WO2016006476A1 - 研磨フィルム - Google Patents

研磨フィルム Download PDF

Info

Publication number
WO2016006476A1
WO2016006476A1 PCT/JP2015/068488 JP2015068488W WO2016006476A1 WO 2016006476 A1 WO2016006476 A1 WO 2016006476A1 JP 2015068488 W JP2015068488 W JP 2015068488W WO 2016006476 A1 WO2016006476 A1 WO 2016006476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
mass
abrasive particles
polishing layer
film
Prior art date
Application number
PCT/JP2015/068488
Other languages
English (en)
French (fr)
Inventor
歳和 田浦
和夫 西藤
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55064114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016006476(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to EP15819449.8A priority Critical patent/EP3168002B1/en
Priority to US15/324,073 priority patent/US10543582B2/en
Priority to JP2015556320A priority patent/JP5921790B1/ja
Priority to KR1020177000240A priority patent/KR101904732B1/ko
Priority to CN201580036615.2A priority patent/CN106470800B/zh
Publication of WO2016006476A1 publication Critical patent/WO2016006476A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting

Definitions

  • the present invention relates to an abrasive film.
  • optical connectors that are easy to remove are widely used for connecting optical fibers. This connection is made by directly matching a ferrule that aligns optical fibers. For this reason, in order to reduce the optical loss (communication loss) of the optical fiber after connection, the connection end surface of the optical fiber connector to be connected is sufficiently smooth and a gap is formed between the optical fibers at the connection end surface. It is required that no optical fiber is drawn into the ferrule.
  • Polishing of the connection end face of such an optical fiber connector is performed by four processes of an adhesive removing process, a rough spherical polishing process, an intermediate finishing process, and a final polishing process. Among them, the polishing accuracy of the final polishing process is large in light loss. Affect. Furthermore, from the viewpoint of productivity and production cost, a high grinding force is required for the polishing film used in the finish polishing step.
  • an abrasive film provided with an abrasive layer having a resin binder and abrasive particles has been proposed.
  • the type of resin binder and abrasive particles are selected, and the abrasive particle diameter is increased. (See JP-A-8-336758, JP-A-2002-239924, and JP-A-2007-190613).
  • the optical fiber is selectively polished, and the optical fiber protrudes from the ferrule while preventing the optical fiber from being drawn. It is difficult to do so, and a gap is easily generated between the optical fibers at the connection end face. For this reason, in the said prior art, coexistence with high grinding force and the drawing-in prevention of an optical fiber is not enough.
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a polishing film that has a high grinding force and can prevent drawing of an optical fiber after polishing.
  • the present inventors have found that the pulling of the optical fiber can be prevented by controlling the indentation hardness of the polishing layer and the content of abrasive particles having a large primary particle diameter.
  • the inventors of the present invention have found that an abrasive film capable of preventing the optical fiber from being pulled in while using abrasive particles having a large primary particle diameter has been obtained, thereby completing the present invention.
  • the invention made to solve the above problems is a polishing film having a base material and a polishing layer laminated on the surface thereof, wherein the polishing layer is dispersed in the resin binder and the resin binder.
  • the content of abrasive particles having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles is 10% by mass or more and 50% by mass or less, and the content of the abrasive particles in the polishing layer is 84% by mass.
  • the indentation hardness of the polishing layer is 370 N / mm 2 or less.
  • the indentation hardness of the polishing layer is less than or equal to the above upper limit, and the content of abrasive particles having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles is less than or equal to the upper limit, thereby preventing the optical fiber from being pulled after polishing. it can.
  • the content of abrasive particles having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles is equal to or higher than the lower limit and the content of the abrasive particles in the polishing layer is equal to or higher than the lower limit, the abrasive film has a high grinding force.
  • the abrasive particles are preferably silica particles.
  • Silica particles are suitable for the final finishing process where a small surface roughness is required on the connection end face of the optical fiber connector. By using silica particles with a large primary particle size, higher grinding is achieved while maintaining polishing accuracy. Power can be given.
  • the average thickness of the polishing layer is preferably 4 ⁇ m or more and 15 ⁇ m or less.
  • the indentation hardness of the polishing layer can be kept low, the optical fiber can be more easily prevented from being pulled in, and the wear resistance of the polishing layer can be enhanced. .
  • the resin binder preferably contains an elastomer having a glass transition temperature of 20 ° C. or less, and the content of the elastomer relative to the resin binder is preferably 20% by mass or more.
  • polishing layer can be easily controlled by making the elastomer of the glass transition temperature 20 degrees C or less which the said resin binder contains into the said minimum or more.
  • indentation hardness means a value measured in accordance with ISO-14477-1.
  • primary particles refer to particles that are considered to be unit particles as judged from the apparent geometric form
  • primary particle diameter refers to a scanning electron microscope (SEM) or a transmission electron microscope (TEM). ) Means the diameter of a single particle measured using the image of the particle observed using “”, and “particle diameter” refers to the diameter of the smallest circle circumscribing the image of this particle.
  • the polishing film of the present invention can prevent the drawing of the optical fiber after polishing while having a high grinding force. Accordingly, the polishing film can be suitably used in the finishing process of the connection end face of the optical fiber connector, for example.
  • a polishing film 1 shown in FIG. 1 has a sheet-like substrate 10 and a polishing layer 20 laminated on the surface thereof.
  • the material of the substrate 10 is not particularly limited, but a material that has appropriate rigidity and ensures good adhesion and adhesion with the polishing layer 20 is preferable.
  • a known thermoplastic resin can be used, and examples thereof include acrylic resin, polycarbonate, polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE).
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • a biaxially stretched film such as PET, PP, or PE may be used.
  • the process which improves adhesiveness such as a chemical process, a corona process, and a primer process, may be performed on the surface of the base material 10.
  • the planar shape and size of the substrate 10 are not particularly limited, but may be, for example, a 127 mm ⁇ 127 mm square shape or a 127 mm diameter circular shape. Moreover, the structure by which the several base material 10 juxtaposed on the plane is supported by a single support body may be sufficient.
  • the average thickness of the substrate 10 is not particularly limited, but can be, for example, 30 ⁇ m or more and 150 ⁇ m or less.
  • the average thickness of the base material 10 is less than the lower limit, the strength and flatness of the polishing film may be insufficient.
  • the average thickness of the base material 10 exceeds the upper limit, the polishing film is unnecessarily thick and may be difficult to handle.
  • the polishing layer 20 is laminated on the surface of the substrate 10 and has a resin binder 21 and abrasive particles 22 dispersed in the resin binder 21.
  • the lower limit of the average thickness of the polishing layer 20 is preferably 4 ⁇ m and more preferably 5 ⁇ m. Further, the upper limit of the average thickness of the polishing layer 20 is preferably 15 ⁇ m, and more preferably 12 ⁇ m. When the average thickness of the polishing layer 20 is less than the lower limit, the abrasion resistance of the polishing film may be insufficient. On the other hand, when the average thickness of the polishing layer 20 exceeds the upper limit, it may be difficult to control the amount of optical fiber drawn during polishing.
  • the indentation hardness of the polishing layer 20 exceeds the upper limit, the optical fiber is selectively polished at the time of polishing, and the optical fiber may be drawn into the ferrule.
  • the indentation hardness of the polishing layer 20 is less than the lower limit, the grinding force of the polishing film may be insufficient.
  • polishing of the connection end face of the optical fiber connector is performed by pressing the connection end face of the optical fiber connector with a load against a polishing film attached to the surface of the elastic pad.
  • the polishing pressure near the apex of the optical fiber connector formed on the spherical surface increases, so that the optical fiber near the apex of the optical fiber connector is selectively polished, and the optical fiber with respect to the ferrule It is thought that pulling in will occur. Therefore, by reducing the indentation hardness of the polishing layer 20, it is considered that the followability of the polishing layer 20 to the elastic pad becomes high, and the optical fiber can be controlled stably and accurately.
  • the present inventors conducted the following tests to confirm the optimum range of the indentation hardness of the polishing layer 20 that has a high grinding force and can control the drawing of the optical fiber stably and accurately. .
  • the content of abrasive particles 22 having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles 22 is 10% by mass or more and 50% by mass or less, and the content of abrasive particles 22 in the polishing layer 20
  • Five types of polishing films having a mass of 84% by mass or more were prepared, and the indentation hardness of these abrasive films was measured using a microindentation hardness tester (“ENT-1100a” manufactured by Elionix Co., Ltd.).
  • this polishing film is punched into a 127 mm diameter circular shape and fixed by attaching to an elastic pad (hardness 70 °) of a polishing machine (“SFP-550S” by Seiko Giken Co., Ltd.) to polish ion exchange water.
  • the final finish polishing was performed for 60 seconds at a rotation speed of 1 rpm for rotation and 70 rpm for rotation on the connection end face of the optical fiber connector after intermediate finish polishing.
  • the amount of the optical fiber connector pulled in after polishing was measured using an optical connector end face three-dimensional shape measuring machine (“ACCIS NC / AC-3000” manufactured by Norland). When the optical fiber protrudes from the ferrule, the pull-in amount is expressed as a negative value.
  • the pull-in amount of the optical connector has a correlation with the indentation hardness of the polishing film.
  • the amount of the optical fiber drawn can be ⁇ 10 nm or less.
  • the pull-in amount is preferably ⁇ 30 nm to ⁇ 10 nm from the viewpoint of light loss. Therefore, by setting the indentation hardness of the polishing film to 370 N / mm 2 or less, it has a high grinding force and is stable and accurate. It is considered that the pull-in of the optical fiber can be controlled.
  • a resin or an elastomer can be used as the main component of the resin binder 21, a resin or an elastomer can be used.
  • the resin include acrylic resin, epoxy resin, cellulose resin, polyvinyl, phenoxy resin, phenol resin, and polyester.
  • the elastomer include styrene, olefin, ester, urethane, amide, polyvinyl chloride (PVC), fluorine thermoplastic elastomer, natural rubber, styrene-butadiene rubber, isoprene rubber, butadiene.
  • the resin examples thereof include rubber, chloroprene rubber, acrylonitrile-butadiene rubber, butyl rubber, ethylene-propylene rubber, ethylene-propylene-diene rubber, acrylic rubber, and silicone rubber.
  • the resin is the main component, an acrylic resin, an epoxy resin, and a polyester that can easily ensure good dispersibility of the abrasive particles 22 and good adhesion to the substrate 10 are preferable.
  • urethane-based thermoplastic elastomers, amide-based thermoplastic elastomers, acrylonitrile-butadiene rubber, urethane rubber and acrylic rubber are preferred.
  • the resin may be at least partially crosslinked and may contain a curing agent such as polyisocyanate or acrylate.
  • the “main component” means a component having the highest content, for example, a component having a content of 50% by mass or more.
  • auxiliary agents such as resins other than the main components, crosslinking agents, dispersing agents, coupling agents, surfactants, lubricants, antifoaming agents, and coloring agents, additives, and the like are used depending on the purpose. You may make it contain suitably.
  • the resin binder 21 may further contain an elastomer.
  • polishing layer 20 can be made low because the resin binder 21 contains an elastomer.
  • the upper limit of the glass transition temperature of the elastomer is preferably 20 ° C, more preferably 15 ° C.
  • the elastomer may be in a glass state when the optical fiber connector is polished, and the polishing layer 20 may be cured.
  • the same elastomer as the main component can be used.
  • the content of the above-mentioned elastomer to resin binder 21 20 mass% is preferred and 30 mass% is more preferred.
  • an upper limit of content of the said elastomer with respect to the resin binder 21 75 mass% is preferable and 50 mass% is more preferable.
  • the content of the elastomer relative to the resin binder 21 is less than the lower limit, it may be difficult to control the indentation hardness of the polishing layer 20.
  • the content of the elastomer with respect to the resin binder 21 exceeds the upper limit, the dispersibility of the abrasive particles 22 in the resin binder 21 may be insufficient.
  • abrasive particles 22 examples include particles of diamond, alumina, silica, and the like. Among these, silica particles that can provide a high grinding force are preferable. Examples of the silica particles include known silica particles such as colloidal silica, dry silica, wet silica, and fused silica.
  • colloidal silica includes an organosilica sol in which colloidal silica is dispersed in an organic solvent.
  • the abrasive particles 22 include abrasive particles having a primary particle diameter of 70 nm or more (large-diameter abrasive particles 22a) and abrasive particles having a primary particle diameter of less than 70 nm (small-diameter abrasive particles 22b). Since the abrasive particles 22 include large-diameter abrasive particles 22a, the abrasive film has a high grinding force. Further, since the abrasive particles 22 include small-diameter abrasive particles 22b, the abrasive film has high polishing accuracy.
  • the primary particle size distribution of the abrasive particles 22 it is preferable to have one maximum value (peak) in the range of less than 70 nm and in the range of 70 nm or more.
  • peak the polishing film can easily and reliably have high polishing accuracy obtained by the small-diameter abrasive particles 22b and high grinding force obtained by the large-diameter abrasive particles 22a. it can.
  • the lower limit of the minimum primary particle diameter of the abrasive particles 22 is preferably 1 nm, and more preferably 10 nm.
  • the upper limit of the maximum primary particle size of the abrasive particles 22 is preferably 400 nm, and more preferably 300 nm.
  • the polishing time of the connection end face of the optical fiber connector may increase.
  • the maximum value of the particle diameter of the abrasive particles 22 exceeds the upper limit, it may be difficult to control the drawing of the optical fiber during polishing.
  • the lower limit of the content of the large-diameter abrasive particles 22a with respect to the entire abrasive particles 22 is 10% by mass, and more preferably 25% by mass.
  • an upper limit of content of the large diameter abrasive particle 22a with respect to the whole said abrasive particle 22 it is 50 mass%, and 35 mass% is more preferable.
  • the content of the large-diameter abrasive particles 22a with respect to the entire abrasive particles 22 is less than the lower limit, the grinding force of the abrasive film may be insufficient.
  • the content of the large-diameter abrasive particles 22a with respect to the entire abrasive particles 22 exceeds the above upper limit, it may be difficult to control the pull-in amount of the optical fiber during polishing.
  • the lower limit of the content of the abrasive particles 22 with respect to the polishing layer 20 is 84% by mass, and more preferably 87% by mass. Moreover, as an upper limit of content of the abrasive particle 22 with respect to the said grinding
  • the manufacturing method of the said polishing film can employ
  • a solution in which the resin binder 21 and the abrasive particles 22 are dispersed in a solvent is prepared as a coating liquid.
  • the solvent is not particularly limited as long as the resin binder 21 is soluble. Specifically, methyl ethyl ketone (MEK), isophorone, terpineol, N methylpyrrolidone, cyclohexanone, propylene carbonate, or the like can be used.
  • MEK methyl ethyl ketone
  • isophorone isophorone
  • terpineol N methylpyrrolidone
  • cyclohexanone propylene carbonate
  • a diluent such as water, alcohol, ketone, acetate ester and aromatic compound may be added.
  • auxiliaries and additives may be mixed.
  • the coating liquid prepared in the coating liquid preparation process is applied to the surface of the substrate 10.
  • the coating method is not particularly limited, and for example, known coating methods such as bar coating, comma coating, spray coating, reverse roll coating, knife coating, screen printing, gravure coating, and die coating can be used.
  • the applied coating liquid is dried and reaction-cured to form the polishing layer 20.
  • the solvent of the coating liquid is evaporated and the solute is cured, thereby forming the polishing layer 20.
  • the abrasive film has an indentation hardness of the abrasive layer 20 of 370 N / mm 2 or less, and the content of the large abrasive particles 22 a having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles 22 is 50 mass% or less. Later pulling of the optical fiber can be prevented. Moreover, since the content of the large-diameter abrasive particles 22a with respect to the entire abrasive particles is 10% by mass or more and the content of the abrasive particles 22 in the abrasive layer 20 is 84% by mass or more, the abrasive film has high grinding. Have power.
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the polishing film in which the polishing layer is directly formed on the surface of the substrate has been described.
  • the primer treatment layer for ensuring the adhesion between the substrate and the polishing layer between the substrate and the polishing layer. May be provided.
  • the main component of the primer-treated layer is not particularly limited as long as the adhesion between the substrate and the polishing layer can be secured.
  • water-soluble or water-dispersible polyester or acrylic resin, water-soluble or water-soluble A resin obtained by grafting an unsaturated bond-containing compound to a dispersible hydrophilic group-containing polyester can be used.
  • the primer-treated layer can be formed, for example, by spray-coating a primer agent containing the main component on the surface of the substrate and then drying. Moreover, you may use the base material by which the primer process layer was previously provided on the surface of the base material.
  • the polishing layer may have a groove.
  • a lattice shape at equal intervals or a stripe shape in which a plurality of linear grooves are arranged substantially in parallel can be used. Since the polishing layer has a groove, polishing debris and the like generated during polishing can be efficiently removed.
  • Example 1 250 parts by mass of organosilica sol (“MEK-ST”, Nissan Chemical Industries, Ltd., primary particle size 10-20 nm, solid content 30% by mass) as small abrasive particles, fused silica (electrochemical industry) as large abrasive particles Tetrahiro which contains 10 parts by mass of “UFP-30”, an average primary particle size of 99 nm), and 5% by mass of a crosslinked urethane-based thermoplastic elastomer as a resin binder (“Kuramylon U9180” of Kuraray Co., Ltd.) 220 parts by mass of a solution of Drofuran, 5 parts by mass of polyisocyanate (“Desmodur L75C” from Sumika Bayer Urethane Co., Ltd., solid content: 75% by mass) as a resin binder, and 33 parts by mass of methyl ethyl ketone as a solvent are mixed. A coating solution was obtained.
  • organosilica sol (“MEK-ST”, Nissan Chemical Industries
  • Example 2 207 parts by mass of organosilica sol (Nissan Chemical Co., Ltd. “MEK-ST”, primary particle size 10-20 nm, solid content 30% by mass) as small abrasive particles, and organosilica sol (Nissan Chemical Industries as large abrasive particles) 87 parts by mass of “IPA-ST-ZL”, primary particle size 70-100 nm, solid content 30% by mass, vulcanized acrylonitrile-butadiene rubber as resin binder (“N230S” by JSR Corporation) 60 parts by mass of N, N-dimethylformamide solution containing 5% by mass of cellulose, 60 parts by mass of methyl ethyl ketone containing 5% by mass of cellulose resin (Nisshinsei Co., Ltd.
  • Etocel 100 as a resin binder and resin Polyisocyanate as binder ("Death Module L” from Sumika Bayer Urethane Co., Ltd. 5C ", the solid content 75 mass%) 7 parts by weight were mixed to obtain a coating solution.
  • the above coating solution is applied to one surface of a polyester film (“HLE-75” manufactured by Teijin DuPont Films Ltd., average thickness: 75 ⁇ m) as a base material using a bar coating method and dried at 100 ° C. in an oven.
  • a polishing film having a polishing layer having an average thickness of 6 ⁇ m was obtained.
  • the content of abrasive particles in this polishing layer is 88% by mass.
  • Organosilica sol as a small abrasive particle (“MEK-ST” from Nissan Chemical Industries, Ltd., primary particle diameter 10-20 nm, solid content 30% by mass) 210 parts by mass
  • Organosilica sol as a large abrasive particle (Nissan Chemical Industry) 87 parts by mass of “IPA-ST-ZL”, primary particle size 70-100 nm, solid content 30% by mass
  • vulcanized acrylonitrile-butadiene rubber as resin binder (“N230S” by JSR Corporation) 100 parts by mass of N, N-dimethylformamide solution containing 5% by mass of polyisocyanate and 7 parts by mass of polyisocyanate as a resin binder (“Desmodur L75C” from Sumika Bayer Urethane Co., Ltd., solid content: 75% by mass)
  • a coating solution was obtained.
  • the above coating solution is applied to one surface of a polyester film (“HLE-75” manufactured by Teijin DuPont Films Ltd., average thickness: 75 ⁇ m) as a base material using a bar coating method and dried at 100 ° C. in an oven.
  • a polishing film having a polishing layer having an average thickness of 11 ⁇ m was obtained.
  • the content of abrasive particles in this polishing layer is 90% by mass.
  • Organosilica sol (“IPA-ST”, Nissan Chemical Industries, Ltd., primary particle size 10-20 nm, solid content 30% by mass) as small-diameter abrasive particles 240 parts by mass, wet silica as large-diameter abrasive particles (Fuso Chemical Industries) 140 parts of 2-propanol solution containing 18 parts by mass of “SP03F”, an average primary particle size of 300 nm, and 5% by mass of a crosslinked acrylic elastomer (“BR102” of Mitsubishi Rayon Co., Ltd.) as a resin binder.
  • IPA-ST Nissan Chemical Industries, Ltd., primary particle size 10-20 nm, solid content 30% by mass
  • wet silica as large-diameter abrasive particles (Fuso Chemical Industries) 140 parts of 2-propanol solution containing 18 parts by mass of “SP03F”, an average primary particle size of 300 nm, and 5% by mass of a crosslinked acrylic elastomer (“BR102” of Mitsubishi Ray
  • the above coating solution is applied to one surface of a polyester film (“HLE-75” manufactured by Teijin DuPont Films Ltd., average thickness: 75 ⁇ m) as a base material using a bar coating method and dried at 100 ° C. in an oven.
  • a polishing film having a polishing layer having an average thickness of 5 ⁇ m was obtained.
  • the content of abrasive particles in this polishing layer is 90% by mass.
  • the company “UFP-30”, average primary particle size 99 nm) was 7.5 parts by mass, and the resin binder and solvent were the same as in Example 1 except that the same coating solution as in Example 1 was used.
  • a polishing film having a polishing layer having a thickness of 5 ⁇ m was obtained. The content of abrasive particles in this polishing layer is 80% by mass.
  • the above coating solution is applied to one surface of a polyester film (“HLE-75” manufactured by Teijin DuPont Films Ltd., average thickness: 75 ⁇ m) as a base material using a bar coating method and dried at 100 ° C. in an oven.
  • a polishing film having a polishing layer having an average thickness of 5 ⁇ m was obtained.
  • the content of abrasive particles in this polishing layer is 85% by mass.
  • Example 3 147 parts by mass of organosilica sol (Nissan Chemical Industry Co., Ltd. “MEK-ST”, primary particle size 10-20 nm, solid content 30 mass%) as small-diameter abrasive particles and large-diameter abrasive particles (Nissan Chemical Industries) Example except that “IPA-ST-ZL”, a primary particle size of 70 to 100 nm, solid content of 30% by mass) was 153 parts by mass, and the resin binder was the same coating solution as in Example 3. In the same manner as in Example 3, an abrasive film having an abrasive layer having an average thickness of 5 ⁇ m was obtained. The content of abrasive particles in this polishing layer is 90% by mass.
  • polishing conditions Using the polishing films obtained in Examples 1 to 4 and Comparative Examples 1 to 4, an optical fiber connector in which an optical fiber was bonded to a ferrule (“SC Ferrule” of Seiko Giken Co., Ltd.) was polished. First, the polishing film is punched into a 127 mm diameter circular shape and fixed by attaching to an elastic pad (hardness 70 °) of a polishing machine (“SFP-550S” by Seiko Giken Co., Ltd.), and ion-exchanged water is used as a polishing liquid. The final finish polishing was performed on the connection end face of the optical fiber connector after the intermediate finish polishing for 60 seconds at a rotation speed of 1 rpm for rotation and 70 rpm for rotation.
  • the intermediate finish polishing is performed by using a polishing film (“TOPXD105” manufactured by Bando Chemical Co., Ltd.) having diamond abrasive grains having an average primary particle size of 1 ⁇ m, and an elasticity of a polishing machine (“SFP-550S” manufactured by Seiko Giken Co., Ltd.). Affixed to a body pad (hardness 80 °), ion-exchanged water is used as the polishing liquid, and final finish polishing is performed on the connection end face of the optical fiber connector after rough spherical polishing at a rotation speed of 1 rpm and revolution 70 rpm. For a second.
  • ⁇ Retraction amount> The pull-in amount of the optical fiber connector after polishing was measured using an optical connector end face three-dimensional shape measuring instrument (“ACCIS NC / AC-3000” manufactured by Norland). When the optical fiber protrudes from the ferrule, the pull-in amount is expressed as a negative value. Further, since the amount of entrainment is preferably from ⁇ 30 nm to ⁇ 10 nm from the viewpoint of light loss, the measured value was determined according to the following criteria. A: The pull-in amount is in the range of ⁇ 30 nm to ⁇ 10 nm. B: The amount of drawing is outside the range of ⁇ 30 nm to ⁇ 10 nm.
  • End face condition The state of the end face was observed using “Video Fiber Microscope” manufactured by Westover Corporation, and judged according to the following criteria. A: Deposits and scratches are not found, and a good end surface is obtained. B: Deposits or scratches are observed, and a good end face cannot be obtained.
  • the content of the large-diameter abrasive particles exceeds 50% by mass, so that the pull-in amount of the optical fiber cannot be controlled.
  • Comparative Example 4 since the indentation hardness of the polishing layer exceeds 370 N / mm 2 , the optical fiber is selectively polished at the time of polishing, and the pulling amount of the optical fiber is larger than ⁇ 10 nm. That is, in the abrasive films of Examples 1 to 4, the content of abrasive particles having a primary particle diameter of 70 nm or more with respect to the entire abrasive particles is 10% by mass or more and 50% by mass or less, and the content of the abrasive particles in the polishing layer is 84. Since the indentation hardness of the polishing layer is 370 N / mm 2 or less, it is possible to prevent the optical fiber from being pulled after polishing.
  • the polishing film of the present invention can prevent pulling of the optical fiber after polishing while having a high grinding force. Accordingly, the polishing film can be suitably used in the finishing process of the connection end face of the optical fiber connector, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 本発明は、高い研削力を有しつつ、研磨後の光ファイバの引き込みを防止できる研磨フィルムを提供することを目的とする。本発明は、基材と、その表面側に積層される研磨層とを有する研磨フィルムであって、上記研磨層が、樹脂バインダー及びこの樹脂バインダー中に分散される研磨粒子を有し、上記研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が10質量%以上50質量%以下であり、上記研磨層における上記研磨粒子の含有量が84質量%以上であり、上記研磨層の押し込み硬さが370N/mm以下であることを特徴とする。上記研磨粒子が、シリカ粒子であるとよい。上記研磨層の平均厚さとしては、4μm以上15μm以下が好ましい。

Description

研磨フィルム
 本発明は、研磨フィルムに関する。
 光ファイバ通信網において光ファイバ同士の接続には、取り外しが容易な光コネクタが広く使用されている。この接続は、光ファイバの位置合わせを行うフェルールを直接突き合わせて行われる。このため、接続後の光ファイバの光損失(通信ロス)を低減するには、接続される光ファイバコネクタの接続端面が十分に滑らかな面であること及び接続端面で光ファイバ間に隙間が生じない(フェルールに対して光ファイバの引き込みがない)ことが要求される。
 このような光ファイバコネクタの接続端面の研磨は、接着剤除去工程、粗球面研磨工程、中間仕上げ工程及び仕上げ研磨工程の4工程により行われるが、中でも仕上げ研磨工程の研磨精度が光損失に大きく影響する。さらに、生産性及び生産コストの観点から、仕上げ研磨工程で用いられる研磨フィルムには、高い研削力が要求されている。
 このような研磨フィルムとしては、樹脂バインダー及び研磨粒子を有する研磨層を備える研磨フィルムが提案されており、これらの要求を満たすため樹脂バインダーや研磨粒子の種類の選択、研磨粒子径の大径化等が工夫されている(特開平8-336758号公報、特開2002-239924号公報、及び特開2007-190613号公報参照)。
 しかしながら、高い研削力を得るために研磨フィルムの研磨粒子として粒子径の大きい粒子を使用すると光ファイバが選択的に研磨され、光ファイバの引き込みを防止してフェルールに対し光ファイバが突き出した状態とすることが難しく、接続端面で光ファイバ間に隙間が生じやすい。このため、上記従来技術では高い研削力と光ファイバの引き込み防止との両立が十分ではない。
特開平8-336758号公報 特開2002-239924号公報 特開2007-190613号公報
 本発明はこれらの事情に鑑みてなされたものであり、高い研削力を有しつつ、研磨後の光ファイバの引き込みを防止できる研磨フィルムを提供することを目的とする。
 本発明者らは、鋭意検討した結果、研磨層の押し込み硬さ及び一次粒子径の大きい研磨粒子の含有量を制御することにより光ファイバの引き込みを防止できることを知得した。そして、本発明者らは一次粒子径の大きな研磨粒子を用いつつ光ファイバの引き込みを防止できる研磨フィルムが得られることを見出し、本発明を完成させた。
 すなわち、上記課題を解決するためになされた発明は、基材と、その表面側に積層される研磨層とを有する研磨フィルムであって、上記研磨層が、樹脂バインダー及びこの樹脂バインダー中に分散される研磨粒子を有し、上記研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が10質量%以上50質量%以下であり、上記研磨層における上記研磨粒子の含有量が84質量%以上であり、上記研磨層の押し込み硬さが370N/mm以下であることを特徴とする。
 当該研磨フィルムは、研磨層の押し込み硬さが上記上限以下であり、研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が上記上限以下であるので、研磨後の光ファイバの引き込みを防止できる。また、当該研磨フィルムは、研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が上記下限以上であり、上記研磨層における上記研磨粒子の含有量が上記下限以上であるので、高い研削力を有する。
 上記研磨粒子が、シリカ粒子であるとよい。シリカ粒子は光ファイバコネクタの接続端面に小さな表面粗さが求められる最終仕上げ工程に好適な研磨粒子であるため、一次粒子径の大きいシリカ粒子を用いることにより、研磨精度を維持しつつさらに高い研削力が付与できる。
 上記研磨層の平均厚さとしては、4μm以上15μm以下が好ましい。このように上記研磨層の平均厚さを上記範囲内とすることにより、研磨層の押し込み硬さを低く維持でき、光ファイバの引き込みがさらに容易に防止できると共に研磨層の耐摩耗性を高められる。
 上記樹脂バインダーがガラス転移温度20℃以下のエラストマーを含有するとよく、上記樹脂バインダーに対する上記エラストマーの含有量としては、20質量%以上が好ましい。このように上記樹脂バインダーが含有するガラス転移温度20℃以下のエラストマーを上記下限以上とすることで、研磨層の押し込み硬さが容易に制御できる。
 ここで「押し込み硬さ」とは、ISO-14577-1に準拠して測定される値を意味する。また、「一次粒子」とは、外見上の幾何学的形態から判断して単位粒子と考えられる粒子を指し、「一次粒子径」とは、走査電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて観察した粒子の画像を用いて測定した1個の粒子の径を意味し、「粒子の径」とは、この粒子の画像に外接する最小の円の直径を指す。
 以上説明したように、本発明の研磨フィルムは、高い研削力を有しつつ、研磨後の光ファイバの引き込みを防止できる。従って、当該研磨フィルムは、例えば光ファイバコネクタの接続端面の仕上げ工程で好適に用いることができる。
本発明の実施形態に係る研磨フィルムの模式的端面図である。 研磨フィルムの押し込み硬さと研磨後の光ファイバコネクタの引き込み量との関係を示すグラフである。
 以下、本発明の実施の形態を適宜図面を参照しつつ詳説する。
<研磨フィルム>
 図1に示す研磨フィルム1は、シート状の基材10と、その表面に積層される研磨層20とを有する。
(基材)
 上記基材10の材質としては、特に限定されないが、適度な剛性を有し、研磨層20との良好な接着性や密着性が確保される材質が好ましい。このような材質としては、公知の熱可塑性樹脂を用いることができ、例えばアクリル樹脂、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)等が挙げられる。基材10として、PET、PP、PE等の二軸延伸フィルムを用いてもよい。また、基材10の表面に化学処理、コロナ処理、プライマー処理等の接着性を高める処理が行われてもよい。
 上記基材10の平面形状及び大きさとしては、特に制限されないが、例えば127mm×127mmの方形状や直径127mmの円形状とすることができる。また、平面上に並置した複数の基材10が単一の支持体により支持される構成であってもよい。
 上記基材10の平均厚さとしては、特に制限されないが、例えば30μm以上150μm以下とできる。上記基材10の平均厚さが上記下限未満である場合、当該研磨フィルムの強度や平坦性が不足するおそれがある。一方、上記基材10の平均厚さが上記上限を超える場合、当該研磨フィルムが不要に厚くなり取扱いが困難になるおそれがある。
(研磨層)
 上記研磨層20は、基材10の表面に積層され、樹脂バインダー21及びこの樹脂バインダー21中に分散される研磨粒子22を有する。
 上記研磨層20の平均厚さの下限としては、4μmが好ましく、5μmがより好ましい。また、上記研磨層20の平均厚さの上限としては、15μmが好ましく、12μmがより好ましい。上記研磨層20の平均厚さが上記下限未満である場合、当該研磨フィルムの耐摩耗性が不足するおそれがある。一方、上記研磨層20の平均厚さが上記上限を超える場合、研磨時の光ファイバの引き込み量の制御が困難となるおそれがある。
 上記研磨層20の押し込み硬さの上限としては、370N/mmであり、350N/mmがより好ましい。また、上記研磨層20の押し込み硬さの下限としては、250N/mmが好ましく、280N/mmがより好ましい。上記研磨層20の押し込み硬さが上記上限を超える場合、研磨時に光ファイバが選択的に研磨され、フェルールに対して光ファイバの引き込みが発生するおそれがある。一方、上記研磨層20の押し込み硬さが上記下限未満である場合、当該研磨フィルムの研削力が不足するおそれがある。
 ここで研磨層20の押し込み硬さの光ファイバの引き込みに対する影響について考察する。光ファイバコネクタの接続端面の研磨は、弾性体パッドの表面に貼り付けた研磨フィルムに、光ファイバコネクタの接続端面を荷重をかけて押し付けることで行われる。研磨層20の押し込み硬さが大きい場合、球面形成された光ファイバコネクタの頂点付近の研磨圧力が高くなるため、光ファイバコネクタの頂点付近にある光ファイバが選択的に研磨され、フェルールに対する光ファイバの引き込みが発生すると考えられる。そこで、研磨層20の押し込み硬さを小さくすることで、弾性体パッドへの研磨層20の追従性が高くなり、安定して精度よく光ファイバの引き込みが制御できるようになると考えられる。
 本発明者らは上記考察に基づいて、高い研削力を有しつつ安定して精度よく光ファイバの引き込みを制御できる研磨層20の押し込み硬さの最適範囲を確認すべく以下の試験を行った。まず、高い研削力を有する研磨フィルムとして、研磨粒子22全体に対する一次粒子径70nm以上の研磨粒子22の含有量が10質量%以上50質量%以下であり、研磨層20における研磨粒子22の含有量が84質量%以上である研磨フィルムを5種類用意し、これらの研磨フィルムの押し込み硬さを微小押し込み硬さ試験機(株式会社エリオニクスの「ENT-1100a」)を用いて測定した。次に、この研磨フィルムを直径127mmの円型に打ち抜き、研磨機(株式会社精工技研の「SFP-550S」)の弾性体パッド(硬度70°)に貼り付けて固定し、イオン交換水を研磨液として用い、中間仕上げ研磨後の光ファイバコネクタの接続端面に対し最終仕上げ研磨を自転1rpm、公転70rpmの回転数で60秒間行った。その後、光コネクタ端面三次元形状測定機(Norland社の「ACCIS NC/AC-3000」)を用いて、研磨後の光ファイバコネクタの引き込み量を計測した。なお、フェルールに対し光ファイバが突き出した状態となる場合は、引き込み量を負値として表す。
 この測定結果から研磨フィルムの押し込み硬さと研磨後の光ファイバコネクタの引き込み量との関係を求めた。この結果を図2に示す。図2から光コネクタの引き込み量は、研磨フィルムの押し込み硬さと相関があることが分かる。また、研磨フィルムの押し込み硬さが370N/mm以下であれば、光ファイバの引き込み量を-10nm以下とできる。引き込み量としては、光損失の観点より-30nm以上-10nm以下が好ましいことから、研磨フィルムの押し込み硬さが370N/mm以下とすることで、高い研削力を有しつつ安定して精度よく光ファイバの引き込みが制御できると考えられる。
(樹脂バインダー)
 上記樹脂バインダー21の主成分としては、樹脂又はエラストマーを用いることができる。上記樹脂としては、例えばアクリル樹脂、エポキシ樹脂、セルロース樹脂、ポリビニル、フェノキシ樹脂、フェノール樹脂、ポリエステル等を挙げることができる。また、上記エラストマーとしては、例えばスチレン系、オレフィン系、エステル系、ウレタン系、アミド系、ポリ塩化ビニル(PVC)系、フッ素系の熱可塑性エラストマー、天然ゴム、スチレン-ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル-ブタジエンゴム、ブチルゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、アクリルゴム、シリコーンゴム等を挙げることができる。樹脂を主成分とする場合、研磨粒子22の良好な分散性と基材10への良好な密着性とが確保しやすいアクリル樹脂、エポキシ樹脂及びポリエステルが好ましく、エラストマーを主成分とする場合、基材10への密着性と取扱い性の観点からウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー、アクリロニトリル-ブタジエンゴム、ウレタンゴム及びアクリルゴムが好ましい。また、上記樹脂は、少なくとも一部が架橋していてもよく、ポリイソシアネート、アクリレート等の硬化剤を含有してもよい。ここで「主成分」とは、最も含有量の多い成分を意味し、例えば含有量が50質量%以上の成分をいう。
 上記樹脂バインダー21には、主成分以外の樹脂、架橋剤、分散剤、カップリング剤、界面活性剤、潤滑剤、消泡剤、着色剤等の各種助剤及び添加剤等を目的に応じて適宜含有させてもよい。
 また、上記樹脂バインダー21の主成分が樹脂である場合、上記樹脂バインダー21がエラストマーをさらに含有するとよい。このように樹脂バインダー21がエラストマーを含有することで、研磨層20の押し込み硬さを低くすることができる。
 樹脂バインダー21がエラストマーを含有する場合、上記エラストマーのガラス転移温度の上限としては、20℃が好ましく、15℃がより好ましい。上記エラストマーのガラス転移温度が上記上限を超える場合、エラストマーが光ファイバコネクタの研磨時にガラス状態となり、研磨層20が硬化するおそれがある。
 また、上記エラストマーとしては、エラストマーを主成分とする場合と同様のものを用いることができる。
 樹脂バインダー21に対する上記エラストマーの含有量の下限としては、20質量%が好ましく、30質量%がより好ましい。また、樹脂バインダー21に対する上記エラストマーの含有量の上限としては、75質量%が好ましく、50質量%がより好ましい。樹脂バインダー21に対する上記エラストマーの含有量が上記下限未満である場合、研磨層20の押し込み硬さの制御が困難となるおそれがある。一方、樹脂バインダー21に対する上記エラストマーの含有量が上記上限を超える場合、研磨粒子22の樹脂バインダー21への分散性が不十分となるおそれがある。
(研磨粒子)
 上記研磨粒子22としては、ダイヤモンド、アルミナ、シリカ等の粒子が挙げられる。中でも高い研削力が得られるシリカ粒子が好ましい。このシリカ粒子としては、例えばコロイダルシリカ、乾式シリカ、湿式シリカ、溶融シリカ等の公知のシリカ粒子を用いることができる。ここで、「コロイダルシリカ」は、コロイダルシリカを有機溶媒に分散させたオルガノシリカゾルを含むものとする。
 上記研磨粒子22は、一次粒子径が70nm以上の研磨粒子(大径研磨粒子22a)と一次粒子径が70nm未満の研磨粒子(小径研磨粒子22b)とを含む。上記研磨粒子22が大径研磨粒子22aを含むので、当該研磨フィルムは研削力が高い。また、上記研磨粒子22が小径研磨粒子22bを含むので、当該研磨フィルムは研磨精度が高い。
 上記研磨粒子22の一次粒子径の分布としては、70nm未満の範囲及び70nm以上の範囲に極大値(ピーク)を1つずつ有するとよい。このような一次粒子径の分布とすることで、当該研磨フィルムは、小径研磨粒子22bにより得られる高い研磨精度と、大径研磨粒子22aにより得られる高い研削力とを容易かつ確実に備えることができる。
 上記研磨粒子22の一次粒子径の最小値の下限としては、1nmが好ましく、10nmがより好ましい。また、上記研磨粒子22の一次粒子径の最大値の上限としては、400nmが好ましく、300nmがより好ましい。上記研磨粒子22の一次粒子径の最小値が上記下限未満である場合、光ファイバコネクタの接続端面の研磨時間が増大するおそれがある。一方、上記研磨粒子22の粒子径の最大値が上記上限を超える場合、研磨時の光ファイバの引き込みの制御が困難となるおそれがある。
 上記研磨粒子22全体に対する大径研磨粒子22aの含有量の下限としては、10質量%であり、25質量%がより好ましい。また、上記研磨粒子22全体に対する大径研磨粒子22aの含有量の上限としては、50質量%であり、35質量%がより好ましい。上記研磨粒子22全体に対する大径研磨粒子22aの含有量が上記下限未満である場合、当該研磨フィルムの研削力が不足するおそれがある。一方、上記研磨粒子22全体に対する大径研磨粒子22aの含有量が上記上限を超える場合、研磨時の光ファイバの引き込み量の制御が困難となるおそれがある。
 上記研磨層20に対する研磨粒子22の含有量の下限としては、84質量%であり、87質量%がより好ましい。また、上記研磨層20に対する研磨粒子22の含有量の上限としては、92質量%が好ましく、90質量%がより好ましい。上記研磨層20に対する研磨粒子22の含有量が上記下限未満である場合、当該研磨フィルムの研削力が不足するおそれがある。一方、上記研磨層20に対する研磨粒子22の含有量が上記上限を超える場合、研磨層20の押し込み硬さの制御が困難となるおそれがある。
<研磨フィルムの製造方法>
 当該研磨フィルムの製造方法は、基材10と研磨層20との接着性及び密着性を十分に確保できる公知の薄膜製造技術を採用することができ、例えば塗工液を準備する工程、上記塗工液を基材10表面に塗布する工程及び塗布した塗工液を乾燥する工程を備える。
 まず、塗工液準備工程において、樹脂バインダー21及び研磨粒子22を溶剤に分散させた溶液を塗工液として準備する。上記溶剤としては、樹脂バインダー21が可溶なものであれば特に限定されない。具体的には、メチルエチルケトン(MEK)、イソホロン、テルピネオール、Nメチルピロリドン、シクロヘキサノン、プロピレンカーボネート等を用いることができる。塗工液の粘度や流動性を制御するために、水、アルコール、ケトン、酢酸エステル、芳香族化合物等の希釈剤等を添加してもよい。また、各種助剤及び添加剤を混合してもよい。
 次に、塗工液塗布工程において、上記塗工液準備工程で準備した塗工液を基材10表面に塗布する。この塗布方法としては、特に限定されず、例えばバーコーティング、コンマコート、スプレーコーティング、リバースロールコーティング、ナイフコーティング、スクリーン印刷、グラビアコーティング、ダイコーティング等の公知の塗布方式を用いることができる。
 次に、乾燥工程において、塗布した塗工液を乾燥及び反応硬化させることで研磨層20を形成する。具体的には、例えば90℃以上110℃以下の熱風を20時間以上基材10に当てることによって、塗工液の溶媒を蒸発させると共に溶質を硬化させ、研磨層20を形成する。
<利点>
 当該研磨フィルムは、研磨層20の押し込み硬さが370N/mm以下であり、研磨粒子22全体に対する一次粒子径70nm以上の大径研磨粒子22aの含有量が50質量%以下であるので、研磨後の光ファイバの引き込みを防止できる。また、当該研磨フィルムは、研磨粒子全体に対する大径研磨粒子22aの含有量が10質量%以上であり、上記研磨層20における上記研磨粒子22の含有量が84質量%以上であるので、高い研削力を有する。
[その他の実施形態]
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。
 上記実施形態では、基材の表面に直接研磨層を形成した研磨フィルムを説明したが、基材と研磨層との間に、基材と研磨層との密着性を確保するためのプライマー処理層を設けてもよい。このプライマー処理層の主成分としては、基材と研磨層との密着性を確保できるものであれば特に限定されず、例えば、水溶性又は水分散性のポリエステル又はアクリル樹脂や、水溶性又は水分散可能な親水基含有ポリエステルに不飽和結合含有化合物をグラフト化させた樹脂等を用いることができる。
 このプライマー処理層は、例えば基材の表面に上記主成分を含有するプライマー剤をスプレーコートした後乾燥することで形成できる。また、基材の表面に予めプライマー処理層が設けられている基材を用いてもよい。
 また、研磨層が溝を有していてもよい。この溝の形状としては、例えば等間隔の格子状や複数の直線状の溝が略平行に配置された縞状とすることができる。研磨層が溝を有することで、研磨時に発生する研磨屑等を効率よく除去することができる。
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、当該発明は以下の実施例に限定されるものではない。
[実施例1]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を250質量部、大径研磨粒子としての溶融シリカ(電気化学工業株式会社の「UFP-30」、平均一次粒子径99nm)を10質量部、樹脂バインダーとしての架橋済のウレタン系熱可塑性エラストマー(株式会社クラレの「クラミロンU9180」)を5質量%含有するテトラヒロドロフラン溶解液を220質量部、樹脂バインダーとしてのポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を5質量部及び溶剤としてのメチルエチルケトンを33質量部混合し、塗布液を得た。
 上記塗布液を基材としてのポリエステルフィルム(東レ株式会社の「ルミラーT91N」、平均厚さ75μm)の一方の表面にバーコート法を用いて塗布し、オーブンにて100℃で乾燥させることにより、平均厚さ5μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は85質量%である。
[実施例2]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を207質量部、大径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「IPA-ST-ZL」、一次粒子径70~100nm、固形分30質量%)を87質量部、樹脂バインダーとしての加硫済のアクリロニトリル-ブタジエンゴム(JSR株式会社の「N230S」)を5質量%含有するN,N-ジメチルホルムアミド溶解液を60質量部、樹脂バインダーとしてのセルロース樹脂(日進化成株式会社の「エトセル100」)を5質量%含有するメチルエチルケトンを60質量部及び樹脂バインダーとしてのポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を7質量部混合し、塗布液を得た。
 上記塗布液を基材としてのポリエステルフィルム(帝人デュポンフィルム株式会社の「HLE-75」、平均厚さ75μm)の一方の表面にバーコート法を用いて塗布し、オーブンにて100℃で乾燥させることにより、平均厚さ6μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は88質量%である。
[実施例3]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を210質量部、大径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「IPA-ST-ZL」、一次粒子径70~100nm、固形分30質量%)を87質量部、樹脂バインダーとしての加硫済のアクリロニトリル-ブタジエンゴム(JSR株式会社の「N230S」)を5質量%含有するN,N-ジメチルホルムアミド溶解液を100質量部及び樹脂バインダーとしてのポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を7質量部混合し、塗布液を得た。
 上記塗布液を基材としてのポリエステルフィルム(帝人デュポンフィルム株式会社の「HLE-75」、平均厚さ75μm)の一方の表面にバーコート法を用いて塗布し、オーブンにて100℃で乾燥させることにより、平均厚さ11μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は90質量%である。
[実施例4]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「IPA-ST」、一次粒子径10~20nm、固形分30質量%)を240質量部、大径研磨粒子としての湿式シリカ(扶桑化学工業株式会社の「SP03F」、平均一次粒子径300nm)を18質量部、樹脂バインダーとしての架橋済のアクリルエラストマー(三菱レイヨン株式会社の「BR102」)を5質量%含有する2-プロパノール溶解液を140質量部、樹脂バインダーとしてのポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を4質量部及び溶剤としてのメチルエチルケトンを50質量部混合し、塗布液を得た。
 上記塗布液を基材としてのポリエステルフィルム(帝人デュポンフィルム株式会社の「HLE-75」、平均厚さ75μm)の一方の表面にバーコート法を用いて塗布し、オーブンにて100℃で乾燥させることにより、平均厚さ5μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は90質量%である。
[比較例1]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を175質量部及び大径研磨粒子として溶融シリカ(電気化学工業株式会社の「UFP-30」、平均一次粒子径99nm)を7.5質量部とし、樹脂バインダー及び溶剤は実施例1と同様とした塗布液を用いた以外は、実施例1と同様にして平均厚さ5μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は80質量%である。
[比較例2]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を267質量部、大径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「IPA-ST-ZL」、一次粒子径70~100nm、固形分30質量%)を17質量部、樹脂バインダーとしてのアクリロニトリル-ブタジエンゴム(JSR株式会社の「N230S」)を5質量%含有するN,N-ジメチルホルムアミド溶解液を60質量部、樹脂バインダーとしてのセルロース樹脂(日進化成株式会社の「エトセル100」)を120質量部及び樹脂バインダーとしてのポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を8質量部混合し、塗布液を得た。
 上記塗布液を基材としてのポリエステルフィルム(帝人デュポンフィルム株式会社の「HLE-75」、平均厚さ75μm)の一方の表面にバーコート法を用いて塗布し、オーブンにて100℃で乾燥させることにより、平均厚さ5μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は85質量%である。
[比較例3]
 小径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「MEK-ST」、一次粒子径10~20nm、固形分30質量%)を147質量部及び大径研磨粒子としてのオルガノシリカゾル(日産化学工業株式会社の「IPA-ST-ZL」、一次粒子径70~100nm、固形分30質量%)を153質量部とし、樹脂バインダーは実施例3と同様とした塗布液を用いた以外は、実施例3と同様にして平均厚さ5μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は90質量%である。
[比較例4]
 樹脂バインダーとしてセルロース樹脂(日進化成株式会社の「エトセル100」)を5質量%含有するメチルエチルケトンを120質量部及びポリイソシアネート(住化バイエルウレタン株式会社の「デスモジュールL75C」、固形分75質量%)を8質量部とし、研磨粒子は実施例2と同様とした塗布液を用いた以外は、実施例2と同様にして平均厚さ6μmの研磨層を有する研磨フィルムを得た。この研磨層の研磨粒子の含有量は88質量%である。
[研磨条件]
 上記実施例1~4及び比較例1~4で得られた研磨フィルムを用いて、フェルール(株式会社精工技研の「SCフェルール」)に光ファイバが接着された光ファイバコネクタの研磨を行った。まず、研磨フィルムを直径127mmの円型に打ち抜き、研磨機(株式会社精工技研の「SFP-550S」)の弾性体パッド(硬度70°)に貼り付けて固定し、イオン交換水を研磨液として用い、中間仕上げ研磨後の光ファイバコネクタの接続端面に対し最終仕上げ研磨を自転1rpm、公転70rpmの回転数で60秒間行った。
 なお、上記中間仕上げ研磨は、平均一次粒径が1μmのダイヤモンド砥粒を有する研磨フィルム(バンドー化学株式会社の「TOPXD105」)を、研磨機(株式会社精工技研の「SFP-550S」)の弾性体パッド(硬度80°)に貼り付けて固定し、イオン交換水を研磨液として用い、粗球面研磨後の光ファイバコネクタの接続端面に対し最終仕上げ研磨を自転1rpm、公転70rpmの回転数で120秒間行った。
[評価方法]
 研磨した光ファイバコネクタについて、以下の評価を行った。結果を表1に示す。
<引き込み量>
 研磨後の光ファイバコネクタの引き込み量は、光コネクタ端面三次元形状測定機(Norland社の「ACCIS NC/AC-3000」)を用いて計測した。なお、フェルールに対し光ファイバが突き出した状態となる場合は、引き込み量を負値として表す。また、引き込み量として光損失の観点より-30nm以上-10nm以下が好ましいことから、計測値については以下の判断基準で判定した。
 A:引き込み量が-30nm以上-10nm以下の範囲内である。
 B:引き込み量が-30nm以上-10nm以下の範囲外である。
<端面の状態>
 端面の状態は、WESTOVER社の「Video Fiber Microscope」を用いて観察し、以下の判断基準で判定した。
 A:付着物及びスクラッチが見受けられず、良好な端面が得られる。
 B:付着物又はスクラッチが見受けられ、良好な端面が得られない。
Figure JPOXMLDOC01-appb-T000001
 表1において、「-」は未測定であることを表す。
 表1の結果から、実施例1~4の研磨フィルムは、比較例1~4の研磨フィルムに比べて光ファイバコネクタの引き込み量が-30nm以上-10nm以下の範囲に制御されており、端面の状態もよい。これに対し、比較例1では研磨粒子の含有量が84質量%未満であるため、研削力が不十分であると考えられ、良好な端面が得られない。比較例2では大径研磨粒子の含有量が10質量%未満であるため、研削力が不十分であると考えられ、良好な端面が得られない。また、比較例3では大径研磨粒子の含有量が50質量%を超えるため、光ファイバの引き込み量の制御ができていない。さらに比較例4では研磨層の押し込み硬さが370N/mmを超えるため、研磨時に光ファイバが選択的に研磨され光ファイバの引き込み量が-10nmより大きくなっている。つまり、実施例1~4の研磨フィルムは、研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が10質量%以上50質量%以下であり、研磨層における上記研磨粒子の含有量が84質量%以上であり、研磨層の押し込み硬さが370N/mm以下であることで、研磨後の光ファイバの引き込みを防止できている。
 本発明の研磨フィルムは、高い研削力を有しつつ、研磨後の光ファイバの引き込みを防止できる。従って、当該研磨フィルムは、例えば光ファイバコネクタの接続端面の仕上げ工程で好適に用いることができる。
10 基材
20 研磨層
21 樹脂バインダー
22 研磨粒子
22a 大径研磨粒子
22b 小径研磨粒子

Claims (4)

  1.  基材と、その表面側に積層される研磨層とを有する研磨フィルムであって、
     上記研磨層が、樹脂バインダー及びこの樹脂バインダー中に分散される研磨粒子を有し、
     上記研磨粒子全体に対する一次粒子径70nm以上の研磨粒子の含有量が10質量%以上50質量%以下であり、
     上記研磨層における上記研磨粒子の含有量が84質量%以上であり、
     上記研磨層の押し込み硬さが370N/mm以下であることを特徴とする研磨フィルム。
  2.  上記研磨粒子が、シリカ粒子である請求項1に記載の研磨フィルム。
  3.  上記研磨層の平均厚さが4μm以上15μm以下である請求項1に記載の研磨フィルム。
  4.  上記樹脂バインダーが、ガラス転移温度20℃以下のエラストマーを含有し、
     上記樹脂バインダーに対する上記エラストマーの含有量が20質量%以上である請求項1に記載の研磨フィルム。
     
PCT/JP2015/068488 2014-07-07 2015-06-26 研磨フィルム WO2016006476A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15819449.8A EP3168002B1 (en) 2014-07-07 2015-06-26 Polishing film
US15/324,073 US10543582B2 (en) 2014-07-07 2015-06-26 Abrasive film
JP2015556320A JP5921790B1 (ja) 2014-07-07 2015-06-26 研磨フィルム
KR1020177000240A KR101904732B1 (ko) 2014-07-07 2015-06-26 연마필름
CN201580036615.2A CN106470800B (zh) 2014-07-07 2015-06-26 研磨膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140073 2014-07-07
JP2014-140073 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016006476A1 true WO2016006476A1 (ja) 2016-01-14

Family

ID=55064114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068488 WO2016006476A1 (ja) 2014-07-07 2015-06-26 研磨フィルム

Country Status (6)

Country Link
US (1) US10543582B2 (ja)
EP (1) EP3168002B1 (ja)
JP (1) JP5921790B1 (ja)
KR (1) KR101904732B1 (ja)
CN (1) CN106470800B (ja)
WO (1) WO2016006476A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053028B (zh) * 2017-03-02 2024-05-07 深圳市摩码科技有限公司 一种研磨带
TWI669193B (zh) * 2017-08-28 2019-08-21 中國砂輪企業股份有限公司 Grinding tool and method of manufacturing same
TWI645940B (zh) * 2018-01-15 2019-01-01 中國砂輪企業股份有限公司 Grinding tool
TWI645939B (zh) * 2018-01-15 2019-01-01 中國砂輪企業股份有限公司 Grinding tool
CN111015535B (zh) * 2019-12-04 2021-04-23 东莞金太阳研磨股份有限公司 一种具有特殊结构的精密抛光膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234762A (ja) * 1985-08-07 1987-02-14 Furukawa Electric Co Ltd:The 光コネクタ中子端面凸球面状研磨用研磨盤
JP2003260648A (ja) * 2002-03-06 2003-09-16 Fuji Photo Film Co Ltd 光ファイバーフェルールの端面研磨方法
JP2007190613A (ja) * 2004-02-09 2007-08-02 Bando Chem Ind Ltd 研磨フィルム及びその製造方法
JP2010274348A (ja) * 2009-05-27 2010-12-09 Nihon Micro Coating Co Ltd 研磨フィルム及びこれを用いた研磨方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505045A (en) * 1968-03-19 1970-04-07 Minnesota Mining & Mfg Abrasive backings saturated with copolymers of acrylic ester and nitrile monomers
JPH0319775A (ja) * 1989-06-12 1991-01-28 Hitachi Maxell Ltd 研磨シート
US5667842A (en) * 1993-10-27 1997-09-16 Minnesota Mining And Manufacturing Company Abrasive articles incorporating addition polymerizable resins and reactive diluents, and methods of making said abrasive articles
JP3305557B2 (ja) 1995-04-10 2002-07-22 大日本印刷株式会社 研磨テープ、その製造方法および研磨テープ用塗工剤
JP3769589B2 (ja) 2001-02-21 2006-04-26 日本ミクロコーティング株式会社 研磨フィルム及びその製造方法
WO2002092286A1 (fr) * 2001-05-14 2002-11-21 Nihon Micro Coating Co., Ltd. Pellicule abrasive et procede de fabrication
US20030171078A1 (en) 2002-03-06 2003-09-11 Fuji Photo Film Co., Ltd. Polishing member and method for polishing end faces of optical fibers
US20040063391A1 (en) * 2002-08-26 2004-04-01 Jsr Corporation Composition for polishing pad and polishing pad therewith
US6858292B2 (en) * 2002-09-06 2005-02-22 3M Innovative Properties Company Abrasive articles with resin control additives
JP2004249370A (ja) * 2003-02-18 2004-09-09 Hitachi Maxell Ltd 研磨体及び研磨体の製造方法
WO2009077805A1 (en) * 2007-12-19 2009-06-25 Invatec Technology Center Gmbh Modular stent assembly
US20090266002A1 (en) * 2008-04-29 2009-10-29 Rajeev Bajaj Polishing pad and method of use
BRPI0916391A2 (pt) * 2008-07-22 2019-03-06 Saint Gobain Abrasifs Sa produtos abrasivos revestidos contendo agregados
US20100107509A1 (en) * 2008-11-04 2010-05-06 Guiselin Olivier L Coated abrasive article for polishing or lapping applications and system and method for producing the same.
CA2747634A1 (en) * 2008-12-22 2010-07-01 Saint-Gobain Abrasives, Inc. Rigid or flexible, macro-porous abrasive article
US9951054B2 (en) * 2009-04-23 2018-04-24 Cabot Microelectronics Corporation CMP porous pad with particles in a polymeric matrix
WO2012092618A2 (en) * 2010-12-30 2012-07-05 Saint-Gobain Abrasives, Inc. Imide cross-linked binders for abrasive articles
WO2012092619A2 (en) * 2010-12-30 2012-07-05 Saint-Gobain Abrasives, Inc. Coated abrasive aggregates and products containg same
JP5851124B2 (ja) * 2011-06-13 2016-02-03 スリーエム イノベイティブ プロパティズ カンパニー 研磨用構造体
US9168638B2 (en) * 2011-09-29 2015-10-27 Saint-Gobain Abrasives, Inc. Abrasive products and methods for finishing hard surfaces
JP5938695B2 (ja) * 2011-12-22 2016-06-22 パナソニックIpマネジメント株式会社 太陽電池及び太陽電池モジュール
CA2867350C (en) * 2012-03-16 2017-05-23 Saint-Gobain Abrasives, Inc. Abrasive products and methods for finishing surfaces
US8968435B2 (en) * 2012-03-30 2015-03-03 Saint-Gobain Abrasives, Inc. Abrasive products and methods for fine polishing of ophthalmic lenses
US20170008143A1 (en) * 2014-01-24 2017-01-12 3M Innovative Properties Company Abrasive material having a structured surface
US20160000292A1 (en) * 2014-07-02 2016-01-07 The Procter & Gamble Company Nonwoven articles comprising abrasive particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234762A (ja) * 1985-08-07 1987-02-14 Furukawa Electric Co Ltd:The 光コネクタ中子端面凸球面状研磨用研磨盤
JP2003260648A (ja) * 2002-03-06 2003-09-16 Fuji Photo Film Co Ltd 光ファイバーフェルールの端面研磨方法
JP2007190613A (ja) * 2004-02-09 2007-08-02 Bando Chem Ind Ltd 研磨フィルム及びその製造方法
JP2010274348A (ja) * 2009-05-27 2010-12-09 Nihon Micro Coating Co Ltd 研磨フィルム及びこれを用いた研磨方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168002A4 *

Also Published As

Publication number Publication date
EP3168002B1 (en) 2022-03-23
KR101904732B1 (ko) 2018-10-05
CN106470800B (zh) 2019-06-18
JP5921790B1 (ja) 2016-05-24
CN106470800A (zh) 2017-03-01
US10543582B2 (en) 2020-01-28
EP3168002A1 (en) 2017-05-17
KR20170016443A (ko) 2017-02-13
JPWO2016006476A1 (ja) 2017-04-27
EP3168002A4 (en) 2018-08-22
US20170157745A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5921790B1 (ja) 研磨フィルム
JP5898821B1 (ja) 研磨フィルム
JP6881301B2 (ja) ガラス板の製造方法
CN109791229B (zh) 光学设备用遮光部件
JPWO2009020207A1 (ja) 近赤外線吸収性組成物、及び近赤外線吸収フィルタ
US20170165947A1 (en) Window film
US10451816B2 (en) Polishing sheet equipped with nano-silica polishing particles, and polishing method and manufacturing method for optical fiber connector using polishing sheet
JP2018506450A (ja) マイクロスフェア処理した縁部を有するウェブ巻取りロール及びその作製方法
KR20110011406A (ko) 광학필름 적층체 및 이것이 구비된 액정표시장치
EP3150332B1 (en) Deviation-preventing coating material
WO2017033705A1 (ja) 片保護偏光フィルム、粘着剤層付偏光フィルムおよび画像表示装置
WO2020022269A1 (ja) 光学フィルムおよびその製造方法、偏光板、ならびに画像表示装置
JP7102688B2 (ja) 研磨フィルム、及び該研磨フィルムの製造方法
WO2002078978A2 (en) Graphics-protection sheet and graphics-displaying sheet
JP7031190B2 (ja) 研磨フィルム、及び該研磨フィルムの製造方法
WO2022209104A1 (ja) 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
JP2003291068A (ja) 光ファイバー端面用研磨媒体
TW202243894A (zh) 光學積層體、光學積層體之製造方法、光學構件、光學裝置、光學構件之製造方法、及光學裝置之製造方法
TW202344894A (zh) 光學構件以及使用該光學構件之ar玻璃及頭戴式顯示器
Zhou et al. A novel polishing method using soluble fixed soft abrasive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015556320

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000240

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015819449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15324073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE