を導入し、ピューロマイシン添加による細胞毒性アッセイを行った結果を示す。図11cは、PuroR mRNA(Ctrl-PuroR)または302a-5p-応答性 puroR mRNAを導入し、ピューロマイシンを添加し、Alexa-488コンジュゲートした抗ヒトTRA-1-60抗体(BD laboratories)で染色した、ヒトiPS細胞(上左パネル)、ヒトiPS細胞およびmDA細胞の混合細胞(上中央パネル)、mDA細胞(上右パネル)をBD Accuriで測定した結果、及び各コンディションにおけるTRA-1-60陽性細胞の絶対数を示す棒グラフ(下パネル)である。

 以下に、本発明を、実施形態を挙げて詳細に説明する。以下の実施形態は本発明を限定するものではない。

 本発明は、実施の形態によれば、以下の工程を含む、多能性幹細胞から分化誘導後の未分化細胞が混在し得る細胞集団から、分化細胞を抽出する方法に関する; (1)多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを細胞集団に導入する工程、および(2)当該マーカー遺伝子が翻訳された細胞を抽出する工程。 

 本発明において多能性幹細胞とは、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、例えば胚性幹(ES)細胞(J.A. Thomson et al. (1998), Science 282:1145-1147; J.A. Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al. (1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall (1998), Curr. Top. Dev. Biol., 38:133-165)、核移植により得られるクローン胚由来の胚性幹(ntES)細胞(T. Wakayama et al. (2001), Science, 292:740-743; S. Wakayama et al. (2005), Biol. Reprod., 72:932-936; J. Byrne et al. (2007), Nature, 450:497-502)、精子幹細胞(「GS細胞」)(M. Kanatsu-Shinohara et al. (2003) Biol. Reprod., 69:612-616; K. Shinohara et al. (2004), Cell, 119:1001-1012)、胚性生殖細胞(「EG細胞」)(Y. Matsui et al. (1992), Cell, 70:841-847; J.L. Resnick et al. (1992), Nature, 359:550-551)、人工多能性幹(iPS)細胞(K. Takahashi and S. Yamanaka (2006) Cell, 126:663-676; K. Takahashi et al. (2007), Cell, 131:861-872; J. Yu et al. (2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106 (2008);WO2007/069666)、培養線維芽細胞や骨髄幹細胞由来の多能性細胞(Muse細胞)(WO2011/007900)などが含まれる。より好ましくは、多能性幹細胞はヒト多能性幹細胞である。 

 本発明において分化誘導とは、特定の組織細胞やその前駆細胞への分化だけでなく、内胚葉細胞、中胚葉細胞および外胚葉細胞などの多種類の細胞を含む細胞集団への分化も含む。また、本発明が対象とする組織は、皮膚、血管、角膜、腎臓、心臓、肝臓、臍帯、腸、神経、肺、胎盤、膵臓、脳、軟骨、四肢末梢、網膜などが挙げられるがそれらに限定されない。この分化誘導方法は、当業者に周知の方法を用いることができ、特に限定されないが、神経幹細胞は、特開2002-291469へ、膵幹様細胞は、特開2004-121165、造血細胞は、特表2003-505006などが例示される。この他にも、胚葉体の形成による分化誘導法は、特表2003-523766が例示される。 

 本明細書において、多能性幹細胞から分化誘導後の細胞集団とは、上記多能性幹細胞に対して、分化誘導のための方法を実施した後の細胞集団をいうものとする。分化誘導後の細胞集団には、未分化細胞が混在する場合が存在するが、本発明の方法は、細胞集団が、未分化細胞を含むか否かが未知の場合であっても、同様に実施することができる。好ましくは、多能性幹細胞から分化誘導後の細胞集団とは、多能性幹細胞から分化誘導後の未分化細胞が混在する細胞集団である。 

 本発明においてmiRNAとは、micro-RNAとも称し、細胞内に存在する長さ18から25塩基ほどのRNAである。miRNAは、DNAから転写された一本鎖RNAであるpri-mRNAをDroshaと呼ばれる核内酵素により部分切断することによって生じるpre-miRNAを、Dicerによって切断することによって生じる二本鎖RNAのいずれかの一方の鎖を意味する。miRNAの塩基数は、例えば18~25、好ましくは20~25、さらに好ましくは21~23である。約1,000個程度のmiRNA情報を格納したデータベースを利用することができる(例えば、miRBase、http://microrna.sanger.ac.uk/sequences/ index.shtml)。当業者はこのデータベースから任意のmiRNA情報を引き出すことができ、多能性幹細胞に特異的に発現しているmiRNAを、容易に抽出することが可能である。例えば、miRNAマイクロアレイやリアルタイムPCRなど当業者に利用可能な手法を用いて多能性幹細胞と分化誘導後の細胞との間でmiRNAの発現の違いを確認することができる。これにより、多能性幹細胞において分化誘導後の細胞よりも高度に発現しているmiRNAを多能性幹細胞に特異的に発現しているmiRNAとして、容易に特定することが可能である。なお、多能性幹細胞において発現するmiRNAとは、多能性幹細胞において、上記Dicerによって切断された二本鎖RNAのいずれか一方の鎖が、所定の複数の蛋白質と相互作用して、RNA-induced silencing complex(RISC)を形成した状態にあるmiRNAをいうものとする。 

 本発明において、多能性幹細胞に特異的に発現しているmiRNAは、文献等により多能性幹細胞に特異的に発現していることが知られているmiRNAであれば特に限定されないが、例えば、hsa-mir-302a、hsa-mir-302b、hsa-mir-302c、hsa-mir-302d、hsa-mir-367、hsa-5201、hsa-mir-92b、hsa-mir-106a、hsa-mir-18b、hsa-mir-20b、hsa-mir-19b-2、hsa-mir-92a-2、hsa-mir-363、hsa-mir-20a、hsa-mir-17、hsa-mir-18a、hsa-mir-19a、hsa-mir-19b-1、hsa-mir-373、hsa-mir-330、hsa-mir-520c、hsa-mir-182、hsa-mir-183、hsa-mir-96、hsa-mir-92a-1、hsa-mir-92a-2、hsa-mir-141、hsa-mir-200c、hsa-mir-27a、hsa-mir-7-1、hsa-mir-7-2、hsa-mir-7-3、hsa-mir-374a、hsa-mir-106b、hsa-mir-93、hsa-mir-25、hsa-mir-584、hsa-mir-374b、hsa-mir-21、hsa-mir-212、hsa-mir-371a、hsa-mir-371b、hsa-mir-372、hsa-mir-200b、hsa-mir-200a、hsa-mir-429のいずれか一方の鎖が挙げられる。この他にも、例えば、Tobias S. Greve,et al., Annu. Rev. Cell Dev. Biol. 2013.29:213-239に記載されているmiRNAから適宜選択されたmiRNAが例示される。好ましいmiRNAは、hsa-mir-302a、hsa-mir-302b、またはhsa-mir-367であり、さらに好ましくは、hsa-miR-302b-3p、hsa-mir-302a-5p、hsa-mir-367-3pである。 

 本発明において、多能性幹細胞に特異的に発現するmiRNAの標的配列とは、当該miRNAに特異的に結合可能な配列をいう。miRNA標的配列は、例えば、多能性幹細胞に特異的に発現するmiRNAに相補的な配列であることが好ましい。あるいは、当該miRNA標的配列は、miRNAにおいて認識され得る限り、完全に相補的な配列との不一致(ミスマッチ)を有していても良い。当該miRNAに完全に相補的な配列からの不一致は、所望の細胞において、通常にmiRNAが認識し得る不一致であれば良く、生体内における細胞内の本来の機能では、40~50% 程度の不一致があっても良いとされている。このような不一致は、特に限定されないが、1塩基、2塩基、3塩基、4塩基、5塩基、6塩基、7塩基、8塩基、9塩基、若しくは10塩基又は全認識配列の1%、5%、10%、20%、30%、若しくは40%の不一致が例示される。また、特には、細胞が備えているmRNAのmiRNA標的配列のように、特に、シード領域以外の部分に、すなわちmiRNAの3’側の16 塩基程度に対応する、標的配列内の5’側の領域に、多数の不一致を含んでもよく、シード領域の部分は、不一致を含まないか、1塩基、2塩基、若しくは3塩基の不一致を含んでもよい。 

 マーカー遺伝子は、細胞内で翻訳されて、マーカーとして機能し、分化細胞の抽出を可能にする任意のマーカー蛋白質をコードするRNA配列であり、マーカー蛋白質に対応する配列ともいうことができる。細胞内で翻訳されてマーカーとして機能しうる蛋白質としては、一例としては、蛍光、発光、呈色、若しくは蛍光、発行又は呈色を補助することなどにより、視覚化し、定量化することができる蛋白質、膜局在蛋白質、薬剤耐性蛋白質等であってよいが、これらには限定されない。 

 蛍光蛋白質としては、Sirius、EBFPなどの青色蛍光蛋白質;mTurquoise、TagCFP、AmCyan、mTFP1、MidoriishiCyan、CFPなどのシアン蛍光蛋白質;TurboGFP、AcGFP、TagGFP、Azami-Green (例えば、hmAG1)、ZsGreen、EmGFP、EGFP、GFP2、HyPer、などの緑色蛍光蛋白質;TagYFP、EYFP、Venus、YFP、PhiYFP、PhiYFP-m、TurboYFP、ZsYellow、mBananaなどの黄色蛍光蛋白質;KusabiraOrange (例えば、hmKO2)、mOrangeなどの橙色蛍光蛋白質;TurboRFP、DsRed-Express、DsRed2、TagRFP、DsRed-Monomer、AsRed2、mStrawberry、などの赤色蛍光蛋白質;TurboFP602、mRFP1、JRed、KillerRed、mCherry、HcRed、KeimaRed(例えば、hdKeimaRed)、mRasberry、mPlumなどの近赤外蛍光蛋白質が挙げられるが、これらには限定されない。 

 発光蛋白質としては、イクオリンを例示することができるが、これに限定されない。また、蛍光、発光又は呈色を補助する蛋白質として、ルシフェラーゼ、ホスファターゼ、ペルオキシダーゼ、βラクタマーゼなどの蛍光、発光又は呈色前駆物質を分解する酵素を例示することができるが、これらには限定されない。ここで本発明において、蛍光、発光又は呈色を補助する物質をマーカーとして使用する場合、分化細胞の抽出において、対応する前駆物質と細胞を接触させること、又は細胞内に対応する前駆物質を導入することによって行われ得る。 

 膜局在蛋白質としては、多能性幹細胞で内在的に発現していない膜局在蛋白質であれば特に限定されないが、例えば、P-gp、MRP1、MRP2(cMOAT)、MRP3、MRP4、MRP5,MRP6、MDR2,およびMDR3蛋白質を例示することができる。本発明では、導入したmRNAから翻訳された膜局在蛋白質が指標となることから、対象となる分化細胞において内在的に発現していない膜局在蛋白質がより好ましい。薬剤耐性蛋白質としては、例えば、カナマイシン耐性蛋白質、アンピシリン耐性蛋白質、ピューロマイシン耐性蛋白質、ブラストサイジン耐性蛋白質、ゲンタマイシン耐性蛋白質、カナマイシン耐性蛋白質、テトラサイクリン耐性蛋白質、クロラムフェニコール耐性蛋白質などの抗生物質耐性蛋白質を例示することができるが、これらには限定されない。 

 本発明の方法で細胞集団に導入するために用いるmRNAは、多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含む。本発明の説明において、かかるmRNAを、miRNA応答性レポーターmRNAとも指称する。本発明においてmiRNAの標的配列とマーカー遺伝子が機能的に連結するとは、マーカー蛋白質をコードするオープンリーディングフレーム(ただし、開始コドンを含む。)の5’UTR内、3’UTR内、及び/または当該オープンリーディングフレーム内に、少なくとも1つのmiRNA標的配列を備えることを意味する。mRNAは、好ましくは、5’末端から、5’から3’の向きに、Cap構造(7メチルグアノシン5’リン酸)、マーカー蛋白質をコードするオープンリーディングフレーム並びに、ポリAテイルを備え、5’UTR内、3’UTR内、及び/またはオープンリーディングフレーム内に少なくとも1つのmiRNA標的配列を備える。mRNAにおけるmiRNA標的配列の位置は、5’UTRであっても、3’UTRであってもよく、オープンリーディングフレーム内(開始コドンの3’側)であってもよく、これらのすべてにmiRNA標的配列を備えていてもよい。したがって、miRNA標的配列の数は、1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つあるいはそれ以上であっても良い。 

 好ましくは、miRNA標的配列は、5’UTRに1つ存在する。効率的な翻訳抑制を達成することができるためである。このとき、Cap構造とmiRNA標的配列と間の塩基数及び塩基の種類は、開始コドンとなるAUGを含まず、かつステム構造や立体構造を構成しない限り、任意であってよい。例えば、Cap構造とmiRNA標的配列と間の塩基数は、0~50塩基、好ましくは、10~30塩基となるように設計することができる。また、miRNA標的配列と開始コドンと間の塩基数及び塩基の種類は、ステム構造や立体構造を構成しない限り、任意であってよく、miRNA標的配列と開始コドンと間の塩基数は、0~50塩基、好ましくは、10~30塩基となるように設計することができる。なお、miRNA標的配列が3’UTRに4つ存在する場合であっても、翻訳抑制を達成することは可能であることが確認されている。 

 miRNA応答性レポーターmRNAは、通常のウリジン、シチジンに替えて、シュードウリジン、5-メチルシチジンなどの修飾塩基を含んでいることが好ましい。細胞毒性を低減させるためである。修飾塩基の位置は、ウリジン、シチジンいずれの場合も、独立に、全てあるいは一部とすることができ、一部である場合には、任意の割合でランダムな位置とすることができる。 

 miRNA応答性レポーターmRNAは、上記に従って配列が決定されれば、遺伝子工学的に既知の任意の方法により当業者が合成することができる。特には、プロモーター配列を含むテンプレートDNAを鋳型として用いたin vitro合成法により、得ることができる。 

 本発明の一実施態様において、miRNA応答性レポーターmRNAは、1種のみ用いる場合もあり、2種以上、例えば、3種、4種、5種、6種、7種、または8種以上用いる場合もある。多能性幹細胞に特異的に発現する2種以上の異なるmiRNAを指標として分化細胞を抽出する場合には、2種以上のmiRNAにそれぞれ対応する2種以上のmiRNA応答性レポーターmRNAを用いることが好ましい。例えば、2種以上のmiRNA応答性レポーターmRNAを用いる場合、それぞれのmiRNA応答性レポーターmRNAは、miRNA標的配列、マーカー遺伝子ともに、異なることが望ましい。また、2種以上のmiRNA応答性レポーターmRNAを用いる場合、miRNA応答性レポーターmRNAに含まれるmiRNA標的配列の数、miRNA標的配列の5’末端からの距離、並びにmiRNA応答性レポーターmRNAにおけるその他の構造的特徴は、各miRNA応答性レポーターmRNAにおいて異なっていても良い。 

 本発明の一実施態様においてmiRNA応答性レポーターmRNAを細胞集団に導入する工程(以下、導入工程と指称する)は、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて、1種以上のmiRNA応答性レポーターmRNAを直接、細胞集団に含まれる細胞に導入する。異なる2種以上のmiRNA応答性レポーターmRNAを導入する場合には、複数のmRNAを細胞集団に共導入することが好ましい。共導入した2以上のmRNAから発現するマーカー蛋白質の活性比は、細胞集団内において一定であるためである。この時の導入量は、導入される細胞集団、導入するmRNA、導入方法および導入試薬の種類により異なり、所望の翻訳量を得るために当業者は適宜これらを選択することができる。 

 本発明の一実施態様において、多能性幹細胞から分化誘導後の未分化細胞が混在する細胞集団に本発明のmiRNA応答性レポーターmRNAが導入されると、分化細胞内では、細胞に所定のmiRNAがRISCとして存在しないので、miRNA応答性レポーターmRNAがコードするマーカー遺伝子の翻訳量が抑制されない。つまり、当該マーカー遺伝子の翻訳は、分化細胞内のみにおいて行われる。従って、本願発明の一実施態様において、当該マーカー遺伝子が翻訳された細胞を抽出することで、多能性幹細胞から分化誘導後の未分化細胞が混在する細胞集団から分化細胞のみを選択的に抽出することが可能となる。 

 当該マーカー遺伝子が翻訳された細胞を抽出する工程を実施する(以下、抽出工程と指称する)。抽出工程では、上記のような、マーカー遺伝子が翻訳され、マーカー蛋白質の発現が確認された細胞を分化細胞として抽出する。すなわち、miRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを導入した細胞集団と、miRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを導入しない細胞集団を比較し、miRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを導入した細胞集団のうち、マーカー蛋白質が発現している細胞を抽出することによって成し得る。 

 具体的には、抽出工程は、所定の検出装置を用いて、マーカー蛋白質からの信号を検出することにより実施することができる。マーカー蛋白質からの信号の検出は、信号を数値化して定量してもよいし、信号の有無のみの検出でもよい。検出装置としては、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、発光顕微鏡、CCDカメラ等が挙げられるが、これらには限定されない。このような検出装置は、マーカー蛋白質により、当業者が適したものを用いることができる。例えば、マーカー蛋白質が、蛍光蛋白質又は発光蛋白質の場合には、フローサイトメーター、イメージングサイトメーター、蛍光顕微鏡、CCDカメラといった検出装置を用いてマーカー蛋白質の発現の有無の確認、及び/または定量が可能である。マーカー蛋白質が、蛍光、発光又は呈色を補助する蛋白質の場合には、発光顕微鏡、CCDカメラ、ルミノメーターといった検出装置を用いたマーカー蛋白質の発現の有無の確認、及び/または定量方法が可能である。マーカー蛋白質が、膜局在蛋白質の場合には、抗体などの細胞表面蛋白質特異的な検出試薬と、上記の検出装置を用いたマーカー蛋白質の発現の有無の確認、及び/または定量方法が可能である他、磁気細胞分離装置(MACS)といった、マーカー蛋白質の定量過程を経ない細胞の単離方法が可能である。マーカー蛋白質が薬剤耐性蛋白質の場合、薬剤投与によりマーカー蛋白質の発現を検出して、生細胞を単離する方法が可能である。 

 本発明の方法に先立って、任意選択的な工程として、miRNA応答性レポーターmRNAとともにコントロールmRNAを、未分化細胞及び/または分化細胞に共導入して、当該細胞におけるmiRNA応答性レポーターmRNAの翻訳効率を確認する工程を実施することもできる。翻訳効率を確認し、算出することで、標的細胞にmRNAが導入され、miRNA発現により翻訳抑制がおきているか、細胞にmRNAそのものが導入されにくいのか比較検討することができる。このような比較検討により、本発明に用いるmRNAを適宜選択することができる。コントロールmRNAとは、miRNA標的部位を有さず、miRNA応答性レポーターmRNAがコードするマーカー遺伝子と異なるマーカー遺伝子をコードするmRNAをいう。コントロールmRNAは、miRNAの発現に関係なくマーカー蛋白質を発現する。miRNA標的配列が存在しないため、細胞に導入されても、miRNA発現量に応じて翻訳制御されることがないためである。 

 本発明は、さらには、上述した多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを含んでなる分化細胞抽出キットに関する。本発明のキットには、コントロールmRNAをさらに含んでもよい。また、本発明のキットは、その他に、判別分析手段、例えば、分化細胞の抽出の手順を記載した書面や説明書、分化細胞抽出の手順をコンピューターに実行させるためのプログラム、当該プログラムリスト、当該プログラムを記録した、コンピューターに読み取り可能な記録媒体(例えば、フレキシブルディスク、光ディスク、CD-ROM、CD-R、及びCD-RWなど)、分化細胞の抽出を実行する装置又はシステム(コンピューターなど)を含んでもよい。

 以下に、本発明を、実施例を用いてより詳細に説明する。以下の実施例は本発明を限定するものではない。

 [miR-302b応答性レポーターmRNAの設計]
 蛍光レポーター遺伝子のEGFPをコードし、αグロビンの5’末端側(5’UTR)および3’末端側非翻訳領域(3’UTR)を含むEGFP mRNA(配列番号1)を改変し、5’UTRに1コピーのmiR-302bの標的配列を含むmiR-302b応答性レポーターmRNA(1xT302b-EGFP)(配列番号2)、3’UTRに4コピーのmiR-302bの標的配列を含むmiR-302b応答性レポーターmRNA(EGFP-4xT302b)(配列番号3)をそれぞれ設計した。さらに、コントロールで使用したαグロビンの5’UTRおよび3’UTRを含むmCherry mRNA(配列番号4)を設計した。これらの遺伝子配列を以下に示す。 

 EGFP-mRNAの遺伝子配列(配列番号1)GGGCGAAUUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACACCGGUCGCCACCAUGGGAUCCGUGAGCAAGGGCGAGGAGCUGUUCACCGGGGUGGUGCCCAUCCUGGUCGAGCUGGACGGCGACGUAAACGGCCACAAGUUCAGCGUGUCCGGCGAGGGCGAGGGCGAUGCCACCUACGGCAAGCUGACCCUGAAGUUCAUCUGCACCACCGGCAAGCUGCCCGUGCCCUGGCCCACCCUCGUGACCACCCUGACCUACGGCGUGCAGUGCUUCAGCCGCUACCCCGACCACAUGAAGCAGCACGACUUCUUCAAGUCCGCCAUGCCCGAAGGCUACGUCCAGGAGCGCACCAUCUUCUUCAAGGACGACGGCAACUACAAGACCCGCGCCGAGGUGAAGUUCGAGGGCGACACCCUGGUGAACCGCAUCGAGCUGAAGGGCAUCGACUUCAAGGAGGACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACAACAGCCACAACGUCUAUAUCAUGGCCGACAAGCAGAAGAACGGCAUCAAGGUGAACUUCAAGAUCCGCCACAACAUCGAGGACGGCAGCGUGCAGCUCGCCGACCACUACCAGCAGAACACCCCCAUCGGCGACGGCCCCGUGCUGCUGCCCGACAACCACUACCUGAGCACCCAGUCCGCCCUGAGCAAAGACCCCAACGAGAAGCGCGAUCACAUGGUCCUGCUGGAGUUCGUGACCGCCGCCGGGAUCACUCUCGGCAUGGACGAGCUGUACAAGAGAUCUCAUAUGCAUCUCGAGUGAUAGUCUAGACCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA下線部は、5’UTRまたは3’UTRを示す。 

 1xT302b-EGFPの遺伝子配列(配列番号2)GGUCAGAUCCGCUAGGAUCctactaaaacatggaagcacttaCACCGGUCGCCACCAUGGGAUCCGUGAGCAAGGGCGAGGAGCUGUUCACCGGGGUGGUGCCCAUCCUGGUCGAGCUGGACGGCGACGUAAACGGCCACAAGUUCAGCGUGUCCGGCGAGGGCGAGGGCGAUGCCACCUACGGCAAGCUGACCCUGAAGUUCAUCUGCACCACCGGCAAGCUGCCCGUGCCCUGGCCCACCCUCGUGACCACCCUGACCUACGGCGUGCAGUGCUUCAGCCGCUACCCCGACCACAUGAAGCAGCACGACUUCUUCAAGUCCGCCAUGCCCGAAGGCUACGUCCAGGAGCGCACCAUCUUCUUCAAGGACGACGGCAACUACAAGACCCGCGCCGAGGUGAAGUUCGAGGGCGACACCCUGGUGAACCGCAUCGAGCUGAAGGGCAUCGACUUCAAGGAGGACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACAACAGCCACAACGUCUAUAUCAUGGCCGACAAGCAGAAGAACGGCAUCAAGGUGAACUUCAAGAUCCGCCACAACAUCGAGGACGGCAGCGUGCAGCUCGCCGACCACUACCAGCAGAACACCCCCAUCGGCGACGGCCCCGUGCUGCUGCCCGACAACCACUACCUGAGCACCCAGUCCGCCCUGAGCAAAGACCCCAACGAGAAGCGCGAUCACAUGGUCCUGCUGGAGUUCGUGACCGCCGCCGGGAUCACUCUCGGCAUGGACGAGCUGUACAAGAGAUCUCAUAUGCAUCUCGAGUGAUAGUCUAGACCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA下線部は、5’UTRまたは3’UTRを示し、小文字部は、1コピーのmiR-302bの標的配列を示す。 

 EGFP-4xT302bの遺伝子配列(配列番号3)GGGCGAAUUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACACCGGUCGCCACCAUGGGAUCCGUGAGCAAGGGCGAGGAGCUGUUCACCGGGGUGGUGCCCAUCCUGGUCGAGCUGGACGGCGACGUAAACGGCCACAAGUUCAGCGUGUCCGGCGAGGGCGAGGGCGAUGCCACCUACGGCAAGCUGACCCUGAAGUUCAUCUGCACCACCGGCAAGCUGCCCGUGCCCUGGCCCACCCUCGUGACCACCCUGACCUACGGCGUGCAGUGCUUCAGCCGCUACCCCGACCACAUGAAGCAGCACGACUUCUUCAAGUCCGCCAUGCCCGAAGGCUACGUCCAGGAGCGCACCAUCUUCUUCAAGGACGACGGCAACUACAAGACCCGCGCCGAGGUGAAGUUCGAGGGCGACACCCUGGUGAACCGCAUCGAGCUGAAGGGCAUCGACUUCAAGGAGGACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACAACAGCCACAACGUCUAUAUCAUGGCCGACAAGCAGAAGAACGGCAUCAAGGUGAACUUCAAGAUCCGCCACAACAUCGAGGACGGCAGCGUGCAGCUCGCCGACCACUACCAGCAGAACACCCCCAUCGGCGACGGCCCCGUGCUGCUGCCCGACAACCACUACCUGAGCACCCAGUCCGCCCUGAGCAAAGACCCCAACGAGAAGCGCGAUCACAUGGUCCUGCUGGAGUUCGUGACCGCCGCCGGGAUCACUCUCGGCAUGGACGAGCUGUACAAGAGAUCUCAUAUGCAUCUCGAGUGAUAGUCUAGACCUUCUGCGGGGCcuacuaaaacauggaagcacuuacuacuaaaacauggaagcacuuacuacuaaaacauggaagcacuuacuacuaaaacauggaagcacuuaUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA下線部は、5’ UURまたは3’UTRを示し、小文字部は、4コピーのmiR-302bの標的配列を示す。 

 mCherry-mRNAの遺伝子配列(配列番号4)GGGCGAAUUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACACCGGUCGCCACCAUGGUGAGCAAGGGCGAGGAGGAUAACAUGGCCAUCAUCAAGGAGUUCAUGCGCUUCAAGGUGCACAUGGAGGGCUCCGUGAACGGCCACGAGUUCGAGAUCGAGGGCGAGGGCGAGGGCCGCCCCUACGAGGGCACCCAGACCGCCAAGCUGAAGGUGACCAAGGGUGGCCCCCUGCCCUUCGCCUGGGACAUCCUGUCCCCUCAGUUCAUGUACGGCUCCAAGGCCUACGUGAAGCACCCCGCCGACAUCCCCGACUACUUGAAGCUGUCCUUCCCCGAGGGCUUCAAGUGGGAGCGCGUGAUGAACUUCGAGGACGGCGGCGUGGUGACCGUGACCCAGGACUCCUCCCUGCAGGACGGCGAGUUCAUCUACAAGGUGAAGCUGCGCGGCACCAACUUCCCCUCCGACGGCCCCGUAAUGCAGAAGAAGACCAUGGGCUGGGAGGCCUCCUCCGAGCGGAUGUACCCCGAGGACGGCGCCCUGAAGGGCGAGAUCAAGCAGAGGCUGAAGCUGAAGGACGGCGGCCACUACGACGCUGAGGUCAAGACCACCUACAAGGCCAAGAAGCCCGUGCAGCUGCCCGGCGCCUACAACGUCAACAUCAAGUUGGACAUCACCUCCCACAACGAGGACUACACCAUCGUGGAACAGUACGAACGCGCCGAGGGCCGCCACUCCACCGGCGGCAUGGACGAGCUGUACAAGUAAAUCUAGACCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA下線部は、5’UTRまたは3’UTRを示す。 

 [IVT(in vitro translation)テンプレートDNAの構築]
 IVTテンプレートDNAは、5’UTR断片、マーカー遺伝子のORF領域の断片、3’UTR断片を混合し、PCRによって連結(融合PCR)することで作製した。これらの断片は、PCR増幅によって作製、またはオリゴDNAとして購入して用いた。以下に、EGFP mRNA、mCherry mRNA、1xT302b-EGFP及びEGFP-4xT302bの4つのIVTテンプレートDNAの作製法の詳細を記す。
 EGFP及びmCherry遺伝子ORF領域のPCR増幅を以下のように行った。pCTp-EGFP(Saito H ,et al., Nat Commun. 2:160 2011)をテンプレートに、TAPEGFP_IVTfwd (KEC-67) (配列番号5)及びTAP_IVTrev (KEC-23) (配列番号6)を用いてPCR増幅を行い、EGFP_ORF断片を作製した。同様にpCR2.1-mCherry(Tanaka A, et al., PLoS One. 2013 Apr 23;8(4):e61540.)をテンプレートに、mCherry_IVTfwd (KEC-888) (配列番号7)およびmCherry_IVTrev (KEC-889) (配列番号8)を用いてPCR増幅を行い、mCherry_ORF断片を作製した。
 さらに、標的配列を含まない5’UTR断片及び3’UTR断片のPCR増幅を以下のように行った。5’UTR断片は、 IVT 5primeUTR (KEC-62) (配列番号9)をテンプレートに、TAP_T7_1G (KEC-876) (配列番号10)及びRev5UTR (KEC-1) (配列番号11)をプライマーとして用いてPCR増幅し作製した。3’UTR断片は、IVT 3primeUTR (KEC-63) (配列番号12)をテンプレートに、Fwd3UTR (KEC-4) (配列番号13)及びRev3UTR2T20 (KEC-65) (配列番号14)をプライマーとして用いてPCR増幅し作製した。
 EGFP mRNA及びmCherry mRNA のIVTテンプレートDNAは、上述した5’UTR断片、3’UTR断片及びEGFP_ORF断片またはmCherry _ORF断片を混合し、TAP_T7_1G 及び3UTR120A (KEC-308)(配列番号15)をプライマーに用いて融合PCRを行い作製した。
 1xT302b-EGFPのIVTテンプレートDNAは、5UTR-T302b-3p (KTC-004) (配列番号16)、EGFP_ORF断片、3’UTR断片を混合し、GCT7CMV_del4 (KEC-97)(配列番号17)及び3UTR120Aをプライマーに用いて融合PCRを行い作製した。
 EGFP-4xT302bのIVTテンプレートDNAは、5’UTR断片、EGFP_ORF断片、及び3UTRtemp_4xT302b-3p (KTC-001)オリゴDNA(配列番号18)を、TAP_T7_1G及び3UTR120Aをプライマーに用いて融合PCRを行い作製した。
 上述したプライマーおよびテンプレートなどのオリゴDNAは、適宜製造委託して用いた。その配列は、表1に示す。
 上述のとおりPCR増幅によって得られたIVTテンプレートDNAは、MinElute PCR purification kit (QIAGEN)を用い、製造者の指示に従って精製した。 

Figure JPOXMLDOC01-appb-T000001

 [mRNAのIVT合成]
 mRNAのIVT合成は、Warren L., et al., Cell Stem Cell, 7(5):618-30, 2010の方法を改良したプロトコルを用いて行った。詳細には、上述したIVTテンプレートからMegaScript T7 kit (Ambion)を用いて調製した。このとき、ウリジン三リン酸及びシチジン三リン酸に替えて、シュードウリジン-5’-三リン酸及び5-メチルシチジン-5’-三リン酸(TriLink BioTechnologies)を用いた。反応の前に、グアノシン-5’-三リン酸は、Anti Reverse Cap Analog (New England Biolabs)で5倍希釈して用いた。反応混合液を37度で4時間インキュベートして、TURBO DNase (Ambion)を添加した後、37度でさらに30分インキュベートした。得られたmRNAは、FavorPrep Blood / Cultured Cells total RNA extraction column (Favorgen Biotech)で精製し、Antarctic Phosphatase (New England Biolabs)を用いて、37度で30分インキュベートした。その後、RNeasy MiniElute Cleanup Kit (QIAGEN)により、さらに精製した。 

 [ヒトiPS細胞の拡大培養]
 ヒトiPS細胞(201B7、409B2および427F1)は、京都大学山中伸弥氏より譲り受けた。ヒトiPS細胞は、MMC-treated SNL feeder細胞上でPrimate ES cell medium (Reprocell), 5ng/ml bFGF(Reprocell), 0.5% penicilin-streptomysisn (Invitrogen)で培養した。iPS細胞のコロニーがある程度大きくなった時点で継代を行った。継代は、培養液を除去し、D-PBS(Nacalai tesq)でwashし、CTK (Collagenase type 2 (Invitrogen), 2.5% trypsin-EDTA (nacalai tesq), KSR(Invitrogen))を加えD-PBSで2回washし、feeder細胞を除去した。Feeder細胞を除去した培養皿に培養液を加え、セルスクレイパーでiPS細胞をはがし、ピペッティングでiPS細胞のコロニーを解離させた。解離したiPS細胞のコロニーを1:3の割合で新たな培養皿に継代した。フィーダーフリーでの培養はMatrigel (BD) coatしたplateもしくはdishを用い、培地はmTeSR1 (Stem cell technologies)を用いた。培養方法は製造者の指示に従った。 

 [miR-302b応答性レポーターmRNAによるトランスフェクション]
 ヒトiPS細胞をMatrigel (BD)-coated 24ウェルプレートに播種し、翌日に、1μLのStemFect (Stemgent)を用いて、製造者の指示に従って、200ngのEGFP mRNAまたは各miR-302b応答性レポーターmRNAをそれぞれiPS細胞へ導入した。導入後、miRNAの効果を検証するため、2pmol,0.5pmol,0pmolのmirVana miRNA inhibitor (Applied Biosciences)の存在下で培養した。 

 [miR-302b応答性レポーターmRNAを用いたヒトiPS細胞の検出]
 EGFP mRNA、および各miR-302b応答性レポーターmRNAをヒトiPS細胞へトランスフェクションし、mirVana miRNA inhibitorの存在下で培養後、フローサイトメトリーにて解析した。1xT302b-EGFPおよびEGFP-4xT302bは、共にmirVana miRNA inhibitorの濃度に応じてEGFPの蛍光量が変化した(図1)。つまり、1xT302b-EGFPとEGFP-4xT302bは多能性を有するヒトiPS細胞内で高発現しているmiR-302bの活性によってEGFPの翻訳量が減少することを示唆している。従って、miR-302b応答性レポーターmRNAを用いることで細胞集団中の、分化誘導し多能性を失った細胞を特異的に認識できる可能性が示された。 

 [miR-302b応答性レポーターmRNAの翻訳効率]
 mCherry mRNAとEGFPまたは1xT302b-EGFPとをヒトiPS細胞(201B7)へ共導入し、mirVana miRNA inhibitorの存在下で培養後、フローサイトメトリーでEGFPおよびmCherryの蛍光強度を測定し、mCherryの蛍光強度に対するEGFPの蛍光強度の割合を算出した。その結果、mirVana miRNA inhibitorによりmiRNAの活性を抑制した場合、mCherryの蛍光強度で補正されたEGFPおよび1xT302b-EGFPのEGFPの蛍光強度は同程度であったが、miRNAの活性を抑制しなかった場合、有意に1xT302b-EGFPの蛍光強度が下がることが確認された(図2)。このことより、1xT302b-EGFPの導入効率が劣るために、iPS細胞でのEGFPの蛍光強度が下がるのではなく、miRNAの活性によってEGFPの蛍光強度が下がることが確認された。この結果は、他のiPS細胞株(409B2および427F1)を用いても同様の結果だった。

 [分化誘導細胞の選別]
 ヒトiPS細胞をMatrigel (BD)-coated 10cm dishに播種し、レチノイン酸培地(0.5uMレチノイン酸(sigma)、10%FBS(GIBCO)、0.5% Penicilin-streptomycin(Invitrogen)、1%Glutamax(Invitrogen)、1%NEAA(invitrogen)を含んだDMEM-F12 (Invitrogen))で3日間培養した(Tang C, et al., Nature biotechnology, 29(9):829-34, 2011)。培養後の細胞を培養皿から分離し、Matrigel-coated 10cm dishにmTeSR1 medium(Stem cell technologies)または同培地にて再播種した。さらに、翌日に1xT302b-EGFPをトランスフェクションした。トランスフェクションには24μlのstemfect (stemgent)を用いて、製造者の指示に従って実施した。トランスフェクションの24時間後に細胞を培養皿から分離し、フローサイトメトリーによりEGFPの蛍光強度を分析した。このとき、抗Tra-1-60抗体(Alexa647, BD)または抗SSEA5抗体(8e11, GeneTex)を用いてRA処理した細胞または処理しなかった細胞も測定し、各表面マーカーについても解析を行った。その結果、RAを処理した細胞の一部は、Tra-1-60陰性であった。SSEA5についても同様であった(図3)。一方、RA処理し、1xT302b-EGFPを導入した細胞において、EGFP陽性の細胞も確認された。さらに、EGFP陽性または陰性、Tra-1-60陽性または陰性、およびSSEA5陽性または陰性の各細胞におけるOCT3/4の発現量を定量PCRで測定したところ、EGFP陽性細胞は陰性細胞に比較して、OCT3/4の発現量が低下していることが確認された(図4)。従って、1xT302b-EGFPを導入し、EGFPが陽性の細胞は、分化した細胞であることが示唆された。さらに、Tra-1-60陽性細胞に対する陰性細胞の発現比または、SSEA5陽性細胞に対する陰性細胞の発現比よりも、EGFPの陰性細胞に対する陽性細胞の発現比はより低かった。このことより、1xT302b-EGFPを用いたEGFPによる分化細胞の抽出は、抗Tra-1-60抗体または抗SSEA5抗体よりも感度が高く抽出できる可能性が示された。 

 続いて、フローサイトメトリーによって、分離したEGFP陽性細胞またはTra-1-60陰性細胞を、matrigel-coatした6well-plateに播種し、mTeSR1培地もしくはレチノイン酸培地で5日間培養した。このとき培地は、2日に一度交換した。得られた細胞を、アルカリフォスファターゼ染色キット(sigma)を用いて染色した。1xT302b-EGFPをトランスフェクションしたEGFP positiveの細胞においては、アルカリフォスファターゼ染色陽性細胞(未分化細胞)の残存量が顕著に減少した(図5)。従って、1xT302b-EGFPを用いることで、未分化細胞と分化細胞が混在した細胞集団から、未分化細胞の混入なく選択的に分化細胞を選別できることが示された。一方、ソートしたTra-1-60陰性細胞では、未分化細胞が混入するおそれがあることが確認された。 

 続いて、未分化細胞の完全な除去を実現するために、上位10%EGFP陽性、上位20%EGFP陽性の細胞をフローサイトメトリーにてソートした(図6A)。ソートサンプルを上述の方法で5日間培養し、アルカリフォスファターゼ染色した。その結果、上位10%EGFP陽性細胞および上位20%EGFP細胞のいずれにおいてもアルカリフォスファターゼ染色される未分化細胞は全く見られなかった(図6B)。従って、上位20%EGFP陽性の細胞であっても未分化細胞が混入しないことが示された。

 [302a-5p、367-3p応答性レポーターmRNAの設計]
 蛍光レポーター遺伝子のhmAG1をコードし、αグロビンの5’末端側(5’UTR)および3’末端側非翻訳領域(3’UTR)を含むhmAG1-mRNA(配列番号19)を改変し、5’UTRに1コピーのmiR-302a-5pの標的配列を含むmiR-302a-5p応答性レポーターmRNA(配列番号20)、5’UTRに1コピーのmiR-367-3pの標的配列を含むmiR-367-3p応答性レポーターmRNA(配列番号21)をそれぞれ設計した。さらに、トランスフェクションの標準化のために、コントロールとして使用する、αグロビンの5’UTRおよび3’UTRを含むtagBFP mRNA(配列番号22)を設計した。さらに、薬物耐性遺伝子としてピューロマイシン耐性遺伝子を含むPuromycinR-mRNA(配列番号23)を改変し、5’UTRに1コピーのmiR-302a-5pの標的配列を含む302a-5p 応答性 PuromycinR-mRNA(配列番号24)を設計した。mRNAは、これらの遺伝子配列を以下に示す。 

 hmAG1-mRNAの遺伝子配列(配列番号19)
GGGCGAATTAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGACACCGGTCGCCACCatgGTGAGCGTGATCAAGCCCGAGATGAAGATCAAGCTGTGCATGAGGGGCACCGTGAACGGCCACAACTTCGTGATCGAGGGCGAGGGCAAGGGCAACCCCTACGAGGGCACCCAGATCCTGGACCTGAACGTGACCGAGGGCGCCCCCCTGCCCTTCGCCTACGACATCCTGACCACCGTGTTCCAGTACGGCAACAGGGCCTTCACCAAGTACCCCGCCGACATCCAGGACTACTTCAAGCAGACCTTCCCCGAGGGCTACCACTGGGAGAGGAGCATGACCTACGAGGACCAGGGCATCTGCACCGCCACCAGCAACATCAGCATGAGGGGCGACTGCTTCTTCTACGACATCAGGTTCGACGGCACCAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCCTGAAGTGGGAGCCCAGCACCGAGAAGATGTACGTGGAGGACGGCGTGCTGAAGGGCGACGTGAACATGAGGCTGCTGCTGGAGGGCGGCGGCCACTACAGGTGCGACTTCAAGACCACCTACAAGGCCAAGAAGGAGGTGAGGCTGCCCGACGCCCACAAGATCGACCACAGGATCGAGATCCTGAAGCACGACAAGGACTACAACAAGGTGAAGCTGTACGAGAACGCCGTGGCCAGGTACTCCATGCTGCCCAGCCAGGCCAAGtgaATCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

 開始コドン及び終止コドンは小文字で示した。下線部は、5’UTRまたは3’UTRを示す。 
 302a-5p 応答性hmAG1- mRNAの遺伝子配列(配列番号20)
GGTTCCGCGATCGCGGATCCagcaagtacatccacgtttaagtAGATCCACCGGTCGCCACCatgGTGAGCGTGATCAAGCCCGAGATGAAGATCAAGCTGTGCATGAGGGGCACCGTGAACGGCCACAACTTCGTGATCGAGGGCGAGGGCAAGGGCAACCCCTACGAGGGCACCCAGATCCTGGACCTGAACGTGACCGAGGGCGCCCCCCTGCCCTTCGCCTACGACATCCTGACCACCGTGTTCCAGTACGGCAACAGGGCCTTCACCAAGTACCCCGCCGACATCCAGGACTACTTCAAGCAGACCTTCCCCGAGGGCTACCACTGGGAGAGGAGCATGACCTACGAGGACCAGGGCATCTGCACCGCCACCAGCAACATCAGCATGAGGGGCGACTGCTTCTTCTACGACATCAGGTTCGACGGCACCAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCCTGAAGTGGGAGCCCAGCACCGAGAAGATGTACGTGGAGGACGGCGTGCTGAAGGGCGACGTGAACATGAGGCTGCTGCTGGAGGGCGGCGGCCACTACAGGTGCGACTTCAAGACCACCTACAAGGCCAAGAAGGAGGTGAGGCTGCCCGACGCCCACAAGATCGACCACAGGATCGAGATCCTGAAGCACGACAAGGACTACAACAAGGTGAAGCTGTACGAGAACGCCGTGGCCAGGTACTCCATGCTGCCCAGCCAGGCCAAGtgaATCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

 開始コドン及び終止コドンは小文字で示し、miRNA標的配列は小文字で示した。下線部は、5’UTRまたは3’UTRを示す。 
 367-3p応答性hmAG1- mRNAの遺伝子配列(配列番号21)

GGTTCCGCGATCGCGGATCCtcaccattgctaaagtgcaattAGATCACACCGGTCGCCACCatgGTGAGCGTGATCAAGCCCGAGATGAAGATCAAGCTGTGCATGAGGGGCACCGTGAACGGCCACAACTTCGTGATCGAGGGCGAGGGCAAGGGCAACCCCTACGAGGGCACCCAGATCCTGGACCTGAACGTGACCGAGGGCGCCCCCCTGCCCTTCGCCTACGACATCCTGACCACCGTGTTCCAGTACGGCAACAGGGCCTTCACCAAGTACCCCGCCGACATCCAGGACTACTTCAAGCAGACCTTCCCCGAGGGCTACCACTGGGAGAGGAGCATGACCTACGAGGACCAGGGCATCTGCACCGCCACCAGCAACATCAGCATGAGGGGCGACTGCTTCTTCTACGACATCAGGTTCGACGGCACCAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCCTGAAGTGGGAGCCCAGCACCGAGAAGATGTACGTGGAGGACGGCGTGCTGAAGGGCGACGTGAACATGAGGCTGCTGCTGGAGGGCGGCGGCCACTACAGGTGCGACTTCAAGACCACCTACAAGGCCAAGAAGGAGGTGAGGCTGCCCGACGCCCACAAGATCGACCACAGGATCGAGATCCTGAAGCACGACAAGGACTACAACAAGGTGAAGCTGTACGAGAACGCCGTGGCCAGGTACTCCATGCTGCCCAGCCAGGCCAAGtgaATCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 開始コドン及び終止コドンは小文字で示し、miRNA標的配列は小文字で示した。下線部は、5’UTRまたは3’UTRを示す。 

 tagBFP-mRNAの遺伝子配列(配列番号22)
GGGCGAATTAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGACACCGGTCGCCACCatgGGATCCAGCGAGCTGATTAAGGAGAACATGCACATGAAGCTGTACATGGAGGGCACCGTGGACAACCATCACTTCAAGTGCACATCCGAGGGCGAAGGCAAGCCCTACGAGGGCACCCAGACCATGAGAATCAAGGTGGTCGAGGGCGGCCCTCTCCCCTTCGCCTTCGACATCCTGGCTACTAGCTTCCTCTACGGCAGCAAGACCTTCATCAACCACACCCAGGGCATCCCCGACTTCTTCAAGCAGTCCTTCCCTGAGGGCTTCACATGGGAGAGAGTCACCACATACGAAGACGGGGGCGTGCTGACCGCTACCCAGGACACCAGCCTCCAGGACGGCTGCCTCATCTACAACGTCAAGATCAGAGGGGTGAACTTCACATCCAACGGCCCTGTGATGCAGAAGAAAACACTCGGCTGGGAGGCCTTCACCGAGACGCTGTACCCCGCTGACGGCGGCCTGGAAGGCAGAAACGACATGGCCCTGAAGCTCGTGGGCGGGAGCCATCTGATCGCAAACATCAAGACCACATATAGATCCAAGAAACCCGCTAAGAACCTCAAGATGCCTGGCGTCTACTATGTGGACTACAGACTGGAAAGAATCAAGGAGGCCAACAACGAGACCTACGTCGAGCAGCACGAGGTGGCAGTGGCCAGATACTGCGACCTCCCTAGCAAACTGGGGCACAGATCTCATATGCATCTCGAGtgaTCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 開始コドン及び終止コドンは小文字で示し、下線部は、5’UTRまたは3’UTRを示す。 

 PuromycinR-mRNAの遺伝子配列(配列番号23)
GGGCGAATTAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGACACCGGTCGCCACCatgACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCAGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGATCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAGCCCGGTGCCtgaTCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 開始コドン及び終止コドンは小文字で示した。下線部は、5’UTRまたは3’UTRを示す。 

 302a-5p 応答性 PuromycinR-mRNAの遺伝子配列(配列番号24)
GGTTCCGCGATCGCGGATCCagcaagtacatccacgtttaagtAGATCCACCGGTCGCCACCatgACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGACGTCCCCAGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGATCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCGCGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGCGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCGCAAGCCCGGTGCCtgaTCTAGACCTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 開始コドン及び終止コドンは小文字で示し、miRNA標的配列は小文字で示した。下線部は、5’UTRまたは3’UTRを示す。 

 [テンプレート作成及びin vitro transcription (IVT)] IVTテンプレートDNAは、実施例1と同様に、5’UTR断片、マーカー遺伝子のORF領域の断片、3’UTR断片を混合し、PCRによって連結(融合PCR)することで作製した。これらの断片は、PCR増幅によって作製hmAG1、302a-5p 応答性hmAG1、367-3p応答性hmAG1、tagBFP、PuromycinR、302a-5p 応答性 PuromycinRの6つのIVTテンプレートDNAの作製法の詳細を記す。
 hmAG1、tagBFP及びPuromycinR遺伝子ORF領域のPCR増幅を以下のように行った。Plasmid template: S/G2/M Green(Amalgam MBL)をテンプレートに、hmAG1_IVTfwd(KEC-330) (配列番号25)及びhmAG1_IVTrev(KEC-331) (配列番号26)を用いてPCR増幅を行い、hmAG1_ORF断片を作製した。同様に、Plasmid template: pTAP_tagBFP (Miki et al., Cell Stem Cell, volume 16, Issue 6, 4 June 2015, Pages 699-711)をテンプレートに、tagBFP_fwd (KED-90) (配列番号33)およびTAP_IVTrev (KEC-23)を用いてPCR増幅を行い、tagBFP _ORF断片を作製した。同様に、Plasmid template: pPyCAG-Nanog-IP (plasmid 13838, Addgene)をテンプレートに、ORF_PuroR_fwd (STC-035) (配列番号31)およびORF_PuroR_rev (STC-036)(配列番号32)を用いてPCR増幅を行い、tagBFP _ORF断片を作製した。

 標的配列を含まない5’UTR断片及び3’UTR断片のPCR増幅を以下のように行った。5’UTR断片は、 IVT 5primeUTR (KEC-62)をテンプレートに、TAP_T73GC (SKC-111) (配列番号30)及びRev5UTR (KEC-1) (配列番号11)をプライマーとして用いてPCR増幅し作製した。3’UTR断片は、IVT 3primeUTR (KEC-63)をテンプレートに、Fwd3UTR (KEC-4)及びRev3UTR2T20 (KEC-65)をプライマーとして用いてPCR増幅し作製した。 302a-5p標的配列を含む5’UTR、及び367-3p標的配列を含む5’UTRのPCR増幅を以下のように行った。302a-5p-5’UTR断片は、5UTRtemp_T302a-5p(KEC-653) (配列番号27)をテンプレートに、GCT7pro_5UTR2(KEC-948)(配列番号29)及びRev5UTR (KEC-1)をプライマーとして用いてPCR増幅し作製した。367-3p-5’UTR断片は、5UTRtemp_T367-3p(KEC-845)(配列番号28)をテンプレートに、GCT7pro_5UTR2(KEC-948)及びRev5UTR (KEC-1)をプライマーとして用いてPCR増幅し作製した。

 hmAG1 mRNA、tagBFP mRNA、及びPuromycinR mRNA のIVTテンプレートDNAは、上述した5’UTR断片、3’UTR断片及びhmAG1_ORF断片、tagBFP_ORF断片またはPuromycinR _ORF断片を混合し、TAP_T73GC (SKC-111) 及び3UTR120A (KEC-308)をプライマーに用いて融合PCRを行い作製した。
 302a-5p 応答性hmAG1、367-3p応答性hmAG1のIVTテンプレートDNAは、上述した302a-5p-5’UTR断片または367-3p-5’UTR断片、3’UTR断片及びhmAG1_ORF断片を混合し、GCT7pro_5UTR2(KEC-948) 及び3UTR120A (KEC-308)をプライマーに用いて融合PCRを行い作製した。302a-5p 応答性PuromycinRのIVTテンプレートDNAは、上述した302a-5p-5’UTR断片3’UTR断片及びPuromycinR _ORF断片を混合し、GCT7pro_5UTR2(KEC-948) 及び3UTR120A (KEC-308)をプライマーに用いて融合PCRを行い作製した。
 上述したプライマーおよびテンプレートなどのオリゴDNAは、適宜製造委託して用いた。その配列は、表1、表2に示す。 上述のとおりPCR増幅によって得られたIVTテンプレートDNAは、MinElute PCR purification kit (QIAGEN)を用い、製造者の指示に従って精製した。mRNAのIVT合成は、実施例1と同様にして行った。

Figure JPOXMLDOC01-appb-T000002

 [フィーダーフリーヒトiPS細胞の維持]
 フィーダーフリーヒトiPS細胞(Ff-hiPSC)は、Nakagawa et al., 2014のプロトコルに従って、StemFit (+bGF)培地中のiMatrix-511(E8) (株式会社ニッピ)上で維持した。ヒトiPS細胞は、8日ごとに継代した。継代前に、6ウェルプレートを少なくとも1時間にわたり、37°Cにおいて、滅菌PBSで0.5μg/cm2に希釈したiMatrix-511(E8)でコーティングした。コーティング後、PBSを吸引し、10 μM のROCK inhibitor (Y-26732)を含む1.5 mlのStemFitと迅速に交換した。ヒトiPS細胞を採取するために、古い培地を吸引し、細胞を、1 mlのPBSで洗浄した。PBSを吸引した後、0.3 mlのTrypSELECT溶液を各ウェルに注入し、プレートをインキュベータに移した。1分後に、余剰の溶液を除去し(move the volume over the cell)、さらに3分間インキュベートした。次いで、インキュベータから出して、TrypSELECT溶液を吸引し、1 ml のPBSで洗浄した。その後、PBSを吸引し、1.5 mlのStemFitをROCK inhibitorとともに各ウェルに加えた。ゴムスクレーパを用いて、細胞を集め、P1000ピペットを用いて10回ピペティングすることで、単細胞溶液を得た。細胞密度を、トリパンブルー染色とCell Countess (Invitrogen)を用いて細胞密度を計算し、1.3x104/wellとなるように播種し、細胞を均一に分布させた。24時間後、ROCK inhibitorを加えないStemFitに取り換え、以降、1日おきに取り換えた。 

 [フィーダーフリーヒトiPS細胞からの中脳ドーパミンニューロン細胞への分化]
 中脳ドーパミンニューロン細胞への分化誘導は、Doi, D. et al. Stem Cells 30, 935-945 (2012)に記載の方法に従って行った。6ウェルプレートを、ヒトiPS細胞中で上記と同様にしてコーティングし、day 0 分化培地を、1ウェルあたり4ml加えた。分化は、ROCK inhibitorを加えないday 0 分化培地にヒトiPS細胞の単細胞を懸濁させた細胞溶液を6ウェルプレートに、5x106/wellで播種することで開始した。プレートは、インキュベータに戻す前に穏やかに撹拌した。24時間後、全ての培地を、day 1培地に取り換えた。同様にして、培地の交換は毎日行った。day 0 分化培地からday 2分化培地は1ウェルあたり4ml、day 3 分化培地からday 6分化培地は1ウェルあたり6ml、day 7 分化培地からday 8分化培地は1ウェルあたり8ml、day 9 分化培地からday 11分化培地は1ウェルあたり10ml添加した。培養後11日の間に、細胞数は2倍になり、おおよそ10x106/wellとなった。細胞は、day 12、 day 20、day 29に継代し、6ウェルプレートに、5x106/wellで播種した。day 12以降、細胞は常に、Neurobasal B27 培地で維持した。培地は毎日交換し、毎回、5 ml/wellを追加した。 

 [分化効率の評価]
 day 12、 day 20、day 29の各継代について、バルクの細胞を、神経系列を標識するCORIN抗体(Kan Research)、フロアプレートマーカー、及びPSA-NCAM抗体で染色し分化効率を評価した。ROCK inhibitorを添加した200 μlの染色バッファ(HBSS:ハンクス液/2% ノックアウト血清、50 μg/ml ペニシリン/ストレプトマイシン、10 μM Y-26732)中の約5x105個の細胞を、1/200のマウス抗ヒトCORIN抗体(Kan Research)または1/100のマウスモノクローナル抗ヒトPSA-NCAM抗体 (MAB5324, Millipore)のいずれかを用いて、並行して染色抗原抗体反応を行った。Alexa 488をコンジュゲートした抗マウスIgG抗体またはIgMを、それぞれCORIN抗体及びPSA-NCAMに対して、1/400で用いて、2次染色した。細胞は、4°Cで30分間染色した。細胞をHBSS培地で二度染色した。死細胞は、7-AADで10分間染色し、FACS分析した。 

 細胞の測定は、BD FACS aria-IIまたはBD Accuriで、FITC標準フィルター及び7-AADシグナルを用いて行った。死細胞を除去するために、SSC-A intensity (P1)に基づいてゲートを設置し、FSC-W vs FSC-H (P2) 及びSSC-W vs SSC-H (P3)から、2重で除いた。最後に、高7-AADの細胞を除去し、生細胞ゲートを残した(P4/LIVE)。20,000のP4ゲートされた細胞を分析した。CORIN陽性 及び PSA-NCAM陽性ゲートを設置し、0.2%またはそれ未満の細胞を、Alexa 488-IgG または IgGアイソタイプコントロール二次抗体中に保持した。 

 [中脳ドーパミンニューロン細胞への分化誘導に使用した培地の組成]
Day 0
8GMK、10 μM Y-26732 (和光)、100nM LDN-193189 (Stemgent)、500nM A83-01 (和光)
Day 1-2
8GMK、100 nM LDN-193189 、500 nM A83-01 、2 μM Purmorphamine (Calbiochem)、100 ng/ml ヒト組み換え FGF-8 (和光)
Day 3-7
8GMK、100 nM LDN-193189、500 nM A83-01、2 μM Purmorphamine、100 ng/ml ヒト組み換え FGF-8、30 μM CHIR99021 (Stemgent)
Day 7-11
8GMK、100 nM LDN-193189、30 μM CHIR99021 
Day 12 以降
Neurobasal B27、200 μM アスコルビン酸 (Sigma Aldrich)、400 μM dbcAMP (cAMP)、20 ng/ml ヒト組み換え BDNF、10ng/ml ヒト組み換えGDNF
8GMK:Glasgow’s MEM/8% ノックアウト血清/100 μM ピルビン酸ナトリウム 100 μM β-メルカプトエタノール
Neurobasal B27:Neurobasal 培地/2% B27 添加/ 2mM Lグルタミン  

 [トランスフェクション]
 トランスフェクションの前に、細胞は前述のように継代し、iMatrix-511(E8)でコーティングした24ウェルプレートの、ROCK inhibitorを加えた分化培地中に、1~2x105/wellの密度で播種した。翌日、培地を交換することなく、上述したIVT合成mRNAを、StemFect試薬(Stemgent)を用いて、製造者プロトコルに従い、トランスフェクションした。各トランスフェクションについては、1つのチューブ(tube A)に12.5 μl のStemFect buffer を加えた1μLの試薬を混合し、室温で5分間インキュベートした。他のチューブ(tube B)で、400ngまでのmRNAを12.5 μl のStemFect buffer と混合した。tube Bを、tube Aに滴下し、flick-mixedし、室温で10分間インキュベートした。このトランスフェクション複合体を、細胞に滴下し、撹拌して、インキュベータに入れた。4時間後、トランスフェクション複合体を含有する古い培地を吸引し、ROCK inhibitorを添加していない新鮮な分化培地を加えた。翌日、細胞は、上記と同様に標準フィルターを用いたBD FACS aria-IIまたは、BD AccuriによるFACS分析により、分析した。トランスフェクション効率は、mock transfected cellsに対して評価した。 

 [302a-5p-、及び367-3p-応答性hmAG1 mRNAの特異的な翻訳抑制]
 ヒトiPS細胞に導入した、302a-5p-、及び367-3p-応答性hmAG1 mRNAはいずれも、特異的に翻訳抑制された(図7)。フィーダーフリー ヒトiPS細胞ライン(201B7, 1231A3及び1383D7)並びにHeLa細胞に、50ngのhmAG1 mRNA(ctrl-hmAG1)、302a-5p-応答性hmAG1 mRNA (302a-5p-hmAG1) または367-3p-応答性hmAG1 mRNA(367-3p-hmAG1)を100ngのtagBFPと共に導入し、24時間後、細胞を採取し、BD FACS aria-IIを用いて分析した。結果をドットプロットとして図7aに示した。これらのmiRNA応答性mRNAを用いた場合でも、ヒトiPS細胞 201B7における特異的な翻訳抑制が、フローサイトメトリー分析において識別された。また、HeLa細胞の結果と比較したところ、201B7, 1231A3, 1383D7のいずれのセルラインにおいても、302a-5p応答性mRNA及び367-3p 応答性mRNAが、 ヒトiPS細胞中で特異的に翻訳抑制された(図7b)。翻訳効率は、tagBFP に対してhmAG1シグナルを標準化することにより計算し、hmAG1 mRNA/tagBFP mRNAを導入した細胞に対する比として示した。 

 201B7 に、302a-5p応答性mRNA 及び 添加量を変化させた 302a-5p inhibitor を共導入した(図7c)。302a-5p inhibitor濃度は、0.003 nMから30 nMの範囲で変化させ、0.003 nMから順に、シアン、オレンジ、緑、青、赤のドットプロットで示した(図7c右図)。inhibitorを3 nMおよび30 nM添加した場合、それぞれ部分的に及び完全に、302a-5p応答性mRNAによる翻訳抑制を阻害した。一方、302a-5p応答性mRNAには応答しないHeLa細胞に、302a-5p応答性mRNA及び各添加量の302a-5p mimicを共導入した(図7d)。302a-5p mimic濃度を0.003 nMから6 nMの範囲で変化させ、0.003 nMから順に、オレンジ、シアン、紫、青、赤のドットプロットで示した(図7d右図)。この結果から、302a-5p mimicが、302a-5p応答性mRNAの翻訳抑制をすることがしめされた。以上より、302a-5p応答性mRNAが、標的miRNAに特異的であることを示す。 

 [Ff-ヒトiPS細胞からmDA細胞への分化と、miRNA応答性細胞数の変化]
 Ff-ヒトiPS細胞から中脳ドーパミン作動性細胞(mDA細胞)への分化を、302a-5p 応答性mRNA及び367-3p応答性mRNAを用いてトラッキングした(図8)。day0, day 5, day 7, day 14における、302a-5p応答性mRNAを導入したFf-201B7細胞のフローサイトメトリー分析結果から、分化が進むにつれて、hmAG1の翻訳抑制効果が低くなることが示された(図8a)。 また、302a-5p応答性mRNA、367-3p応答性mRNAのいずれを導入した場合でも、分化とともに、302a-5p応答性細胞または367-3p応答性細胞の分布 (青色領域)の減少が示された(図8b)。またFf-ヒトiPS細胞のいずれのセルラインにおいても、同様の結果が確認された。さらに、302a-5p応答性mRNAまたは367-3p応答性mRNAにより、分化の進行が追跡可能であること、及びセルラインによる分化のしやすさの相違が示された。 

 [Ff-ヒトiPS細胞からmDA細胞への分化とhsa-miRの定量]
 Ff-ヒトiPS細胞からmDA細胞への分化のday0、3、5、7、12、21において、全RNAを、凍結した細胞ペレットから、トリアゾール抽出及びイソプロパノール沈降により抽出した。RNAは、DNaseで処理した後、miRNA逆転写酵素、及び標的特異的RTプライマー(Applied Biosystems)を用いて逆転写し、TaqMan miRNA probeを用いて増幅した。分化の間のhsa-miR-302a-5p(図9a) 及びhsa-miR-367-3p(図9b)のRNU6Bで標準化した比率として、log10スケールで示す。また、Hela細胞及び肝細胞については、day0へ陰性対照として示す。ヒトiPS細胞からmDA 細胞へと分化する間に、各細胞におけるhsa-miR-302a-5p及びhsa-miR-367-3pの発現量が、ダウンレギュレートされることを示す。 

 [分化細胞中のFf-ヒトiPS細胞の定量]
 既知の量のFf-ヒトiPS細胞を添加した、完全に分化したmDA細胞株について、miRNA応答性mRNAを用いて添加した量を測定した(スパイクテスト)(図10)。24-wellプレート中で、mDA細胞に、0個、100個、500個のFf-201B7 ヒトiPS細胞を添加した。総細胞数は、200,000個とした。これらの細胞に、50 ng のhmAG1 mRNAまたは302a-5p応答性mRNAを100 ngのtagBFPと共導入した。iPS細胞を含まないmDA 細胞に302a-5p応答性mRNAを導入した場合には、302pos (miR-302a-5p陽性)ゲート(repeat 1)及び P5ゲート (repeat 2)を設置しても、翻訳抑制を示す細胞は核にされなかった(最も左側パネルのドットプロット)。repeat 1、repeat 2のいずれの結果も、mDA細胞に対する302a-5p応答性mRNAにより識別したヒトiPS細胞の割合の測定値が、予測値に非常に近接していた。 

 [miRNA応答性puroR mRNAによる分化細胞抽出]
 ピューロマイシン耐性遺伝子をレポーターとして用い、共培養系から残存iPS細胞の除去を試みた(図11)。図11aは、残存iPSをピューロマイシン添加による除去スキームを示し、201B7セルラインとmDA細胞の共培養株に、302a-5p-応答性puroR mRNAを導入すると、導入されなかった細胞、及びhsa-miR-302a-5p が高度に発現している細胞は、ピューロマイシン耐性遺伝子を持たない又は当該耐性遺伝子の発現が抑制されるため細胞死に至ることを示す。図11bは、単培養系の実験タイムラインを示す。ここでは、iMatrix-511(E8)でコートされた96ウェルプレートに2x104細胞を播種した。この実験タイムラインにおいては、Ff-201B7 ヒトiPS細胞及びこれから誘導されるmDA細胞を、種々の量のpuroR mRNA(0 ~50 ng)や、ピューロマイシン(0~10 μg)を含む培地で処理した。WST-1 基質 (Roche)を、2~4時間加えて細胞毒性をアッセイした結果をグラフに示す(図11bの棒グラフ)。Ff-201B7 ヒトiPS細胞については、miRNAに応答しない、puroR mRNA(Contl-PurpR)を導入した場合と比較して、302a-5p-応答性puroR mRNA(302-PuroR)を導入した場合、生細胞の割合が顕著に減少している(図11bの、左及び左から2番目のグラフ)。これに対し、mDA細胞では、puroR mRNA(Contl-PurpR)を導入しても、302a-5p-応答性puroR mRNAを導入しても、生細胞の割合にほとんど変化はみられなかった。 

 24ウェルプレートに、Ff-201B7 ヒトiPS細胞もしくはこれから誘導されるmDA細胞の単培養、またはこれらの共培養を播種し、対応するiPS細胞用培地またはmDA細胞用培地で、もしくは二種の混合培地(ROCK inhibitorとともに)で培養した。翌日、培地をROCK inhibitoのないものに変更し、細胞に、50ngのpuroR mRNAまたは302a-5p-応答性 puroR mRNAを導入した。発現の4時間後に、培地を交換し、2 μg/mlのピューロマイシンを添加した。24時間後に、細胞をPBSで2回洗浄し、穏やかに撹拌し、付着して残存している細胞を採取し、Alexa-488コンジュゲート抗ヒトTRA-1-60抗体(BD laboratories)で染色した。図11cの上図は、BD Accuriで測定し、生細胞をゲーティングした結果である。Ff-201B7 ヒトiPS細胞の単培養系では、予測通り、302a-5p 応答性puroR mRNA を導入した場合には、FL-1 (TRA-1-60)ヒストグラムが、ほぼすべてのバックグラウンドに対し大きく減少しているのに対し、puroR mRNAを導入した場合には影響がなかった。302a-5p 応答性puroR mRNAを導入した共培養系から得られたヒストグラムは、TRA-1-60陽性のピークが著しく減少していた。下図は、全てのコンディションにおけるTRA-1-60陽性細胞の絶対数を示す。

Claims (7)

  1.  以下の工程を含む、多能性幹細胞から分化誘導後の細胞集団から、分化細胞を抽出する方法;(1)多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを細胞集団に導入する工程、および(2)当該マーカー遺伝子が翻訳された細胞を抽出する工程。
  2.  前記多能性幹細胞が、ヒト多能性幹細胞である、請求項1に記載の方法。
  3.  前記ヒト多能性幹細胞に特異的に発現するmiRNAが、hsa-miR-302b、hsa-miR-302a、またはhsa-miR-367である、請求項2に記載の方法。
  4.  前記抽出する工程が、フローサイトメーターを用いて行われる、請求項1から3のいずれか一項に記載の方法。
  5.  多能性幹細胞に特異的に発現するmiRNAの標的配列と機能的に連結したマーカー遺伝子を含むmRNAを含んでなる、分化細胞抽出キット。
  6.  前記多能性幹細胞が、ヒト多能性幹細胞である、請求項5に記載のキット。
  7.  前記ヒト多能性幹細胞に特異的に発現するmiRNAが、hsa-miR-302b、hsa-miR-302a、またはhsa-miR-367である、請求項6に記載のキット。 
PCT/JP2015/070425 2014-07-16 2015-07-16 分化細胞の抽出方法 WO2016010119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15822080.6A EP3170893B1 (en) 2014-07-16 2015-07-16 Method for extracting differentiated cells
CN201580049747.9A CN107002031B (zh) 2014-07-16 2015-07-16 选择分化细胞的方法
JP2016534491A JP6893633B2 (ja) 2014-07-16 2015-07-16 分化細胞の抽出方法
US15/326,083 US10604770B2 (en) 2014-07-16 2015-07-16 Method for extracting differentiated cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-146070 2014-07-16
JP2014146070 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016010119A1 true WO2016010119A1 (ja) 2016-01-21

Family

ID=55078605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070425 WO2016010119A1 (ja) 2014-07-16 2015-07-16 分化細胞の抽出方法

Country Status (5)

Country Link
US (1) US10604770B2 (ja)
EP (1) EP3170893B1 (ja)
JP (1) JP6893633B2 (ja)
CN (1) CN107002031B (ja)
WO (1) WO2016010119A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003339A1 (ja) * 2016-06-27 2018-01-04 国立大学法人京都大学 細胞特異的にヌクレアーゼを制御する方法
WO2018135288A1 (ja) * 2017-01-19 2018-07-26 シスメックス株式会社 細胞の分化状態を評価する方法
WO2020003884A1 (ja) 2018-06-29 2020-01-02 株式会社片岡製作所 細胞処理装置
JP2020000254A (ja) * 2017-01-19 2020-01-09 シスメックス株式会社 細胞の分化状態を評価する方法
JP2021511076A (ja) * 2018-01-22 2021-05-06 システミック・スコットランド・リミテッドSistemic Scotland Limited 細胞混入アッセイ
WO2023074873A1 (ja) * 2021-10-29 2023-05-04 国立大学法人京都大学 細胞純化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141827A1 (ja) 2014-03-20 2015-09-24 国立大学法人京都大学 心筋細胞の選別方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171861A (ja) * 2008-01-22 2009-08-06 Japan Health Science Foundation 遺伝子発現制御機構を含む新規Adベクター
JP2010158171A (ja) * 2008-12-08 2010-07-22 Kyoto Univ 効率的な核初期化方法
US20130150256A1 (en) * 2010-06-11 2013-06-13 Jane Synnergren Novel micrornas for the detection and isolation of human embryonic stem cell-derived cardiac cell types
WO2013188679A1 (en) * 2012-06-13 2013-12-19 Stemgent, Inc. Methods of preparing pluripotent stem cells
WO2015105172A1 (ja) * 2014-01-10 2015-07-16 国立大学法人京都大学 miRNAの発現を指標として所望の細胞種を判別する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171185A1 (en) * 1999-06-30 2011-07-14 Klimanskaya Irina V Genetically intact induced pluripotent cells or transdifferentiated cells and methods for the production thereof
JP5405312B2 (ja) * 2007-11-22 2014-02-05 独立行政法人科学技術振興機構 低分子rnaによる細胞または人工細胞モデルでの翻訳制御システム
US20090286242A1 (en) * 2007-12-10 2009-11-19 Cold Spring Harbor Laboratory MicroRNA Expression Profiling and Uses Thereof
US9683232B2 (en) * 2007-12-10 2017-06-20 Kyoto University Efficient method for nuclear reprogramming
SG160248A1 (en) * 2008-09-18 2010-04-29 Agency Science Tech & Res Use of novel monoclonal antibodies targeting human embryonic stem cells to characterize and kill induced pluripotent stem cells
US8765370B2 (en) * 2009-06-11 2014-07-01 Scinopharm Taiwan, Ltd Inhibition-based high-throughput screen strategy for cell clones
US20110154553A1 (en) * 2009-12-30 2011-06-30 Longworth Industries, Inc. Flame resistant undergarments
EP3460064B8 (en) * 2011-04-03 2024-03-20 The General Hospital Corporation d/b/a Massachusetts General Hospital Efficient protein expression in vivo using modified rna (mod-rna)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171861A (ja) * 2008-01-22 2009-08-06 Japan Health Science Foundation 遺伝子発現制御機構を含む新規Adベクター
JP2010158171A (ja) * 2008-12-08 2010-07-22 Kyoto Univ 効率的な核初期化方法
US20130150256A1 (en) * 2010-06-11 2013-06-13 Jane Synnergren Novel micrornas for the detection and isolation of human embryonic stem cell-derived cardiac cell types
WO2013188679A1 (en) * 2012-06-13 2013-12-19 Stemgent, Inc. Methods of preparing pluripotent stem cells
WO2015105172A1 (ja) * 2014-01-10 2015-07-16 国立大学法人京都大学 miRNAの発現を指標として所望の細胞種を判別する方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DIEKMANN U. ET AL.: "MicroRNA target sites as genetic tools to enhance promoter-reporter specificity for the purification of pancreatic progenitor cells from differentiated embryonic stem cells.", STEM CELL REV., pages 555 - 68, XP055385673 *
KENJI MIKI ET AL.: "Efficient detection and purification of cells by synthetic microRNA switches", REGENERATIVE MEDICINE, vol. 14, pages 188 O - 04-5, XP008185727 *
MIKI K. ET AL.: "Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches.", CELL STEM CELL ., vol. 16, no. 6, pages 699 - 711, XP055225629, DOI: doi:10.1016/j.stem.2015.04.005 *
See also references of EP3170893A4 *
WARREN L. ET AL.: "Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.", CELL STEM CELL, vol. 7, no. 5, pages 618 - 30, XP002640639, DOI: doi:10.1016/J.STEM.2010.08.012 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003339A1 (ja) * 2016-06-27 2018-01-04 国立大学法人京都大学 細胞特異的にヌクレアーゼを制御する方法
JPWO2018003339A1 (ja) * 2016-06-27 2019-11-07 国立大学法人京都大学 細胞特異的にヌクレアーゼを制御する方法
JP7362097B2 (ja) 2016-06-27 2023-10-17 国立大学法人京都大学 細胞特異的にヌクレアーゼを制御する方法
WO2018135288A1 (ja) * 2017-01-19 2018-07-26 シスメックス株式会社 細胞の分化状態を評価する方法
JP2018113924A (ja) * 2017-01-19 2018-07-26 シスメックス株式会社 細胞の分化状態を評価する方法
JP2020000254A (ja) * 2017-01-19 2020-01-09 シスメックス株式会社 細胞の分化状態を評価する方法
JP2021511076A (ja) * 2018-01-22 2021-05-06 システミック・スコットランド・リミテッドSistemic Scotland Limited 細胞混入アッセイ
WO2020003884A1 (ja) 2018-06-29 2020-01-02 株式会社片岡製作所 細胞処理装置
US11603514B2 (en) 2018-06-29 2023-03-14 Kataoka Corporation Cell treatment apparatus
WO2023074873A1 (ja) * 2021-10-29 2023-05-04 国立大学法人京都大学 細胞純化方法

Also Published As

Publication number Publication date
EP3170893A4 (en) 2018-01-10
JP6893633B2 (ja) 2021-06-23
US20170342439A1 (en) 2017-11-30
EP3170893A1 (en) 2017-05-24
EP3170893B1 (en) 2021-03-10
CN107002031A (zh) 2017-08-01
CN107002031B (zh) 2021-09-14
US10604770B2 (en) 2020-03-31
JPWO2016010119A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6893633B2 (ja) 分化細胞の抽出方法
Ivey et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells
Lu et al. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways
Colas et al. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis
Wong et al. miR-125b promotes early germ layer specification through Lin28/let-7d and preferential differentiation of mesoderm in human embryonic stem cells
US20130150256A1 (en) Novel micrornas for the detection and isolation of human embryonic stem cell-derived cardiac cell types
US20090186414A1 (en) Methods of Generating Cardiomyocytes and Cardiac Progenitors and Compositions
Gorabi et al. TBX18 transcription factor overexpression in human‐induced pluripotent stem cells increases their differentiation into pacemaker‐like cells
EP3121276B1 (en) Cardiomyocyte sorting method
Hadjimichael et al. MicroRNAs for fine-tuning of mouse embryonic stem cell fate decision through regulation of TGF-β signaling
US20130065243A1 (en) Method for producing induced pluripotent stem cells
US11111503B2 (en) Method for expressing protein gene in response to expression of miRNA
KR102193864B1 (ko) 마이크로rna의 비정규 표적을 억제하는 rna 간섭 유도 핵산 및 그 용도
KR102193873B1 (ko) 마이크로rna의 비정규 표적을 억제하는 rna 간섭 유도 핵산 및 그 용도
KR102193869B1 (ko) 마이크로rna의 비정규 표적을 억제하는 rna 간섭 유도 핵산 및 그 용도
EP3653710A1 (en) HIGH EXPRESSION mRNA SWITCH
Grosch The function of paraspeckle components in pluripotency maintenance and differentiation
Arora Step-wise differentiation of cerebral organoids towards hippocampal and choroid plexus progeny by sustained expression of early NSC stage-specific microRNA-20b
Suen The Genomic Landscape of Male Germ Cell and Testis Development: One Cell at a Time
Brosig Single Cell microRNA Dynamics during Mouse Embryonic Stem Cell Differentiation
Lewis Reprogramming human keratinocytes: a non-viral, microRNA approach
Frith Delineating the signals in anterior-posterior patterning of hPSC derived neural crest cells
Jin Role of miR-1305 in regulating pluripotency, cell cycle and apoptosis in human embryonic stem cells
Brás-Rosário et al. Expression Profile of microRNAs Regulating Proliferation and Differentiation in
Davila Mir-9 targets OC2 in proliferating and differentiating neural stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015822080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326083

Country of ref document: US