WO2016010046A1 - 有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法 - Google Patents

有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法 Download PDF

Info

Publication number
WO2016010046A1
WO2016010046A1 PCT/JP2015/070186 JP2015070186W WO2016010046A1 WO 2016010046 A1 WO2016010046 A1 WO 2016010046A1 JP 2015070186 W JP2015070186 W JP 2015070186W WO 2016010046 A1 WO2016010046 A1 WO 2016010046A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
thin film
semiconductor material
organic
ultrasonic vibration
Prior art date
Application number
PCT/JP2015/070186
Other languages
English (en)
French (fr)
Other versions
WO2016010046A9 (ja
Inventor
正俊 酒井
工藤 一浩
雄一 貞光
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2016534454A priority Critical patent/JP6550050B2/ja
Priority to CN201580038837.8A priority patent/CN106796987B/zh
Priority to KR1020177004423A priority patent/KR20170030639A/ko
Publication of WO2016010046A1 publication Critical patent/WO2016010046A1/ja
Publication of WO2016010046A9 publication Critical patent/WO2016010046A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a method for forming an organic semiconductor thin film, an organic semiconductor device using the forming method, and a method for manufacturing an organic semiconductor device using the forming method.
  • a method of forming an organic semiconductor material thin film between electrodes to obtain an organic semiconductor device has been actively studied in recent years because it can be manufactured by a low-temperature process, and a device that is more flexible, lightweight, and hard to break can be created. It became so.
  • organic semiconductor thin film since many of the organic semiconductor materials used in organic semiconductor devices are hardly soluble in organic solvents, the thin film cannot be formed using an inexpensive method such as coating or printing. In general, the thin film is formed on the substrate by a vacuum deposition method or the like with a high cost. Recently, research on forming organic semiconductor thin films and obtaining organic semiconductor devices by methods using application or printing, such as ink jet, flexographic printing, coating, etc., has been actively conducted, and relatively high carrier mobility (hereinafter referred to as “organic semiconductor thin film”). An organic semiconductor device having an appropriateness simply called “mobility” has come to be obtained. The above-described method using coating or printing is expected to produce a large-area field-effect transistor at a low cost with a high throughput in the step of producing the field-effect transistor.
  • the organic semiconductor thin film is formed by a vacuum process such as a vacuum deposition method, or a coating process such as a spin coat method or a blade coat method using a solvent.
  • a vacuum process such as a vacuum deposition method
  • a coating process such as a spin coat method or a blade coat method using a solvent.
  • the method for forming an organic semiconductor thin film by a vacuum process has the disadvantages that an equipment for performing the vacuum process is required and the loss of the organic semiconductor material increases.
  • the organic semiconductor solution is applied to the entire substrate, so that the loss of the organic semiconductor material is increased as in the vacuum process.
  • a printing method such as an ink jet method is known.
  • the printing method it is possible to apply a necessary amount of the organic semiconductor material to the target position.
  • the temperature is controlled.
  • Slowly deposit an organic semiconductor thin film while performing precise process control such as atmosphere and coating surface treatment, or perform firing for several minutes to several tens of minutes after crystal formation for crystal growth
  • these organic semiconductor thin film forming methods by coating or printing methods have a drawback that it takes time to form the organic semiconductor thin film or to perform baking for crystal growth, and the throughput is not high.
  • coating or the printing method is inadequate for practical use also regarding organic semiconductor device performance, such as a mobility.
  • a method for forming a single crystal organic semiconductor thin film having no crystal grain boundary a method for forming a single crystal organic semiconductor thin film by a vapor phase method (physical vapor deposition) described in Non-Patent Document 1, Patent Document 1 And a method of growing a crystal in a certain direction (inclination direction) from the organic semiconductor solution together with evaporation of the solvent by tilting the substrate and forming droplets of the organic semiconductor solution on the substrate, which is described in JP-A No. 2004-26853. Shows a method for producing a monocrystalline organic semiconductor thin film by the double ink jet method described in the above.
  • Non-Patent Document 1 the method for forming an organic semiconductor thin film by a vapor phase method as described in Non-Patent Document 1 involves difficulties in application to the production of an actual organic semiconductor device. Further, in the method of tilting the substrate in the solution method described in Patent Document 1, it is very difficult to tilt the substrate itself. Moreover, in the method for producing an organic semiconductor thin film by the double ink jet method as described in Patent Document 2, it is difficult to select a solvent, and it is necessary to control the drying property. As a result, there is a problem that it is necessary to use a solvent having a negative influence on the environment, and a method for forming an organic semiconductor thin film with high throughput cannot be realized.
  • Patent Document 3 discloses a method for aligning a crystal other than a single crystal of an organic semiconductor by applying a liquid crystalline organic semiconductor material on an alignment film and aligning the crystal using liquid crystal transition.
  • cracks may occur between crystals due to a phase change in the cooling process, and it is necessary to precisely control the temperature in the cooling process.
  • Non-Patent Document 2 describes a method of promoting crystal reorientation by forming a polycrystalline organic semiconductor thin film and then exposing it to solvent vapor.
  • it is necessary to expose the crystalline organic semiconductor thin film to a solvent for a long time, which is not suitable for application to a method for producing an organic semiconductor with high throughput.
  • ultrasonic welding is known as a processing technique for thermoplastic resins.
  • Ultrasonic welding is a joining / processing technique that uses frictional heat generated by ultrasonic vibration and pressure, and is known as a processing technique with a short processing time.
  • Ultrasonic welding is mainly used in many fields such as spot welding, film sealing, non-woven cloth sealing, and metal inserts.
  • a technique for thinning an organic semiconductor material by ultrasonic vibration and pressure has not been known so far.
  • Patent Document 4 discloses a method of irradiating ultrasonic waves on a coating film containing an organic semiconductor material or the like as a main component.
  • the method described in Patent Document 4 is a technique for modifying the coating film to reduce resistance by irradiating the coating film with ultrasonic waves. Therefore, the ultrasonic irradiation in Patent Document 4 is only an alternative to a thermal baking process or a drying process performed by a normal oven or the like after the formation of the organic semiconductor thin film, and in a short time by ultrasonic irradiation and pressure. It does not form an organic semiconductor thin film.
  • the present invention provides an organic semiconductor thin film forming method capable of forming an organic semiconductor thin film in a short time, and also provides an organic semiconductor device using the organic semiconductor thin film and a method for manufacturing an organic semiconductor device with high throughput. For the purpose.
  • the present inventors have found that a method for forming an organic semiconductor thin film by applying ultrasonic vibration while applying pressure to the organic semiconductor material to make the organic semiconductor material thin is short. It has been found that an organic semiconductor thin film can be formed by a time treatment, and that an organic semiconductor device using the organic semiconductor thin film can be produced at a high throughput by using the method for forming the organic semiconductor thin film, and the present invention has been completed.
  • the method for forming an organic semiconductor thin film according to the present invention is a method for forming an organic semiconductor thin film made of an organic semiconductor material, and by applying ultrasonic vibration while applying pressure to the organic semiconductor material, It is characterized by thinning.
  • the method for producing an organic semiconductor device of the present invention is a method for producing an organic semiconductor device including an organic semiconductor thin film, wherein the organic semiconductor thin film is formed by the method for forming an organic semiconductor thin film of the present invention.
  • the organic semiconductor device of the present invention is manufactured by the above manufacturing method.
  • the present invention it is possible to provide a method for forming an organic semiconductor thin film that can form an organic semiconductor thin film in a short time, an organic semiconductor device using the organic semiconductor thin film, and a method for manufacturing an organic semiconductor device with high throughput.
  • FIG. It is the schematic which shows another process of the manufacturing method for manufacturing the example of the one aspect
  • FIG. It is the schematic which shows other one process of the manufacturing method for manufacturing the example of the organic semiconductor device of this invention, and provides an ultrasonic vibration to the organic-semiconductor material in the state which applied the pressure to the organic-semiconductor material
  • FIG. It is the schematic which shows the other process of the manufacturing method for manufacturing the one example of the organic-semiconductor device of this invention, and complete
  • FIG. It is the schematic which shows the other 1 process of the manufacturing method for manufacturing the example of the organic semiconductor device of this invention, and is the schematic which shows the process of raising the horn of an ultrasonic welder and obtaining an organic semiconductor device is there.
  • a first object of the present invention is to provide a method for forming an organic semiconductor thin film capable of forming an organic semiconductor thin film made of an organic semiconductor material in a short time.
  • the method for forming an organic semiconductor thin film of the present invention includes forming an organic semiconductor thin film made of an organic semiconductor material by thinning the organic semiconductor material by applying ultrasonic vibration while applying pressure to the organic semiconductor material. It is a feature. According to the above method, the organic semiconductor thin film can be formed in a short time. Moreover, in the said method, when a pressure is applied with respect to an organic-semiconductor material in the cooling process after completion
  • the organic semiconductor material may be used alone as an object to be processed, but the organic semiconductor material is disposed on the substrate. More preferably, it is used as an object to be processed and the above-described treatment is performed on the organic semiconductor material on the substrate.
  • the method of the present invention it is considered that re-orientation of crystals occurs due to the above-mentioned treatment performed on the organic semiconductor material on the substrate, and the orientation of the crystal becomes uniform. Therefore, when placing the organic semiconductor material on the substrate In addition, there is no need for a process for reorienting crystals (for example, a baking process after the organic semiconductor material is disposed by a solution process).
  • the organic semiconductor material when the organic semiconductor material is disposed on the substrate, the organic semiconductor material is disposed at a desired position where the organic semiconductor thin film is to be formed (for example, in the case of manufacturing an organic thin film transistor, the source on the substrate Even if the position is slightly deviated from the position between the electrode and the drain electrode), the organic semiconductor material is expanded in the direction of the substrate surface by the above treatment, so that the organic semiconductor thin film can be formed at a desired position. Therefore, high accuracy is not required for the arrangement of the organic semiconductor material.
  • a material in which the organic semiconductor material is sandwiched between a pair of base materials is used as an object to be processed. More preferably, the above-described treatment is performed on the sandwiched organic semiconductor material.
  • an inorganic substrate such as glass and various resin films mentioned as examples of the base materials 1 and 1 ′ constituting the organic thin film transistors 10A and 10B in the latter stage, and electrodes and / or insulating layers were formed thereon. Things.
  • the pair of base materials is preferably a resin film.
  • the organic semiconductor material When the organic semiconductor material is disposed on the substrate, the organic semiconductor material can be disposed on the substrate in a solid state or a molten state.
  • positioning organic-semiconductor material on a base material in a solid state or a molten state has the merit that an organic-semiconductor material can be arrange
  • a method of arranging an organic semiconductor material on a substrate in a solid state or a molten state a method of directly arranging an organic semiconductor material in a solid state such as bulk powder or fine powder on the substrate, bulk powder, fine powder, etc. It is possible to use a method in which the solid organic semiconductor material is placed on a member such as a sufficiently heated metal rod and melted, and the molten organic semiconductor material is dropped from the member onto the substrate. .
  • a solution process such as a drop cast method (for example, a step of applying or printing a solution obtained by dissolving an organic semiconductor material in an organic solvent and a drying step).
  • a solution process such as a drop cast method (for example, a step of applying or printing a solution obtained by dissolving an organic semiconductor material in an organic solvent and a drying step).
  • a drop cast method for example, a step of applying or printing a solution obtained by dissolving an organic semiconductor material in an organic solvent and a drying step.
  • ultrasonic vibration is applied while pressure is applied to the organic semiconductor material, and after the frictional heat is generated and the temperature of the organic semiconductor material is increased, the application of ultrasonic vibration is performed.
  • the organic semiconductor material is cooled. It is considered that the crystal of the organic semiconductor material is reoriented during this cooling process and the crystal orientation is made uniform.
  • the crystal orientation may be random in the stage of crystallizing the organic semiconductor material from the organic solvent solution containing the organic semiconductor material. . Therefore, in the solution process for disposing the organic semiconductor material on the substrate in the method for forming the organic semiconductor thin film of the present invention, after applying or printing a solution obtained by dissolving the organic semiconductor material in an organic solvent, It is only necessary to evaporate the organic solvent contained in. Therefore, after applying or printing a solution in which an organic semiconductor material is dissolved in an organic solvent, a process such as crystal orientation control by long-time baking or crystal reorientation by post-processing is performed to make the crystal orientation uniform. There is no need to do.
  • the organic semiconductor material arranged on the base material in this way becomes a thin film by applying ultrasonic vibration while applying pressure to the organic semiconductor material to become an organic semiconductor thin film.
  • the method of applying pressure to the organic semiconductor material is not particularly limited, but a method of pressing a pressure member directly on the organic semiconductor material or through a protective film or a protective layer is suitable.
  • a pressure member is pressed against an organic semiconductor material through a protective film or protective layer, an organic semiconductor material sandwiched between the base material and the protective film or protective layer is used as the object to be treated. More preferably, the pressure member is pressed against the organic semiconductor material on the material via a protective film or a protective layer.
  • the method for applying ultrasonic vibration while applying pressure to the organic semiconductor material is not particularly limited. However, the organic semiconductor material is disposed on the base material, and the organic semiconductor material is directly applied to the organic semiconductor material or a protective film or a protective film.
  • a method of ultrasonically vibrating the pressure member while pressing the pressure member through the layer is preferable.
  • the pressure member is not particularly limited as long as it can apply pressure to the entire organic semiconductor material, but when the substrate is a flat plate, the surface of the pressure member that contacts the organic semiconductor material is a flat surface. It is preferable. Thereby, an organic semiconductor thin film having a uniform thickness can be formed.
  • the protective film or protective layer will be described later.
  • Examples of the method for forming the organic semiconductor thin film of the present invention include a method using a general ultrasonic welding machine (ultrasonic welder) used for pressure bonding of a packaging film.
  • a general ultrasonic welding machine used for pressure bonding of a packaging film.
  • an object to be processed containing an organic semiconductor material (organic semiconductor material alone, a combination of an organic semiconductor material and a substrate, a combination of an organic semiconductor material and a protective film or a protective layer, or A combination of an organic semiconductor material, a base material, a protective film or a protective layer), and applying ultrasonic vibration to the organic semiconductor material while applying pressure to the organic semiconductor material with an ultrasonic welder, and frictional heat generated by the ultrasonic vibration
  • the organic semiconductor thin film of the present invention is formed by thinning the organic semiconductor material using pressure.
  • a general ultrasonic welding machine includes a horn as a pressure member that is pressed against a workpiece and applies pressure to the workpiece while applying ultrasonic vibration.
  • the ultrasonic welder 20 includes an ultrasonic oscillator (generator) 21, an ultrasonic vibrator (converter) 22, a booster 23, a horn 24, a pressurizing mechanism (press unit) 25, and a heating stage 26. It has.
  • the horn 24 has a flat surface that comes into contact with the workpiece.
  • the heating stage 26 has a workpiece to be disposed thereon.
  • the heating stage 26 includes a heater 26a for heating the upper surface of the heating stage 26 to a predetermined temperature. Note that the upper surface of the heating stage 26 may not be heated. Therefore, instead of the heating stage 26, a simple stage that does not include the heater 26a may be used.
  • the pressurizing mechanism 25 includes an arm portion 25a to which the ultrasonic vibrator 22, a booster 23, and a horn 24 are attached, a support column 25b that supports the arm portion 25a to be vertically slidable, and an arm portion 25a in the vertical direction.
  • a driving mechanism for example, an air cylinder (not shown) is provided for moving up and down and for applying pressure by pressing the horn 24 downward in the vertical direction against the workpiece placed on the heating stage 26.
  • an electric signal input from a commercial power source (not shown) is amplified to a high frequency electric signal by an ultrasonic oscillator 21, and the amplified electric signal is converted into mechanical vibration energy by an ultrasonic vibrator 22.
  • mechanical vibration (ultrasonic vibration) is emitted from the ultrasonic vibrator 22.
  • the mechanical vibration (ultrasonic vibration) emitted from the ultrasonic vibrator 22 is transmitted to the horn 24 after the amplitude is increased or decreased by the booster 23.
  • the ultrasonic vibration transmitted to the horn 24 is transmitted to an object to be processed containing the organic semiconductor material when the pressure mechanism 25 presses the horn 24 vertically against the organic semiconductor material to apply pressure.
  • the parameters to be controlled when applying ultrasonic vibration while applying pressure to the organic semiconductor material are mainly the oscillation time of the ultrasonic vibration, the amplitude of the ultrasonic vibration, the applied pressure, and the shape of the horn of the ultrasonic welder. (When using an ultrasonic welding machine equipped with a horn).
  • the oscillation time of the ultrasonic vibration is a time for applying the ultrasonic vibration to the organic semiconductor material, and the heat amount applied to the organic semiconductor material increases as the time becomes longer, but it is necessary to adjust appropriately according to the physical properties of the organic semiconductor material. .
  • it is preferable to perform an appropriate process in a short time usually within 1 minute, preferably within 10 seconds, and particularly preferably within 1 second. Set to.
  • the amplitude of the ultrasonic vibration is the size of the ultrasonic vibration applied to the organic semiconductor material (when using an ultrasonic welder equipped with a horn, the size of the ultrasonic vibration transmitted from the tip of the horn to the organic semiconductor material).
  • an ultrasonic welder it is possible to change the amount of heat applied to the organic semiconductor material by changing the amplitude of the ultrasonic vibration even if an ultrasonic welder having the same output is used. It is possible to give a large amount of heat to the organic semiconductor material as the amplitude of the ultrasonic vibration is higher.
  • the organic semiconductor material when used in combination with other materials such as a base material, In consideration of damage to the material, it is necessary to set so that the amplitude of the ultrasonic vibration does not become too high.
  • the appropriate amplitude of the ultrasonic vibration varies depending on the output of the ultrasonic welder (when the ultrasonic welder is used), the frequency (frequency) of the ultrasonic vibration, and the like. For this reason, it is necessary to control to an appropriate amplitude in accordance with the type of the organic semiconductor material to be used and, if necessary, the type of the member used in combination with the organic semiconductor material to which frictional heat is applied when applying ultrasonic vibration.
  • Examples of the member to which frictional heat is applied when the ultrasonic vibration is applied include, for example, a base material, an electrode (a gate electrode, a source electrode, a drain electrode, etc.), an insulating layer (for example, a gate insulating layer), a thin film transistor protective layer, and an organic semiconductor material.
  • a member such as a protective film or a protective layer
  • a pressure member such as a horn when a pressure member such as a horn is pressed through another member to apply ultrasonic vibration. That is, in the method for forming an organic semiconductor thin film of the present invention, it is preferable to control the amplitude of ultrasonic vibration to an appropriate amplitude so that the temperature of the organic semiconductor material is controlled to an appropriate temperature.
  • the applied pressure is mechanical energy applied to an object to be processed including an organic semiconductor material (when an ultrasonic welding machine including a horn is used, mechanical energy transmitted from the horn to the organic semiconductor material), and its magnitude is It relates to the amount of heat generated in the organic semiconductor material by ultrasonic vibration and the processing time (the time taken for the organic semiconductor material to be thinned). If too much pressure is applied to an object containing organic semiconductor material, it may damage the organic semiconductor material as in the case where the amplitude of ultrasonic vibration is too large. When used in combination with other materials, there is a possibility of damaging other materials such as a substrate. Therefore, it is necessary to set the pressure so that it does not become too strong in consideration of these damages.
  • the shape of the horn of the ultrasonic welder needs an appropriate structure for transmitting the transmitted ultrasonic vibration to the organic semiconductor material, and the amplitude of the ultrasonic vibration may change depending on the shape.
  • the amount of heat applied to the organic semiconductor material varies depending on the size (processing area) of the horn surface, it is necessary to individually control the shape of the horn and the size of the horn surface.
  • the temperature of the organic semiconductor material when applying ultrasonic vibration while applying pressure to the organic semiconductor material depends on the type of the organic semiconductor material. Is set. When the organic semiconductor material has a phase transition point (phase transition temperature), adjust the temperature of the organic semiconductor material when applying pressure and applying ultrasonic vibration within the range of 0 to + 80 ° C with respect to the phase transition point of the organic semiconductor material It is preferable to do. In addition, when using organic semiconductor materials in combination with a base material, the temperature of the organic semiconductor material when applying pressure and applying ultrasonic vibration is set to a temperature lower than the glass transition point (glass transition temperature) of the base material used.
  • phase transition temperature phase transition temperature
  • an optimum temperature range of the temperature of the organic semiconductor material at the time of applying pressure and ultrasonic vibration is set by a combination of the phase transition point of the organic semiconductor material and the glass transition point of the base material.
  • the “temperature of the organic semiconductor material at the time of applying pressure and ultrasonic vibration” referred to here is a pressure and ultrasonic vibration obtained by arranging a heat conductive sheet instead of the organic semiconductor material as in the measurement method of the example. It shall mean the temperature of the heat conductive sheet at the time of application.
  • the organic semiconductor material may be conductively heated simultaneously with the application of ultrasonic vibration to the organic semiconductor material.
  • the base material may be conductively heated in an auxiliary manner simultaneously with the application of ultrasonic vibration, if necessary.
  • the heating temperature of the base material may be changed according to the heating temperature of the organic semiconductor material at the time of pressurization and application of ultrasonic vibration, but the deformation of the base material or damage to other components (organic semiconductor material) And when the base material is used in combination with other constituent members), the temperature is set as low as possible.
  • the temperature of the organic semiconductor material when applying pressure and ultrasonic vibration exceeds the phase transition point of the organic semiconductor material (ie, liquid crystal transition point, glass transition point, melting point, etc.). It is preferable to make it.
  • the organic semiconductor material undergoes a phase transition (phase change) from a solid phase to a liquid crystal phase, a glass phase, a liquid phase, etc. when applying pressure and ultrasonic vibration, and has fluidity.
  • the film is thinned by a given pressure.
  • the organic semiconductor material is recrystallized in the cooling process after the application of the ultrasonic vibration is finished, and an organic semiconductor thin film is obtained.
  • the organic semiconductor material is recrystallized after phase transition of the organic semiconductor material by applying ultrasonic vibration while applying pressure to the organic semiconductor material. By doing so, it is preferable to reduce the thickness of the organic semiconductor material. Thereby, since the fluidity of the organic semiconductor material is increased by causing phase transition of the solid-state organic semiconductor material, the organic semiconductor material is easily thinned. Even when the organic semiconductor material does not undergo phase transition when applying pressure and ultrasonic vibration, thinning occurs when the organic semiconductor material is subjected to sufficient pressure while being heated by ultrasonic vibration. sell.
  • the temperature of the organic semiconductor material rapidly decreases and the organic semiconductor material is reoriented and recrystallized. happenss.
  • pressurization to the organic semiconductor material may be continued in order to obtain a uniform organic semiconductor thin film in the thickness direction.
  • the maximum temperature of the organic semiconductor material when applying ultrasonic vibration, the temperature difference between the organic semiconductor material and the room temperature at the end of applying ultrasonic vibration (after cooling), and the surface energy of the base material (the organic semiconductor material It is preferable to be adjusted by a case of using in combination with a substrate.
  • the organic semiconductor thin film thus obtained is less susceptible to cracks between crystal grains than an organic semiconductor thin film obtained by a general solution process.
  • a protective film or a protective layer is provided on the organic semiconductor material to prevent the horn from directly contacting the semiconductor material. You may press a horn through a protective film or a protective layer.
  • the protective film or the protective layer used here may be the same as or different from the base material.
  • stacked the protective layer on the mold release material can also be provided on the organic semiconductor material so that the mold release material may contact the organic semiconductor material.
  • the liquid crystal transition point, the glass transition point, and the melting point of the organic semiconductor material can be measured by grasping the phase transition behavior using a differential scanning calorimeter (DSC), a polarizing microscope (POM) observation, an automatic melting point measuring device, or the like.
  • DSC differential scanning calorimeter
  • POM polarizing microscope
  • XRD X-ray diffraction
  • the organic semiconductor material examples include a low molecular organic compound exhibiting semiconductor characteristics (low molecular organic semiconductor compound), a high molecular compound exhibiting semiconductor characteristics (polymer organic semiconductor compound) (particularly a high molecular compound having a number average molecular weight of 1000 or more),
  • any oligomer (oligomer organic semiconductor compound) having 2 to 20 repeating units exhibiting semiconductor characteristics can be used.
  • organic semiconductor materials organic semiconductor materials having a phase transition point such as a liquid crystal transition point, a glass transition point, and a melting point below the maximum temperature achieved when applying pressure and ultrasonic vibration are preferable.
  • the organic semiconductor material when used in combination with a substrate having a glass transition point (particularly a resin substrate such as a resin film), the organic semiconductor material has a phase transition point lower than the glass transition point of the substrate. It is preferable to have a phase transition point that is lower than the maximum temperature achieved when pressure and ultrasonic vibration are applied, and that is lower than the glass transition point of the substrate.
  • the phase transition point of the organic semiconductor material is preferably in the range of 70 ° C. to 280 ° C., and the phase transition point of the organic semiconductor material is 100 ° C. to 280 ° C. More preferably, it is within the range of ° C.
  • the crystal of the organic semiconductor material is reoriented to make the crystal orientation uniform. For this reason, among these organic semiconductor materials, particularly when an organic semiconductor material having crystallinity is used, an organic semiconductor device having excellent semiconductor characteristics such as mobility can be easily obtained in a short time.
  • Examples of the low-molecular organic semiconductor compound include polyacenes, in which a part of carbon atoms of polyacenes is substituted with a polyvalent functional group such as a nitrogen atom, a sulfur atom, an oxygen atom, or a carbonyl group, or a polyacenes Derivatives obtained by substituting some of the hydrogen atoms with monovalent functional groups such as aryl groups, acyl groups, alkyl groups, alkoxyl groups (triphenodioxazine derivatives, triphenodithiazine derivatives, represented by the general formula (1) described later) And thienothiophene derivatives).
  • a polyvalent functional group such as a nitrogen atom, a sulfur atom, an oxygen atom, or a carbonyl group
  • a polyacenes Derivatives obtained by substituting some of the hydrogen atoms with monovalent functional groups such as aryl groups, acyl groups, alkyl groups, alkoxyl groups (triphenodioxa
  • low-molecular organic semiconductor compounds include styrylbenzene derivatives, metal phthalocyanines, condensed ring tetracarboxylic acid diimides, merocyanine dyes and hemicyanine dyes, and tetrakis (octadecylthio) tetrathiafulvalene. And charge transfer complexes.
  • condensed ring tetracarboxylic acid diimides examples include naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (4-trifluoromethylbenzyl) naphthalene-1,4,5,8- Tetracarboxylic acid diimide, N, N′-bis (1H, 1H-perfluorooctyl) -1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (1H, 1H-perfluorobutyl) -1, Naphthalene such as 4,5,8-tetracarboxylic acid diimide, N, N′-dioctylnaphthalene-1,4,5,8-tetracarboxylic acid diimide, naphthalene-2,3,6,7-tetracarboxylic acid diimide Tetracarboxylic acid diimides; anthracene tetracarboxylic acid
  • polymer organic semiconductor compound examples include polypyrroles such as polypyrrole, poly (N-substituted pyrrole), poly (3-substituted pyrrole), and poly (3,4-disubstituted pyrrole); polythiophene, poly (3- Substituted thiophene), poly (3,4-disubstituted thiophene), polythiophenes such as polybenzothiophene; polyisothianaphthenes such as polyisothianaphthene; polythienylene vinylenes such as polythienylene vinylene; poly (p Poly (p-phenylene vinylene) s such as -phenylene vinylene); polyanilines such as polyaniline, poly (N-substituted aniline), poly (3-substituted aniline), poly (2,3-disubstituted aniline); polyacetylene, etc.
  • polypyrroles such as polypyrrol
  • Polyacetylenes polydiacetylenes such as polydiacetylene; polyaz Polyazulenes such as polypyrene; polypyrenes such as polypyrene; polycarbazoles such as polycarbazole and poly (N-substituted carbazole); polyselenophenes such as polyselenophene; polyfurans such as polyfuran and polybenzofuran; Poly (p-phenylene) s such as -phenylene); polyindoles such as polyindole; polypyridazines such as polypyridazine; polysulfides such as polyphenylene sulfide and polyvinylene sulfide.
  • oligomer organic semiconductor compound examples include oligomers having the same repeating unit as the above polymer, for example, ⁇ -sexual thiophene, ⁇ , ⁇ -dihexyl- ⁇ -sexual thiophene, ⁇ , ⁇ -dihexyl- ⁇ which is a thiophene hexamer.
  • -Oligomers such as quinkethiophene, ⁇ , ⁇ -bis (3-butoxypropyl) - ⁇ -sexualthiophene, and the like.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group, an aryl group which may have a substituent, a heterocyclic group which may have a substituent, an alkoxyl group, an alkoxyalkyl. And R 1 and R 2 may be the same or different from each other, and m and n each independently represents 0 or 1)
  • the thienothiophene derivative represented by these is mentioned.
  • the alkyl group is a linear, branched, or cyclic aliphatic hydrocarbon group, preferably a linear or branched aliphatic hydrocarbon group, more preferably a linear aliphatic hydrocarbon group. is there.
  • the alkyl group generally has 1 to 36 carbon atoms, preferably 2 to 24 carbon atoms, more preferably 4 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • the aryl group is a phenyl group, biphenyl group, pyrene group, xylyl group, mesityl group, cumenyl group, benzyl group, phenylethyl group, ⁇ -methylbenzyl group, triphenylmethyl group, styryl group, cinnamyl group, biphenylyl group, An aromatic hydrocarbon group such as a 1-naphthyl group, a 2-naphthyl group, an anthryl group, and a phenanthryl group.
  • the heterocyclic group include a 2-thienyl group, a benzothienyl group, and a thienothienyl group.
  • Each of these aryl groups and heterocyclic groups may have a substituent such as the above-described alkyl group, and when having a plurality of substituents, the plurality of substituents may be the same or different.
  • At least one of R 1 and R 2 is an alkyl group.
  • the length of the alkyl chain is preferably 4 or more.
  • the thienothiophene derivative represented by the above general formula (1) is described in Journal of the American Chemical Society, 2007, Vol. 129, no. 51, p. 15732-15733 and Advance Materials, 2011, 23, p. It can be synthesized by a known method described in 1222-1225.
  • the purification method of the thienothiophene derivative represented by the general formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. Moreover, you may use these methods in combination as needed.
  • a second object of the present invention is to provide an organic semiconductor device using the organic semiconductor thin film, and a third object is to provide a method for producing an organic semiconductor device using these.
  • the method for producing an organic semiconductor device of the present invention is a method for producing an organic semiconductor device including an organic semiconductor thin film, and is a method for forming an organic semiconductor thin film by the method for forming an organic semiconductor thin film of the present invention.
  • the organic semiconductor device of the present invention is manufactured by the manufacturing method of the present invention.
  • the organic semiconductor device manufactured by the manufacturing method of this invention will not be specifically limited if it is the structure which pinched
  • the source electrode and the drain electrode are in contact with the semiconductor layer including the organic semiconductor thin film, and the current flowing between the source electrode and the drain electrode is gated. More preferably, the organic thin film transistor is configured to be controlled by a voltage applied to another electrode called a gate electrode through an insulating layer. That is, the organic semiconductor device manufactured by the manufacturing method of the present invention includes an organic semiconductor disposed between the source electrode and the drain electrode, and the source and drain electrodes disposed so as to be separated from each other.
  • the organic thin film transistor which is an organic field effect transistor provided with is more preferable. More preferably, the organic field effect transistor includes the source electrode, the drain electrode, the semiconductor layer, the gate electrode, and the insulating layer on a base material.
  • the example of the aspect of the organic thin-film transistor of this invention is shown to Fig.7 (a) and FIG.7 (b).
  • the organic thin film transistor 10A shown in FIG. 7A is called a bottom gate type organic field effect transistor.
  • 10A of organic thin-film transistors are the base material 1, the gate electrode 2 laminated
  • An organic thin film transistor 10B shown in FIG. 7B is an organic field effect transistor, and includes a base material 1 ′, a gate insulating layer 3 ′ stacked on the base material 1 ′, and an upper surface (base) of the gate insulating layer 3 ′.
  • the source electrode 5 and the drain electrode 6 disposed so as to be separated from each other on a part of the back surface of the surface facing the material 1 ′, and the upper surface of the gate insulating layer 3 ′ (however, the source electrode 5 and the drain electrode 6).
  • a gate electrode 2 laminated on the upper surface of the insulating layer 3 and a base material 1 laminated on the upper surface of the gate electrode 2 are provided.
  • the organic thin film transistor 10B one of the base material 1 'and the gate insulating layer 3' may be omitted.
  • the organic thin film transistor of the present invention may be an organic thin film transistor having a structure (referred to as a top gate type organic field effect transistor) in which both the base material 1 'and the gate insulating layer 3' are removed from the organic thin film transistor 10B.
  • the base materials 1 and 1 ′ in addition to an inorganic substrate such as glass, a resin film can be used.
  • the resin constituting the resin film include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyamide, polyimide, polycarbonate, cellulose triacetate, and polyetherimide.
  • the types of the substrates 1 and 1 ' are selected according to the process temperature at the time of applying pressure and applying ultrasonic vibration. Moreover, in order to improve the smoothness of the surface of these base materials 1 and 1 ', you may have a planarization layer on the base materials 1 and 1'.
  • inorganic oxide particles for example, silica particles having an average particle size of nano order (for example, 5 ⁇ m) may be dispersed in the resin constituting the resin film.
  • these base materials 1 and 1 ′ those having a glass transition point of 100 ° C. or higher are preferable, and those having a glass transition point of 150 ° C. or higher are more preferable.
  • the thickness of the substrates 1 and 1 ' is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 3 mm.
  • the semiconductor layer 4 may be sandwiched between the base materials 1 and 1 ′ like the organic thin film transistor 10 ⁇ / b> B in consideration of the bending resistance of the organic thin film transistor.
  • a conductive material (a material having conductivity) is used for the source electrode 5, the drain electrode 6, and the gate electrode 2.
  • the conductive material include platinum, gold, silver, aluminum, chromium, tungsten, tantalum, nickel, cobalt, copper, iron, lead, tin, titanium, indium, palladium, molybdenum, magnesium, calcium, barium, and lithium.
  • Metals such as potassium and sodium and alloys containing them; conductive inorganic oxides such as InO 2 , ZnO 2 , SnO 2 , ITO (indium tin oxide); polyaniline, polypyrrole, polythiophene (such as PEDOT / PSS), polyacetylene, Conductive polymer compounds such as polyparaphenylene vinylene and polydiacetylene; carbon materials such as carbon nanotubes and graphite can be used.
  • the various materials mentioned above may be doped with molybdenum oxide, or the metal may be treated with thiol or the like. .
  • a conductive composite material in which carbon black is dispersed in the various materials listed above, and various materials listed above such as particles of metals such as gold, platinum, silver, and copper can also be used.
  • the organic thin film transistors 10 ⁇ / b> A and 10 ⁇ / b> B are operated, wirings are connected to the gate electrode 2, the source electrode 5, and the drain electrode 6.
  • the wiring is also made of substantially the same material as that of the gate electrode 2, the source electrode 5, and the drain electrode 6.
  • the thicknesses of the source electrode 5, the drain electrode 6, and the gate electrode 2 vary depending on the material, but are usually 1 nm to 10 ⁇ m, preferably 10 nm to 5 ⁇ m, and more preferably 30 nm to 1 ⁇ m.
  • the gate insulating layers 3 and 3 ′ are layers of an insulating material (a material having an insulating property).
  • the insulating material include polyacrylate (acrylic resin) such as polyparaxylylene and polymethyl methacrylate, polystyrene, polyvinylphenol, polyamide, polyimide, polycarbonate, polyester, polyvinyl alcohol, polyvinyl acetate, polyurethane, polysulfone, Polymers such as fluorine resins, epoxy resins, phenol resins, and copolymers thereof, inorganic oxides such as silicon dioxide, aluminum oxide, titanium oxide, and tantalum oxide; ferroelectric inorganic oxides such as SrTiO 3 and BaTiO 3 Materials: inorganic nitrides such as silicon nitride and aluminum nitride; inorganic sulfides; materials in which particles of dielectric such as inorganic fluorides are dispersed in a polymer can be used.
  • the insulating material used for the gate insulating layer 3 is preferably confirmed in advance for the presence or absence of damage due to pressurization and application of ultrasonic vibrations. It is also necessary to consider dielectric breakdown after the treatment of applying ultrasonic vibration.
  • the thickness of the gate insulating layers 3 and 3 ′ varies depending on the insulating material used therein, but is usually 10 nm to 10 ⁇ m, preferably 50 nm to 5 ⁇ m, and more preferably 100 nm to 1 ⁇ m.
  • the gate insulating layers 3 and 3 ′ take into account the bending resistance of the organic thin film transistor 10B. Thus, it is preferable to use the same material.
  • the semiconductor layer 4 includes an organic semiconductor thin film made of the organic semiconductor material described above.
  • the organic semiconductor material may be used alone, or the organic semiconductor material and at least one other semiconductor material may be used in combination.
  • various additives may be mixed with the semiconductor material constituting the semiconductor layer 4 as necessary.
  • the thickness of the semiconductor layer 4 is preferably as thin as possible without losing necessary functions.
  • the characteristics of the organic thin film transistors 10A and 10B do not depend on the thickness of the semiconductor layer 4 if the semiconductor layer 4 has a thickness greater than or equal to a predetermined thickness, but if the thickness of the semiconductor layer 4 increases, the leakage current Often increases. On the other hand, if the thickness of the semiconductor layer 4 is too thin, it becomes impossible to form a passage (channel) of electric charge in the semiconductor layer 4, so that the semiconductor layer 4 needs to have an appropriate thickness.
  • the thickness of the semiconductor layer 4 for exhibiting the functions necessary for the organic thin film transistors 10A and 10B is usually 1 nm to 5 ⁇ m, preferably 10 nm to 1 ⁇ m, and more preferably 10 nm to 500 nm.
  • a thin film transistor protective layer for protecting the organic thin film transistor 10A may be formed on the semiconductor layer 4 in the organic transistor 10A directly or via another layer. Thereby, the influence of external air such as humidity on the electrical characteristics of the organic transistor can be reduced, and the electrical characteristics of the organic transistor can be stabilized. In addition, electrical characteristics such as the on / off ratio of the organic transistor can be improved.
  • the material constituting the thin film transistor protective layer is not particularly limited.
  • epoxy resin acrylic resin such as polymethyl methacrylate, various resins such as polyurethane, polyimide, polyvinyl alcohol, fluororesin, and polyolefin; silicon oxide, aluminum oxide Inorganic oxides such as silicon nitride; and dielectrics such as nitrides are preferred, and resins (polymers) having low oxygen permeability, moisture permeability, and water absorption are more preferred.
  • a gas barrier protective material developed for an organic EL display can also be used.
  • the thin film transistor protective layer may have any thickness depending on the purpose, but is usually 100 nm to 1 mm.
  • an organic semiconductor material is disposed on a base material on which an insulating layer and an electrode are formed, and the organic semiconductor material is superheated while applying pressure to the organic semiconductor material.
  • An organic semiconductor device is manufactured by applying sonic vibration.
  • the organic semiconductor device manufacturing method includes a source electrode and a drain electrode that are disposed so as to be separated from each other, and an organic semiconductor that is disposed between the source electrode and the drain electrode.
  • the method includes a placement step of placing an organic semiconductor material on the substrate before forming the organic semiconductor thin film by the method of forming an organic semiconductor thin film of the present invention. preferable.
  • the organic thin film transistor 10A shown in FIG. 7A and the organic thin film transistor 10B shown in FIG. 7B can be manufactured.
  • the organic semiconductor material is solidified or in a molten state on the base material on which the source electrode and the drain electrode are arranged, and the source electrode and the drain electrode are It may be arranged in the region between or in the vicinity thereof, after applying a solution containing an organic semiconductor material on the base material on which the source electrode and the drain electrode are disposed, You may arrange
  • the organic semiconductor device manufacturing method of the present invention will be described in detail based on the organic thin film transistor 10B of the embodiment of FIG. 7B using two types of substrates.
  • the first substrate (referred to as “gate substrate 9”) is obtained by laminating a gate electrode 2 and a gate insulating layer 3 on a base material 1.
  • the other substrate (referred to as source / drain substrate 8) is obtained by laminating a gate insulating layer 3 ', a source electrode 5 and a drain electrode 6 on a base material 1'.
  • the semiconductor layer 4 consists only of an organic-semiconductor thin film is demonstrated.
  • the gate substrate 9 is produced by providing the gate electrode 2 and the gate insulating layer 3 on the base material 1 described above.
  • the surface of the substrate 1 may be subjected to a surface treatment (cleaning treatment) in order to improve the wettability (easiness of lamination) of each layer laminated on the substrate 1.
  • surface treatment include acid treatment with hydrochloric acid, sulfuric acid, acetic acid, etc .; alkali treatment with sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, etc .; ozone treatment; fluorination treatment; plasma with plasma of oxygen, argon, etc. Treatment; Langmuir-Blodgett film formation treatment; electrical treatment such as corona discharge.
  • the gate electrode 2 is formed on the base material 1 using the conductive material (electrode material) described above.
  • the method for forming the gate electrode 2 include a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, and a sol-gel method. It is preferable to perform patterning as necessary so that the conductive material has a desired shape during or after the formation of the conductive material.
  • a patterning method various methods can be used. For example, a photolithography method combining photoresist patterning and etching can be used.
  • a printing method such as ink jet printing, screen printing, offset printing or letterpress printing, a soft lithography method such as a microcontact printing method, or a method combining a plurality of these methods can be used.
  • the electrode formed by the printing method is fired by applying energy such as heat and light until a desired conductivity is reached.
  • the gate insulating layer 3 is formed on the gate electrode 2 formed on the base material 1 using the insulating material (see FIG. 7B).
  • the method for forming the gate insulating layer 3 include spin coating, spray coating, dip coating, casting, bar coating, blade coating, and other coating methods; screen printing, offset printing, ink jet, and the like.
  • the gate insulating layer 3 may be subjected to a surface treatment.
  • the trap site refers to a functional group such as a hydroxyl group present in the untreated base material 1 or the gate insulating layer 3, and when such a functional group exists in the base material 1 or the gate insulating layer 3, Electrons are attracted to the functional group, and as a result, the carrier mobility of the organic thin film transistor 10B is lowered. Therefore, reducing trap sites in the substrate 1 and the gate insulating layer 3 may be effective for improving characteristics such as carrier mobility of the organic thin film transistor 10B.
  • the gate substrate 9 is manufactured by providing the gate insulating layer 3 ′, the source electrode 5, and the drain electrode 6 on the base material 1 ′ described above.
  • the surface treatment described above may be performed on the surface of the substrate 1 ′ in the same manner as the surface of the substrate 1.
  • a gate insulating layer 3 ′ is formed on the base material 1 ′ using the insulating material (see FIG. 7B).
  • a method for forming the gate insulating layer 3 ′ a method similar to the method for forming the gate insulating layer 3 can be used.
  • surface treatment may be performed on the gate insulating layer 3 ′.
  • the source electrode 5 and the drain electrode 6 are formed on the gate insulating layer 3 ′ using the above conductive material.
  • the material of the source electrode 5 and the drain electrode 6 may be the same or different.
  • a method for forming the source electrode 5 and the drain electrode 6 a method similar to the method for forming the gate electrode 2 can be used.
  • the conductive material constituting the source electrode 5 and the drain electrode 6 may be doped with molybdenum oxide or the like in order to reduce the contact resistance of the source electrode 5 and the drain electrode 6.
  • the source electrode 5 and the drain electrode 6 are made of metal, the metal may be treated with thiol or the like. Molybdenum oxide, thiol, and the like can be stacked on the source electrode 5 and / or the drain electrode 6 by a method similar to the method for forming a conductive material.
  • an organic semiconductor material is disposed on the source / drain substrate 8 prepared by the above-described method.
  • the organic semiconductor material may be disposed directly in a solid state or in a molten state such as bulk powder in the absence of a solvent in the region between the source electrode 5 and the drain electrode 6 on the source / drain substrate 8 or in the vicinity thereof.
  • a solution containing the material is applied or printed on the source / drain substrate 8 and then dried (solution process) in a region between the source electrode 5 and the drain electrode 6 on or near the source / drain substrate 8.
  • An organic semiconductor material may be disposed.
  • an inkjet method As the solution process, an inkjet method, a screen printing method, an offset printing method, a printing method such as a microcontact printing method, or a coating method such as a drop cast method can be used.
  • a necessary amount of the organic semiconductor material can be disposed at a necessary place in order to increase the utilization efficiency of the organic semiconductor material. The method is preferred.
  • the arrangement method of the organic semiconductor material will be described in detail.
  • a bulk solid organic semiconductor material or a finely powdered organic semiconductor material is directly applied to the source / drain substrate.
  • Various means such as a stamp and a dispenser that are disposed or dispersed in the region between the source electrode 5 and the drain electrode 6 on or near the source electrode 8 or heated to a temperature equal to or higher than the melting point and made molten. Can be applied to the region between the source electrode 5 and the drain electrode 6 on the source / drain substrate 8 or in the vicinity thereof.
  • an organic semiconductor material is taken at the tip of a sufficiently heated metal rod to be in a molten state, and the molten semiconductor material at the tip of the metal rod is directly used as the source electrode 5 and the drain electrode 6 on the source / drain substrate 8. You may apply
  • the solution process is a method in which an organic semiconductor material having solvent solubility, for example, a compound represented by the general formula (1) is previously dissolved in an organic solvent, and the obtained organic semiconductor material solution is applied or printed and then dried.
  • a method of arranging an organic semiconductor material at a desired location In the method of arranging the organic semiconductor material by applying or printing and drying the solution, that is, the solution process, it is not necessary to set the environment for manufacturing the organic thin film transistor 10B to a vacuum or a high temperature state, and the organic thin film transistor 10B having a large area can be manufactured at low cost. Since it can be manufactured, it is industrially advantageous.
  • the organic semiconductor material is cooled in the process of cooling after the application of ultrasonic vibration. Since it is considered that the crystal of the semiconductor material is reoriented to make the crystal orientation uniform, the crystal orientation may be random when the organic semiconductor material is crystallized from the solution, and after the application or printing of the solution It is only necessary to evaporate the organic solvent contained in the solution. Therefore, it is not necessary to carry out a process such as controlling crystal orientation by baking for a long period of time or reorienting crystals by post-processing in order to make the crystal orientation uniform after application or printing of the solution.
  • the organic semiconductor material can be disposed on a region (channel) between the source electrode 5 and the drain electrode 6 on the source / drain substrate 8 or in the vicinity of the region (channel) outside the region (channel).
  • a region (channel) between the source electrode 5 and the drain electrode 6 on the source / drain substrate 8 is formed.
  • the organic semiconductor material it is necessary to completely cover the region (channel) between the source electrode 5 and the drain electrode 6 on the source / drain substrate 8 with the organic semiconductor material in the step of arranging the organic semiconductor material.
  • the position where the organic semiconductor material is disposed depends on the amount of the organic semiconductor material, but in order to obtain a good organic semiconductor thin film, it is preferable to dispose the organic semiconductor material in the vicinity of the channel outside the channel. It is preferable to arrange the organic semiconductor material within a range of 5 mm or less from the source electrode 5 in FIG.
  • the gate substrate 9 is overlaid on the source / drain substrate 8 on which the organic semiconductor material is disposed.
  • An organic semiconductor material sandwiched between the source / drain substrate 8 and the gate substrate 9 thus obtained is used, and ultrasonic vibration is applied to the organic semiconductor material while applying pressure to the organic semiconductor material via the gate substrate 9.
  • energy is given to the organic semiconductor material.
  • the organic semiconductor material is thinned and the semiconductor layer 4 made of the organic semiconductor thin film is formed as a channel.
  • the source / drain substrate 8 and the gate substrate 9 are pressure-bonded to complete the organic thin film transistor 10B.
  • the organic thin film transistor 10B is manufactured using the same conditions as those for the method for forming an organic semiconductor thin film described above as conditions for applying pressure and applying ultrasonic vibration.
  • the conditions for applying pressure such as oscillation time (welding time), amplitude, and applied pressure, and applying ultrasonic vibration are optimized.
  • the substrate 1 organic semiconductor material
  • an organic semiconductor thin film of the present invention When the method for forming an organic semiconductor thin film of the present invention is used, it does not require a long baking process as in the prior art, and if the conditions for applying pressure and ultrasonic vibration are optimized, the time is as short as 1 second or less. An organic semiconductor thin film can be formed.
  • FIG. 2 As an embodiment of a method for forming the semiconductor layer 4 made of an organic semiconductor thin film, a method for forming the semiconductor layer 4 using the ultrasonic welder 20 shown in FIG. 1 will be described with reference to FIGS. To do.
  • an organic semiconductor material 7 sandwiched between a source / drain substrate 8 and a gate substrate 9 is placed on a heating stage 26 of an ultrasonic welder 20.
  • the horn 24 is lowered to apply pressure to the object to be processed (that is, to the organic semiconductor material 7).
  • FIG. 4 the pressure is applied to the object to be processed (that is, to the organic semiconductor material 7) from the horn 24 through the gate substrate 9 to the organic semiconductor material 7.
  • the organic semiconductor material 7 is heated by applying sonic vibration (energy is given to the organic semiconductor material 7). Thereby, the thickness of the organic semiconductor material 7 becomes thin.
  • sonic vibration energy is given to the organic semiconductor material 7
  • the thickness of the organic semiconductor material 7 becomes thin.
  • FIG. 5 application of ultrasonic vibration to the organic semiconductor material 7 is completed while the pressure is applied to the object to be processed (that is, to the organic semiconductor material 7).
  • the semiconductor material 7 is cooled.
  • a thin film (organic semiconductor thin film) of an organic semiconductor material thinner than the original organic semiconductor material 7 is formed as the semiconductor layer 4.
  • the horn 24 is raised to finish the application of pressure, thereby completing the organic thin film transistor 10B.
  • the operating characteristics of an organic thin film transistor include: carrier mobility and conductivity of a semiconductor layer, capacitance of an insulating layer, element configuration (distance between source and drain electrodes, width of source and drain electrodes, insulating layer) Etc.).
  • the organic semiconductor material has an orientation order in a certain direction (the crystal orientation becomes uniform and more crystals are oriented in a certain direction. Is required).
  • the organic semiconductor material crystal is reoriented in the process of cooling the organic semiconductor material after the application of ultrasonic vibration, and the organic semiconductor material has an orientational order in a certain direction.
  • a semiconductor layer 4 can be obtained.
  • the same material is used for the base materials 1 and 1 ′ and the gate insulating layers 3 and 3 ′ are used.
  • the structure of the organic thin film transistor 10B can be a symmetrical sandwich structure with the semiconductor layer 4 as the center. As a result, it is possible to obtain an organic thin film transistor 10B that is not easily affected by distortion due to different materials and has high bending resistance.
  • the organic semiconductor device manufacturing method of the present invention can form an organic semiconductor thin film in a short time, a conventional manufacturing method for forming an organic semiconductor thin film by a vacuum deposition process, other coating methods or printing methods. Compared with the conventional manufacturing method which forms an organic-semiconductor thin film by (solution process), it is high-throughput and it can apply also to manufacture of the organic-semiconductor device for large area displays use at a very low cost. Moreover, since the organic semiconductor device manufacturing method of the present invention can form an organic semiconductor thin film in a short time, it is also possible to realize a sheet-to-sheet manufacturing method or a roll-to-roll manufacturing method. .
  • the organic semiconductor device of the present invention can be used as a switching element for an active matrix of a display.
  • the display include a liquid crystal display, a polymer dispersion type liquid crystal display, an electrophoretic display, an electroluminescence (EL) display, an electrochromic display, a particle rotation type display, and the like.
  • the organic semiconductor device of the present invention can also be used as a digital element or an analog element such as an element of a memory circuit, an element of a signal driver circuit, an element of a signal processing circuit, and an IC (integrated circuit) by combining these elements. Cards and IC tags can be manufactured.
  • the characteristics of the organic semiconductor device of the present invention can be changed by an external stimulus such as a chemical substance, it can be expected to be used as an FET (field effect transistor) sensor.
  • Example 1 The following formula (2) as an organic semiconductor material A solid (melting point: 127 ° C.) of a compound represented by (hereinafter referred to as “compound (2)”) (2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene) It is placed on the tip of a heated metal rod to be in a molten state, and the molten semiconductor material at the tip of the metal rod is a 12 ⁇ m thick polyimide film (product name “Pomilan (registered trademark) N”, manufactured by Arakawa Chemical Industries, Ltd.
  • compound (2) 2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene
  • silica hybrid polyimide film having a structure in which nano silica particles having an average particle diameter of 5 nm are dispersed in a polyimide matrix.
  • the thickness of the semiconductor material at this time was several ⁇ m.
  • another same polyimide film was laminated on the polyimide film via the compound (2).
  • the compound (2) sandwiched between the two polyimide films thus obtained is replaced with the organic semiconductor material 7 sandwiched between the source / drain substrate 8 and the gate substrate 9 shown in FIG. Instead, an organic semiconductor thin film was formed in the same manner as the manufacturing method shown in FIGS. 2 to 6 except that it was used as an object to be processed.
  • a commercially available ultrasonic welding machine (product name “ ⁇ P-30B”) and an example of the ultrasonic welding machine 20 of FIG. Composed of an oscillator of “ ⁇ G-620B”, manufactured by Seidensha Electronics Co., Ltd., maximum amplitude (100% amplitude) 25 ⁇ m, frequency (frequency) 28.5 kHz, horn shape: quadrangular prism shape (chamfered), horn
  • An object to be treated (compound (2) sandwiched between two polyimide films) was placed on the heating stage 26 at a surface size (treated area): 64 mm 2 ).
  • the heating stage 26 is heated by the heater 26a (heating for conducting conductive heating of the compound (2)) so that the temperature (surface temperature) of the heating stage 26 becomes 100 ° C., and the horn 24 is obtained in the same manner as in FIG. And a pressure of 0.15 MPa was applied to the object to be treated (that is, to the compound (2)). Thereafter, in the same manner as in FIG. 4, the amplitude of the ultrasonic vibration is 25%, 30%, or while the pressure of 0.15 MPa is applied to the object to be processed (that is, to the compound (2)).
  • the compound (2) was heated by applying ultrasonic vibration to the compound (2) by ultrasonically oscillating the ultrasonic welding machine under the conditions of 35% and ultrasonic vibration oscillation time of 1 second.
  • the temperature change of the organic semiconductor material (compound (2)) at this time was as shown in FIG. From this result, it was confirmed that the temperature of the organic semiconductor material can be controlled by changing the amplitude of the ultrasonic vibration, and that the temperature of the organic semiconductor material quickly decreases as the ultrasonic oscillation ends.
  • Table 1 shows the maximum temperature reached by the organic semiconductor material under each amplitude condition and the presence or absence of thinning of the organic semiconductor material. As can be seen from the results shown in Table 1, under any condition, the organic semiconductor material was thinned, and an organic semiconductor thin film having a thickness of several tens of nanometers could be formed.
  • the temperature of the organic semiconductor material was measured by the following method. That is, except that a sheet-type temperature sensor is disposed on the polyimide film in place of the organic semiconductor material (compound (2)), the same process as the formation of the organic semiconductor thin film described above is performed, and the sheet-type temperature sensor is used to form a sheet. The change of the temperature of the temperature sensor (the temperature of the portion between the two polyimide films) was measured.
  • Example 2 In this example, an example of the organic thin film transistor 10B shown in FIG. First, “Parylene (registered trademark) C” (manufactured by Japan Parylene Godo Kaisha) as a gate insulating layer 3 ′ on a 12 ⁇ m-thick polyimide film (product name “Pomilan (registered trademark) N”) as the substrate 1 ′ A gold electrode was formed as a source electrode 5 and a drain electrode 6 having a channel length of 20 ⁇ m and a channel width of 5 mm on the parylene film to obtain a source / drain substrate 8.
  • Parylene (registered trademark) C manufactured by Japan Parylene Godo Kaisha
  • a gate insulating layer 3 ′ on a 12 ⁇ m-thick polyimide film product name “Pomilan (registered trademark) N”
  • a gold electrode was formed as a source electrode 5 and a drain electrode 6 having a channel length of 20 ⁇ m and a channel width of 5 mm on the
  • a gold electrode is formed as a gate electrode 2 on a polyimide film (product name “Pomilan (registered trademark) N”) having a thickness of 12 ⁇ m as a base material 1, and parylene as a gate insulating layer 3 is formed on the gold electrode.
  • a polyimide film product name “Pomilan (registered trademark) N”
  • parylene as a gate insulating layer 3
  • Example 2 the compound (2) is sandwiched between the two polyimide films in Example 1 with the compound (2) sandwiched between the source / drain substrate 8 and the gate substrate 9 thus obtained.
  • the temperature of the heating stage is changed to 95 ° C. and the amplitude of the ultrasonic vibration is changed to 45%.
  • an organic semiconductor thin film made of the compound (2) was formed.
  • the maximum temperature reached by the organic semiconductor material was 230 ° C.
  • FIG. 9 to 11 show the results of observation of changes in the organic semiconductor material in Example 2 with a polarizing microscope.
  • FIG. 9 shows the state of the organic semiconductor material when the organic semiconductor material (compound (2)) sandwiched between the source / drain substrate 8 and the gate substrate 9 is placed on the heating stage 26.
  • FIG. 10 shows the state of the organic semiconductor material after the organic semiconductor material is heated on the heating stage 26 at 100 ° C.
  • FIG. 11 shows an organic semiconductor in a sample (in which an organic semiconductor thin film is formed between a source / drain substrate 8 and a gate substrate 9) taken out from an ultrasonic welder after applying ultrasonic vibration and applying pressure. The result of having confirmed the state of the material with the polarization microscope is shown.
  • the semiconductor layer 4 made of an organic semiconductor thin film was formed between the source electrode 5 and the drain electrode 6 (two vertical lines in the center), and it was found that the organic thin film transistor 10B could be manufactured. It was.
  • Example 2 the semiconductor characteristics of the organic thin film transistor 10B obtained in Example 2 were measured.
  • Application of the gate voltage and measurement of the gate current of the organic thin film transistor 10B are performed using a KEITHLEY 2635A SYSTEM Source Meter, and application of the source / drain voltage and measurement of the drain current of the organic thin film transistor 10B are performed using KEITHLEY 6430 SUBFEMTO AMP REMOTE Source Meter. Made using.
  • the current-voltage characteristics of the organic thin film transistor 10B were measured under the condition that the drain voltage of the organic thin film transistor 10B was ⁇ 30V and the gate voltage Vg of the organic thin film transistor 10B was changed from 30 to ⁇ 30V.
  • the mobility and threshold voltage of the organic thin film transistor 10B were calculated from the current-voltage characteristics of the obtained organic thin film transistor 10B.
  • the calculated mobility was 0.038 cm 2 / Vs
  • the calculated threshold voltage was 1.2 V
  • an organic thin film transistor 10B in which the semiconductor layer 4 had p-type semiconductor characteristics was obtained.
  • Example 3 An organic thin film transistor was prepared in the same manner as in Example 2 except that the electrode treatment was performed using pentafluorothiophenol before pressurization and application of ultrasonic vibration to the source electrode 5 and the drain electrode 6 of Example 2. 10B was obtained. The mobility and threshold voltage of the organic thin film transistor 10B obtained in this example were measured in the same manner as the measurement method in Example 2, and the mobility and threshold voltage of the organic thin film transistor 10B obtained in this example were calculated. Table 2 shows the calculation results of the mobility and the threshold voltage. In addition, the semiconductor layer 4 of the organic thin film transistor 10B obtained in this example exhibited p-type semiconductor characteristics.
  • Example 4 An organic thin film transistor 10B was obtained in the same manner as in Example 3 except that the channel lengths of the source electrode 5 and the drain electrode 6 in Example 3 were changed to 100 ⁇ m.
  • the semiconductor characteristics of the organic thin film transistor 10B obtained in this example were measured in the same manner as the measurement method in Example 2, and the mobility and threshold voltage of the organic thin film transistor 10B obtained in this example were calculated. Table 2 shows the calculation results of the mobility and the threshold voltage.
  • the semiconductor layer 4 of the organic thin film transistor 10B obtained in this example exhibited p-type semiconductor characteristics.
  • Example 5 A 2 wt% tetrahydronaphthalene solution of compound (2) on a 12 ⁇ m thick polyimide film (product name “Pomilan (registered trademark) N”) using an inkjet apparatus (manufactured by Fujifilm Corporation, model number “DMP-2831”)
  • the organic semiconductor material was placed on a polyimide film by printing an organic semiconductor material consisting of, and drying the solution naturally to remove the solvent (tetrahydronaphthalene).
  • the shape of the organic semiconductor layer (layer of organic semiconductor material) immediately after printing was highly uneven, and the maximum thickness of the organic semiconductor layer was 450 nm.
  • another same polyimide film was stacked on the polyimide film via an organic semiconductor material (compound (2)).
  • the embodiment is performed under the conditions of the temperature (surface temperature) of the heating stage 26, 100 ° C., the pressure to the object to be processed (organic semiconductor material) 0.15 MPa, the amplitude of ultrasonic vibration 50%, and the oscillation time of ultrasonic vibration 1 second.
  • the ultrasonic welder was oscillated ultrasonically.
  • the maximum reached temperature of the organic semiconductor material (compound (2)) was 180 ° C., and it was confirmed that an organic semiconductor thin film as shown in FIG. 13 was formed after the ultrasonic welding treatment.
  • Example 6 An organic semiconductor material comprising a 2 wt% tetrahydronaphthalene solution of compound (2) using the ink jet apparatus used in Example 5 between the source electrode 5 and the drain electrode 6 of the source / drain substrate 8 used in Example 2 And the solution was naturally dried to remove the solvent (tetrahydronaphthalene). Although a linear pattern is drawn along the source electrode 5 by printing the organic semiconductor material, the organic semiconductor layer (layer of the organic semiconductor material) is divided in the channel as the solution is dried, so that the discontinuous organic semiconductor layer is formed. (Fig. 14).
  • Example 2 Thereafter, the gate substrate 9 used in Example 2 is overlaid on the source / drain substrate 8 via the organic semiconductor material (compound (2)), and the organic semiconductor material is placed between the source / drain substrate 8 and the gate substrate 9.
  • the ultrasonic welder was oscillated ultrasonically under the same conditions as in Example 5 to obtain an organic semiconductor thin film.
  • the organic thin-film transistor 10B was obtained.
  • a polarizing microscope image of the obtained organic semiconductor thin film is shown in FIG. From this image, it was confirmed that an organic semiconductor thin film having a uniform channel was obtained by ultrasonic welding.
  • Example 1 First, in the same manner as in Example 2, a compound (2) sandwiched between a source / drain substrate 8 and a gate substrate 9 was obtained as a workpiece. Next, in accordance with non-patent literature (Physica Status Solidi A, Volume 210, Issue 7, p. 1353-1357 (2013)), the maximum temperature reached 125 ° C. and the pressure 1.6 MPa were applied to the workpiece. The compound (2) was thinned by a hot press method (FIG. 1 (b) of the above non-patent document). The time required for thinning was 2 minutes. After thinning, by cooling the object to be processed at a cooling rate of 1.5 ° C./min, an organic thin film transistor for comparison similar to that of Example 2 (semiconductor characteristics differing from Example 2) can be obtained. It was.
  • the semiconductor characteristics of the comparative organic thin film transistor thus obtained were measured in the same manner as in Example 2. As a result, the mobility of the comparative organic thin film transistor was 0.052 cm 2 / Vs, and the threshold voltage was ⁇ 15.8 V. The semiconductor characteristics of the organic thin film transistor 10B of No. 2 were almost the same. However, in this comparative example, the time required for thinning (tact time) is 2 minutes as described above, which is significantly inferior to the time required for thinning in Example 2 (1 second). The pressure required for this was 1.6 MPa as described above, which was significantly inferior to the pressure required for thinning in Example 2 (0.15 MPa).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

 短時間の処理で有機半導体薄膜を形成できる有機半導体薄膜の形成方法を提供するとともに、上記有機半導体薄膜を利用した有機半導体デバイス、及びスループットの高い有機半導体デバイスの製造方法を提供する。有機半導体材料(7)からなる有機半導体薄膜(4)の形成方法において、有機半導体材料(7)に対して圧力を加えながら超音波振動を付与することで、有機半導体材料(7)を薄膜化する。有機半導体デバイスの製造方法は、有機半導体薄膜を含む有機半導体デバイスの製造方法であって、上記の形成方法で有機半導体薄膜を形成させる。有機半導体デバイスは、上記製造方法で製造されたものである。

Description

有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法
 本発明は、有機半導体薄膜の形成方法、その形成方法を用いた有機半導体デバイス、及びその形成方法を用いた有機半導体デバイスの製造方法に関するものである。
 有機半導体材料の薄膜を電極間に形成させ、有機半導体デバイスを得る方法は、低温プロセスで製造でき、よりフレキシブルで、且つ軽量で、壊れにくいデバイスが作成可能であることから、近年盛んに研究されるようになった。
 しかしながら、従来、有機半導体デバイスに用いられた有機半導体材料は、その多くが有機溶剤に難溶であるため、塗布又は印刷などの安価な手法を用いてその薄膜を形成することができず、比較的コストの高い真空蒸着法等で基板上にその薄膜を形成させることが一般的であった。最近になり、インクジェット、フレキソ印刷、コーティング等の塗布又は印刷を用いた方法により、有機半導体薄膜を形成し、有機半導体デバイスを得る研究が盛んに行われており、比較的高いキャリア移動度(以下、適宜、単に「移動度」と呼ぶ)を有する有機半導体デバイスが得られるようになってきた。上記の塗布又は印刷を用いた方法は、電界効果トランジスタの作成工程において、スループットが高く、大面積の電界効果トランジスタを低コストで製造することが期待される。
 しかし、現状では、塗布プロセス又は印刷プロセスを用いた、移動度が高く且つ耐久性に優れた有機半導体を用いた電界効果トランジスタはまだ実用化されていない。一般に、有機半導体薄膜は、真空蒸着法をはじめとした真空プロセス、又は溶媒を用いたスピンコート法やブレードコート法等の塗布プロセスで形成されている。しかしながら、真空プロセスによる有機半導体薄膜の形成方法は、真空プロセスを行うための設備が必要となるほか、有機半導体材料のロスが多くなるという欠点がある。塗布プロセスによる有機半導体薄膜の形成方法も、基板全体に有機半導体溶液を塗布するため、真空プロセスと同様に有機半導体材料のロスが多くなる。
 他の有機半導体薄膜の形成方法として、インクジェット法などの印刷法が知られている。印刷法は、目的位置に必要量の有機半導体材料を塗布することが可能であるが、他の塗布又は印刷法と同様に、溶液から生成させた結晶の配向方向を制御するためには、温度、雰囲気、塗布面の処理等の精緻なプロセス制御を行いながらゆっくりと有機半導体薄膜の成膜を行ったり、結晶生成後に結晶成長のために数分間~数十分間かけて焼成を行ったりする必要がある。そのため、これらの塗布又は印刷法による有機半導体薄膜の形成方法では、有機半導体薄膜の成膜や結晶成長のための焼成に時間がかかり、スループットが高くないという欠点がある。また、現状では、塗布又は印刷法などの従来の有機半導体薄膜形成方法による有機半導体デバイスの製造方法は、移動度などの有機半導体デバイス性能に関しても実用化に向けては不十分である。
 塗布又は印刷法などの従来の有機半導体薄膜形成方法による有機半導体デバイスの製造方法が実用化に不十分な原因の一つとして、有機半導体材料の多結晶間の結晶粒界や分子配向制御などの有機半導体薄膜の状態によって有機薄膜トランジスタなどの有機半導体デバイスの特性が大きく変わることが挙げられる。
 結晶粒界の存在しない単結晶の有機半導体薄膜の形成方法として、非特許文献1に記載されている気相法(物理気相成長)により単結晶の有機半導体薄膜を形成する方法、特許文献1に記載されている、基板を傾斜させ基板上に有機半導体溶液の液滴を形成することにより、溶媒の蒸発とともに有機半導体溶液から一定方向(傾斜の方向)へ結晶を成長させる方法、特許文献2に記載されているダブルインクジェット法による単結晶性の有機半導体薄膜の製造方法などが示されている。
 しかしながら、非特許文献1に記載されているような気相法による有機半導体薄膜の形成方法は、実際の有機半導体デバイスの製造への応用に困難を伴う。また、特許文献1に記載されているような溶液法において基板を傾斜させる方法は、基板自体を傾斜させることが非常に困難である。また、特許文献2に記載されているようなダブルインクジェット法による有機半導体薄膜の製造方法は、溶媒の選択が困難であり、また、乾燥性の制御が必要である。その結果として、環境に対して負の影響のある溶媒を使用する必要が生じたり、スループットの高い有機半導体薄膜の形成方法を実現できなかったりという問題がある。
 また、有機半導体の単結晶以外の結晶の配向方法としては、液晶性の有機半導体材料を配向膜上に塗布し、液晶転移を用いて結晶を配向させる方法が例えば特許文献3に開示されている。しかしながら、上記方法では、冷却過程での相変化により結晶間に亀裂が入る可能性があり、冷却過程の温度を緻密に制御する必要がある。
 非特許文献2には多結晶の有機半導体薄膜を形成した後、溶媒蒸気にさらすことにより結晶の再配向を促す方法が記載されている。しかしながら、上記方法で結晶を再配向させるには結晶の有機半導体薄膜を長時間溶媒にさらす必要があり、スループットの高い有機半導体の製造方法への応用には不向きである。
 一方、熱可塑性の樹脂などの加工技術として超音波溶着が知られている。超音波溶着は、超音波振動と圧力とにより生じる摩擦熱を利用した接合・加工技術であり、加工時間が短い加工技術として知られている。超音波溶着は、主に、スポット溶着、フィルムのシール、不繊布のシール、金属のインサートなど、多くの分野で使用されている。しかしながら、超音波振動と圧力とにより、有機半導体材料を薄膜化する技術はこれまで知られていない。
 有機半導体薄膜の形成に超音波を用いた例として、有機半導体材料などを主成分として含有する塗布膜に対して超音波を照射する方法が特許文献4に記載されている。しかしながら、特許文献4に記載の方法は、塗布膜に超音波を照射することによって、塗布膜を改質し低抵抗化させる技術である。したがって、特許文献4における超音波の照射は、有機半導体薄膜の形成後に通常のオーブン等などによって行われる熱焼成プロセスや乾燥プロセスの代替にすぎず、超音波の照射と圧力とにより、短時間で有機半導体薄膜の形成を行うものではない。
国際公開第2011/040155号 特開2012-49291号公報 特許第4867168号公報 特開2013-74065号公報
Science and Technology of Advanced Materials,2009,10,024314 APPLIED PHYSICS LETTERS,94,093307,2009
 本発明は、短時間の処理で有機半導体薄膜を形成できる有機半導体薄膜の形成方法を提供するとともに、上記有機半導体薄膜を利用した有機半導体デバイス、及びスループットの高い有機半導体デバイスの製造方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意検討した結果、有機半導体材料に対して圧力を加えながら超音波振動を付与して有機半導体材料を薄膜化する有機半導体薄膜の形成方法が、短時間の処理で有機半導体薄膜を形成できること、及びその有機半導体薄膜の形成方法を用いることで有機半導体薄膜を用いた有機半導体デバイスを高スループットで製造できることを見出し、本発明を完成させるに至った。
 即ち、本発明の有機半導体薄膜の形成方法は、有機半導体材料からなる有機半導体薄膜の形成方法であって、有機半導体材料に対して圧力を加えながら超音波振動を付与することで、有機半導体材料を薄膜化することを特徴としている。
 本発明の有機半導体デバイスの製造方法は、有機半導体薄膜を含む有機半導体デバイスの製造方法であって、本発明の有機半導体薄膜の形成方法で有機半導体薄膜を形成させることを特徴としている。
 本発明の有機半導体デバイスは、上記製造方法で製造されたことを特徴としている。
 本発明により、短時間の処理で有機半導体薄膜を形成できる有機半導体薄膜の形成方法、上記有機半導体薄膜を用いた有機半導体デバイス、及びスループットの高い有機半導体デバイスの製造方法を提供することができる。
本発明の実施の一形態に係る有機半導体薄膜の形成方法を実施するために使用される超音波溶着機の構成を示す概略図である。 本発明の有機半導体デバイスの一態様例を製造する為の製造方法の一工程を示す概略図であり、ソース・ドレイン基板及びゲート基板の間に有機半導体材料を挟持したものを超音波溶着機の加熱ステージ上に設置した工程の状態(工程完了時の状態)を示す概略図である。 本発明の有機半導体デバイスの一態様例を製造する為の製造方法の他の一工程を示す概略図であり、超音波溶着機のホーンを降下させて有機半導体材料に圧力を加える工程を示す概略図である。 本発明の有機半導体デバイスの一態様例を製造する為の製造方法の他の一工程を示す概略図であり、有機半導体材料に圧力を加えた状態のままで有機半導体材料に超音波振動を付与して有機半導体材料を加熱する工程を示す概略図である。 本発明の有機半導体デバイスの一態様例を製造する為の製造方法の他の一工程を示す概略図であり、有機半導体材料に対する超音波振動の付与を終了して有機半導体薄膜を形成する工程を示す概略図である。 本発明の有機半導体デバイスの一態様例を製造する為の製造方法の他の一工程を示す概略図であり、超音波溶着機のホーンを上昇させて有機半導体デバイスを得る工程を示す概略図である。 本発明の有機半導体デバイスの一例としての有機薄膜トランジスタの構造態様例を示す概略図である。 本発明の実施の一例に係る有機半導体薄膜の形成方法における有機半導体材料の温度の履歴を表すグラフである。 本発明の一実施例において有機半導体材料を加熱ステージ上に配置した時点における有機半導体材料の偏光顕微鏡写真である。 本発明の一実施例において有機半導体材料を100℃の加熱ステージで加熱した後における有機半導体材料の偏光顕微鏡写真である。 本発明の一実施例に係る有機半導体薄膜の形成方法で形成した有機半導体薄膜の偏光顕微鏡写真である。 本発明の他の一実施例において有機半導体材料を加熱ステージ上に配置した時点における有機半導体材料の偏光顕微鏡写真である。 本発明の他の一実施例に係る有機半導体薄膜の形成方法で形成した有機半導体薄膜の偏光顕微鏡写真である。 本発明のさらに他の一実施例において有機半導体材料を加熱ステージ上に配置した時点における有機半導体材料の偏光顕微鏡写真である。 本発明のさらに他の一実施例に係る有機半導体薄膜の形成方法で形成した有機半導体薄膜の偏光顕微鏡写真である。
 本発明を詳細に説明する。
 本発明の第一の目的は、有機半導体材料からなる有機半導体薄膜を短時間で形成できる有機半導体薄膜の形成方法を提供することにある。
 本発明の有機半導体薄膜の形成方法は、有機半導体材料に対して圧力を加えながら超音波振動を付与することにより、有機半導体材料を薄膜化して有機半導体材料からなる有機半導体薄膜を形成することを特徴とするものである。上記方法によれば、短時間の処理で有機半導体薄膜を形成できる。また、上記方法においては、超音波振動付与終了後の冷却過程に有機半導体材料に対して圧力を加えた場合、冷却過程での相変化などにより有機半導体薄膜に亀裂が入ることが起こり難い。
 有機半導体材料に対して圧力を加えながら超音波振動を付与する処理では、有機半導体材料を単独で被処理物として使用してもよいが、有機半導体材料を基材上に配置してなるものを被処理物として使用し、基材上の有機半導体材料に対して上記処理を施すことがより好ましい。本発明の方法では、基材上の有機半導体材料に対して上記処理を施すことによって結晶の再配向が起こり結晶の方位が均一化すると考えられるので、有機半導体材料を基材上に配置する際に結晶の再配向のための処理(例えば溶液プロセスによる有機半導体材料の配置後における焼成処理)が不要である。また、有機半導体材料を基材上に配置する際に、有機半導体材料の配置位置が有機半導体薄膜を形成しようとする所望の位置(例えば、有機薄膜トランジスタを製造する場合には、基材上におけるソース電極とドレイン電極との間の位置)から幾らかずれたとしても、上記処理により有機半導体材料が基材表面方向に押し広げられるので、所望の位置に有機半導体薄膜を形成することができる。したがって、有機半導体材料の配置には、高い精度が要求されない。
 有機半導体材料に対して圧力を加えながら超音波振動を付与する処理では、1対の基材の間に有機半導体材料を挟んだものを被処理物として使用し、1対の基材の間に挟まれた有機半導体材料に対して上記処理を施すことがさらに好ましい。これにより、上記処理時に、有機半導体材料が超音波溶着装置のホーンやステージなどに付着することを回避できると共に、冷却過程での相変化などにより有機半導体薄膜に亀裂が入ることを回避できる。上記基材としては、後段で有機薄膜トランジスタ10A及び10Bを構成する基材1及び1’の例として挙げるガラス等の無機基板や各種の樹脂フィルム、これらの上に電極及び/又は絶縁層を形成したものなどが挙げられる。上記1対の基材は、樹脂フィルムであることが好ましい。
 有機半導体材料を基材上に配置する場合、有機半導体材料を固体状態又は溶融状態で基材上に配置することができる。また、有機半導体材料を固体状態又は溶融状態で基材上に配置する方法は、環境負荷の高い有機溶媒を使用せずに有機半導体材料を基材上に配置できる等のメリットがある。有機半導体材料を固体状態又は溶融状態で基材上に配置する方法としては、バルク粉末、微細粉末などの固体の状態の有機半導体材料を基材上に直接配置する方法、バルク粉末、微細粉末などの固体の状態の有機半導体材料を十分に温められた金属棒などの部材上に配置して溶融し、溶融状態の有機半導体材料を上記部材上から基材上に垂らす方法などを用いることができる。
 有機半導体材料を基材上に配置する方法としては、その他、ドロップキャスト法などの溶液プロセス(例えば、有機半導体材料を有機溶剤に溶解させてなる溶液を塗布又は印刷する工程及び乾燥工程などから構成される)を用いることもできる。本発明の有機半導体薄膜の形成方法では、有機半導体材料に対して圧力を加えながら超音波振動を付与することで、摩擦熱が生じて有機半導体材料が昇温された後、超音波振動の付与が終了すると有機半導体材料が冷却される。この冷却過程で有機半導体材料の結晶が再配向して結晶の方位が均一化されると考えられる。そのため、溶液プロセスを用いて有機半導体材料を基材上に配置する場合、有機半導体材料を含有する有機溶剤溶液から有機半導体材料を結晶化する段階においては、結晶の方位がランダムであってもよい。そのため、本発明の有機半導体薄膜の形成方法において有機半導体材料を基材上に配置するための溶液プロセスでは、有機半導体材料を有機溶剤に溶解させてなる溶液を塗布又は印刷した後には、溶液中に含まれる有機溶剤を蒸発させるだけでよい。そのため、有機半導体材料を有機溶剤に溶解させてなる溶液を塗布又は印刷した後に、結晶の方位を均一化するために長時間のベークによる結晶配向制御や後処理による結晶の再配向といったプロセスを実施する必要がない。このようにして基材上に配置された有機半導体材料は、有機半導体材料に対して圧力を加えながら超音波振動を付与することにより薄膜化して有機半導体薄膜となる。
 有機半導体材料に対して圧力を加える方法としては、特に限定されないが、有機半導体材料に対して直接又は保護フィルム若しくは保護層を介して加圧部材を押し当てる方法が好適である。有機半導体材料に対して保護フィルム又は保護層を介して加圧部材を押し当てる場合、有機半導体材料を基材と保護フィルム又は保護層との間に挟持したものを被処理物として使用し、基材上の有機半導体材料に対して保護フィルム又は保護層を介して加圧部材を押し当てることがより好ましい。また、有機半導体材料に対して圧力を加えながら超音波振動を付与する方法としては、特に限定されないが、有機半導体材料を基材上に配置し、有機半導体材料に対して直接又は保護フィルム若しくは保護層を介して加圧部材を押し当てながら加圧部材を超音波振動させる方法が好適である。上記加圧部材としては、有機半導体材料全体に圧力を加えることができるものであれば特に限定されないが、基材が平板である場合、加圧部材における有機半導体材料に当接する面が平面であることが好ましい。これにより、均一な厚みの有機半導体薄膜を形成することができる。上記保護フィルム又は保護層については、後述する。
 本発明の有機半導体薄膜の形成方法としては、包装フィルムの圧着等に使用される一般的な超音波溶着機(超音波ウェルダー)を用いる方法が挙げられる。一般的な超音波溶着機を使用する場合、有機半導体材料を含む被処理物(有機半導体材料単独、有機半導体材料と基材との組み合わせ、有機半導体材料と保護フィルム又は保護層との組み合わせ、又は有機半導体材料と基材と保護フィルム又は保護層との組み合わせ)の上方から超音波溶着機により有機半導体材料に対して圧力を加えながら超音波振動を付与し、超音波振動により生じた摩擦熱と圧力とを利用して有機半導体材料を薄膜化することにより本発明の有機半導体薄膜が形成される。一般的な超音波溶着機は、被処理物に押し当てられて被処理物に圧力を加えると共に超音波振動を付与するためのホーンを加圧部材として備えている。
 本発明の有機半導体薄膜の形成方法に好適に使用される超音波溶着機の一実施形態を図1に基づいて以下に説明する。なお、各図における同じ機能を有する部材については同じ符号を付記し、その説明を省略する。
 超音波溶着機20は、図1に示すように、超音波発振器(ジェネレーター)21、超音波振動子(コンバーター)22、ブースター23、ホーン24、加圧機構(プレスユニット)25、及び加熱ステージ26を備えている。ホーン24は、その被処理物に当接する面が平面となっている。
 加熱ステージ26は、その上に、被処理物が配置されるものである。また、加熱ステージ26は、加熱ステージ26の上面を所定温度に加熱するためのヒーター26aを備えている。なお、加熱ステージ26の上面は、加熱しなくてもよい。したがって、加熱ステージ26に代えて、ヒーター26aを備えていない単なるステージを用いてもよい。
 加圧機構25は、超音波振動子22、ブースター23、及びホーン24が取り付けられたアーム部25aと、アーム部25aを鉛直方向上下に滑動可能に支持する支柱25bと、アーム部25aを鉛直方向上下に移動させると共に、加熱ステージ26上に配置された被処理物に対してホーン24を鉛直方向下向きに押し当てて圧力を加えるための図示しない駆動機構(例えばエアーシリンダー)とを備えている。
 超音波溶着機20では、図示しない商用電源から入力された電気信号を超音波発振器21で高周波の電気信号に増幅し、増幅された電気信号を超音波振動子22にて機械的な振動エネルギーに変換し、機械振動(超音波振動)が超音波振動子22から発せられる。超音波振動子22から発せられた機械振動(超音波振動)は、ブースター23にてその振幅が増減させられた上で、ホーン24に伝達される。ホーン24に伝達された超音波振動は、加圧機構25により有機半導体材料に対してホーン24を鉛直方向下向きに押し当てて圧力を加えたときに、有機半導体材料を含む被処理物へ伝達される。
 有機半導体材料に対して圧力を加えながら超音波振動を付与する際に制御するパラメーターとしては、主として、超音波振動の発振時間、超音波振動の振幅、加圧力、超音波溶着機のホーンの形状(ホーンを備える超音波溶着機を使用する場合)等が挙げられる。超音波振動の発振時間は、超音波振動を有機半導体材料に与える時間であり、長時間になるほど有機半導体材料にかかる熱量は大きくなるが、有機半導体材料の物性に合わせて適宜調整する必要がある。また、有機半導体薄膜形成処理のタクトタイムを考慮すると、短時間で適切な処理を行うことが好ましく、通常1分以内、好ましくは10秒以内、特に好ましくは1秒以内での処理が可能なように設定する。
 超音波振動の振幅は、有機半導体材料に付与される超音波振動の大きさ(ホーンを備える超音波溶着機を使用する場合、ホーンの先端から有機半導体材料に伝わる超音波振動の大きさ)を表す。超音波溶着機を使用する場合に、同じ出力の超音波溶着機を用いても、超音波振動の振幅を変えることにより有機半導体材料にかかる熱量を変えることが可能である。超音波振動の振幅が高いほど大きな熱量を有機半導体材料に与えることが可能であるが、有機半導体材料を基材等の他の材料と組み合わせて使用する場合には、同時に基材等の他の材料へのダメージを考慮して超音波振動の振幅が高くなり過ぎないように設定する必要がある。超音波振動の振幅は、超音波溶着機の出力(超音波溶着機を使用する場合)、超音波振動の振動数(周波数)などにより適切な振幅は変化する。このため、使用する有機半導体材料の種類、必要に応じて有機半導体材料と組み合わせて使用されて超音波振動付与時に摩擦熱が加わる部材の種類に合わせて適切な振幅に制御する必要がある。上記の超音波振動付与時に摩擦熱が加わる部材としては、例えば、基材、電極(ゲート電極、ソース電極、ドレイン電極など)、絶縁層(例えばゲート絶縁層)、薄膜トランジスタ保護層、有機半導体材料に対して他の部材を介してホーン等の加圧部材を押し当てて超音波振動を付与するときにホーン等の加圧部材に接する部材(保護フィルム又は保護層など)などが挙げられる。すなわち、本発明の有機半導体薄膜の形成方法では、有機半導体材料の温度が適切な温度に制御されるように、超音波振動の振幅を適切な振幅に制御することが好ましい。
 加圧力は、有機半導体材料を含む被処理物に付与される機械的エネルギー(ホーンを備える超音波溶着機を使用する場合、ホーンから有機半導体材料に伝わる機械的エネルギー)であり、その大きさが超音波振動により有機半導体材料に発生する熱量と処理時間(有機半導体材料が薄膜化されるのにかかる時間)とに関連する。有機半導体材料を含む被処理物に強すぎる圧力を加えると、超音波振動の振幅が大きすぎる場合と同様、有機半導体材料にダメージを与える可能性があり、また、有機半導体材料を基材等の他の材料と組み合わせて使用する場合には、基材等の他の材料にダメージを与える可能性がある。そのため、加圧力は、これらのダメージを考慮して強くなり過ぎないように設定する必要がある。これらのパラメーター(超音波振動の発振時間、超音波振動の振幅、及び加圧力)は、相互に影響を与えるものであり、使用する有機半導体材料の種類、必要に応じて有機半導体材料と組み合わせて使用されて超音波振動付与時に摩擦熱が加わる部材の種類に合わせて適切な組み合わせにする必要がある。
 超音波溶着機のホーンの形状は、伝達された超音波振動を有機半導体材料に伝えるために適切な構造が必要であり、その形状により超音波振動の振幅が変化することがある。また、ホーン表面の大きさ(処理面積)によっても有機半導体材料にかかる熱量が変化するため、ホーンの形状及びホーン表面の大きさを個別に制御する必要がある。
 有機半導体材料に対して圧力を加えながら超音波振動を付与する時(以下、適宜、「加圧及び超音波振動付与時」と呼ぶ)における有機半導体材料の温度は、有機半導体材料の種類に応じて設定される。有機半導体材料が相転移点(相転移温度)を有する場合、有機半導体材料の相転移点に対して0~+80℃の範囲内に加圧及び超音波振動付与時の有機半導体材料の温度を調整することが好ましい。また、有機半導体材料を基材と組み合わせて使用する場合、加圧及び超音波振動付与時の有機半導体材料の温度を、使用する基材のガラス転移点(ガラス転移温度)よりも低い温度に設定することが好ましく、有機半導体材料の相転移点と基材のガラス転移点との組み合わせにより加圧及び超音波振動付与時の有機半導体材料の温度の最適な温度範囲が設定される。なお、ここで言う「加圧及び超音波振動付与時の有機半導体材料の温度」は、実施例の測定方法のように有機半導体材料に代えて熱伝導シートを配置して加圧及び超音波振動付与を行った時の熱伝導シートの温度を意味するものとする。
 また、必要に応じて、有機半導体材料に対する超音波振動の付与と同時に有機半導体材料を伝導加熱してもよい。有機半導体材料を基材と組み合わせて使用する場合、必要に応じて、超音波振動の付与と同時に基材を補助的に伝導加熱してもよい。その場合、基材の加熱温度は、加圧及び超音波振動付与時における有機半導体材料の加熱温度に応じて変化させればよいが、基材の変形や他の構成部材のダメージ(有機半導体材料及び基材を他の構成部材と組み合わせて使用する場合)を避けるためには、できるだけ低温側に設定する。
 有機半導体材料を薄膜化するためには、加圧及び超音波振動付与時の有機半導体材料の温度は、有機半導体材料の相転移点(すなわち液晶転移点、ガラス転移点、融点など)を超える温度にすることが好ましい。この場合、その条件下では、有機半導体材料が加圧及び超音波振動付与時に固相から液晶相、ガラス相、液相などへ相転移(相変化)して、流動性をもつようになり、与えられた圧力により薄膜化される。この場合、超音波振動の付与を終了した後の冷却過程において有機半導体材料が再結晶化し、有機半導体薄膜が得られる。すなわち、本発明の有機半導体薄膜の形成方法では、有機半導体材料に対して圧力を加えながら超音波振動を付与することにより固相の有機半導体材料を相転移させた後に有機半導体材料を再結晶化することで、有機半導体材料を薄膜化することが好ましい。これにより、固相の有機半導体材料を相転移させることで、有機半導体材料の流動性が高くなるので、有機半導体材料が薄膜化しやすくなる。なお、加圧及び超音波振動付与時に有機半導体材料の相転移が起こらない場合であっても、有機半導体材料が超音波振動により加熱された状態で十分な圧力を受けることで、薄膜化が起こりうる。
 有機半導体材料に対して圧力を加えながら超音波振動の付与を開始した後、超音波振動の付与を終了すると、有機半導体材料の温度は急激に低下し、有機半導体材料の再配向及び再結晶化が起こる。超音波振動の付与を終了した後、厚み方向に均一な有機半導体薄膜を得るために有機半導体材料に対する加圧を続けてもよく、超音波振動付与の終了後に加圧を続ける時間は、加圧及び超音波振動付与時の有機半導体材料の最高到達温度、超音波振動付与の終了時(冷却後)における有機半導体材料の温度と室温との温度差、及び基材の表面エネルギー(有機半導体材料を基材と組み合わせて使用する場合)により調節されることが好ましい。このようにして得られた有機半導体薄膜は、一般的な溶液プロセスで得られる有機半導体薄膜に比べ結晶粒間にクラックが生じにくい。
 ホーンを備える超音波溶着機を用いた加圧及び超音波振動付与の時には、ホーンを直接半導体材料に接触させないために、有機半導体材料上に保護フィルム又は保護層を設け、有機半導体材料に対して保護フィルム又は保護層を介してホーンを押し当ててもよい。基材上に形成された有機半導体材料上に保護フィルム又は保護層を設ける場合、ここで用いられる保護フィルム又は保護層は、基材と同一でも異なっていてもよい。また、有機半導体薄膜を形成後に保護層から剥離するために、離型材の上に保護層を積層したフィルムを離型材が有機半導体材料に接するように有機半導体材料上に設けることもできる。
 有機半導体材料の液晶転移点、ガラス転移点、及び融点は、示差走査熱量計(DSC)、偏光顕微鏡(POM)観察、自動融点測定装置等を用いて相転移挙動を把握することによって測定できる。また、有機半導体材料の高次構造については、X線回折(XRD)を用いて有機半導体材料の分子構造、液晶性、及び結晶性の関係について把握することが可能である。
 有機半導体材料としては、半導体特性を示す低分子有機化合物(低分子有機半導体化合物)、半導体特性を示す高分子化合物(高分子有機半導体化合物)(特に数平均分子量が1000以上の高分子化合物)、及び半導体特性を示す繰り返し単位が2~20のオリゴマー(オリゴマー有機半導体化合物)のいずれも用いることが可能である。有機半導体材料の中でも、加圧及び超音波振動付与時の最高到達温度以下に液晶転移点、ガラス転移点、融点などの相転移点を持つ有機半導体材料が好ましい。また、有機半導体材料をガラス転移点を有する基材(特に、樹脂フィルムなどの樹脂基材)と組み合わせて使用する場合には、有機半導体材料が、基材のガラス転移点よりも低い相転移点を持つことが好ましく、加圧及び超音波振動付与時の最高到達温度以下であり、かつ基材のガラス転移点よりも低い相転移点を持つことがより好ましい。有機半導体材料を樹脂基材と組み合わせて使用する場合には、有機半導体材料の相転移点が70℃~280℃の範囲内であることが好ましく、有機半導体材料の相転移点が100℃~280℃の範囲内であることがさらに好ましい。
 本発明の有機半導体薄膜の形成方法においては、有機半導体材料の結晶が再配向して結晶の方位が均一化されると考えられることが1つの特徴である。このため、これらの有機半導体材料の中でも、特に結晶性を有する有機半導体材料を用いたときは、例えば移動度等の半導体特性に優れた有機半導体デバイスを短時間で容易に得ることができる。
 上記低分子有機半導体化合物としては、ポリアセン類、ポリアセン類の炭素原子の一部を窒素原子、硫黄原子、酸素原子などの原子、又はカルボニル基などの多価官能基に置換するか、あるいはポリアセン類の水素原子の一部をアリール基、アシル基、アルキル基、アルコキシル基などの1価官能基に置換した誘導体(トリフェノジオキサジン誘導体、トリフェノジチアジン誘導体、後述する一般式(1)で表されるチエノチオフェン誘導体など)を挙げることができる。また、上記低分子有機半導体化合物として、その他に、スチリルベンゼン誘導体、金属フタロシアニン類、縮合環テトラカルボン酸ジイミド類、メロシアニン色素類やヘミシアニン色素類などの色素、テトラキス(オクタデシルチオ)テトラチアフルバレンに代表される電荷移動錯体などが挙げられる。上記縮合環テトラカルボン酸ジイミド類としては、ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(4-トリフルオロメチルベンジル)ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(1H,1H-ペルフルオロオクチル)-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(1H,1H-ペルフルオロブチル)-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ジオクチルナフタレン-1,4,5,8-テトラカルボン酸ジイミド、ナフタレン-2,3,6,7-テトラカルボン酸ジイミド、などのナフタレンテトラカルボン酸ジイミド類;アントラセン-2,3,6,7-テトラカルボン酸ジイミドなどのアントラセンテトラカルボン酸ジイミド類などが挙げられる。
 上記高分子有機半導体化合物としては、例えば、ポリピロール、ポリ(N-置換ピロール)、ポリ(3-置換ピロール)、ポリ(3,4-二置換ピロール)などのポリピロール類;ポリチオフェン、ポリ(3-置換チオフェン)、ポリ(3,4-二置換チオフェン)、ポリベンゾチオフェンなどのポリチオフェン類;ポリイソチアナフテンなどのポリイソチアナフテン類;ポリチエニレンビニレンなどのポリチエニレンビニレン類;ポリ(p-フェニレンビニレン)などのポリ(p-フェニレンビニレン)類;ポリアニリン、ポリ(N-置換アニリン)、ポリ(3-置換アニリン)、ポリ(2,3-二置換アニリン)などのポリアニリン類;ポリアセチレンなどのポリアセチレン類;ポリジアセチレンなどのポリジアセチレン類;ポリアズレンなどのポリアズレン類;ポリピレンなどのポリピレン類;ポリカルバゾール、ポリ(N-置換カルバゾール)などのポリカルバゾール類;ポリセレノフェンなどのポリセレノフェン類;ポリフラン、ポリベンゾフランなどのポリフラン類;ポリ(p-フェニレン)などのポリ(p-フェニレン)類;ポリインドールなどのポリインドール類;ポリピリダジンなどのポリピリダジン類;ポリフェニレンスルフィド、ポリビニレンスルフィドなどのポリスルフィド類などが挙げられる。
 上記オリゴマー有機半導体化合物としては、上記のポリマーと同じ繰返し単位を有するオリゴマー、例えば、チオフェン6量体であるα-セクシチオフェン、α,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、などのオリゴマーが挙げられる。
 本発明を実施するにあたって特に好ましい有機半導体材料の一例として、下記一般式(1)
Figure JPOXMLDOC01-appb-C000001
 (上記式中、R及びRはそれぞれ独立に水素原子、アルキル基、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、アルコキシル基、アルコキシアルキル基を表し、R及びRは互いに同一でも異なっていてもよく、m及びnはそれぞれ独立に0または1を表す)
で表されるチエノチオフェン誘導体があげられる。
 上記アルキル基は、直鎖、分岐鎖、又は環状の脂肪族炭化水素基であり、好ましくは直鎖又は分岐鎖の脂肪族炭化水素基であり、より好ましくは直鎖の脂肪族炭化水素基である。上記アルキル基の炭素数は、通常1~36であり、好ましくは2~24であり、より好ましくは4~20、さらに好ましくは6~12である。
 上記アリール基は、フェニル基、ビフェニル基、ピレン基、キシリル基、メシチル基、クメニル基、ベンジル基、フェニルエチル基、α-メチルベンジル基、トリフェニルメチル基、スチリル基、シンナミル基、ビフェニリル基、1-ナフチル基、2-ナフチル基、アンスリル基、フェナンスリル基等の芳香族炭化水素基である。上記複素環基は、2-チエニル基、ベンゾチエニル基、チエノチエニル基などである。これらアリール基及び複素環基はそれぞれ、上記のアルキル基などの置換基を有していてもよく、複数の置換基を有する場合にはそれら複数の置換基は同一でも異なっていてもよい。
 上記一般式(1)で表されるチエノチオフェン誘導体が相転移点を上述の範囲(70℃~280℃の範囲)内に有するためには、R及びRの少なくとも一方がアルキル基であることが好ましく、そのアルキル鎖の長さは炭素数4以上であることが好ましい。
 上記一般式(1)で表されるチエノチオフェン誘導体は、Journal of the American Chemical Society,2007,Vol.129,No.51,p.15732-15733及びAdvance Materials,2011,23,p.1222-1225に記載の公知の方法により合成することができる。一般式(1)で表されるチエノチオフェン誘導体の精製方法としては、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また、必要に応じてこれらの方法を組み合わせて用いてもよい。
 本発明の第二の目的は上記の有機半導体薄膜を用いた有機半導体デバイスを提供することであり、第三の目的はこれらを用いた有機半導体デバイスの製造方法を提供することである。
 本発明の有機半導体デバイスの製造方法は、有機半導体薄膜を含む有機半導体デバイスの製造方法であって、本発明の有機半導体薄膜の形成方法で有機半導体薄膜を形成させる方法である。また、本発明の有機半導体デバイスは、上記本発明の製造方法で製造されたものである。本発明の製造方法で製造される有機半導体デバイスは、有機半導体薄膜を含む半導体層を電極で挟み込んだ構成であればとくに限定されないが、有機薄膜トランジスタであることが好ましい。本発明の製造方法で製造される有機半導体デバイスは、ソース電極及びドレイン電極の2つの電極が有機半導体薄膜を含む半導体層に接しており、それらソース電極及びドレイン電極の間に流れる電流を、ゲート絶縁層を介してゲート電極と呼ばれるもう一つの電極に印加する電圧で制御する構成の有機薄膜トランジスタであることがより好ましい。すなわち、本発明の製造方法で製造される有機半導体デバイスとしては、互いに離間するように配設されたソース電極及びドレイン電極と、上記ソース電極と上記ドレイン電極との間に配設された有機半導体材料からなる有機半導体薄膜を含む半導体層と、上記半導体層に対向するように配設されたゲート電極と、上記半導体層と上記ゲート電極との間に配設された絶縁層(ゲート絶縁層)とを備える有機電界効果トランジスタである有機薄膜トランジスタがより好ましい。上記有機電界効果トランジスタは、上記ソース電極、ドレイン電極、半導体層、ゲート電極、及び絶縁層とを基材上に備えることがさらに好ましい。
 本発明の有機薄膜トランジスタの態様例を図7(a)及び図7(b)に示す。
 図7(a)に示す有機薄膜トランジスタ10Aは、ボトムゲート型有機電界効果トランジスタと呼ばれるものである。有機薄膜トランジスタ10Aは、基材1と、基材1上に積層されたゲート電極2と、ゲート電極2の上面(基材1に対向する面の裏面)上に積層されたゲート絶縁層3と、ゲート絶縁層3の上面の一部の上に互いに離間するように配設されたソース電極5及びドレイン電極6と、ゲート絶縁層3の上面(ただしソース電極5及びドレイン電極6が配設されている部分を除く)の上に配設された有機半導体材料からなる有機半導体薄膜を含む半導体層4とを備えている。
 図7(b)に示す有機薄膜トランジスタ10Bは、有機電界効果トランジスタであり、基材1’と、基材1’上に積層されたゲート絶縁層3’と、ゲート絶縁層3’の上面(基材1’に対向する面の裏面)の一部の上に互いに離間するように配設されたソース電極5及びドレイン電極6と、ゲート絶縁層3’の上面(ただしソース電極5及びドレイン電極6が配設されている部分を除く)の上に配設された有機半導体材料からなる有機半導体薄膜を含む半導体層4と、半導体層4の上面上に配設されたゲート絶縁層3と、ゲート絶縁層3の上面上に積層されたゲート電極2と、ゲート電極2の上面上に積層された基材1とを備えている。なお、有機薄膜トランジスタ10Bでは、基材1’及びゲート絶縁層3’の一方を省略してもよい。また、本発明の有機薄膜トランジスタは、有機薄膜トランジスタ10Bから基材1’及びゲート絶縁層3’の両方を取り除いた構造(トップゲート型有機電界効果トランジスタと呼ばれる)の有機薄膜トランジスタであってもよい。
 次に、図7(a)及び図7(b)に示される本発明の有機薄膜トランジスタの態様例における各構成要素につき説明する。
 基材1及び1’としては、ガラス等の無機基板のほか、樹脂フィルムを使用できる。基材1及び1’は、有機薄膜トランジスタ10A及び10Bのフレキシブル性を考慮すると、樹脂フィルムであることが好ましい。上記樹脂フィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリカーボネート、セルローストリアセテート、ポリエーテルイミドなどが挙げられる。基材1及び1’の種類は、加圧及び超音波振動付与時におけるプロセス温度に応じて選択される。また、これらの基材1及び1’表面の平滑性を高めるために基材1及び1’の上に平坦化層を有してもよい。上記樹脂フィルムを構成する樹脂中には、金属密着性や耐久性を向上させるために、ナノオーダー(例えば5μm)の平均粒子径を有する無機酸化物粒子(例えばシリカ粒子)を分散させてもよい。これらの基材1及び1’としては、ガラス転移点が100℃以上であるものが好ましく、ガラス転移点が150℃以上であるものがさらに好ましい。基材1及び1’の厚さは、通常は1μm~10mmであり、好ましくは5μm~3mmである。
 基材1として樹脂フィルムを使用した場合、有機薄膜トランジスタの曲げ耐性を考慮して、有機薄膜トランジスタ10Bのように基材1及び1’で半導体層4を挟み込む構成にしてもよい。この構成の場合、2種類の基材1及び1’の材質を同一にすることが好ましい。このような樹脂フィルムからなる基材1及び1’を用いることにより有機薄膜トランジスタに可撓性を持たせることができ、高い曲げ耐性を持つフレキシブルで軽量な有機薄膜トランジスタを実現でき、有機薄膜トランジスタの実用性が向上する。
 ソース電極5、ドレイン電極6、及びゲート電極2には、導電性材料(導電性を有する材料)が用いられる。上記導電性材料としては、例えば、白金、金、銀、アルミニウム、クロム、タングステン、タンタル、ニッケル、コバルト、銅、鉄、鉛、錫、チタン、インジウム、パラジウム、モリブデン、マグネシウム、カルシウム、バリウム、リチウム、カリウム、ナトリウム等の金属及びそれらを含む合金;InO、ZnO、SnO、ITO(酸化インジウムスズ)等の導電性無機酸化物;ポリアニリン、ポリピロール、ポリチオフェン(PEDOT・PSSなど)、ポリアセチレン、ポリパラフェニレンビニレン、ポリジアセチレン等の導電性高分子化合物;カーボンナノチューブ、グラファイト等の炭素材料、等が使用できる。ソース電極5、ドレイン電極6、及びゲート電極2の接触抵抗を低下させるために、上で挙げた各種の材料に酸化モリブデンをドーピングしたり、上記金属にチオールなどによる処理をしたりしても良い。また、上記導電性材料として、上で挙げた各種の材料にカーボンブラックを分散した導電性の複合材料や、金、白金、銀、銅などの金属などの粒子を上で挙げた各種の材料(ただし、粒子と異なる材料)に分散した導電性の複合材料も用いることができる。有機薄膜トランジスタ10A及び10Bを動作させる際にはゲート電極2、ソース電極5、及びドレイン電極6には配線が連結される。配線も、ゲート電極2、ソース電極5、及びドレイン電極6の材料とほぼ同じ材料で作製される。ソース電極5、ドレイン電極6、ゲート電極2の厚みは、その材料によって異なるが、通常1nm~10μmであり、好ましくは10nm~5μmであり、より好ましくは30nm~1μmである。
 ゲート絶縁層3及び3’は、絶縁性材料(絶縁性を有する材料)の層である。上記絶縁性材料としては、例えば、ポリパラキシリレン、ポリメチルメタクリレート等のポリアクリレート(アクリル樹脂)、ポリスチレン、ポリビニルフェノール、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、フッ素系樹脂、エポキシ樹脂、フェノール樹脂等のポリマー及びこれらを組み合わせた共重合体;二酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の無機酸化物;SrTiO、BaTiO等の強誘電性無機酸化物;窒化珪素、窒化アルミニウム等の無機窒化物;無機硫化物;無機フッ化物などの誘電体の粒子をポリマー中に分散させた材料等が使用できる。ゲート絶縁層3に使用する絶縁性材料は、加圧及び超音波振動付与によるダメージの有無をあらかじめ確認することが好ましく、基材1と同様、熱的な安定性が求められるほか、加圧及び超音波振動付与の処理後の絶縁破壊等も考慮する必要がある。ゲート絶縁層3及び3’の厚みは、それに使用する絶縁性材料によって異なるが、通常10nm~10μmであり、好ましくは50nm~5μmであり、より好ましくは100nm~1μmである。図7(b)で示すような半導体層4を2枚の基材1及び1’に挟み込む構成を持つ有機薄膜トランジスタ10Bの場合、ゲート絶縁層3及び3’は、有機薄膜トランジスタ10Bの曲げ耐性を考慮して、同一の材質とすることが好ましい。
 半導体層4は、前述した有機半導体材料からなる有機半導体薄膜を含んでいる。半導体層4を構成する半導体材料として、上記有機半導体材料を単独で用いてもよく、上記有機半導体材料と少なくとも1種の他の半導体材料とを組み合わせて用いてもよい。有機薄膜トランジスタ10A及び10Bの特性を改善するために、必要に応じて各種添加剤を、半導体層4を構成する半導体材料に混合してもよい。半導体層4の厚みは、必要な機能を失わない範囲で、薄いほど好ましい。有機薄膜トランジスタ10A及び10Bにおいては、半導体層4が所定以上の厚みを有していれば有機薄膜トランジスタ10A及び10Bの特性は半導体層4の厚みに依存しないが、半導体層4の厚みが厚くなると漏れ電流が増加してくることが多い。逆に半導体層4の厚みが薄すぎると、半導体層4中に電荷の通り道(チャネル)を形成できなくなるため、半導体層4が適度な厚みを有していることが必要である。有機薄膜トランジスタ10A及び10Bが必要な機能を示すための半導体層4の厚みは、通常1nm~5μmであり、好ましくは10nm~1μmであり、より好ましくは10nm~500nmである。
 本発明の有機薄膜トランジスタでは、上述した各構成要素の間や、上述した各構成要素の露出した表面に必要に応じて他の層を設けてもよい。例えば、有機トランジスタ10Aにおける半導体層4上に直接又は他の層を介して、有機薄膜トランジスタ10Aを保護するための薄膜トランジスタ保護層を形成してもよい。これにより、有機トランジスタの電気的特性に対する湿度等の外気の影響を小さくして、有機トランジスタの電気的特性を安定化させることができる。また、有機トランジスタのオン/オフ比等の電気的特性を向上させることができる。
 上記薄膜トランジスタ保護層を構成する材料としては、特に限定されないが、例えば、エポキシ樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、フッ素樹脂、ポリオレフィン等の各種樹脂;酸化珪素、酸化アルミニウム、窒化珪素等の無機酸化物;及び窒化物等の誘電体等が好ましく、酸素の透過率、水分の透過率、及び吸水率の小さな樹脂(ポリマー)がより好ましい。上記薄膜トランジスタ保護層を構成する材料として、有機ELディスプレイ用に開発されているガスバリア性保護材料も使用できる。薄膜トランジスタ保護層の厚みは、その目的に応じて任意の厚みを採用できるが、通常100nm~1mmである。
 次に、本発明の有機半導体デバイスの製造方法について詳細に説明する。
 本発明の有機半導体デバイスの製造方法では、例えば、絶縁層および電極がその上に形成された基材上に有機半導体材料を配置し、有機半導体材料に有機半導体材料に対して圧力を加えながら超音波振動を付与することにより有機半導体デバイスを製造する。
 本発明の有機半導体デバイスの製造方法は、上記有機半導体デバイスが、互いに離間するように配設されたソース電極及びドレイン電極と、前記ソース電極と前記ドレイン電極との間に配設された有機半導体材料からなる有機半導体薄膜を含む半導体層と、前記半導体層に対向するように配設されたゲート電極と、前記半導体層と上記ゲート電極との間に配設された絶縁層とを基材上に備える有機電界効果トランジスタである有機薄膜トランジスタである場合、本発明の有機半導体薄膜の形成方法で有機半導体薄膜を形成させる前に、前記基材上に有機半導体材料を配置する配置工程を含むことが好ましい。この製造方法では、図7(a)に示す有機薄膜トランジスタ10Aや、図7(b)に示す有機薄膜トランジスタ10Bを製造することができる。
 前記配置工程では、前記ソース電極及びドレイン電極がその上に配設された前記基材に対し、有機半導体材料を固体状態又は溶融状態で前記基材上における、前記ソース電極と前記ドレイン電極との間の領域またはその近傍に配置してもよく、前記ソース電極及びドレイン電極がその上に配設された前記基材に対し、有機半導体材料を含有する溶液を前記基材上に塗布した後、乾燥させることにより前記基材上における、前記ソース電極と前記ドレイン電極との間の領域またはその近傍に有機半導体材料を配置してもよい。
 ここでは、2種類の基板を用いた図7(b)の態様例の有機薄膜トランジスタ10Bに基づき、本発明の有機半導体デバイスの製造方法を詳細に説明する。1つ目の基板(「ゲート基板9」と呼ぶ)は、基材1上にゲート電極2及びゲート絶縁層3を積層したものである。他方の基板(ソース・ドレイン基板8と呼ぶ)は、基材1’上にゲート絶縁層3’及びソース電極5と、ドレイン電極6とを積層したものである。また、以下の説明では、半導体層4が有機半導体薄膜のみからなる場合について説明する。
 (ゲート基板9の作成)
 [基材1及び1’の処理]
 ゲート基板9は、上記でも説明した基材1上にゲート電極2及びゲート絶縁層3を設けることで作製される。基材1の表面には、基材1上に積層する各層の濡れ性(積層のしやすさ)を向上させるために表面処理(洗浄処理)を行ってもよい。表面処理の例としては、塩酸、硫酸、酢酸等による酸処理;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等によるアルカリ処理;オゾン処理;フッ素化処理;酸素やアルゴン等のプラズマによるプラズマ処理;ラングミュア・ブロジェット膜の形成処理;コロナ放電などの電気的処理等が挙げられる。
 [ゲート電極2の形成]
 上記の導電性材料(電極材料)を用いて基材1上にゲート電極2を形成する。ゲート電極2を形成する方法としては、例えば真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が挙げられる。導電性材料の成膜時又は成膜後、導電性材料が所望の形状になるよう必要に応じてパターニングを行うのが好ましい。パターニングの方法として、各種の方法を使用できるが、例えばフォトレジストのパターニングとエッチングとを組み合わせたフォトリソグラフィー法等が挙げられる。また、パターニングの方法として、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィー法、及びこれら手法を複数組み合わせた手法を利用することも可能である。印刷法により形成された電極は、所望の導電率に達するまで熱、光等のエネルギーを与えることにより、焼成される。
 [ゲート絶縁層3の形成]
 次に、上記の絶縁性材料を用いて、基材1上に形成されたゲート電極2上にゲート絶縁層3を形成する(図7(b)参照)。ゲート絶縁層3の形成方法としては、例えば、スピンコーティング法、スプレーコーティング法、ディップコーティング法、キャスト法、バーコート法、ブレードコーティング法などの塗布法;スクリーン印刷法、オフセット印刷法、インクジェット法等の印刷法;真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD(化学気相成長)法などのドライプロセス法、等が挙げられる。ゲート絶縁層3には表面処理を行ってもよい。ゲート絶縁層3に表面処理を行うことで、その後に成膜される半導体層4とゲート絶縁層3との界面部分における分子配向や結晶性が制御され易くなると共に、基材1やゲート絶縁層3上のトラップ部位が低減されることにより、有機薄膜トランジスタ10Bのキャリア移動度等の特性が改良されるものと考えられる。トラップ部位とは、未処理の基材1やゲート絶縁層3中に存在する例えば水酸基のような官能基をさし、このような官能基が基材1やゲート絶縁層3中に存在すると、電子が該官能基に引き寄せられ、この結果として有機薄膜トランジスタ10Bのキャリア移動度が低下する。従って、基材1やゲート絶縁層3中のトラップ部位を低減することも、有機薄膜トランジスタ10Bのキャリア移動度等の特性の改良には有効な場合がある。
 (ソース・ドレイン基板8の作成)
 [基材1’の処理]
 ゲート基板9は、上記でも説明した基材1’上にゲート絶縁層3’、ソース電極5、及びドレイン電極6を設けることで作製される。基材1’の表面には、基材1の表面と同様、上述した表面処理を行ってもよい。
 [ゲート絶縁層3’の形成]
 次に、上記の絶縁性材料を用いて、基材1’上にゲート絶縁層3’を形成する(図7(b)参照)。ゲート絶縁層3’の形成方法としては、ゲート絶縁層3の形成方法と同様の方法を用いることができる。ゲート絶縁層3’にも、ゲート絶縁層3と同様、表面処理を行ってもよい。
 [ソース電極5及びドレイン電極6の形成]
 次に、上記の導電性材料を用いてゲート絶縁層3’上にソース電極5及びドレイン電極6を形成する。ソース電極5及びドレイン電極6の材料は、同じでも、異なっても良い。ソース電極5及びドレイン電極6を形成する方法としては、ゲート電極2の形成方法と同様の方法を用いることができる。ソース電極5及びドレイン電極6を構成する導電性材料には、ソース電極5及びドレイン電極6の接触抵抗を低下させるために、酸化モリブデンなどをドーピングしてもよい。ソース電極5及びドレイン電極6が金属で構成される場合には、その金属にチオールなどによる処理をしても良い。酸化モリブデンやチオールなどは、導電性材料の成膜方法と同様の方法によってソース電極5及び/またはドレイン電極6上に積層することができる。
 [ソース・ドレイン基板8上への有機半導体材料の配置]
 次に、上述の方法で作成したソース・ドレイン基板8上に有機半導体材料を配置する。有機半導体材料をバルク粉などの固体状態又は溶融状態で無溶媒で直接、ソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域またはその近傍に配置してもよく、有機半導体材料を含有する溶液をソース・ドレイン基板8上に塗布又は印刷した後、乾燥させるプロセス(溶液プロセス)によりソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域またはその近傍に有機半導体材料を配置してもよい。溶液プロセスとしては、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの印刷法、又はドロップキャスト法などの塗布法を用いることができる。他の溶液プロセスでも有機半導体材料をソース・ドレイン基板8上に配置することは可能であるが、有機半導体材料の利用効率を高めるためには必要な量の有機半導体材料を必要な場所に配置できる方法が好ましい。以下、有機半導体材料の配置方法について詳細に説明する。
 まず、固体状態又は溶融状態の有機半導体材料を直接、ソース・ドレイン基板8上に配置する場合は、バルク状の固体粉末の有機半導体材料あるいは微細粉末化した有機半導体材料を直接、ソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域またはその近傍に配置又は散布するか、あるいは融点以上の温度まで加熱して溶融状態とした有機半導体材料をスタンプやディスペンサーなどの種々の手段によってソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域またはその近傍に塗布することができる。簡易的に、十分に熱した金属棒の先端に有機半導体材料をとって溶融状態とし、金属棒の先端の溶融状態の半導体材料をそのままソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域またはその近傍に塗布してもよい。
 次に、有機半導体材料を溶液プロセスによってソース・ドレイン基板8上に配置する方法について説明する。溶液プロセスとは、溶剤可溶性を有する有機半導体材料、例えば前記一般式(1)で表される化合物などを予め有機溶剤に溶解し、得られた有機半導体材料の溶液を塗布又は印刷した後に乾燥して有機半導体材料を所望の場所へ配置する方法を言う。溶液の塗布又は印刷と乾燥とにより有機半導体材料を配置する方法、すなわち溶液プロセスは、有機薄膜トランジスタ10B製造時の環境を真空や高温状態にする必要が無く、大面積の有機薄膜トランジスタ10Bを低コストで製造できるため、工業的にも有利である。また、本発明の有機半導体デバイスの製造方法でソース・ドレイン基板8上への有機半導体材料の配置に溶液プロセスを用いる場合、超音波振動付与の終了後の有機半導体材料が冷却される過程で有機半導体材料の結晶が再配向して結晶の方位が均一化されると考えられるので、有機半導体材料が溶液から結晶化する段階で結晶配向がランダムであってもよく、溶液の塗布又は印刷の後には、溶液中に含まれる有機溶剤を蒸発させるだけでよい。そのため、溶液の塗布又は印刷の後に、結晶の方位を均一化するために長時間のベークによる結晶配向制御や後処理による結晶の再配向といったプロセスを実施する必要がない。
 有機半導体材料は、ソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域(チャネル)上またはその領域(チャネル)外におけるその領域(チャネル)近傍に配置することができる。ドロップキャスト法やインクジェット法などのような、溶液を塗布又は印刷する方法のみで有機半導体層を形成する場合では、ソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域(チャネル)を有機半導体層で覆うために有機半導体材料のインクジェット着弾精度などの位置精度を考慮する必要がある。これに対し、本方法によれば、有機半導体材料を配置する工程においてソース・ドレイン基板8上におけるソース電極5とドレイン電極6との間の領域(チャネル)を有機半導体材料で完全に覆う必要がなく、塗布又は印刷に使用する装置に高い位置精度を求める必要がない。有機半導体材料を配置する位置は、有機半導体材料の量にもよるが、良好な有機半導体薄膜を得るためには、チャネル外のチャネル近傍に有機半導体材料を配置する方が好ましく、通常、チャネル外におけるソース電極5から5mm以下の範囲内に有機半導体材料を配置することが好ましい。
 [半導体層4の形成及び有機薄膜トランジスタ10Bの作成]
 次に、ゲート基板9を、有機半導体材料がその上に配置されたソース・ドレイン基板8に重ね合わせる。このようにして得られたソース・ドレイン基板8及びゲート基板9の間に有機半導体材料を挟持したものを使用し、有機半導体材料に対してゲート基板9を介して圧力を加えながら超音波振動を付与することにより、エネルギーを有機半導体材料に与える。これにより、有機半導体材料が薄膜化されて有機半導体薄膜からなる半導体層4がチャネルとして形成されると同時に、ソース・ドレイン基板8とゲート基板9とが圧着され、有機薄膜トランジスタ10Bが完成される。加圧及び超音波振動付与の条件として、前述の有機半導体薄膜の形成方法と同様の条件を用いて有機薄膜トランジスタ10Bが製造される。有機半導体材料の性質に応じて、発振時間(溶着時間)、振幅、加圧力等の加圧及び超音波振動付与の条件が最適化される。必要に応じて基材1を載せるステージ(加熱ステージ26)を伝導加熱手段(ヒーター26aなど)で加熱することにより基材1を(有機半導体材料を)伝導加熱(ステージ加熱)してもよい。本発明の有機半導体薄膜の形成方法を用いた場合、従来のような長時間のベーク工程を必要とせず、加圧及び超音波振動付与の条件を最適化すれば、1秒以下ときわめて短い時間で有機半導体薄膜を形成できる。
 次に、有機半導体薄膜からなる半導体層4を形成する方法の一実施形態として、図1に示す超音波溶着機20を用いて半導体層4を形成する方法を図2~図6に基づいて説明する。
 まず、図2に示すように、ソース・ドレイン基板8及びゲート基板9の間に有機半導体材料7を挟持したものを超音波溶着機20の加熱ステージ26上に設置する。次に、図3に示すように、ホーン24を降下させて圧力を被処理物に対して(すなわち有機半導体材料7に対して)加える。次に、図4に示すように、圧力を被処理物に対して(すなわち有機半導体材料7に対して)加えた状態のままで、ホーン24からゲート基板9を介して有機半導体材料7に超音波振動を付与することにより有機半導体材料7を加熱する(有機半導体材料7にエネルギーを与える)。これにより、有機半導体材料7の厚みが薄くなる。次に、図5に示すように、圧力を被処理物に対して(すなわち有機半導体材料7に対して)加えた状態のままで、有機半導体材料7に対する超音波振動の付与を終了して有機半導体材料7を冷却する。これにより、元の有機半導体材料7の厚みより薄い有機半導体材料の薄膜(有機半導体薄膜)が半導体層4として形成される。最後に、図6に示すように、ホーン24を上昇させて圧力の印加を終了することにより、有機薄膜トランジスタ10Bを完成させる。
 一般に、有機薄膜トランジスタの動作特性は、半導体層のキャリア移動度及び電導度、絶縁層の静電容量、素子構成(ソース電極とドレイン電極との間の距離、ソース電極及びドレイン電極の幅、絶縁層の厚み等)などにより決まる。高いキャリア移動度を有する、有機半導体材料からなる半導体層4を得るためには、有機半導体材料が一定方向に配向秩序を持つ(結晶の方位が均一化して、より多くの結晶が一定方向に配向する)ことが求められる。本発明の有機半導体デバイスの製造方法では、超音波振動付与の終了後の有機半導体材料が冷却される過程で有機半導体材料の結晶が再配向して、一定方向に配向秩序を持つ有機半導体材料からなる半導体層4を得ることができる。また、2つの基材1及び1’と2つのゲート絶縁層3及び3’とを有する有機薄膜トランジスタ10Bにおいて、基材1及び1’に同一の材料を用い、かつゲート絶縁層3及び3’に同一の材料を用いると、有機薄膜トランジスタ10Bの構造を半導体層4を中心として対称のサンドイッチ構造とすることができる。その結果、異なる材質による歪みなどの影響を受けにくく、高い曲げ耐性を有する有機薄膜トランジスタ10Bを得ることが可能である。
 さらには、本発明の有機半導体デバイスの製造方法は、短時間の処理で有機半導体薄膜を形成できるので、真空蒸着プロセスにより有機半導体薄膜を形成する従来の製造方法や、他の塗布法又は印刷法(溶液プロセス)により有機半導体薄膜を形成する従来の製造方法と比べて、スループットが高く、非常に低コストで大面積ディスプレイ用途の有機半導体デバイスの製造にも適用できる。また、本発明の有機半導体デバイスの製造方法は、短時間の処理で有機半導体薄膜を形成できることから、シート・トゥ・シート方式やロール・トゥ・ロール方式の製造方法を実現することも可能である。
 本発明の有機半導体デバイスは、ディスプレイのアクティブマトリクスのスイッチング素子等として利用することができる。ディスプレイとしては、例えば液晶ディスプレイ、高分子分散型液晶ディスプレイ、電気泳動型ディスプレイ、エレクトロルミネッセンス(EL)ディスプレイ、エレクトロクロミック型ディスプレイ、粒子回転型ディスプレイ等が挙げられる。また、本発明の有機半導体デバイスは、メモリー回路の素子、信号ドライバー回路の素子、信号処理回路の素子などの、デジタル素子やアナログ素子としても利用でき、これら素子を組み合わせることによりIC(集積回路)カードやICタグの作製が可能である。更に、本発明の有機半導体デバイスは、化学物質等の外部刺激によりその特性に変化を起こすことができるので、FET(電界効果トランジスタ)センサとしての利用も期待できる。
 以下、実施例を挙げて本発明を更に詳細に説明するが、これらの実施例はあくまでも本発明の理解を容易にするためのものであり、本発明はこれらの実施例に限定されるものではない。
 [実施例1]
 有機半導体材料として下記式(2)
Figure JPOXMLDOC01-appb-C000002
で表される化合物(以下、「化合物(2)」と呼ぶ)(2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン)の固体(融点:127℃)を、熱した金属棒の先端に載置して溶融状態とし、金属棒の先端の溶融状態の半導体材料を厚さ12μmのポリイミドフィルム(製品名「ポミラン(登録商標)N」、荒川化学工業株式会社製、ポリイミドマトリックス中に平均粒子径5nmのナノシリカ粒子が分散した構造を持つシリカハイブリッドポリイミドフィルム)上に配置した。このときの半導体材料の厚みは数μmであった。その後、このポリイミドフィルム上に化合物(2)を介してもう1枚の同じポリイミドフィルムを重ねた。
 このようにして得られた2枚のポリイミドフィルムの間に化合物(2)を挟持したものを、図2に示すソース・ドレイン基板8及びゲート基板9の間に有機半導体材料7を挟持したものに代えて被処理物として使用する以外は、図2~6に示す製造方法と同様にして有機半導体薄膜を形成した。
 すなわち、まず、図2と同様にして、加熱ステージ26を有した図1の超音波溶着機20の一例である市販の超音波溶着機(製品名「ΣP-30B」のプレス本体と製品名「ΣG-620B」の発振器とで構成されるもの、精電舎電子工業株式会社製、最大振幅(100%振幅)25μm、振動数(周波数)28.5kHz、ホーン形状:四角柱状(面取り)、ホーン表面の大きさ(処理面積):64mm)における加熱ステージ26上に被処理物(2枚のポリイミドフィルムの間に化合物(2)を挟持したもの)を設置した。
 次に、加熱ステージ26の温度(表面温度)が100℃となるように加熱ステージ26をヒーター26aで加熱(化合物(2)を伝導加熱するための加熱)し、図3と同様にしてホーン24を降下させて0.15MPaの圧力を被処理物に対して(すなわち化合物(2)に対して)加えた。その後、図4と同様にして、0.15MPaの圧力を被処理物に対して(すなわち化合物(2)に対して)加えた状態のままで、超音波振動の振幅25%、30%、又は35%、超音波振動の発振時間1秒の条件で超音波溶着機を超音波発振させることにより化合物(2)に超音波振動を付与して化合物(2)を加熱した。
 次に、図5と同様にして、圧力を被処理物に対して(すなわち有機半導体材料に対して)加えた状態のままで、超音波溶着機の超音波発振を終了して有機半導体材料を冷却することにより、元の化合物(2)の厚みより薄い化合物(2)の薄膜(有機半導体薄膜)を半導体層4として形成した。最後に、図6と同様にして、ホーン24を上昇させて圧力の印加を終了し、有機半導体薄膜を得た。
 この時の有機半導体材料(化合物(2))の温度の変化は図8に示した通りであった。この結果から、超音波振動の振幅の変化により有機半導体材料の温度の制御が可能であるとともに、超音波発振の終了とともに速やかに有機半導体材料の温度が低下することを確認した。
 これらから、有機半導体材料に対して圧力を加えながら超音波振動を付与することにより有機半導体材料の薄膜化、すなわち有機半導体薄膜の形成が可能であることを確認した。表1に、各振幅条件での有機半導体材料の最高到達温度と、有機半導体材料の薄膜化の有無とを記載した。表1の結果から分かるように、何れの条件においても、有機半導体材料が薄膜化され、数十nmの有機半導体薄膜を形成することができた。
Figure JPOXMLDOC01-appb-T000003
 なお、有機半導体材料の温度は、以下の方法で測定した。すなわち、ポリイミドフィルム上に有機半導体材料(化合物(2))に代えてシート形温度センサを配置したこと以外は、上述した有機半導体薄膜の形成と同様の処理を行い、シート形温度センサによりシート形温度センサの温度(2枚のポリイミドフィルム間の部分の温度)の変化を測定した。
 [実施例2]
 本実施例では、図7(b)に示す有機薄膜トランジスタ10Bの一例を作製した。まず、基材1’としての厚さ12μmのポリイミドフィルム(製品名「ポミラン(登録商標)N」)上にゲート絶縁層3’としての「パリレン(登録商標)C」(日本パリレン合同会社製)を900nmの厚みで成膜し、そのパリレン膜の上部にチャネル長20μm、チャネル幅5mmのソース電極5及びドレイン電極6として金電極を形成して、ソース・ドレイン基板8を得た。一方、基材1としての厚さ12μmのポリイミドフィルム(製品名「ポミラン(登録商標)N」)上にゲート電極2として金電極を形成し、その金電極の上部にゲート絶縁層3としてのパリレンを900nmの厚みで成膜して、ゲート基板9を得た。
 次に、図9に示すように、ソース・ドレイン基板8上における、ソース電極5及びドレイン電極6(並びにそれらの間の領域)からソース・ドレイン基板8の端側(図9における右端側)へ約200μm離れた位置に、有機半導体材料としての化合物(2)の固体(融点:127℃)を配置した。次に、化合物(2)の固体がその上に配置されたソース・ドレイン基板8上にゲート基板9を重ねた。
 次に、このようにして得られたソース・ドレイン基板8及びゲート基板9の間に化合物(2)を挟持したものを、実施例1における2枚のポリイミドフィルムの間に化合物(2)を挟持したものに代えて被処理物として使用し、加熱ステージの温度を95℃に変更し、超音波振動の振幅を45%に変更する以外は、実施例1における有機半導体薄膜の形成方法と同様にして、化合物(2)からなる有機半導体薄膜を形成した。この際、有機半導体材料の最高到達温度は230℃であった。
 図9~図11は、実施例2における有機半導体材料の変化を偏光顕微鏡で観察した結果を示すものである。図9は、ソース・ドレイン基板8及びゲート基板9の間に有機半導体材料(化合物(2))を挟持したものを加熱ステージ26上に配置した時点における有機半導体材料の様子を示すものである。図10は、有機半導体材料を100℃の加熱ステージ26で加熱した後における有機半導体材料の様子を示すものである。図11は、超音波振動の付与及び圧力の付与を終了した後に超音波溶着機から取り出した試料(ソース・ドレイン基板8及びゲート基板9の間に有機半導体薄膜が形成されたもの)における有機半導体材料の様子を偏光顕微鏡で確認した結果を示すものである。図11に示すように、有機半導体薄膜からなる半導体層4がソース電極5及びドレイン電極6(中央の2本の縦線)の間に形成されており、有機薄膜トランジスタ10Bを作製できたことが分かった。
 次に、実施例2にて得られた有機薄膜トランジスタ10Bの半導体特性を測定した。有機薄膜トランジスタ10Bのゲート電圧の印加およびゲート電流の測定を、KEITHLEY 2635A SYSTEM Source Meterを使用して行い、有機薄膜トランジスタ10Bのソース・ドレイン電圧の印加およびドレイン電流の測定を、KEITHLEY 6430 SUBFEMTO AMP REMOTE Source Meterを使用して行った。有機薄膜トランジスタ10Bのドレイン電圧を-30Vとし、有機薄膜トランジスタ10Bのゲート電圧Vgを30~-30Vに変化させた条件で、有機薄膜トランジスタ10Bの電流-電圧特性を測定した。得られた有機薄膜トランジスタ10Bの電流-電圧特性から有機薄膜トランジスタ10Bの移動度及び閾値電圧を算出した。算出された移動度は0.038cm/Vs、算出された閾値電圧は1.2Vであり、半導体層4がp型半導体の特性を持つ有機薄膜トランジスタ10Bが得られた。
 なお、ゲート絶縁層3及び3’に使用した厚み900nmのパリレン膜の、加圧及び超音波振動付与に対する耐性を確認するために、本実施例における有機半導体薄膜の形成時と同じ条件で超音波溶着機による加圧及び超音波振動付与の処理をパリレン膜に対して行った。その結果、処理前後で漏れ電流密度に実質的な変化は見られず、超音波溶着機による加圧及び超音波振動付与によってパリレン膜の絶縁特性が劣化しないことが確認された。
 [実施例3]
 実施例2のソース電極5及びドレイン電極6に対して、加圧及び超音波振動付与の前にペンタフルオロチオフェノールを用いて電極処理を行ったこと以外は実施例2と同様にして、有機薄膜トランジスタ10Bを得た。本実施例で得られた有機薄膜トランジスタ10Bの移動度及び閾値電圧を実施例2における測定方法と同様にして測定し、本実施例で得られた有機薄膜トランジスタ10Bの移動度及び閾値電圧を算出した。移動度及び閾値電圧の算出結果を表2に示す。また、本実施例で得られた有機薄膜トランジスタ10Bの半導体層4はp型半導体の特性を示した。
 [実施例4]
 実施例3のソース電極5及びドレイン電極6のチャネル長を100μmに変更したこと以外は実施例3と同様にして、有機薄膜トランジスタ10Bを得た。本実施例で得られた有機薄膜トランジスタ10Bの半導体特性を実施例2における測定方法と同様にして測定し、本実施例で得られた有機薄膜トランジスタ10Bの移動度及び閾値電圧を算出した。移動度及び閾値電圧の算出結果を表2に示す。また、本実施例で得られた有機薄膜トランジスタ10Bの半導体層4はp型半導体の特性を示した。
Figure JPOXMLDOC01-appb-T000004
 [実施例5]
 インクジェット装置(富士フイルム株式会社製、型番「DMP-2831」)を用いて厚さ12μmのポリイミドフィルム(製品名「ポミラン(登録商標)N」)上に化合物(2)の2重量%テトラヒドロナフタレン溶液からなる有機半導体材料を印刷し、溶液を自然乾燥させて溶剤(テトラヒドロナフタレン)を除去することで、有機半導体材料をポリイミドフィルム上に配置した。図12に示すように印刷直後の有機半導体層(有機半導体材料の層)の形状は凹凸が激しく、有機半導体層の膜厚は最大で450nmであった。その後、このポリイミドフィルム上に有機半導体材料(化合物(2))を介してもう1枚の同じポリイミドフィルムを重ねた。
 次に、加熱ステージ26の温度(表面温度)100℃、被処理物(有機半導体材料)に対する圧力0.15MPa、超音波振動の振幅50%、超音波振動の発振時間1秒の条件で実施例1と同様にして超音波溶着機を超音波発振させた。有機半導体材料(化合物(2))の最高到達温度は180℃であり、超音波溶着処理後は図13に示すような有機半導体薄膜を形成できていることが確認できた。
 [実施例6]
 実施例2で使用したソース・ドレイン基板8のソース電極5とドレイン電極6との間に実施例5で使用したインクジェット装置を用いて化合物(2)の2重量%テトラヒドロナフタレン溶液からなる有機半導体材料を印刷し、溶液を自然乾燥させて溶剤(テトラヒドロナフタレン)を除去した。有機半導体材料の印刷によりソース電極5に沿って直線状のパターンを描画したが、溶液の乾燥に伴い、チャネル内で有機半導体層(有機半導体材料の層)が分断し、不連続の有機半導体層となった(図14)。その後、このソース・ドレイン基板8上に有機半導体材料(化合物(2))を介して実施例2で使用したゲート基板9を重ねて有機半導体材料をソース・ドレイン基板8とゲート基板9との間に挟持し、実施例5と同様の条件で超音波溶着機を超音波発振させ、有機半導体薄膜を得た。これにより、有機薄膜トランジスタ10Bが得られた。得られた有機半導体薄膜の偏光顕微鏡像を図15に示した。この像から、超音波溶着処理により均一なチャネルを有する有機半導体薄膜が得られたことを確認した。
 [比較例1]
 まず、実施例2と同様にしてソース・ドレイン基板8及びゲート基板9の間に化合物(2)を挟持したものを被処理物として得た。次に、非特許文献(Physica Status Solidi A, Volume 210, Issue 7, p.1353-1357(2013))に倣って、被処理物に対し、最高到達温度125℃、圧力1.6MPaの条件で熱プレス法(上記非特許文献のFig.1(b))により化合物(2)を薄膜化した。薄膜化にかかる時間は2分間であった。薄膜化の後、冷却速度1.5℃/minで被処理物を冷却することで、実施例2と同様の(ただし半導体特性は実施例2と異なる)比較用の有機薄膜トランジスタを得ることができた。
 得られた比較用の有機薄膜トランジスタの半導体特性を実施例2と同様に測定した結果、比較用の有機薄膜トランジスタの移動度は0.052cm/Vs、閾値電圧は-15.8Vであり、実施例2の有機薄膜トランジスタ10Bの半導体特性とほぼ同等であった。しかしながら、本比較例では、薄膜化にかかる時間(タクトタイム)は、前述の通りに2分間であり、実施例2における薄膜化にかかる時間(1秒間)に比べて大きく劣っており、薄膜化に必要な圧力も、前述の通りに1.6MPaであり、実施例2における薄膜化に必要な圧力(0.15MPa)に比べて大きく劣っていた。
 各実施例に記載した結果より、有機半導体材料に対して圧力を加えながら超音波振動を付与することにより有機半導体材料を薄膜化する方法で有機半導体薄膜を形成できることだけでなく、この方法を用いて作製した有機半導体デバイスは高い半導体特性を有することが示された。また、有機半導体薄膜を形成する際には、真空蒸着法や、結晶成長のための煩雑で精緻なプロセス制御を行う必要がなく、極めて短時間で有機半導体薄膜を形成可能であることが確認された。したがって、各実施例の有機半導体デバイスの製造方法は、高スループットの製造方法であることが確認された。
 1、1’ 基材
 2 ゲート電極
 3、3’ ゲート絶縁層(絶縁層)
 4 半導体層(有機半導体薄膜)
 5 ソース電極
 6 ドレイン電極
 7 有機半導体材料
 8 ソース・ドレイン基板
 9 ゲート基板
 10A 有機薄膜トランジスタ(有機半導体デバイス)
 10B 有機薄膜トランジスタ
 20 超音波溶着機
 21 超音波発振器
 22 超音波振動子
 23 ブースター
 24 ホーン
 25 加圧機構
 26 加熱ステージ
 26a ヒーター
 

Claims (11)

  1.  有機半導体材料からなる有機半導体薄膜の形成方法であって、
     有機半導体材料に対して圧力を加えながら超音波振動を付与することで、有機半導体材料を薄膜化することを特徴とする有機半導体薄膜の形成方法。
  2.  有機半導体材料に対して圧力を加えながら超音波振動を付与することにより固相の有機半導体材料を相転移させた後に有機半導体材料を再結晶化することで、有機半導体材料を薄膜化することを特徴とする請求項1に記載の有機半導体薄膜の形成方法。
  3.  有機半導体材料に対する超音波振動の付与と同時に有機半導体材料を伝導加熱することを特徴とする請求項1又は2に記載の有機半導体薄膜の形成方法。
  4.  1対の基材の間に挟まれた有機半導体材料に対して圧力を加えながら超音波振動を付与することを特徴とする請求項1乃至請求項3の何れか1項に記載の有機半導体薄膜の形成方法。
  5.  前記1対の基材が、樹脂フィルムであることを特徴とする請求項4に記載の有機半導体薄膜の形成方法。
  6.  有機半導体薄膜を含む有機半導体デバイスの製造方法であって、
     請求項1乃至請求項5の何れか1項に記載の形成方法で有機半導体薄膜を形成させることを特徴とする有機半導体デバイスの製造方法。
  7.  前記有機半導体デバイスが、有機薄膜トランジスタであることを特徴とする請求項6に記載の有機半導体デバイスの製造方法。
  8.  前記有機薄膜トランジスタが、互いに離間するように配設されたソース電極及びドレイン電極と、前記ソース電極と前記ドレイン電極との間に配設された有機半導体材料からなる有機半導体薄膜を含む半導体層と、前記半導体層に対向するように配設されたゲート電極と、前記半導体層と上記ゲート電極との間に配設された絶縁層とを基材上に備える有機電界効果トランジスタであり、
     前記製造方法は、
     有機半導体薄膜の形成の前に、前記基材上に有機半導体材料を配置する配置工程を含むことを特徴とする請求項7に記載の有機半導体デバイスの製造方法。
  9.  前記配置工程では、前記ソース電極及びドレイン電極がその上に配設された前記基材に対し、有機半導体材料を固体状態又は溶融状態で前記基材上における、前記ソース電極と前記ドレイン電極との間の領域またはその近傍に配置することを特徴とする請求項8に記載の有機半導体デバイスの製造方法。
  10.  前記配置工程では、前記ソース電極及びドレイン電極がその上に配設された前記基材に対し、有機半導体材料を含有する溶液を前記基材上に塗布した後、乾燥させることにより前記基材上における、前記ソース電極と前記ドレイン電極との間の領域またはその近傍に有機半導体材料を配置することを特徴とする請求項8に記載の有機半導体デバイスの製造方法。
  11.  請求項6乃至請求項10の何れか1項に記載の製造方法で製造された有機半導体デバイス。
     
PCT/JP2015/070186 2014-07-17 2015-07-14 有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法 WO2016010046A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016534454A JP6550050B2 (ja) 2014-07-17 2015-07-14 有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法
CN201580038837.8A CN106796987B (zh) 2014-07-17 2015-07-14 有机半导体薄膜的形成方法、以及使用该方法的有机半导体器件及其制造方法
KR1020177004423A KR20170030639A (ko) 2014-07-17 2015-07-14 유기 반도체 박막의 형성 방법, 그리고 그것을 이용한 유기 반도체 디바이스 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-146927 2014-07-17
JP2014146927 2014-07-17

Publications (2)

Publication Number Publication Date
WO2016010046A1 true WO2016010046A1 (ja) 2016-01-21
WO2016010046A9 WO2016010046A9 (ja) 2016-12-15

Family

ID=55078536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070186 WO2016010046A1 (ja) 2014-07-17 2015-07-14 有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法

Country Status (5)

Country Link
JP (1) JP6550050B2 (ja)
KR (1) KR20170030639A (ja)
CN (1) CN106796987B (ja)
TW (1) TWI664758B (ja)
WO (1) WO2016010046A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038771A1 (ja) * 2015-08-28 2017-03-09 国立大学法人千葉大学 有機半導体デバイスの製造方法、および粉体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156983A (ja) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd 半導体装置とその作製方法
JP2010040768A (ja) * 2008-08-05 2010-02-18 Dainippon Printing Co Ltd 有機半導体素子の製造方法、および有機半導体素子
WO2014136942A1 (ja) * 2013-03-07 2014-09-12 国立大学法人 千葉大学 有機薄膜の形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4867168A (ja) 1971-12-18 1973-09-13
US4328441A (en) * 1980-01-31 1982-05-04 Minnesota Mining And Manufacturing Company Output circuit for piezoelectric polymer pressure sensor
US7923497B2 (en) * 2005-11-23 2011-04-12 General Electric Company Antiferroelectric polymer composites, methods of manufacture thereof, and articles comprising the same
CN102598232B (zh) 2009-10-02 2015-06-24 国立大学法人大阪大学 有机半导体膜的制造方法及有机半导体膜阵列
JP5569846B2 (ja) 2010-08-26 2014-08-13 独立行政法人産業技術総合研究所 単結晶性有機半導体薄膜の製造方法
JP2013074065A (ja) * 2011-09-27 2013-04-22 Tokyo Electron Ltd 膜の形成方法および形成装置
CN102544376B (zh) * 2012-01-09 2014-06-04 浙江大学 具有亚波长抗反射结构的聚合物太阳能电池及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156983A (ja) * 2004-10-29 2006-06-15 Semiconductor Energy Lab Co Ltd 半導体装置とその作製方法
JP2010040768A (ja) * 2008-08-05 2010-02-18 Dainippon Printing Co Ltd 有機半導体素子の製造方法、および有機半導体素子
WO2014136942A1 (ja) * 2013-03-07 2014-09-12 国立大学法人 千葉大学 有機薄膜の形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATOSHI SAKAI ET AL.: "Organic Flexible Thin Film Transistors Fabricated by Ultrasonic Welding", THE 75TH JSAP AUTUMN MEETING KOEN YOKOSHU, 1 September 2014 (2014-09-01), pages 17a - A4-3 *
TATSUHIKO SASAKI ET AL.: "Flexible OFET Fabricated by Ultrasonic Welding aiming at Solvent-free and Low Temperature Process", THE 75TH JSAP AUTUMN MEETING KOEN YOKOSHU, 1 September 2014 (2014-09-01), pages 19p-PA7 - 14 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038771A1 (ja) * 2015-08-28 2017-03-09 国立大学法人千葉大学 有機半導体デバイスの製造方法、および粉体

Also Published As

Publication number Publication date
CN106796987B (zh) 2019-03-01
JPWO2016010046A1 (ja) 2017-06-22
TW201611364A (zh) 2016-03-16
CN106796987A (zh) 2017-05-31
WO2016010046A9 (ja) 2016-12-15
JP6550050B2 (ja) 2019-07-24
TWI664758B (zh) 2019-07-01
KR20170030639A (ko) 2017-03-17

Similar Documents

Publication Publication Date Title
TW573329B (en) Planar polymer transistor
WO2007026778A1 (ja) トランジスタ、有機半導体素子及びこれらの製造方法
KR20080008968A (ko) 반도체 장치의 제작방법
WO2007125671A1 (ja) 電界効果トランジスタ
WO2005122278A1 (ja) 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子
TWI416633B (zh) A transistor and a method for manufacturing the same, and a semiconductor device having the same
EP2388841A2 (en) Surface-treated substrate for an inkjet printer
JP2007266411A (ja) 電界効果トランジスタ
JP6731624B2 (ja) 有機半導体デバイスの製造方法、および粉体
JP6550050B2 (ja) 有機半導体薄膜の形成方法、並びにそれを用いた有機半導体デバイス及びその製造方法
WO2014136942A1 (ja) 有機薄膜の形成方法
JP2003258256A (ja) 有機tft装置及びその製造方法
US20060216910A1 (en) Active organic semiconductor devices and methods for making the same
JP2014170857A (ja) 有機半導体溶液、当該有機半導体溶液を用いた有機半導体インク
JP5630364B2 (ja) 有機半導体素子の製造方法および有機半導体素子
JP4696700B2 (ja) 有機半導体薄膜の製造方法、有機電子デバイスの製造方法及び有機電界効果トランジスタの製造方法
JP2005166894A (ja) 有機薄膜トランジスタ、その製造方法および製造装置
JP2004273514A (ja) 有機薄膜トランジスタおよびその製造方法
TWI801727B (zh) n型半導體元件、n型半導體元件的製造方法、無線通訊裝置及商品標籤
JP5254540B2 (ja) トランジスタ、有機半導体素子及びこれらの製造方法
JP2007266201A (ja) 電界効果トランジスタ
JP2015170652A (ja) 有機薄膜トランジスタの製造方法および有機薄膜トランジスタ
JP2004272162A (ja) 画像駆動素子シート及びその製造方法
JP2006024790A (ja) 有機薄膜トランジスタとその製造方法、及びそれを用いたアクティブマトリクス型のディスプレイと無線識別タグ
JP2004273512A (ja) 有機薄膜トランジスタおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004423

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15822183

Country of ref document: EP

Kind code of ref document: A1