WO2016006697A1 - アンチセンス抗悪性腫瘍剤 - Google Patents
アンチセンス抗悪性腫瘍剤 Download PDFInfo
- Publication number
- WO2016006697A1 WO2016006697A1 PCT/JP2015/069947 JP2015069947W WO2016006697A1 WO 2016006697 A1 WO2016006697 A1 WO 2016006697A1 JP 2015069947 W JP2015069947 W JP 2015069947W WO 2016006697 A1 WO2016006697 A1 WO 2016006697A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- cancer
- oligonucleotide
- expression
- antisense
- Prior art date
Links
- 0 COC[C@]1(C2OC)O[C@@](*)C2N(*)C1=O Chemical compound COC[C@]1(C2OC)O[C@@](*)C2N(*)C1=O 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1135—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/711—Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/712—Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/11—Antisense
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/323—Chemical structure of the sugar modified ring structure
- C12N2310/3231—Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/334—Modified C
- C12N2310/3341—5-Methylcytosine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/341—Gapmers, i.e. of the type ===---===
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
Definitions
- the present invention relates to an antisense antineoplastic agent.
- the present invention is useful in fields such as medicine, medicine, and life science.
- Transcription factor Y-box binding protein-1 (YB-1) is specifically expressed in tumor cells and tumor blood vessels and contributes to proliferation and resistance to treatment.
- Patent Document 1 describes that YB-1 is a vascular endothelial cell-specific biomarker of tumor neovascularization, and suppresses tumor angiogenesis by suppressing the expression of YB-1, resulting in tumor growth.
- the present invention provides a method for detecting tumor neovascular vascular endothelial cells, which comprises measuring the expression of YB-1 based on the knowledge that can be inhibited.
- Patent document 2 discloses an oligonucleotide, particularly an oligonucleotide that can specifically hybridize to a nucleic acid encoding human YB-1.
- Patent Document 3 discloses a novel molecule for antisense, an artificial nucleoside that can efficiently control the expression of a specific gene.
- an amide bond is introduced into the crosslinked structure of 2 ′, 4′-bridged nucleic acid (BNA / LNA).
- BNA / LNA has binding affinity for single-stranded RNA comparable to conventional 2 ', 4'-BNA / LNA and nuclease resistance superior to LNA, especially for single-stranded RNA Therefore, application to nucleic acid medicine is expected.
- Patent Document 4 discloses that siRNA targeting a predetermined partial sequence of a gene encoding YB-1 induces apoptosis of vascular endothelial cells and inhibits lumen formation by vascular endothelial cells. . Reference 4 also shows that this siRNA is effective against refractory tumors and proliferative vascular diseases because it suppresses abnormal neovascularization in tumor sites and destroys excessively formed neovascularization. It states that.
- siRNA or miRNA can be used to obtain a higher suppression effect than when an antisense nucleic acid is used.
- siRNA and miRNA are rapidly degraded in the body by nuclease-degrading enzymes, have low stability, and because they are double-stranded nucleic acids, they cannot be taken into cells by themselves, requiring a delivery device. The However, an effective nucleic acid delivery device has not been developed.
- antisense by an artificial nucleic acid LNA having a sugar chain appropriately cross-linked has nuclease resistance and is stable in the living body, but concerns of toxicity to the liver / kidney have been reported.
- a new generation of artificial nucleic acid with increased nuclease resistance and complementary nucleic acid binding ability compared to the above LNA has recently been developed, and the suppression of liver hyperlipidemia factor expression and symptom improvement have been reported.
- a highly versatile cancer therapy is possible if the malignant factor Y-box binding protein-1 (YB-1), which is highly expressed in cancer cells and tumor neovascular vessels, can be suppressed in vivo and tumor growth / metastasis can be inhibited.
- YB-1 malignant factor Y-box binding protein-1
- no target gene expression-suppressing nucleic acid structures such as siRNA and antisense that function in vivo without a delivery device have been found.
- no useful nucleic acid delivery device has been reported yet.
- An object of the present invention is to provide an artificial nucleic acid antisense antineoplastic agent capable of exerting an effect on a wide variety of malignant tumors in vivo regardless of the presence or absence of a delivery device.
- the present invention provides the following.
- An oligonucleotide having a length of 13 to 17 bases which comprises at least an 8 base length portion of the sequence of SEQ ID NO: 1 or SEQ ID NO: 2, and targets a polynucleotide encoding human YB-1, ie, YB- An oligonucleotide that regulates the expression of 1.
- the oligonucleotide according to 2 which has a length of 15 bases.
- oligonucleotide according to any one of 1 to 4, comprising at least one cross-linked nucleic acid.
- crosslinked nucleic acid has any one nucleoside structure selected from the group consisting of:
- Base represents a purin-9-yl group or a 2-oxo-1,2-dihydropyrimidin-1-yl group optionally having one or more optional substituents selected from the group ⁇ ,
- the ⁇ group is protected with a hydroxyl group, a hydroxyl group protected with a protecting group for nucleic acid synthesis, a linear alkyl group with 1 to 6 carbon atoms, a linear alkoxy group with 1 to 6 carbon atoms, a mercapto group, or a protecting group for nucleic acid synthesis.
- R is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group.
- the aryl group having 3 to 12 carbon atoms which may contain a hetero atom and one or more substituents selected from the ⁇ group.
- a method for suppressing the expression of YB-1 in a cell or tissue comprising a step of bringing the oligonucleotide according to any one of 1 to 7 into contact with the cell or tissue.
- a method for treating a disease or condition associated with the expression of YB-1 comprising a step of administering the oligonucleotide according to any one of 1 to 7 to a subject.
- the disease or condition associated with the expression of YB-1 is cancer.
- the cancer is stomach cancer, colon cancer, esophageal cancer, breast cancer, pancreatic cancer, biliary tract cancer, lung cancer, malignant mesothelioma, or ovarian cancer.
- the method according to 10 or 11 wherein the cancer is an anticancer drug resistant cancer.
- the anticancer drug resistant cancer is a gemcitabine resistant pancreatic cancer.
- a pharmaceutical composition comprising the oligonucleotide according to any one of 1 to 7 and a pharmaceutically acceptable carrier.
- the pharmaceutical composition according to 14 for treating a disease or condition associated with expression of YB-1.
- the pharmaceutical composition according to 15, for treating cancer.
- the pharmaceutical composition according to 16 for treating gastric cancer, colon cancer, esophageal cancer, breast cancer, pancreatic cancer, biliary tract cancer, lung cancer, malignant mesothelioma, or ovarian cancer.
- an oligonucleotide capable of efficiently regulating the expression of YB-1 is provided.
- YB-1 is highly expressed in cancer cells and new blood vessels of pancreatic / biliary tract cancer YB-1 antisense oligo BNA growth inhibitory effect YB-1 antisense oligo BNA suppresses cell cycle and induces apoptosis Antitumor effect of local administration of YB-1 antisense oligo BNA Antitumor effect of YB-1 antisense oligo BNA in blood Administration of YB-1 antisense oligo BNA in blood suppresses YB-1 expression in tumor / liver / kidney Evaluation of the safety of YB-1 antisense ⁇ oligo BNA during administration of blood (repeated administration of artificial nucleic acid (BNA) in blood induces liver dysfunction) Evolution of artificial nucleic acids by modification of cross-linked structure Safety improvement by artificial nucleic acid structure modification-LNA / BNA vs BNA amide (AmNA)- Antitumor effect of artificial nucleic acid YB-1 antisense oligo AmNA in blood
- (C) Panel left, comparison of peritoneal seeding luciferase signal 21 days after treatment. Panel right, Tumor growth inhibition (n 4, P ⁇ 0.05). Antitumor effect on peritoneal dissemination of gastric cancer.
- (C) Panel left, comparison of peritoneal seeding luciferase signal 21 days after treatment. Panel right Kaplan-Meier survival curve (n 5, P ⁇ 0.05). Anticancer agent sensitizing action by artificial nucleic acid YB-1 inhibitory antisense.
- A Pancreatic cancer cell line MIA PaCa-2.
- Treatment includes prophylaxis and therapy and preferably refers to therapy.
- the subject of treatment includes humans and non-human animals (eg, mice).
- “A and / or B” refers to at least one of A and B. When only A is included, the case of A and B other than the case of only B is included.
- the oligonucleotides of the invention target specific nucleic acid molecules and modulate their expression.
- the target nucleic acid can be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disease or disease state, or a nucleic acid molecule derived from an infectious agent.
- the target nucleic acid encodes a malignant factor Y-box binding protein-1 (YB-1) that is highly expressed in cancer cells and tumor neovasculature.
- the target nucleic acid can be single-stranded DNA, RNA, double-stranded DNA.
- the oligonucleotide of the present invention hybridizes to a target region, segment or site in the target nucleic acid and regulates the expression of YB-1. Modulation includes controlling expression up and down (inhibiting), but preferably refers to controlling expression down. Regulation of expression can be confirmed at the mRNA or protein level.
- oligonucleotide refers to a nucleotide that is an oligomer or polymer in which 2 to 50 identical or different nucleosides are linked by a phosphodiester bond or other internucleoside bond. Oligonucleotides include natural oligonucleotides and derivatives of natural oligonucleotides (which may be non-natural, artificial, or modified).
- oligonucleotide includes single-stranded DNA or RNA and double-stranded DNA or RNA.
- oligonucleotide of the present invention is a natural or non-natural single-stranded antisense oligonucleotide. Oligonucleotides also include those that are in the form of pharmaceutically acceptable salts, except as otherwise noted.
- the oligonucleotide of the present invention is, for example, 13 to 18 bases long, preferably 13 to 17 bases long. In one preferred embodiment, it is 14 to 16 bases long, more preferably 15 bases long. Suppression of YB-1 expression means that expression is 75% or less, preferably 70% or less, when an appropriate control (for example, control oligonucleotide or oligonucleotide is not present) is used. More preferably 50% or even more preferably 30% or less. A detailed experimental method for evaluating the inhibition rate is described in Example 2 of the present specification.
- the oligonucleotide of the present invention also contains at least an 8 base length portion of the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 (preferably SEQ ID NO: 2). In one of the preferred embodiments, at least a 10-base length portion, more preferably a 12-base length portion, more preferably a 14-base length portion of the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 (preferably SEQ ID NO: 2). Including.
- One particularly preferred embodiment includes all of the sequences set forth in SEQ ID NO: 1 or SEQ ID NO: 2 (preferably SEQ ID NO: 2).
- a 15mer comprising all of the sequence set forth in SEQ ID NO: 2 or a 17mer comprising all of the sequence set forth in SEQ ID NO: 2 and further comprising other sequences are examples of particularly preferred embodiments of the present invention.
- SEQ ID NO: 2 in the sequence listing shows the sequence of an oligonucleotide that is used in the experiments described in the Examples section and has a high effect of suppressing YB-1 expression.
- the oligonucleotide of the present invention may be modified. That is, it may be a derivative of a natural oligonucleotide (sometimes referred to as a non-natural type or an artificial type).
- a nucleotide contains a nucleoside moiety, and a nucleoside is a base and sugar combination.
- the base portion of a nucleoside is usually a heterocyclic base sometimes referred to as a “nucleobase” or simply “base”.
- the two most common types of heterocyclic bases are purines and pyrimidines.
- the nucleotide further comprises a phosphate group covalently linked to the sugar moiety of the nucleoside.
- nucleosides that include a pentofuranose sugar may have a phosphate group attached to the 2 ′, 3 ′, or 5 ′ hydroxyl portion of the sugar.
- phosphate groups covalently bond adjacent nucleosides together to form a linear polymer compound.
- the phosphate group is commonly referred to as forming the internucleoside backbone of the oligonucleotide.
- the normal linkage or backbone of RNA and DNA is a 3 ′ to 5 ′ phosphodiester linkage.
- Oligonucleotide modifications may be at the sugar moiety and / or at the internucleoside linkage (main chain).
- oligonucleotides with modified sugar moieties include those known as sugar partially crosslinked artificial nucleic acids BNA (Bridged Nucleic Acids).
- BNA Binary Nucleic Acids
- the oligonucleotide of the present invention may contain these.
- a structure (nucleoside moiety) contained in a nucleotide having a modified sugar moiety, which can be applied to the present invention, is shown below.
- oligonucleosides are well known to those skilled in the art. Among these, particularly preferred examples include those containing the following nucleoside structures.
- Base has one or more arbitrary substituents selected from the ⁇ group.
- Base is 6-aminopurin-9-yl group, 2,6-diaminopurine-9-yl group, 2-amino-6-chloropurine-9-yl group, 2-amino-6-fluoropurine-9- Yl group, 2-amino-6-bromopurine-9-yl group, 2-amino-6-hydroxypurine-9-yl group, 6-amino-2-methoxypurine-9-yl group, 6-amino-2 -Chloropurin-9-yl group, 6-amino-2-fluoropurin-9-yl group, 2,6-dimethoxypurin-9-yl group, 2,6-dichloropurin-9-yl group, 6-mercapto Purin-9-yl group, 2-oxo-4-amino-1,2-dihydropyrimidin-1-yl group, 4-amino-2-oxo-5-fluoro-1,2-dihydropyrimidin-1-yl group 4-amino-2-oxo
- R is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 7 carbon atoms that may form a branch or a ring, an alkenyl group having 2 to 7 carbon atoms that may form a branch or a ring, and the ⁇ group.
- the aryl group having 3 to 12 carbon atoms which may contain a hetero atom and one or more substituents selected from the ⁇ group.
- R is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, or a benzyl group, and more preferably, R is a hydrogen atom or a methyl group.
- the bridged nucleotide more preferably has the following nucleoside structure.
- Base and R are as defined above.
- the sugar moiety may be cross-linked at least one, preferably several (for example, 3 or more, preferably 4 or more, more preferably 5 or 6) of the nucleotides constituting the oligonucleotide. .
- Oligonucleotides of the invention may be oligonucleotides containing modified backbones or unnatural internucleoside linkages.
- Preferred modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriates having the usual 3'-5 'linkage.
- Methyl and other alkyl phosphonates including esters, 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidates and aminoalkyl phosphoramidates, thiono phosphoramidates Dates, thionoalkyl phosphonates, thionoalkyl phosphotriesters, selenophosphates and boranophosphates, their 2'-5 'linked analogs, and one or more internucleotide linkages therein are 3' to 3 '5' 5 ', or 2' is a bond from the 2 ', those having the opposite polarity.
- Preferred oligonucleotides with opposite polarity are single 3 'to 3' linkages at the 3 'terminal internucleotide linkage, i.e. a single reverse nucleoside residue that can be abasic (nucleobase Is deleted, or alternatively has a hydroxyl group).
- Various salts, mixed salts, and free acid forms are also included. Methods for preparing such phosphorus-containing bonds are well known to those skilled in the art.
- modified oligonucleotide backbones that do not contain a phosphorus atom therein are short chain alkyl or cycloalkyl internucleoside bonds, heteroatoms and internucleoside bonds mixed with alkyl or cycloalkyl, or one or more. , Having a main chain formed by internucleoside linkages of short-chain heteroatoms or heterocyclics.
- oligonucleosides include those having morpholino linkages (partially formed from the sugar portion of the nucleoside), siloxane backbones, sulfides, sulfoxides, and sulfone backbones, formacetyl and thioformacetyl backbones, methyleneformacetyl and thiols.
- Methods for preparing such oligonucleosides are well known to those skilled in the art.
- oligonucleotide containing a modified backbone or non-natural internucleoside linkage is a phosphorothioate type (S) oligonucleotide.
- a phosphorothioate-type oligonucleotide refers to an oligonucleotide having a phosphodiester bond in which the oxygen atom of the phosphate group is replaced with a sulfur atom.
- a phosphorothioate-type oligonucleotide is preferable in that it exhibits resistance to a nucleolytic enzyme.
- the phosphorothioate type (S-formation) can be made at some or all of the internucleoside linkages contained in the oligonucleotide.
- Oligonucleotides may be modified on both sugar and main chain. Particularly preferred examples of such oligonucleotides are: Such an oligonucleotide can be prepared as appropriate by those skilled in the art, and there are a plurality of companies that offer consignment synthesis services, which can be outsourced to other companies.
- the nucleotide sequence (sometimes referred to as a base sequence) may be a sequence consisting only of natural nucleotides, or a derivative of a natural nucleotide (modified, It may be a non-natural type or an artificial type).
- the symbol C or c indicates that the nucleotide moiety of the nucleotide is cytosine or a derivative thereof (for example, a modified form of cytosine, specifically 5-methylcytosine, 2'-O-methylcytosine etc.); the part other than the base is not particularly limited and may be a natural type, the sugar part may be a bridged type; the main chain or internucleoside linkage is For example, the phosphorothioate type in which the oxygen atom of the phosphate group in the phosphodiester bond is substituted with a sulfur atom (sometimes referred to as S) may be used.
- S sulfur atom
- nucleotide or base sequence refers to 5-methylcytosine, unless otherwise specified.
- N or n means nucleotides (DNA or RNA) whose base moiety is adenine, guanine, cytosine, thymidine / uracil, unknown or other bases. Yes, preferably DNA)) or the base itself.
- a nucleotide or base sequence is described in capital letters, it means a base or nucleotide that is a sugar partial cross-linked type, unless otherwise specified.
- the oligonucleotides of the invention can be administered directly to any pharmaceutically acceptable salt, ester, or salt of such an ester, or its biologically active metabolite or residue when administered to an animal, including a human. It can be (or indirectly) any other compound that can be provided.
- a pharmaceutically acceptable salt is a physiologically and pharmaceutically acceptable salt of a compound of the invention, ie a salt that retains the desired biological activity of the parent compound and does not impart undesired toxicological effects thereto.
- Preferred examples of pharmaceutically acceptable salts and their use for oligonucleotides are well known to those skilled in the art.
- Preferred specific examples of pharmaceutically acceptable salts for oligonucleotides include, but are not limited to, (a) salts formed with cations such as polyamines such as sodium, potassium, ammonium, magnesium, calcium, spermine and spermidine. (B) acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, etc.
- acetic acid oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, Organics such as gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid Salts formed with acids, and (d) elements such as chlorine, bromine and iodine Salts formed from the anion can be exemplified.
- the pharmaceutical composition according to the embodiment of the present invention can be in various dosage forms and adopt various administration routes. That is, the pharmaceutical compositions of the present invention can be administered by an appropriate route, depending on whether local or systemic treatment is desired and on the part to be treated. Administration can be local or systemic, oral or parenteral. Examples of parenteral administration include administration through mucous membranes such as the eye, vagina, rectum; thoracic, pulmonary, intratracheal, or nasal by inhalation or insufflation (including spraying as a dry powder or aerosol, for example). Administration into the epidermis by application or application; Subcutaneous administration by injection or implantation; Intravenous, intraarterial, intraperitoneal, intramuscular or intracranial (including intrathecal or intraventricular) by injection or infusion. Is mentioned.
- Subjects to be treated with the pharmaceutical composition include animals.
- the animal can be a mammal such as a mouse, rat, dog, guinea pig, human, non-human primate, cat, or pig.
- Non-human primates include monkeys and chimpanzees.
- Other examples can be laboratory animals such as mice, rats, dogs, non-human primates, cats, or pigs.
- the subject of treatment can be a human.
- the pharmaceutical composition of the present invention can be used for the treatment of diseases or conditions associated with the expression of YB-1.
- a specific example of a disease or condition associated with YB-1 expression is cancer.
- the cancer includes gastric cancer, colon cancer, esophageal cancer, breast cancer, pancreatic cancer, biliary tract cancer, lung cancer, malignant mesothelioma, or ovarian cancer.
- An accelerator may be added to the pharmaceutical composition of the present invention to promote the uptake of oligonucleotides at the cellular level.
- cationic lipids such as LIPOFECTIN TM reagent (Junichi et al., US Pat. No. 5,705,188), polycation molecules such as cationic glycerol derivatives, and polylysine (Lollo et al., International Patent Publication No. WO 97/30731) can be used.
- One embodiment considered to be particularly preferable is to dissolve the lyophilized active ingredient with physiological saline or the like immediately before administration and administer it intravenously, intraperitoneally or locally by injection or infusion.
- the pharmaceutical composition of the present invention can be used with other pharmaceutical compositions containing chemotherapeutic agents and can be used on subjects who have become resistant to chemotherapy.
- chemotherapeutic agents include nucleotide analogs. More specifically, purine analogs such as thioguanine, fludarabine phosphate (F-Ara-A, fludara), cladribine (2-CdA, leustatin) are included. Also included are pyrimidine analogs such as cytarabine (Ara-C, kiloside) and gemcitabine (GEM, gemzar). Gemcitabine is used in the treatment of pancreatic cancer.
- daunorubicin examples are daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bischloroethylnitrosourea, busulfan, mitomycin C, actinomycin D, mithromycin, Prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitozantrone, amsacrine, chlorambucil, methylcyclohexylnitrosourea, nitrogen mustard, melphalan, cyclophosphamide, 6-mercaptopurine, 6 -Thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoform
- the pharmaceutical composition may contain a pharmaceutically acceptable carrier in addition to the active ingredient oligonucleotide.
- the pharmaceutical composition may be used in combination with an anticancer agent.
- An antitumor effect can be expected to be improved by using an anticancer agent having an action mechanism different from that of the pharmaceutical composition.
- the composition of the invention comprises one or more oligonucleotides that target the first nucleic acid, in particular oligonucleotides, and one or more additional oligonucleotides that target the second nucleic acid target.
- the composition of the invention may comprise two or more oligonucleotides targeted to different regions of the same nucleic acid target. Numerous examples of oligonucleotides are known in the art. Two or more linked compounds can be used together or sequentially.
- Dosing is designed based on the severity and responsiveness of the disease state to be treated within the course of treatment lasting days to months or until cure is achieved or reduction of the disease state is achieved. can do.
- the optimal dosing schedule can be calculated by measuring the accumulation of the drug in the patient's body. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and frequencies. Optimal dosages will vary depending on the relative potency of the individual oligonucleotides and can generally be assessed based on the EC 50 found to be effective in in vitro and in vivo animal models.
- the dosage of active ingredient is 0.01 ⁇ g to 100 g per kg body weight, 0.1 ⁇ g to 10 g per kg body weight, 1.0 ⁇ g to 1 g per kg body weight, 10.0 ⁇ g to 100 mg per kg body weight, per kg body weight 100 ⁇ g to 10 mg, or 1 mg to 5 mg per kg body weight, once a day, once a week, once a month or once a year, or once every 2-20 years, or once Can be administered multiple times.
- One skilled in the art can readily assess the frequency of administration based on the measured residence time and concentration of the drug in bodily fluids or tissues.
- the patient After successful treatment, it may be desirable to have the patient receive maintenance therapy to prevent recurrence of the disease state, in which case the oligonucleotide is within the range of 0.01 ⁇ g to 100 g per kg body weight, Administer at a maintenance dose of at least once per day to once every 20 years.
- the effect of treatment with the therapeutic composition can be assessed after collection of tissue or fluid from the patient or subject undergoing treatment. It is known in the art that a biopsy sample can be collected from a particular tissue without causing adverse effects on the patient or subject.
- the tissue and its constituent cells include blood (eg, hematopoietic cells such as human hematopoietic progenitor cells, human hematopoietic stem cells, CD34 + cells, CD4 + cells), lymphocytes and other blood cells, bone marrow, breast , Cervix, colon, esophagus, lymph node, muscle, peripheral blood, oral mucosa and skin.
- blood eg, hematopoietic cells such as human hematopoietic progenitor cells, human hematopoietic stem cells, CD34 + cells, CD4 + cells
- lymphocytes and other blood cells eg, lymphocytes and other blood cells, bone marrow, breast , Cervix, colon, esophagus,
- the body fluid and its constituent cells include, but are not limited to, blood, urine, semen, synovial fluid, lymph fluid and cerebrospinal fluid.
- Tissue or body fluid collected from the patient can be evaluated from the expression level of the target mRNA or protein.
- the expression level of mRNA or protein of other genes known or suspected to be associated with a particular disease state, condition or phenotype can be assessed.
- mRNA levels can be measured or assessed by real-time PCR, Northern blot, in situ hybridization or DNA array analysis. Protein levels can be measured or assessed using ELISA, immunoblot, quantitative protein analysis, protein activity analysis (eg, caspase activity analysis), immunohistochemistry or immunocytochemistry.
- biomarkers associated with the disease or condition in the aforementioned tissues and fluids collected from the patient or subject to be treated by clinical methods of procedures known in the art include glucose, cholesterol, lipoprotein, triglyceride, free fatty acids and other markers of glucose and lipid metabolism; lipoprotein (a) or Lp (a) or apolipoprotein B; liver transaminase, bilirubin, albumin, Blood urea nitrogen, creatine and other markers of renal and liver function; interleukins, tumor necrosis factor, intracellular adhesion molecules, C-reactive protein and other markers of inflammation; testosterone, estrogen and other hormones; tumor markers Including but not limited to vitamins, minerals and electrolytes. Examples of the present invention will be described below, but the scope of the present invention is not limited to the examples.
- BNA refers to LNA / 2′4′-BNA unless otherwise specified.
- Example 1 Confirmation of YB-1 expression in pancreatic cancer and biliary tract cancer
- YB-1 which is involved in anticancer drugs and radiation resistance, is known to be highly expressed in many cancer types and tumor blood vessels, but its expression in anticancer drugs and radiation-resistant pancreatic / biliary tract cancers is not yet clear.
- Example 2 Screening and evaluation of antisense oligonucleic acid
- Various candidate antisense oligonucleic acids are synthesized, introduced into various cancer cells using the gene transfer reagent Lipofectamine RNAiMax, and screened using the ability to suppress YB-1 expression as an indicator, 70% or more at 5-20nM concentration ASO # 1 and ASO # 10 showing the knockdown efficiency were found (data not shown). The structure of ASO # 10 is shown below.
- ASO # 10 also sometimes referred to as “YB-1 ASO”. TCTcctgcaccCTGg, SEQ ID NO.:2
- TCTcctgcaccCTGg SEQ ID NO.:2
- ASO # 10 is introduced at a final concentration of 50 nM for pancreatic cancer cells and 5 nM for vascular endothelial cells using the gene transfer reagent Lipofectamine® RNAiMax. The proliferation ability was measured by the assay method.
- ASO # 10 we synthesized significantly inhibited the growth of pancreatic cancer / vascular endothelial cells compared to the control antisense oligonucleic acid (CATttcgaagtACTc, SEQ ID NO: 3) (FIG. 2). It has been confirmed that gastric cancer and breast cancer are also knocked down by ASO # 10.
- Example 3 Cell cycle analysis and confirmation of apoptosis induction by YB-1 ASO BNA
- Example 3 Cell cycle analysis and confirmation of apoptosis induction by YB-1 ASO BNA
- YB-1 ASO has a G2 / M fraction compared to control antisense oligo BNA (CATttcgaagtACTc, SEQ ID NO .: 3 in the sequence, capital letters correspond to BNA. The same applies in the following examples).
- the subG1 fraction was significantly increased (17.7 vs 2.0% for HUVEC; 18.7 vs 1.3% for HPAEC), and an increase in apoptosis was also observed.
- vascular endothelial HUVEC cells were administered with fluorescent FITC-labeled Annexin V, and the fluorescence was observed.
- YB-1 ASO BNA binds to extracellular phosphatidylserine, a marker of apoptosis. Although an increase in Annexin V-positive cells was observed, cells treated with the control antisense oligo BNA hardly showed Annexin V.
- Example 4 Effect of local administration of YB-1 ASO BNA
- MiaPaCa-luc pancreatic cancer cells that stably express luciferase were transplanted subcutaneously into the thighs of nude mice to create subcutaneous tumors approximately 6-7 mm in size.
- YB-1 ASO BNA final concentration 10 ⁇ M
- atelocollagen implant was mixed with atelocollagen implant at a volume ratio of 1: 1 and administered locally into the tumor (once a week, a total of 2 times), and the tumor volume (luciferase activity) was measured over time. Evaluation was performed by imaging.
- YB-1 ASO BNA significantly reduced tumor volume compared to control antisense oligo BNA, and macroscopic findings on Day 17 showed that tumors regressed to white tone in the YB-1 ASO BNA group. Admitted.
- the control antisense BNA group tumor growth accompanied by redness was observed (FIG. 4).
- Example 5 Effects of administration of YB-1 ASO BNA in blood
- SUIT2 pancreatic cancer and HCT116 colon cancer cells were transplanted subcutaneously into the nude mouse thigh to create a subcutaneous tumor about 6-7 mm in size.
- YB-1 ASO BNA 200 ⁇ g / 200 ⁇ L
- YB-1 ASO BNA suppressed tumor growth by 1 / 4-1 / 5 compared to control antisense BNA (FIG. 5).
- YB-1 ASO BNA (indicated as “ASO # 10” in FIG. 6; 200 ⁇ g / 200 ⁇ L) is administered into the blood from the tail vein (weekly) to nude mice that have created the HCT116 colon cancer subcutaneous tumor. Once, a total of 2 times), 48 hours after the final administration, subcutaneous tumors, liver and kidney were collected, RNA was extracted, and YB-1 expression was analyzed by real-time RT-PCR. YB-1 ASO BNA significantly suppressed tumor, liver and kidney YB-1 expression to about 1/3 compared to control antisense BNA.
- YB-1 ASO BNA showed YB-1 expression in the tumor tissue and expression of the neovascular marker CD31 compared to control antisense BNA. And the suppression of YB-1 expression in vivo was confirmed (FIG. 6).
- Example 7 Confirmation of safety by YB-1 ASO BNA administration in blood
- a blood test examined the safety of YB-1 ASO BNA, which showed antitumor effects, in the blood.
- Nude mice were given YB-1 ASO BNA (indicated as “ASO-YBX1” in FIG. 7) at a concentration of 100 ⁇ g / 200 ⁇ L, 200 ⁇ g / 200 ⁇ L after a single dose in the blood from the tail vein.
- Blood was collected after time, and blood biochemical tests were performed on ALT, T.Bil, BUN, and Creatinin items to evaluate liver and kidney function.
- YB-1 ASO BNA and control antisense BNA also showed abnormal functions. I did not admit. However, when repeated administration was repeated three times, only YB-1 ASO BNA showed an increase in liver function markers AST and T.Bil, but there was no functional abnormality in control antisense BNA and saline control (Fig. 7).
- Example 8 Cross-linked artificial nucleic acid AmNA
- Co-inventors: Obiga, Yamamoto et al. (Osaka University) have been developing cross-linked artificial nucleic acids and optimizing their cross-linked structure (bottom left of Fig. 8).
- Cross-linked artificial nucleic acid called AmNA has succeeded in reducing the binding power to DNA while maintaining the target RNA binding ability equivalent to conventional 2 ', 4'-BNA / LNA. It is a cross-linked artificial nucleic acid with excellent properties (upper right of FIG. 8).
- Example 9 Effect of YB-1 ASO AmNA on blood function by blood administration
- YB-1 ASO BNA indicated as “ASO # 10” in FIG. 9
- YB-1 ASO AmNA in FIG. 9
- ASO # 10 AmNA was dissolved in 200 ⁇ L of each oligonucleotide in 200 ⁇ L of physiological saline and administered into the blood from the tail vein (once a week, 3 times in total) Blood was collected 48 hours after the final administration and subjected to blood biochemistry.
- the structure of YB-1 ASO AmNA is shown below.
- YB-1 ASO prepared with 2 ', 4'-BNA / LNA is significantly increased in AST and ALT markers of liver dysfunction compared to Control ASO, whereas YB-1 synthesized with AmNA ASO did not induce liver dysfunction (FIG. 9).
- YB-1 ASO AmNA is highly safe.
- Example 10 Antitumor effect of YB-1 ASO AmNA administered in blood
- Example 9 the antitumor effect by administration of AmNA type YB-1 ASO in blood, which was confirmed to be higher safety than ASO composed of conventional BNA, was examined.
- human colon cancer cell HCT116 into the subcutaneous part of the nude mouse and forming a subcutaneous tumor with a diameter of 6-7 mm (average tumor volume 78 vs 72 mm 3 )
- 200 ⁇ g of YB-1 ASO AmNA from the tail vein / 200 ⁇ L of blood was administered (once every other week for a total of 2 times).
- Tumor volume was calculated by the formula.
- the YB-1 ASO AmNA group was suppressed to about 1/5 in both tumor diameter and tumor weight as compared to the control antisense group (FIG. 10). * P ⁇ 0.05
- Example 11 Antitumor effect of YB-1 ASO AmNA on anticancer drug resistant cancer cells
- a human pancreatic cancer SUIT2 cell line was prepared by culturing pancreatic cancer resistant to the anticancer drug gemcitabine for a long time in a medium containing a low concentration of gemcitabine (IC50 value: resistant strain 100 nM vs parental strain 5 nM).
- IC50 value resistant strain 100 nM vs parental strain 5 nM.
- a subcutaneous tumor was prepared in the same manner as in Example 10, and YB-1 ASO AmNA and control antisense were administered in the blood at 200 ⁇ g / 200 ⁇ L in the same protocol (once every other week, twice in total). Compared to the control antisense group, the YB-1 ASO AmNA group was suppressed to about 1/3 in both tumor diameter and tumor weight, and it was clear that the anti-tumor drug-resistant cancer cells were effective. (Figure 11). * P ⁇ 0.05
- Example 12 Comparison of YB-1 expression inhibitory effect of various antisenses.
- Each antisense at a predetermined concentration was introduced into various cancer cells by the method of Example 2, and an RNA sample was collected 48 hours later and analyzed by qRT-PCR. The results are shown in FIG.
- HsYBX1-839-BNA18 ASO # 16
- HsYBX1-840-BNA18 ASO # 17
- the nucleotide written in capital letters is BNA.
- Example 13 Confirmation of YB-1 expression suppression by YB-1 ASO AmNA
- FIG. 13A shows the results when ASO # 1 AmNA and # 10 AmNA were administered twice to the HCT116 (colon cancer) subcutaneous tumor model (one week after the first administration and the second administration).
- FIG. 13B shows the results when ASO # 1AmNA and # 10AmNA were administered twice to the SUIT2-GR (pancreatic cancer) subcutaneous tumor model (one week after the first administration and the second administration).
- FIG. 13C shows the results when ASO # 10 AmNA was administered once a week for a total of 4 times.
- Example 14 Antitumor effect on pancreatic cancer and colon cancer by repeated blood administration
- a subcutaneous tumor model was created by transplanting gemcitabine-resistant pancreatic cancer SUIT2-GR and colon cancer HCT116 into the nude mouse subcutaneously, and once the tumor diameter of 50 mm 3 was formed, once a week for 3 weeks, # 10 AmNA YB-1 Anti Sense was administered from 10 mg / kg BW tail vein. Tumor diameter was measured over time. Even in the weekly administration protocol, as shown in Table 3, there was no problem in safety, and a significant inhibitory effect on subcutaneous tumors was observed on days 14 and 21 (FIG. 14 (A)).
- Table 3 shows the results of measuring blood samples in treatment experiments. There was no abnormality in general blood and biochemical tests.
- Example 15 Antitumor effect on lung cancer
- a subcutaneous tumor model of Lewis lung cancer was created, and after the tumor diameter of 50 mm 3 was formed, # 10 AmNA YB-1 antisense was administered from the 10 mg / kg BW tail vein once a week for 3 weeks. Tumor diameter was measured over time.
- a photograph of the subcutaneous tumor on the 21st day of treatment showed a small subcutaneous tumor in the # 10 AmNA YB-1 antisense administration group compared to the control group (FIG. 15 (A)).
- On day 14 and day 21 of treatment tumor growth was significantly suppressed in the # 10AmNA YB-1 antisense administration group as compared to the control antisense group (FIG. 15 (B)).
- (* P ⁇ 0.05, ** P ⁇ 0.01; n 5)
- Example 15 Antitumor effect on malignant mesothelioma
- # 10AmNA YB-1 antisense was introduced into the malignant mesothelioma cell line H226 using the reagent Lipofectamine RNAiMax, and the expression of YB-1 was examined by real-time RT-PCR.
- YB-1 expression suppression (A) and growth suppression (B) by # 10AmNA YB-1 antisense were observed in a concentration-dependent manner. * P ⁇ 0.001.
- tumor diameter 50 mm 3 was formed, once a week, for 2 weeks, # 10 AmNA YB-1 antisense was administered from 10 mg / kg BW tail vein, Tumor diameter was measured over time. The results are shown in FIG. 15 (C).
- the left panel shows a photograph of the subcutaneous tumor after treatment.
- Example 16 Antitumor effect on malignant mesothelioma
- # 10AmNA YB-1 antisense was introduced into the malignant mesothelioma cell line H226 using the reagent Lipofectamine RNAiMax, and the expression of YB-1 was examined by real-time RT-PCR.
- YB-1 expression suppression (A) and growth suppression (B) by # 10AmNA YB-1 antisense were observed in a concentration-dependent manner. * P ⁇ 0.001.
- tumor diameter 50 mm 3 was formed, once a week, for 2 weeks, # 10 AmNA YB-1 antisense was administered from 10 mg / kg BW tail vein, Tumor diameter was measured over time. The results are shown in FIG. 16 (C).
- the left panel shows a photograph of the subcutaneous tumor after treatment.
- Example 17 Antitumor effect on peritoneal dissemination of ovarian cancer
- # 10AmNA YB-1 antisense was introduced into the ovarian cancer cell line SKOV3 using the reagent Lipofectamine RNAiMax, and the expression of YB-1 was examined by real-time RT-PCR. Suppression of YB-1 expression (FIG. 17 (A)) and growth suppression (FIG. 17 (B)) by # 10AmNA YB-1 antisense were observed in a concentration-dependent manner. * P ⁇ 0.001.
- Example 18 Antitumor effect on peritoneal dissemination of gastric cancer
- # 10AmNA YB-1 antisense was introduced into the gastric cancer cell line AS44 using the reagent Lipofectamine RNAiMax, and expression of YB-1 was examined by real-time RT-PCR.
- # 10AmNA YB-1 antisense suppressed YB-1 expression suppression (A) and concentration-dependent growth suppression (B). * P ⁇ 0.001.
- a peritoneal dissemination model of the Luciferase stably expressing gastric cancer cell line AS44-luc was prepared, and 10 mg / kg BW intraperitoneally was administered # 10 AmNA YB-1 antisense once a week for 1 week after 1 week of cancer transplantation. Tumor volume was evaluated by luciferase activity over time. The results are shown in FIG. 18 (C).
- the left panel shows a comparison of peritoneal seeding luciferase signals 21 days after treatment.
- Example 19 Sensitizing effect of anticancer agent by artificial nucleic acid YB-1 inhibitory antisense
- # 10 AmNA YB-1 antisense 5 nM was introduced into the pancreatic cancer cell line MIA PaCa-2 (Fig. 19 (A)) and ovarian cancer cell line SKOV-3 (Fig. 19 (B)) with the reagent Lipofectamine RNAiMax.
- the cell killing effect of anticancer drugs was compared with and without antisense. Enhancement of the cell killing effect by introduction of low concentration # 10AmNA YB-1 antisense was observed. Concentrations of anti-cancer drugs that showed the same cell killing effect are shown in blue (5-FU) and red (Gemcitabine).
- Example 20 Radiosensitization by artificial nucleic acid YB-1 inhibitory antisense
- # 10AmNA YB-1 antisense (10 nM) was introduced into the pancreatic cancer cell line SUIT-2 with the reagent Lipofectamine RNAiMax, and the cell killing effect by X-ray irradiation was compared with the presence or absence of antisense. The results are shown in FIG. Enhancement of the cell killing effect by introduction of low concentration YB-1 antisense was observed.
- Example 21 Comparison of YB-1 knockdown efficiency by antisense prepared from natural nucleic acid, LNA / BNA, AmNA nucleic acid
- YB-1 natural nucleic acid antisense (NA), LNA / BNA nucleic acid antisense (BNA), AmNA nucleic acid antisense (AmNA) are added to vascular endothelial cell lines (HUVEC, HPAEC) and pancreatic cancer cell lines (MiaPaCa2-) Introduced at each concentration. RNA was extracted 24 hours later, and YB-1 expression was evaluated by real-time RT-PCR. The results are shown in FIG.
- the knockdown efficiency of YB-1 by AmNA nucleic acid antisense was significantly higher than that of natural nucleic acid antisense and LNA nucleic acid antisense.
- Example 23 Comparison of YB-1 knockdown efficiency by 15-18mer
- 15-18mer oligonucleotides were introduced into pancreatic cancer cell lines (MIA PaCa-2), colon cancer cell lines (HCT-116) and ovarian cancer cell lines (SKOV3) at various concentrations.
- RNA was extracted 24 hours later, and YB-1 expression was evaluated by real-time RT-PCR.
- the structures of oligonucleotides other than 15mer are shown below.
- the present invention is useful in fields such as pharmaceutical manufacturing, medical care, and life science.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
[1] 13~17塩基長のオリゴヌクレオチドであって、配列番号1または配列番号2の配列の少なくとも8塩基長部分を含み、ヒトYB-1をコードするポリヌクレオチドを標的とする、すなわちYB-1の発現を調節する、オリゴヌクレオチド。
[2] 14~16塩基長である、1に記載のオリゴヌクレオチド。
[3] 15塩基長である、2に記載のオリゴヌクレオチド。
[4] 配列番号1または配列番号2の配列からなる、オリゴヌクレオチド。
[5] 少なくとも1つの架橋型核酸を含む、1~4のいずれか1項に記載のオリゴヌクレオチド。
[6] 架橋型核酸が、下記からなる群より選択されるいずれか一のヌクレオシド構造を有する、5に記載のオリゴヌクレオチド
Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基または2-オキソ-1, 2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり;
Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択されるいずれかの置換基を1以上有していてもよく、そしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択されるいずれかの置換基を1以上有していてもよく、そしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表す。)。
[7] 少なくとも1つのホスホロチオエート型ヌクレオチドを含む、1~6のいずれか1項に記載のオリゴヌクレオチド。
[8] 1~7のいずれか1項に記載のオリゴヌクレオチドを、細胞または組織と接触させる工程を含む、細胞または組織におけるYB-1の発現の抑制方法。
[9] 1~7のいずれか1項に記載のオリゴヌクレオチドを、対象に投与する工程を含む、YB-1の発現に関連した疾患または状態の処置方法。
[10] YB-1の発現に関連した疾患または状態が、癌である、9に記載の方法。
[11] 癌が、胃癌、大腸癌、食道癌、乳癌、膵癌、胆道癌、肺癌、悪性中皮腫、または卵巣癌である、10に記載の方法。
[12] 癌が、抗癌剤耐性の癌である、10または11に記載の方法。
[13] 抗癌剤耐性の癌が、ゲムシタビン耐性の膵癌である、12に記載の方法。
[14] 1~7のいずれか1項に記載のオリゴヌクレオチド、および医薬として許容される担体を含む、医薬組成物。
[15] YB-1の発現に関連した疾患または状態を処置するための、14に記載の医薬組成物。
[16] 癌を処置するための、15に記載の医薬組成物。
[17] 胃癌、大腸癌、食道癌、乳癌、膵癌、胆道癌、肺癌、悪性中皮腫、または卵巣癌を処置するための、16に記載の医薬組成物。
[18] 抗癌剤耐性の癌を処置するための、16または17に記載の医薬組成物。
[19] ゲムシタビン耐性の膵癌を処置するための、18に記載の医薬組成物。
[20] 皮下投与用または経口投与用である、請求項14~19のいずれか1項記載の医薬組成物。
本発明のオリゴヌクレオチドは、特定の核酸分子を標的とし、その発現を調節する。一般に、標的核酸は、例えば、その発現が特定の疾患または疾患状態に関連する細胞遺伝子(または遺伝子から転写されたmRNA)、または感染性因子由来の核酸分子であり得る。本発明において、標的核酸は、癌細胞と腫瘍新生血管に高発現する悪性化因子Y-box binding protein-1 (YB-1)をコードする。標的核酸は、一本鎖DNA、RNA、二本鎖DNAであり得る。本発明のオリゴヌクレオチドは、標的核酸内の標的領域、セグメントまたは部位にハイブリダイズし、YB-1の発現を調節する。調節は、発現を上方に制御することと、下方に制御すること(阻害)を含むが、好ましくは発現を下方に制御することを指す。発現の調節は、mRNAレベル、または 蛋白レベルで、確認することができる。
本発明は、YB-1の発現を調節する、オリゴヌクレオチドを提供する。オリゴヌクレオチドというとき、同一または異なるヌクレオシドが、リン酸ジエステル結合またはそれ以外のヌクレオシド間結合で2~50個結合した、オリゴマーまたはポリマーであるヌクレオチドをいう。オリゴヌクレオチドは、天然型オリゴヌクレオチドと、天然型オリゴヌクレオチドの誘導体(非天然型、人工型、修飾された、ということもある。)とを含む。そのような誘導体としては、例えば、糖部分が修飾された糖誘導体;リン酸ジエステル部分がチオエート化されたチオエート誘導体;リン酸ジエステル結合中のリン酸基の酸素原子が硫黄原子で置換されたホスホロチオエート誘導体;末端のリン酸部分がエステル化されたエステル体;プリン塩基上のアミノ基がアミド化されたアミド体が挙げられる。オリゴヌクレオチドというとき、特に記載した場合を除き、一本鎖のDNAまたはRNA、二本鎖のDNAまたはRNAを含む。本発明のオリゴヌクレオチドの好ましい態様の一つは、天然型または非天然型の、一本鎖のアンチセンスオリゴヌクレオチドである。オリゴヌクレオチドはまた、特に記載した場合を除き、医薬として許容される塩の形態であるものを含む。
本発明のオリゴヌクレオチドは、任意の医薬として許容される、塩、エステル、もしくはかかるエステルの塩、またはヒトを含む動物に投与すると、その生物学的に活性のある代謝産物もしくは残留物を(直接もしくは間接的に)提供し得る任意の他の化合物であり得る。
以下、本発明の実施例を説明するが、本発明の範囲は、実施例に限定されない。
〔実施例1:膵癌および胆道癌におけるYB-1発現確認〕
抗癌剤や放射線抵抗性に関与するYB-1は多くの癌種や腫瘍血管に高発現することが知られているが、抗癌剤や放射線耐性の膵・胆道癌での発現は未だ明らかではない。我々は臨床検体(ホルマリン固定標本から作製したパラフィン包埋切片)を用いて膵癌および胆道癌におけるYB-1発現を免疫染色で検討した。膵癌40例中37例の膵管癌細胞に高発現を認め、腫瘍血管にも癌細胞ほどの高頻度ではないが、YB-1高発現を認めた(40例中24例)。一方、胆道癌組織においては、癌細胞におけるYB-1発現は中程度で37例中26例に認め、膵・胆道癌でのYB-1高発現を確認した(図1)。
候補アンチセンスオリゴ核酸を種々合成し、種々の癌細胞に対して遺伝子導入試薬Lipofectamine RNAiMaxを用いて導入して、YB-1発現抑制能を指標にスクリーニングを行い、5-20nM濃度で70%以上のノックダウン効率を示すASO#1およびASO#10を見出した(データ示さず)。ASO#10の構造を以下に示す。
実施例2で認めた癌・血管内皮細胞の増殖抑制効果の機序を明らかにするために、血管内皮細胞(1x105/well)に上記と同じ条件でYB-1 ASO BNA(TCTcctgcaccCTGg、SEQ ID NO.:2 配列中、大文字の箇所がBNAに相当する。以下の実施例において同じ。)5nMの濃度で導入した。導入72時間後に、細胞をPI (1μg/ml,) 30min, 37℃インキュベーションし、その後Flow cytometer (FACS CantoII) にて細胞周期解析を行った。YB-1 ASOはコントロールアンチセンスオリゴBNA(CATttcgaagtACTc、SEQ ID NO.:3 配列中、大文字の箇所がBNAに相当する。以下の実施例において同じ。)に比較して、G2/M分画が有意に減少し(22.1 vs 14.5% for HUVEC; 28.5 vs 14.0% for HPAEC細胞)、G2/M arrestが誘導された。更に、subG1分画が有意に増加し(17.7 vs 2.0% for HUVEC; 18.7 vs 1.3% for HPAEC)、アポトーシスの増加も認められた。
ルシフェラーゼを安定発現するMiaPaCa-luc膵癌細胞をヌードマウス大腿皮下に移植して約6-7mm大の皮下腫瘍を作成した。YB-1 ASO BNA(最終濃度 10 μM)をアテロコラーゲンインプラントと容量比1:1で混合し腫瘍内に局所投与し(毎週1回、計2回)、経時的に腫瘍容量(ルシフェラーゼ活性)をIVISイメージングにて評価した。YB-1 ASO BNAはコントロールアンチセンスオリゴBNAに比較して、有意に腫瘍量の抑制が認められ、Day 17日目の肉眼的所見でも、YB-1 ASO BNA群では腫瘍は白色調に退縮を認めた。一方、コントロールアンチセンスBNA群では発赤を伴う腫瘍の増大を認めた(図4)。
SUIT2膵癌およびHCT116大腸癌細胞をヌードマウス大腿皮下に移植して約6-7mm大の皮下腫瘍を作成した。YB-1 ASO BNA(200 μg/200 μL)を尾静脈から血中投与し(毎週1回、計3回)、経時的に腫瘍径を計測し腫瘍量を測定した。YB-1 ASO BNAはコントロールアンチセンスBNAに比較して、1/4~1/5と腫瘍増大を抑制した(図5)。
上記HCT116大腸癌皮下腫瘍を作成したヌードマウスに、YB-1 ASO BNA(図6中では「ASO#10」と表記されている。200 μg/200 μL)を尾静脈から血中投与し(毎週1回、計2回)、最終投与48時間後に皮下腫瘍、肝臓、腎臓を採取してRNAを抽出し、real-time RT-PCRにてYB-1発現を解析した。YB-1 ASO BNAはコントロールアンチセンスBNAに比較して有意に腫瘍、肝臓、腎臓のYB-1発現が約1/3に抑制されていた。更に、腫瘍の凍結切片を用いてYB-1の免疫染色を行ったところ、YB-1 ASO BNAはコントロールアンチセンスBNAに比較して腫瘍組織内のYB-1発現と新生血管マーカーのCD31の発現が低下しており、生体内でのYB-1発現抑制が確認できた(図6)。
抗腫瘍効果を認めたYB-1 ASO BNAの血中投与による安全性を血液検査で検討した。ヌードマウスにYB-1 ASO BNA(図7中では、「ASO-YBX1」と表記されている。)100μg/200 μL, 200 μg/200 μLの濃度で尾静脈から血中単回投与した後48時間後に採血し、肝・腎機能を評価するためにALT, T.Bil, BUN, Creatininの項目に関して、血液生化学検査を行ったところ、YB-1 ASO BNA、コントロールアンチセンスBNAとも機能異常を認めなかった。しかし、3回反復投与した場合、YB-1 ASO BNAのみ肝機能マーカーAST, T.Bilの上昇を認めたが、コントロールアンチセンスBNAと生食コントロールでは機能異常は認めなかった(図7)
共同発明人:小比賀、山本らは(大阪大学)架橋型人工核酸の開発並びにその架橋構造の最適化を進めてきた(図8左下)。AmNAと呼ばれる架橋型人工核酸は従来の2',4'-BNA/LNAと同等の標的RNA結合能を維持しつつ、DNAに対しては結合力を低下させることに成功しており、RNA選択性に優れた架橋型人工核酸である(図8右上)。さらに、In vitroでのヌクレアーゼ(3'-エキソヌクレアーゼ)に対する分解耐性に関する比較実験で、これまでに開発されてきた関連の架橋型人工核酸2',4'-BNAに比べ高い耐性能力を示している(前掲特許文献3)。
実施例7と同様に、担癌ヌードマウスの尾静脈からYB-1 ASO BNA(図9中では、「ASO #10」と表記されている。)およびYB-1 ASO AmNA(図9中では、「ASO #10 AmNA」と表記されている。)を 200 μgのオリゴヌクレオチドを、各々200 μLの生理食塩水に溶解し、尾静脈から血中投与して(毎週1回、計3回)、最終投与の48時間後に血液を採取し、血液生化学検査を行った。YB-1 ASO AmNAの構造を以下に示す。
実施例9で従来のBNAで構成されるASOに比較して高い安全性が認められたAmNAタイプのYB-1 ASOの血中投与による抗腫瘍効果を検討した。ヌードマウス大腿皮下部にヒト大腸癌細胞HCT116を移植し、直径が6-7mmの皮下腫瘍が形成されてから(平均腫瘍容量 78 vs 72 mm3)、尾静脈からYB-1 ASO AmNAを 200 μg/200 μL血中投与した(隔週1回、計2回)。継時的に腫瘍径を計測し、(長径)x(短径)2/2の計算式で算出した腫瘍容量をコントロールアンチセンス群と比較した。2回目の投与後1週間目(day 28)に皮下腫瘍を採取し、重量を比較した。YB-1 ASO AmNA群はコントロールアンチセンス群に比較して、腫瘍径でも腫瘍重量でも約1/5に抑制された(図10)。*P<0.05
抗癌剤ゲムシタビン耐性の膵癌を長期間低濃度のゲムシタビン含有培地で培養することでヒト膵癌SUIT2細胞株を作成した(IC50値:耐性株100 nM vs 親株5 nM)。皮下腫瘍を実施例10と同様に作成し、同じプロトコールでYB-1 ASO AmNAおよびコントロールアンチセンスを200 μg/200 μL血中投与した(隔週1回、計2回)。YB-1 ASO AmNA群はコントロールアンチセンス群に比較して、腫瘍径でも腫瘍重量でも約1/3に抑制され、抗癌剤耐性癌細胞に対しても抗腫瘍効果を発揮することがあきらかとなった(図11)。*P<0.05
所定の濃度の各アンチセンスを、実施例2の方法で種々の癌細胞に用いて導入し、48時間後にRNA sampleを採取して、qRT-PCRで解析した。結果を図12に示す。
実施例6と同様の方法で、AmNAタイプのYB-1 ASOのYB-1発現抑制効果を確認した。本研究で用いたアンチセンス核酸の配列を下表にまとめた。
〔実施例14:反復血中投与による膵癌・大腸癌に対する抗腫瘍効果〕
ゲムシタビン耐性膵癌SUIT2-GRおよび大腸癌HCT116をヌードマウス大腿皮下に移植することにより皮下腫瘍モデルを作成し、腫瘍径50mm3が形成されてから、毎週1回、3週間、#10AmNA YB-1アンチセンスを10mg/kg BW尾静脈より投与した。継時的に腫瘍径を測定した。毎週投与のプロトコールでも表3のごとく、安全性に問題なく、day14, 21には皮下腫瘍の有意な抑制効果が認められた(図14(A))。
肺癌Lewis lung cancerの皮下腫瘍モデルを作成し、腫瘍径50mm3が形成されてから、毎週1回、3週間、#10AmNA YB-1アンチセンスを10mg/kg BW尾静脈より投与した。継時的に腫瘍径を測定した。その結果、治療21日目の皮下腫瘍の写真で、コントロール群に比較して#10AmNA YB-1アンチセンス投与群の小さな皮下腫瘍を認めた(図15(A))。治療14日目、21日目には#10AmNA YB-1アンチセンス投与群において、有意にコントロールアンチセンス群より腫瘍の増大が抑制された(図15(B))。(*P<0.05, **P<0.01; n=5)
悪性中皮腫細胞株H226に対して#10AmNA YB-1アンチセンスを試薬Lipofectamine RNAiMaxで導入し、YB-1の発現をreal-time RT-PCRで検討した。濃度依存性に#10AmNA YB-1アンチセンスによるYB-1発現抑制(A)、増殖抑制 (B)が認められた。*P<0.001.
悪性中皮腫細胞株H226に対して#10AmNA YB-1アンチセンスを試薬Lipofectamine RNAiMaxで導入し、YB-1の発現をreal-time RT-PCRで検討した。濃度依存性に#10AmNA YB-1アンチセンスによるYB-1発現抑制(A)、増殖抑制 (B)が認められた。*P<0.001.
卵巣癌細胞株SKOV3に対して#10AmNA YB-1アンチセンスを試薬Lipofectamine RNAiMaxで導入し、YB-1の発現をreal-time RT-PCRで検討した。濃度依存性に#10AmNA YB-1アンチセンスによるYB-1発現抑制(図17(A))、増殖抑制(図17 (B))が認められた。*P<0.001.
胃癌細胞株AS44に対して#10AmNA YB-1アンチセンスを試薬Lipofectamine RNAiMaxで導入し、 YB-1の発現をreal-time RT-PCRで検討した。#10AmNA YB-1アンチセンスによるYB-1発現抑制(A)、濃度依存性の増殖抑制(B)が認められた。*P<0.001.
膵癌細胞株MIA PaCa-2(図19(A))、卵巣癌細胞株SKOV-3(図19(B))に対して#10AmNA YB-1アンチセンス(5 nM)を試薬Lipofectamine RNAiMaxで導入し、 抗癌剤による殺細胞効果をアンチセンスの有無で比較した。低濃度#10AmNA YB-1アンチセンス導入による殺細胞効果の増強が認められた。同等の殺細胞効果を認めた抗癌剤濃度を青(5-FU)、赤色(Gemcitabine)で示す。
膵癌細胞株SUIT-2に対して#10AmNA YB-1アンチセンス(10 nM)を試薬Lipofectamine RNAiMaxで導入し、 X線照射による殺細胞効果をアンチセンスの有無で比較した。結果を図20に示す。低濃度YB-1アンチセンス導入による殺細胞効果の増強が認められた。
血管内皮細胞株(HUVEC, HPAEC)、膵癌細胞株(MiaPaCa2-)に YB-1天然型核酸アンチセンス(NA)、LNA/BNA型核酸アンチセンス(BNA), AmNA型核酸アンチセンス(AmNA)を各濃度で導入した。24時間後にRNAを抽出し、real-time RT-PCRにてYB-1発現を評価した。結果を図21に示す。AmNA型核酸アンチセンスによるYB-1のノックダウン効率は有意に天然型核酸アンチセンス、LNA型核酸アンチセンスよりも高かった。The graph shows mean ± SD (n=3). *P < 0.01 vs BNA, P<0.0001 vs NA
膵癌細胞株(AsPC-1, MIA PaCa-2, Suit-2)に YB-1 siRNA または YB-1 #10AmNAを導入(最終濃度20nM)。48時間後にRNAと蛋白質を抽出し、real-time RT-PCR、Western blotにてYB-1発現をmRNA(A) 、蛋白レベル(B)で評価した。結果を図22に示す。siRNA, #10AmNA-AONによるmRNAレベルのノックダウン効率はともに高く、明らかな差を認めなかった。一方、蛋白レベルでのノックダウン効率はAmNA-AONが明らかにsiRNAよりも著明であった。The graph shows mean ± SD (n=3). *P< 0.05
膵癌細胞株(MIA PaCa-2)、大腸癌細胞株(HCT-116)および卵巣癌細胞株(SKOV3)に15~18merのオリゴヌクレオチドを各濃度で導入した。24時間後にRNAを抽出し、real-time RT-PCRにてYB-1発現を評価した。15mer以外の用いたオリゴヌクレオチドの構造を以下に示す。
Claims (20)
Baseは、α群から選択される任意の置換基を1以上有していてもよいプリン-9-イル基または2-オキソ-1,2-ジヒドロピリミジン-1-イル基を表し、ここで、該α群は、水酸基、核酸合成の保護基で保護された水酸基、炭素数1から6の直鎖アルキル基、炭素数1から6の直鎖アルコキシ基、メルカプト基、核酸合成の保護基で保護されたメルカプト基、炭素数1から6の直鎖アルキルチオ基、アミノ基、炭素数1から6の直鎖アルキルアミノ基、核酸合成の保護基で保護されたアミノ基、およびハロゲン原子からなり;
Rは、水素原子、分岐または環を形成していてもよい炭素数1から7のアルキル基、分岐または環を形成していてもよい炭素数2から7のアルケニル基、該α群から選択されるいずれかの置換基を1以上有していてもよく、そしてヘテロ原子を含んでいてもよい炭素数3から12のアリール基、該α群から選択されるいずれかの置換基を1以上有していてもよく、そしてヘテロ原子を含んでいてもよい炭素数3から12のアリール部分を有するアラルキル基、または核酸合成のアミノ基の保護基を表す。)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016532985A JP6722586B2 (ja) | 2014-07-10 | 2015-07-10 | アンチセンス抗悪性腫瘍剤 |
EP15818219.6A EP3168305A4 (en) | 2014-07-10 | 2015-07-10 | Antisense antineoplastic agent |
US15/325,278 US20170211073A1 (en) | 2014-07-10 | 2015-07-10 | Antisense antineoplastic agent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462023067P | 2014-07-10 | 2014-07-10 | |
US62/023,067 | 2014-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016006697A1 true WO2016006697A1 (ja) | 2016-01-14 |
Family
ID=55064324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069947 WO2016006697A1 (ja) | 2014-07-10 | 2015-07-10 | アンチセンス抗悪性腫瘍剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170211073A1 (ja) |
EP (1) | EP3168305A4 (ja) |
JP (1) | JP6722586B2 (ja) |
WO (1) | WO2016006697A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180005A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人日本医療研究開発機構 | コンドロイチン硫酸生合成を阻害するアンチセンス核酸 |
WO2019013141A1 (ja) | 2017-07-10 | 2019-01-17 | 国立大学法人大阪大学 | Tdp-43の発現量を調節するアンチセンスオリゴヌクレオチド及びその用途 |
WO2019131719A1 (ja) | 2017-12-27 | 2019-07-04 | 神戸天然物化学株式会社 | 高脂溶性ホスホラミダイトの製造 |
WO2020009151A1 (ja) | 2018-07-04 | 2020-01-09 | 国立大学法人名古屋大学 | タウのスプライシングを制御するアンチセンスオリゴヌクレオチド及びその用途 |
JP2020519615A (ja) * | 2017-05-08 | 2020-07-02 | オーグマニティ ナノ リミテッド | 急速に進化する生物学的実体の処置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114540349A (zh) * | 2020-11-27 | 2022-05-27 | 中国科学院分子细胞科学卓越创新中心 | 结合yb-1蛋白的核酸分子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039352A1 (fr) * | 1997-03-07 | 1998-09-11 | Takeshi Imanishi | Nouveaux analogues de bicyclonucleoside et d'oligonucleotide |
WO2001030800A1 (en) * | 1999-10-26 | 2001-05-03 | Isis Pharmaceuticals, Inc. | Antisense modulation of y-box binding protein 1 expression |
WO2011052436A1 (ja) * | 2009-10-29 | 2011-05-05 | 国立大学法人大阪大学 | 架橋型人工ヌクレオシドおよびヌクレオチド |
JP2011088876A (ja) * | 2009-10-26 | 2011-05-06 | Univ Of Occupational & Environmental Health Japan | 腫瘍新生血管血管内皮細胞の新しいバイオマーカーとそれを標的とした癌治療薬 |
JP2013216627A (ja) * | 2012-04-10 | 2013-10-24 | Kyushu Univ | アポトーシス誘導剤及び癌治療薬 |
-
2015
- 2015-07-10 EP EP15818219.6A patent/EP3168305A4/en not_active Withdrawn
- 2015-07-10 WO PCT/JP2015/069947 patent/WO2016006697A1/ja active Application Filing
- 2015-07-10 JP JP2016532985A patent/JP6722586B2/ja not_active Expired - Fee Related
- 2015-07-10 US US15/325,278 patent/US20170211073A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998039352A1 (fr) * | 1997-03-07 | 1998-09-11 | Takeshi Imanishi | Nouveaux analogues de bicyclonucleoside et d'oligonucleotide |
WO2001030800A1 (en) * | 1999-10-26 | 2001-05-03 | Isis Pharmaceuticals, Inc. | Antisense modulation of y-box binding protein 1 expression |
JP2011088876A (ja) * | 2009-10-26 | 2011-05-06 | Univ Of Occupational & Environmental Health Japan | 腫瘍新生血管血管内皮細胞の新しいバイオマーカーとそれを標的とした癌治療薬 |
WO2011052436A1 (ja) * | 2009-10-29 | 2011-05-05 | 国立大学法人大阪大学 | 架橋型人工ヌクレオシドおよびヌクレオチド |
JP2013216627A (ja) * | 2012-04-10 | 2013-10-24 | Kyushu Univ | アポトーシス誘導剤及び癌治療薬 |
Non-Patent Citations (2)
Title |
---|
RAHMAN, S. M. A. ET AL.: "RNA interference with 2',4'-bridged nucleic acid analogues", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 18, no. 10, 2010, pages 3474 - 3480, XP055057706 * |
See also references of EP3168305A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018180005A1 (ja) * | 2017-03-31 | 2018-10-04 | 国立研究開発法人日本医療研究開発機構 | コンドロイチン硫酸生合成を阻害するアンチセンス核酸 |
JP2020519615A (ja) * | 2017-05-08 | 2020-07-02 | オーグマニティ ナノ リミテッド | 急速に進化する生物学的実体の処置 |
WO2019013141A1 (ja) | 2017-07-10 | 2019-01-17 | 国立大学法人大阪大学 | Tdp-43の発現量を調節するアンチセンスオリゴヌクレオチド及びその用途 |
WO2019131719A1 (ja) | 2017-12-27 | 2019-07-04 | 神戸天然物化学株式会社 | 高脂溶性ホスホラミダイトの製造 |
WO2020009151A1 (ja) | 2018-07-04 | 2020-01-09 | 国立大学法人名古屋大学 | タウのスプライシングを制御するアンチセンスオリゴヌクレオチド及びその用途 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016006697A1 (ja) | 2017-04-27 |
US20170211073A1 (en) | 2017-07-27 |
JP6722586B2 (ja) | 2020-07-15 |
EP3168305A4 (en) | 2018-01-03 |
EP3168305A1 (en) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6722586B2 (ja) | アンチセンス抗悪性腫瘍剤 | |
KR101176245B1 (ko) | HIF-1a 발현의 억제를 위한 효능적 LNA 올리고뉴클레오티드 | |
JP5107047B2 (ja) | Lnaオリゴヌクレオチドおよび癌の処置 | |
JP5943993B2 (ja) | 転写のシグナル伝達及び活性化因子3(stat3)発現の調節 | |
ES2329131T3 (es) | Compuestos oligomericos para modular la expresion de survivina. | |
TW201723176A (zh) | Kras表現之調節劑 | |
EA015570B1 (ru) | Фармацевтическая композиция | |
CN108271351A (zh) | 用于调节血管紧张素原表达的化合物和方法 | |
CN102851291A (zh) | 包含抗微小rna 反义寡核苷酸的药物组合物 | |
US20030087861A1 (en) | Combined approach to treatment of cancer using a c-myc antisense oligomer | |
JP2006518197A (ja) | ラス発現の改変のためのオリゴマー化合物 | |
KR101142080B1 (ko) | 전립선암 및 다른 암의 치료 방법 및 조성물 | |
DK2898887T3 (en) | Combination of telomerase inhibitor and gemcitabine for the treatment of cancer | |
CA2727285A1 (en) | Inhibition of hrp-3 using modified oligonucleotides | |
WO2022031237A1 (en) | Modulation of signal transducer and activator of transcription 3 (stat3) expression | |
CN101437942A (zh) | 包含抗微小rna反义寡核苷酸的药物组合物 | |
JP2024535869A (ja) | Wfdc2の発現を調節するアンチセンス化合物 | |
EP3330378B1 (en) | Modified sirna, and pharmaceutical composition containing same | |
WO2021039879A1 (ja) | 胃癌分子標的核酸医薬 | |
JP6934695B2 (ja) | 核酸医薬とその使用 | |
TW201014594A (en) | RNA antagonists targeting Hsp27 | |
JP7017193B2 (ja) | Rna作用抑制剤及びその利用 | |
EP4403634A1 (en) | Antisense compound that regulates expression of wfdc2 | |
US20240076672A1 (en) | Double-helix oligonucleotide construct comprising double-stranded mirna and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15818219 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016532985 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015818219 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015818219 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15325278 Country of ref document: US |