WO2022209104A1 - 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法 - Google Patents

光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法 Download PDF

Info

Publication number
WO2022209104A1
WO2022209104A1 PCT/JP2021/049010 JP2021049010W WO2022209104A1 WO 2022209104 A1 WO2022209104 A1 WO 2022209104A1 JP 2021049010 W JP2021049010 W JP 2021049010W WO 2022209104 A1 WO2022209104 A1 WO 2022209104A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
present
hard layer
void
Prior art date
Application number
PCT/JP2021/049010
Other languages
English (en)
French (fr)
Inventor
諒太 森島
貴博 吉川
大輔 服部
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180096670.6A priority Critical patent/CN117157191A/zh
Priority to KR1020237031264A priority patent/KR20230164661A/ko
Priority to EP21935251.5A priority patent/EP4309888A1/en
Priority to US18/285,067 priority patent/US20240192408A1/en
Publication of WO2022209104A1 publication Critical patent/WO2022209104A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/109Sols, gels, sol-gel materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to an optical layered body, a method for manufacturing an optical layered body, an optical member, an optical device, a method for manufacturing an optical member, and a method for manufacturing an optical device.
  • an air layer with a low refractive index is used as a total reflection layer.
  • each optical film member for example, a light guide plate and a reflector
  • a liquid crystal device is laminated via an air layer.
  • problems such as bending of the members may occur, especially when the members are large.
  • integration of each member is desired due to the trend toward thinner devices. For this reason, each member is integrated with an adhesive agent without an air layer (for example, Patent Document 1).
  • Patent Document 1 for example, if there is no air layer that plays the role of total reflection, optical characteristics such as light leakage may deteriorate. Therefore, it has been proposed to use a low refractive index layer instead of the air layer.
  • Patent Document 2 describes a structure in which a layer having a lower refractive index than that of the light guide plate is inserted between the light guide plate and the reflector.
  • a layer having a lower refractive index than that of the light guide plate is inserted between the light guide plate and the reflector.
  • the low refractive index layer for example, a void layer having voids is used in order to make the refractive index as close to air as possible.
  • JP 2012-156082 A JP-A-10-62626
  • the sheet containing the void layer in order to form a void layer into a sheet, the sheet containing the void layer must have high web handleability, workability, and the like. However, if the strength against peeling of the void layer is low, the web handleability, workability, etc. of the sheet containing the void layer may deteriorate.
  • an object of the present invention is to provide an optical layered body having high strength against peeling off of the void layer, a method for manufacturing the optical layered body, an optical member, an optical device, a method for manufacturing an optical member, and a method for manufacturing an optical device. .
  • the optical laminate of the present invention comprises: comprising a void layer and a hard layer formed on the void layer;
  • the void layer has a porosity of 30% by volume or more,
  • the hard layer contains at least one selected from the group consisting of metals, metal oxides, silicon, silicon oxides, and organic-inorganic hybrid materials, and an indenter is pressed in the thickness direction by 20 nm using a nanoindenter. It is characterized in that the measured hardness is greater than that of the void layer.
  • the method for producing the optical layered body of the present invention includes a hard layer forming step of forming the hard layer on at least one surface of the void layer, and the hard layer forming step includes a vacuum deposition method, a sputtering method, and a chemical vapor deposition method.
  • An optical member of the present invention is characterized by including the optical laminate of the present invention.
  • An optical device of the present invention is characterized by including the optical member of the present invention.
  • a method for producing an optical member of the present invention comprises an optical layered body producing step of producing the optical layered body of the present invention by the method of producing the optical layered body of the present invention. is a manufacturing method.
  • a method for manufacturing an optical device of the present invention is characterized by including an optical member manufacturing step of manufacturing the optical member of the present invention by the method of manufacturing an optical member of the present invention. is.
  • an optical layered body having a high strength against peeling off of the void layer a method for manufacturing the optical layered body, an optical member, an optical device, a method for manufacturing an optical member, and a method for manufacturing an optical device.
  • FIG. 1(a) is a cross-sectional view showing an example of the configuration of the optical layered body of the present invention.
  • FIG. 1(b) is a cross-sectional view showing another example of the configuration of the optical laminate of the present invention.
  • FIG. 1(c) is a cross-sectional view showing an example of the configuration of an optical layered body that does not contain a hard layer.
  • 2(a) to 2(d) are process cross-sectional views showing an example of the process in the method for manufacturing the optical layered body of the present invention.
  • the optical layered body of the present invention may have a hardness of 0.04 GPa or more, for example, measured by indenting an indenter by 20 nm into the hard layer using a nanoindenter.
  • the hard layer comprises silicon, aluminum, silicon dioxide, aluminum oxide, zinc-tin composite oxide (ZTO), indium-tin composite oxide (ITO), indium-zinc composite oxide (IZO ), gallium-zinc composite oxide (GZO), and at least one selected from the group consisting of polysiloxane.
  • the hard layer may have a thickness of 5 nm or more.
  • the hard layer is a layer formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). good too.
  • the void layer may be a porous body in which microporous particles of a silicon compound are chemically bonded to each other.
  • the optical laminate of the present invention may, for example, further include an adhesive layer, and the adhesive layer may be provided on the surface of the hard layer opposite to the void layer.
  • “on” or “on the surface” may be in a state of being in direct contact with the surface, or may be in a state of intervening another layer or the like.
  • the "adhesive layer” refers to a layer formed by at least one of an adhesive and an adhesive.
  • a pressure-sensitive adhesive and an adhesive may be collectively referred to as an "adhesive".
  • an agent with relatively weak adhesive force or adhesive force for example, an agent that can be It is sometimes impossible or extremely difficult to re-peel off the adhesive
  • sheet and "film”.
  • a material having a relatively large thickness is referred to as a "sheet” and a material having a relatively small thickness is referred to as a “film” in some cases, but in the present invention, the "sheet” and the “film” are clearly distinguished do not do.
  • the optical laminate of the present invention includes a void layer and a hard layer formed on the void layer, the void layer has a porosity of 30% by volume or more, and the hard layer comprises: Hardness that contains at least one selected from the group consisting of metals, metal oxides, silicon, silicon oxides, and organic-inorganic hybrid materials, and is measured by indenting an indenter by 20 nm in the thickness direction using a nanoindenter. is larger than the void layer.
  • this optical laminate 10 a has a void layer 12 formed on a substrate 11 and a hard layer 13 formed on the void layer 12 .
  • the void layer 12 has a porosity of 30% by volume or more.
  • the hard layer 13 contains at least one selected from the group consisting of metals, metal oxides, silicon, silicon oxides and organic-inorganic hybrid materials.
  • FIG. 1(b) Another example of the configuration of the optical laminate of the present invention is shown in the cross-sectional view of FIG. 1(b). As shown, this optical layered body 10b is the same as the optical layered body of FIG. It is the same as the body 10a.
  • FIG. 1(c) shows an example of the configuration of an optical layered body that does not contain a hard layer.
  • this optical laminate 20 does not include the hard layer 13, and is similar to the optical laminate of FIG. Same as body 10b.
  • the adhesive layer is provided in direct contact with the void layer as shown in FIG. It may be damaged.
  • the present inventors have found that the strength against peeling off of the void layer is increased by providing a hard layer on the void layer, and have arrived at the present invention.
  • the optical layered body of the present invention includes the void layer and a hard layer formed on the void layer.
  • the optical laminate of the present invention may or may not contain the void layer and layers other than the void layer.
  • the other layer may or may not include the substrate 11 as shown in FIGS. 1(a) and 1(b).
  • the other layer may or may not include an adhesive layer 14 as shown in FIG. 1(b).
  • another layer may or may not be included.
  • the substrate 11 is not particularly limited, and may be, for example, a substrate such as a film.
  • the base material include thermoplastic resin base materials, glass base materials, inorganic substrates typified by silicon, plastics molded from thermosetting resins, devices such as semiconductors, and carbon nanotubes. Although a carbon fiber-based material or the like can be preferably used, it is not limited to these.
  • the form of the substrate include a film and a plate.
  • thermoplastic resin examples include polyethylene terephthalate (PET), acrylic, cellulose acetate propionate (CAP), cycloolefin polymer (COP), triacetylcellulose (TAC), polyethylene naphthalate (PEN), and polyethylene (PE). , polypropylene (PP), and the like.
  • the thickness of the substrate 11 is not particularly limited, but may be, for example, 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more, and may be, for example, 1000 ⁇ m or less, 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less.
  • the thickness of the substrate 11 is not too large.
  • the thickness of the substrate 11 is not too small.
  • the void layer 12 has a porosity of 30% by volume or more, as described above.
  • the void layer hereinafter sometimes referred to as "the void layer of the present invention" in the optical layered body of the present invention will be described with examples.
  • the void layer of the present invention is not limited to this.
  • the void layer of the present invention may have, for example, a porosity of 35% by volume or more. Moreover, the void layer of the present invention may have a peak pore diameter of 50 nm or less, for example. However, this is an example, and the void layer of the present invention is not limited to this.
  • the porosity may be, for example, 35% by volume or more, 38% by volume or more, or 40% by volume or more, and may be 90% by volume or less, 80% by volume or less, or 75% by volume or less.
  • the void layer of the present invention may be, for example, a high void layer having a void ratio of 60% by volume or more.
  • the porosity can be measured, for example, by the following measuring method.
  • the layer to be measured for porosity is a single layer and contains only voids
  • the ratio (volume ratio) of the constituent substances of the layer to air (volume ratio) can be calculated by a standard method (e.g., measuring the weight and volume to calculate the density).
  • the porosity % by volume
  • the porosity can be calculated from the refractive index value of the layer.
  • the porosity is calculated by Lorentz-Lorenz's formula from the value of the refractive index measured by an ellipsometer.
  • the void layer of the present invention can be produced, for example, by chemical bonding of gel pulverized material (microporous particles), as described later.
  • the voids in the void layer can be conveniently classified into the following three types (1) to (3).
  • the voids in (2) above are considered to be one mass (block) regardless of the size, size, etc. of the pulverized gel (microporous particles).
  • the voids of (3) above are voids generated due to irregularities in size, size, etc. of the gel pulverized product (microporous particles) in pulverization (for example, medialess pulverization).
  • the porous layer of the present invention has an appropriate porosity and peak pore size, for example, by having the above-mentioned (1) to (3) pores.
  • the peak pore diameter may be, for example, 5 nm or more, 10 nm or more, or 20 nm or more, and may be 50 nm or less, 40 nm or less, or 30 nm or less.
  • the lower limit of the peak pore diameter of the void layer is not particularly limited, but if the peak pore diameter is too small, it becomes difficult to increase the porosity.
  • the peak pore diameter can be measured, for example, by the following method.
  • the thickness of the void layer of the present invention is not particularly limited.
  • the porous layer of the present invention uses pulverized porous gel to destroy the three-dimensional structure of the porous gel and create a new three-dimensional structure different from that of the porous gel. is formed.
  • the porous layer of the present invention has a new pore structure (new pore structure) that cannot be obtained in the layer formed from the porous gel.
  • a void layer of scale can be formed.
  • the void layer of the present invention is, for example, a silicone porous material
  • the void layer of the present invention chemically bonds the pulverized materials together while adjusting the number of siloxane-bonded functional groups of the silicon compound gel.
  • sicone porous material means a polymer porous material containing siloxane bonds, and includes, for example, a porous material containing silsesquioxane as a structural unit.
  • chemical bonding for example, cross-linking
  • it is a body, it has a structure with voids, but can maintain sufficient strength and flexibility. Therefore, according to the present invention, a void layer can be easily and simply applied to various objects.
  • the void layer of the present invention includes, for example, pulverized porous gel particles, and the pulverized particles are chemically bonded to each other, as will be described later.
  • the form of chemical bonding (chemical bonding) between the pulverized materials is not particularly limited, and specific examples of the chemical bonding include cross-linking and the like.
  • the method for chemically bonding the pulverized materials to each other is as described in detail, for example, in the method for producing the porous layer described above.
  • the cross-linking bond is, for example, a siloxane bond.
  • the siloxane bond include the following T2 bond, T3 bond, and T4 bond.
  • the silicone porous material of the present invention may have any one kind of bond, any two kinds of bonds, or all three kinds of bonds. good too.
  • the siloxane bonds the greater the ratio of T2 and T3, the greater the flexibility and the inherent properties of the gel can be expected, but the film strength becomes weaker.
  • the T4 ratio among the siloxane bonds is large, the film strength tends to be exhibited, but the pore size becomes small and the flexibility becomes weak. Therefore, for example, it is preferable to change the T2, T3, and T4 ratios depending on the application.
  • the silicon atoms contained are preferably siloxane-bonded.
  • the ratio of unbonded silicon atoms (that is, residual silanol) to all silicon atoms contained in the silicone porous material is, for example, less than 50%, 30% or less, or 15% or less.
  • the void layer of the present invention has, for example, a pore structure.
  • the pore size of a pore refers to the diameter of the major axis of the pore (pore), out of the diameter of the major axis and the diameter of the minor axis.
  • the pore size is, for example, 5 nm to 50 nm.
  • the void size has a lower limit of, for example, 5 nm or more, 10 nm or more, or 20 nm or more, and an upper limit of, for example, 50 nm or less, 40 nm or less, or 30 nm or less, and a range of, for example, 5 nm to 50 nm or 10 nm. ⁇ 40 nm. Since the preferred pore size is determined according to the use of the pore structure, it is necessary to adjust the pore size to the desired pore size according to the purpose, for example. Void size can be evaluated, for example, by the following method.
  • the morphology of the void layer can be observed and analyzed using an SEM (scanning electron microscope).
  • SEM scanning electron microscope
  • the void layer is subjected to FIB processing (accelerating voltage: 30 kV) under cooling, and the obtained cross-sectional sample is subjected to FIB-SEM (manufactured by FEI: trade name Helios NanoLab 600, accelerating voltage: 1 kV).
  • FIB processing accelerating voltage: 30 kV
  • FIB-SEM manufactured by FEI: trade name Helios NanoLab 600, accelerating voltage: 1 kV
  • the pore size can be quantified by the BET test method. Specifically, 0.1 g of the sample (the porous layer of the present invention) was put into the capillary of a pore distribution/specific surface area measuring device (BELLSORP MINI/trade name of Microtrack Bell), and then at room temperature for 24 hours. Vacuum drying is performed to degas the gas within the void structure. Then, by causing the sample to adsorb nitrogen gas, a BET plot, a BJH plot, and an adsorption isotherm are drawn to determine the pore distribution. This allows the void size to be evaluated.
  • a pore distribution/specific surface area measuring device BELLSORP MINI/trade name of Microtrack Bell
  • the void layer of the present invention may have, for example, a pore structure (porous structure) as described above, and may be, for example, an open cell structure in which the pore structure is continuous.
  • the open cell structure means, for example, that the pore structure is three-dimensionally connected in the void layer, and it can also be said that the internal voids of the pore structure are continuous. If the porous body has an open-cell structure, it is possible to increase the porosity in the bulk, but if closed-cell particles such as hollow silica are used, the open-cell structure cannot be formed.
  • the coating film (pulverized porous gel) is The dendritic particles settle and accumulate in the coating film of the sol containing the sol, so that an open-cell structure can be easily formed.
  • the porous layer of the present invention more preferably forms a monolithic structure in which the open-cell structure has a plurality of pore distributions.
  • the monolithic structure refers to, for example, a structure in which nano-sized fine voids exist and a layered structure in which the nano-sized voids are aggregated to form an open-cell structure.
  • the monolithic structure when the monolithic structure is formed, for example, fine voids can provide film strength, while coarse open-cell voids can provide high porosity, so that both film strength and high porosity can be achieved.
  • the monolithic structure when the porous gel is pulverized, can be formed by controlling the particle size distribution of the pulverized product to a desired size.
  • the haze indicating transparency is not particularly limited, and the lower limit is, for example, 0.1% or more, 0.2% or more, or 0.3% or more, and the upper limit is, for example, , 10% or less, 5% or less, or 3% or less, and the range is, for example, 0.1 to 10%, 0.2 to 5%, or 0.3 to 3%.
  • the haze can be measured, for example, by the following method.
  • the void layer (the void layer of the present invention) is cut into a size of 50 mm ⁇ 50 mm and set in a haze meter (HM-150 manufactured by Murakami Color Research Laboratory) to measure the haze.
  • the refractive index of the void layer of the present invention is not particularly limited. is, for example, 1.05 or more, 1.06 or more, 1.07 or more, and the range is, for example, 1.05 or more and 1.3 or less, 1.05 or more and less than 1.3, or 1.05 or more and 1.05 or more. 0.25 or less, 1.06 or more and less than 1.2, 1.07 or more and 1.15 or less.
  • the refractive index refers to the refractive index measured at a wavelength of 550 nm.
  • the method for measuring the refractive index is not particularly limited, and the refractive index can be measured, for example, by the following method.
  • the acrylic film After forming the void layer (the void layer of the present invention) on the acrylic film, the acrylic film is cut into a size of 50 mm ⁇ 50 mm and adhered to the surface of a glass plate (thickness: 3 mm) with an adhesive layer.
  • a sample that does not reflect light on the back surface of the glass plate is prepared by filling the central portion (about 20 mm in diameter) of the back surface of the glass plate with black ink. The sample is set in an ellipsometer (JA Woollam Japan: VASE), the refractive index is measured under the conditions of a wavelength of 550 nm and an incident angle of 50 to 80 degrees, and the average value is taken as the refractive index.
  • the thickness of the void layer of the present invention is not particularly limited. For example, 0.05 to 1000 ⁇ m, 0.1 to 100 ⁇ m.
  • the shape of the void layer of the present invention is not particularly limited, and may be, for example, a film shape, a block shape, or the like.
  • the hard layer 13 contains at least one selected from the group consisting of metals, metal oxides, silicon, silicon oxides and organic-inorganic hybrid materials.
  • the hard layer used in the optical layered body of the present invention hereinafter sometimes referred to as “hard layer of the present invention" will be described with examples.
  • the metal is not particularly limited, and examples thereof include aluminum, zinc, tin, indium, gallium and lead.
  • the metal oxide is not particularly limited, but is, for example, aluminum oxide (e.g., Al 2 O 3 ), zinc-tin composite oxide (ZTO), indium-tin composite oxide (ITO), indium-zinc composite oxide, as described above. (IZO), gallium-zinc composite oxide (GZO), and the like.
  • the silicon oxide is, for example, a compound represented by SiOx (0 ⁇ x ⁇ 2). Examples of the silicon oxide include, but are not limited to, silicon dioxide (SiO 2 ).
  • organic-inorganic hybrid material examples include, but are not limited to, polysiloxane and silsesquioxane.
  • organic-inorganic hybrid material means a material in which both an organic component and an inorganic component are present in the same molecule.
  • the hard layer of the present invention may contain or contain other components other than at least one component selected from the group consisting of metals, metal oxides, silicon, silicon oxides and organic-inorganic hybrid materials. It doesn't have to be.
  • the content is not particularly limited, but may be, for example, 10% by mass or less, 5% by mass or less, or 1% by mass or less, and the lower limit is Although not particularly limited, it is, for example, a numerical value exceeding 0% by mass.
  • the method for forming the hard layer of the present invention is not particularly limited, but a so-called dry process (a forming method that does not use a solvent) is preferred. Specifically, for example, as described above, it may be formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
  • the hard layer of the present invention has a higher hardness than the void layer of the present invention, as measured by indenting the hard layer with an indenter of 20 nm using a nanoindenter.
  • the hardness of the hard layer is measured by directly pressing the indenter against the surface or side surface of the hard layer formed on the void layer.
  • a method for forming a hard layer having such hardness is not particularly limited.
  • a hard layer having a higher hardness than the void layer of the present invention can be formed.
  • the thickness of the hard layer of the present invention is not particularly limited. It may be 100 nm or less, for example 3-300 nm, 4-200 nm, or 5-100 nm. From the viewpoint of thinness of the optical layered body, it is preferable that the thickness of the hard layer of the present invention is not too large. On the other hand, from the viewpoint of improving the strength of the void layer, it is preferable that the thickness of the hard layer of the present invention is not too small.
  • the optical layered body of the present invention has a hardness measured by indenting the hard layer of the present invention by 20 nm into the hard layer of the optical layered body using a nanoindenter.
  • a hardness measured by indenting the hard layer of the present invention by 20 nm into the hard layer of the optical layered body using a nanoindenter. may be 0.04 GPa or more.
  • the hardness can be measured, for example, by pressing the indenter directly against the surface of the hard layer when there is no other layer on the hard layer.
  • the hardness is determined after cutting the optical laminate in the thickness direction with a focused ion beam (FIB) or the like. can be measured by pressing an indenter against the hard layer exposed on the side surface of the optical laminate.
  • the hardness may be, for example, 0.04 GPa or higher, 0.06 GPa or higher, or 0.08 GPa or higher.
  • the upper limit of the hardness is not particularly limited, it may be, for example, 70 GPa or
  • the adhesive layer 14 is not particularly limited, but may be, for example, an adhesive layer formed of an adhesive (adhesive composition).
  • the thickness of the adhesive layer is not particularly limited. It may be 3-100 ⁇ m, 3-50 ⁇ m, or 5-25 ⁇ m.
  • the adhesive is not particularly limited, examples thereof include (meth)acrylic polymers. For example, these may be dissolved or dispersed in a solvent to form a solution or dispersion, which may be used as the pressure-sensitive adhesive (pressure-sensitive adhesive composition).
  • the solvent include ethyl acetate and the like, and one type thereof may be used alone, or a plurality of types may be used in combination.
  • the concentration of the solute or dispersoid (e.g., the acrylic polymer) in the solution or dispersion may be, for example, 10% by mass or more, or 15% by mass or more, for example, 60% by mass or less, or 50% by mass. % or less, 40 mass % or less, or 25 mass % or less.
  • (meth)acrylic polymer refers to a polymer or copolymer of at least one monomer selected from (meth)acrylic acid, (meth)acrylic acid ester, and (meth)acrylamide.
  • (meth)acrylic acid means “at least one of acrylic acid and methacrylic acid”
  • (meth)acrylic acid ester means “at least one of acrylic acid ester and methacrylic acid ester”.
  • examples of the (meth)acrylic acid ester include linear or branched alkyl esters of (meth)acrylic acid.
  • the number of carbon atoms in the alkyl group may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, for example, 18 or less, 16 or less. , 14 or less, 12 or less, 10 or less, or 8 or less.
  • Said alkyl groups may be substituted or unsubstituted, for example with one or more substituents.
  • substituents include hydroxyl groups and the like, and in the case of a plurality of substituents, they may be the same or different.
  • Specific examples of the (meth)acrylic acid ester include 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate and the like.
  • the said adhesive may use only one type, and may use multiple types together.
  • the optical laminate of the present invention may or may not contain an adhesive layer.
  • the optical layered body as a whole may have a light transmittance of 80% or more. Further, for example, the haze of the entire optical layered body may be 3% or less.
  • the "whole optical layered body” means the entirety including the substrate 11, the void layer 12 and the hard layer 13. In the case of the optical layered body 10b, it means the whole including the substrate 11, the void layer 12, the hard layer 13 and the adhesive layer .
  • the light transmittance may be, for example, 82% or more, 84% or more, 86% or more, or 88% or more, and the upper limit is not particularly limited, but is ideally 100%.
  • the measurement of the haze of the optical layered body can be performed, for example, by the same method as the measurement of the haze of the void layer described above.
  • the light transmittance is the transmittance of light having a wavelength of 550 nm, and can be measured, for example, by the following measuring method.
  • the laminate is used as a sample to be measured. Then, the total light transmittance (light transmittance) of the sample is measured when the total light transmittance of air is assumed to be 100%. The value of the total light transmittance (light transmittance) is the value measured at a wavelength of 550 nm.
  • the adhesive strength or adhesive strength of the adhesive layer is not particularly limited, but is, for example, 0.7 N/25 mm or more, 0.8 N/25 mm or more, 1.0 N/25 mm or more, or It may be 1.5 N/25 mm or more, 50 N/25 mm or less, 30 N/25 mm or less, 10 N/25 mm or less, 5 N/25 mm or less, or 3 N/25 mm or less. From the viewpoint of the risk of peeling during handling when the optical layered body of the present invention is bonded to other layers, it is preferable that the adhesive strength or adhesive strength of the adhesive layer is not too low. Moreover, from the viewpoint of reworking when reattaching, it is preferable that the adhesive force or adhesive force of the adhesive layer is not too high.
  • the adhesive strength or adhesive strength of the adhesive layer can be measured, for example, as follows.
  • the laminated film of the present invention (the optical laminate of the present invention formed on a resin film substrate) is sampled into strips of 50 mm ⁇ 140 mm, and the sample is fixed to a stainless steel plate with double-sided tape.
  • An acrylic adhesive layer (thickness: 20 ⁇ m) was attached to a PET film (T100: manufactured by Mitsubishi Resin Film Co., Ltd.), and an adhesive tape piece cut to 25 mm ⁇ 100 mm was attached to the opposite side of the laminated film of the present invention from the resin film. Then, it is laminated with the PET film.
  • the sample is chucked in an autograph tensile tester (manufactured by Shimadzu Corporation: AG-Xplus) so that the distance between chucks is 100 mm, and then a tensile test is performed at a tensile speed of 0.3 m / min. .
  • the average test force which performed a 50-mm peel test be adhesive peel strength, ie, adhesive force.
  • Adhesive force can also be measured by the same measuring method. In the present invention, there is no clear distinction between "adhesion” and "adhesion”.
  • optical layered body of the present invention is not particularly limited, it can be used, for example, in the optical member of the present invention and the optical device of the present invention.
  • optical member of the present invention is not particularly limited, it may be, for example, an optical film containing the optical laminate of the present invention.
  • the optical device (optical device) of the present invention is not particularly limited, but may be, for example, an image display device or a lighting device.
  • image display devices include a liquid crystal display, an organic EL (Electro Luminescence) display, a micro LED (Light Emitting Diode) display, and the like.
  • lighting devices include organic EL lighting and the like.
  • optical member of the present invention and the optical device of the present invention are not particularly limited. ) may be the same as
  • the method for producing the optical layered body of the present invention is not particularly limited, but it can be produced, for example, as follows.
  • FIG. 2(a) to 2(d) are sectional views showing an example of the steps in the method for producing the optical layered body of the present invention.
  • a substrate 11 is prepared.
  • the substrate 11 is not particularly limited, it is, for example, as described above.
  • the void layer 12 is formed on one surface of the substrate 11 (void layer forming step).
  • the method of forming (manufacturing method) of the void layer 12 is not particularly limited, but for example, it can be manufactured by the method described in International Publication No. 2019/065999 and International Publication No. 2019/065803. The description of the publication is incorporated herein by reference. More specifically, the method for forming the void layer 12 includes, for example, coating a coating liquid for forming the void layer on one surface of the base material 11, drying the coating liquid, and optionally, light irradiation, A method of curing, cross-linking reaction, etc. by chemical treatment (for example, cross-linking treatment) may be used.
  • the coating liquid may be, for example, a sol particle liquid of pulverized gel compound.
  • the gel compound may be, for example, silicon oxide (eg, silica gel, etc.).
  • the method for producing the sol particle liquid of the pulverized product of the gel compound is not particularly limited. .
  • the sol particle liquid can also be produced, for example, by the method described in "Reference Example 1" of the working examples of the present application, which will be described later.
  • the coating method of the coating liquid is not particularly limited, and a general coating method can be adopted. Examples of the coating method include slot die method, reverse gravure coating method, micro gravure coating method (micro gravure coating method), dip coating method (dip coating method), spin coating method, brush coating method, roll coating method, and flexographic printing.
  • the extrusion coating method the curtain coating method, the roll coating method, the micro gravure coating method, and the like are preferable from the viewpoint of productivity, smoothness of the coating film, and the like.
  • the hard layer 13 is formed on the surface of the void layer 12 opposite to the substrate 11 (hard layer forming step).
  • the hard layer 13 is formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD).
  • This method is not particularly limited, and for example, as described above, it may be similar to or based on general vacuum deposition methods, sputtering methods, and chemical vapor deposition methods (CVD).
  • the material, thickness, etc. of the hard layer 13 are, for example, as described above. In this way, as shown in FIG.
  • an optical layered body 10a in which the void layer 12 is formed on the substrate 11 and the hard layer 13 is further formed on the void layer 12 can be manufactured.
  • the optical layered body 10a in FIG. 2(c) is the same as the optical layered body 10a in FIG. 1(a).
  • an adhesive layer 14 is further formed on the surface of the hard layer 13 in the optical layered body 10a of FIG. It may be the body 10b.
  • the method of forming (manufacturing method) of the adhesive layer 14 is not particularly limited, but may be, for example, similar to or conforming to a general method of forming an adhesive layer.
  • a pressure-sensitive adhesive or an adhesive may be applied on the surface of the hard layer 13, and heating may be performed as necessary.
  • the pressure-sensitive adhesive or adhesive is not particularly limited, and is, for example, as described above.
  • the method for manufacturing the optical member of the present invention and the method for manufacturing the optical device of the present invention are not particularly limited.
  • the optical member of the present invention can be manufactured by the same manufacturing method as a general optical member, except that the optical laminate of the present invention is manufactured by any manufacturing method (for example, the manufacturing method described above).
  • the optical device of the present invention can be manufactured by the same manufacturing method as a general optical device, except that the optical layered body of the present invention is manufactured by an arbitrary manufacturing method (for example, the manufacturing method described above).
  • the number of parts (relative amount used) of each substance is parts by mass (parts by weight) unless otherwise specified.
  • a coating solution for forming a void layer (low refractive index layer) was prepared as follows.
  • Gelation of Silicon Compound Mixture A was prepared by dissolving 0.95 g of methyltrimethoxysilane (MTMS), which is a precursor of a silicon compound, in 2.2 g of dimethylsulfoxide (DMSO). 0.5 g of a 0.01 mol/L oxalic acid aqueous solution is added to this mixed solution A, and MTMS is hydrolyzed by stirring at room temperature for 30 minutes to generate a mixed solution B containing tris(hydroxy)methylsilane. did.
  • MTMS methyltrimethoxysilane
  • DMSO dimethylsulfoxide
  • the pulverization treatment uses a homogenizer (manufactured by SMT Co., Ltd., trade name "UH-50"), and 1.85 g of the gel compound in the mixed liquid D and 1.85 g of IPA are added to a 5 cc screw bottle. After weighing 15 g, it was pulverized for 2 minutes under conditions of 50 W and 20 kHz.
  • the gelled silicon compound in the mixed liquid D was pulverized, and the mixed liquid D was made into a mixed liquid D' which is a sol liquid of the pulverized material.
  • the volume average particle diameter which indicates the variation in particle size of the pulverized material contained in this mixed liquid D', was confirmed by a dynamic light scattering type Nanotrack particle size analyzer (manufactured by Nikkiso Co., Ltd., UPA-EX150 type), and was 0.50. ⁇ 0.70.
  • a laminate of an acrylic pressure-sensitive adhesive layer and a PET film was produced as follows. First, 90.7 parts of butyl acrylate, 6 parts of N-acryloylmorpholine, 3 parts of acrylic acid, and 0 parts of 2-hydroxybutyl acrylate were added to a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a cooler. .3 parts and 0.1 parts by weight of 2,2'-azobisisobutyronitrile as a polymerization initiator were added together with 100 g of ethyl acetate, and nitrogen gas was introduced while gently stirring to replace nitrogen gas.
  • an acrylic polymer solution Based on 100 parts of the solid content of the obtained acrylic polymer solution, 0.2 parts of an isocyanate cross-linking agent (trade name "Coronate L” manufactured by Nippon Polyurethane Industry Co., Ltd., an adduct of tolylene diisocyanate of trimethylolpropane), benzoyl
  • An acrylic adhesive solution was prepared by blending 0.3 parts of peroxide (Niper BMT manufactured by NOF Corporation) and 0.2 parts of ⁇ -glycidoxypropylmethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: KBM-403).
  • the above acrylic adhesive solution is applied to one side of a polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 ⁇ m) that has been subjected to silicone treatment, and the adhesive layer after drying has a predetermined thickness. It was applied so as to have a thickness and dried at 150° C. for 3 minutes to prepare a laminate of the adhesive layer and the PET film.
  • PET polyethylene terephthalate
  • Example 1 The void layer-forming coating solution prepared in Reference Example 1 was applied onto a 30 ⁇ m-thick acrylic film (substrate) and dried by heating at 100° C. for 2 minutes to form a void layer.
  • the formed void layer was an ultra-low refractive index layer with a refractive index of 1.18. Moreover, the porosity was 60 volume%.
  • a SiO 2 layer having a thickness of 40 nm was formed on the formed void layer by a sputtering method to obtain the desired optical layered body of the present invention.
  • the SiO2 layer corresponds to the "hard layer" in the optical layered body of the present invention.
  • the sputtering method was performed using a known sputtering apparatus. The same applies to the sputtering method in each of the following examples.
  • the refractive index of the void layer was measured by the above-described measurement method.
  • Example 2 An optical laminate of this example was obtained in the same manner as in Example 1, except that a 40 nm-thick Si layer was formed by sputtering instead of the 40 nm-thick SiO 2 layer as the hard layer.
  • Example 3 An objective optical layered body of the present invention was manufactured by the same manufacturing method as in Example 1, except that the thickness of the SiO 2 layer (hard layer) was changed from 40 nm to 5 nm.
  • Example 4 An optical layered body of this example was obtained in the same manner as in Example 1, except that a Si layer with a thickness of 5 nm was formed by sputtering instead of the SiO 2 layer with a thickness of 40 nm as the hard layer.
  • Example 5 An optical layered body of this example was obtained in the same manner as in Example 1, except that a ZTO layer with a thickness of 50 nm was formed by sputtering instead of the SiO 2 layer with a thickness of 40 nm as the hard layer.
  • Example 6 An optical laminate of this example was obtained in the same manner as in Example 1, except that a polysiloxane layer with a thickness of 8 nm was formed as the hard layer instead of the SiO 2 layer with a thickness of 40 nm.
  • the polysiloxane layer was formed by vapor deposition using a solution obtained by dissolving octadecyltrichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) in a fluorine-based solvent (manufactured by 3M, trade name "Novec7100").
  • Comparative Example 1 An optical laminate of this comparative example was produced in the same manner as in Example 1, except that the hard layer (SiO 2 layer with a thickness of 40 nm) was not formed. That is, the optical layered body of this comparative example was an optical layered body in which the void layer was formed on the base material and nothing was formed on the void layer.
  • the indentation hardness and tensile strength were measured for the optical laminates of each example and each comparative example manufactured as described above.
  • the tensile strength corresponds to the strength against peeling of the void layer.
  • the indentation hardness and tensile strength were measured by the following test methods (measurement methods). Moreover, these test results (measurement results) are summarized in Table 1 below.
  • a triangular pyramidal diamond indenter (Berkovich indenter) having an inter-ridge angle of 142° was pressed from the upper surface of the adhesive layer), and the measurement was performed under the following conditions.
  • the measurement data was processed by dedicated analysis software (version 9.4.0.1) of Bruker "TI950 Triboindenter (trade name)".
  • ⁇ Measurement mode single indentation test ⁇ Holding time when maximum displacement is reached: 0 seconds ⁇ Indentation/withdrawal depth speed: 5 nm/sec ⁇ Indentation depth: 20 nm ⁇ Environment during measurement: 24°C ⁇ 1°C (laboratory set at 24°C), relative humidity 35% ⁇ 10%
  • the laminate (thickness of adhesive layer: 15 ⁇ m) prepared in Reference Example 2 was adhered to the lower surface of the base material of each measurement sample. After that, the PET film was peeled off from the adhesive layer, and the 2 mm-thick alkali glass and the adhesive layer were bonded together. Thereafter, a roller with a weight of 2 kg was reciprocated once from the upper surface of the trigger to press the trigger and the alkali glass to the measurement sample. The width of each measurement sample was 25 mm. ⁇ Measurement method> The alkali glass was chucked, the trigger was set so that the peeling angle was 180°, and the trigger was pulled for 8 seconds at a tensile speed of 300 mm/min.
  • the measurement samples (optical layered bodies) with a tensile strength of 4.0 N/25 mm or more were evaluated as ⁇ , and the measurement samples (optical layered bodies) with a tensile strength of less than 4.0 N/25 mm were evaluated as x.
  • the void layer was not peeled off in the tensile test (peel test), so the strength against peeling of the void layer is high. was confirmed.
  • the porous layer was peeled off in the tensile test (peel test), so it was confirmed that the strength against peeling of the porous layer was low. was done.
  • an optical layered body having high strength against peeling off of a void layer a method for manufacturing an optical layered body, an optical member, an optical device, a method for manufacturing an optical member, and a method for manufacturing an optical device.
  • Applications of the present invention are not particularly limited.
  • the optical device of the present invention is not particularly limited, and includes an image display device, a lighting device, and the like.
  • Examples of the image display device include a liquid crystal display, an organic EL display, a micro LED display, and the like.
  • Examples of the lighting device include organic EL lighting.
  • the use of the optical layered body of the present invention is not limited to the optical member and optical device of the present invention, and it can be used in a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polarising Elements (AREA)

Abstract

本発明は、空隙層の引き剥がしに対する強度が高い光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法の提供を目的とする。 前記目的を達成するために、本発明の光学積層体(10a)又は(10b)は、 空隙層(12)と、空隙層(12)上に形成された硬質層(13)とを含み、 空隙層(12)は、空隙率が30体積%以上であり、 硬質層(13)は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含み、かつ、ナノインデンターを用いて硬質層(13)に対して圧子を20nm押し込んで測定される硬さが、空隙層(12)よりも大きいことを特徴とする。

Description

光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
 本発明は、光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法に関する。
 光学デバイスにおいては、例えば、全反射層として、低屈折率である空気層が利用されている。具体的には、例えば、液晶デバイスにおける各光学フィルム部材(例えば、導光板と反射板)は、空気層を介して積層される。しかしながら、各部材間が空気層により隔てられていると、特に部材が大型である場合等は、部材のたわみ等の問題が起こるおそれがある。また、デバイスの薄型化のトレンドにより、各部材の一体化が望まれている。このため、各部材を、空気層を介さずに粘接着剤で一体化させることが行われている(例えば特許文献1)。しかし、全反射の役割を果たす空気層が無くなると、光漏れなど光学特性が低下してしまうおそれがある。そこで、空気層に代えて低屈折率層を用いることが提案されている。例えば、特許文献2では、導光板と反射板との間に導光板よりも低屈折率である層を挿入した構造が記載されている。低屈折率層としては、例えば、屈折率をなるべく空気に近い低屈折率とするために、空隙を有する空隙層が用いられる。
特開2012-156082号公報 特開平10-62626号公報
 空隙層の屈折率を空気に近い低屈折率とするためには、空隙層の骨格に対する空隙率を高くし、見かけ上の屈折率を低くする必要がある。しかし、そのように空隙率を高くすると、空隙層の機械的強度が低くなるおそれがある。
 例えば、空隙層をシート化するためには、空隙層を含むシートのウェブハンドリング性、加工性等が高い必要がある。しかしながら、空隙層の引き剥がしに対する強度が低いと、空隙層を含むシートのウェブハンドリング性、加工性等が低下するおそれがある。
 そこで、本発明は、空隙層の引き剥がしに対する強度が高い光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法の提供を目的とする。
 前記目的を達成するために、本発明の光学積層体は、
 空隙層と、前記空隙層上に形成された硬質層とを含み、
 前記空隙層は、空隙率が30体積%以上であり、
 前記硬質層は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含み、かつ、ナノインデンターを用いて厚み方向に圧子を20nm押し込んで測定される硬さが、前記空隙層よりも大きいことを特徴とする。
 本発明の光学積層体の製造方法は、前記空隙層の少なくとも一方の面上に前記硬質層を形成する硬質層形成工程を含み、前記硬質層形成工程において、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法で前記硬質層を形成することを特徴とする前記本発明の光学積層体の製造方法である。
 本発明の光学部材は、前記本発明の光学積層体を含むことを特徴とする。
 本発明の光学装置は、前記本発明の光学部材を含むことを特徴とする。
 本発明の光学部材の製造方法は、前記本発明の光学積層体の製造方法により前記本発明の光学積層体を製造する光学積層体製造工程を含むことを特徴とする、前記本発明の光学部材の製造方法である。
 本発明の光学装置の製造方法は、前記本発明の光学部材の製造方法により前記本発明の光学部材を製造する光学部材製造工程を含むことを特徴とする、前記本発明の光学装置の製造方法である。
 本発明によれば、空隙層の引き剥がしに対する強度が高い光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法を提供することができる。
図1(a)は、本発明の光学積層体における構成の一例を示す断面図である。図1(b)は、本発明の光学積層体における構成の別の一例を示す断面図である。図1(c)は、硬質層を含まない光学積層体における構成の一例を示す断面図である。 図2(a)~(d)は、本発明の光学積層体の製造方法における工程の一例を示す工程断面図である。
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。
 本発明の光学積層体は、例えば、ナノインデンターを用いて、前記硬質層に対して圧子を20nm押し込んで測定される硬さが、0.04GPa以上であってもよい。
 本発明の光学積層体は、例えば、前記硬質層が、ケイ素、アルミニウム、二酸化ケイ素、酸化アルミニウム、亜鉛スズ複合酸化物(ZTO)、インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IZO)、ガリウム亜鉛複合酸化物(GZO)、及びポリシロキサンからなる群から選択される少なくとも一つを含んでいてもよい。
 本発明の光学積層体は、例えば、前記硬質層の厚みが5nm以上であってもよい。
 本発明の光学積層体において、例えば、前記硬質層は、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成される層であってもよい。
 本発明の光学積層体において、例えば、前記空隙層は、ケイ素化合物の微細孔粒子同士が化学的に結合している多孔体であってもよい。
 本発明の光学積層体は、例えば、さらに、粘接着層を含み、前記粘接着層は、前記硬質層における前記空隙層とは反対側の面上に設けられていてもよい。
 なお、本発明において、「上に」又は「面上に」は、上に、又は面上に直接接触した状態でもよいし、他の層等を介した状態でもよい。
 本発明において、「粘接着層」は、粘着剤及び接着剤の少なくとも一方により形成された層をいう。また、本発明において、粘着剤と接着剤とをまとめて「粘接着剤」という場合がある。一般的に、粘着力又は接着力が比較的弱い剤(例えば、被接着物の再剥離が可能な剤)を「粘着剤」と呼び、粘着力又は接着力が比較的強い剤(例えば、被接着物の再剥離が不可能であるか、又はきわめて困難な剤)を「接着剤」と呼んで区別する場合がある。本発明において、粘着剤と接着剤とに明確な区別は無い。また、本発明において、「粘着力」と「接着力」とに明確な区別はない。
 本発明において、「シート」と「フィルム」とに明確な区別は無い。一般に、厚みが比較的大きいものを「シート」と呼び、厚みが比較的小さいものを「フィルム」と呼んで区別する場合があるが、本発明では「シート」と「フィルム」とを明確に区別しない。
[1.光学積層体、光学部材および光学装置]
 本発明の光学積層体は、前述のとおり、空隙層と、前記空隙層上に形成された硬質層とを含み、前記空隙層は、空隙率が30体積%以上であり、前記硬質層は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含み、かつ、ナノインデンターを用いて厚み方向に圧子を20nm押し込んで測定される硬さが、前記空隙層よりも大きいことを特徴とする。
 図1(a)の断面図に、本発明の光学積層体における構成の一例を示す。図示のとおり、この光学積層体10aは、基材11上に空隙層12が形成され、さらに空隙層12上に硬質層13が形成されている。空隙層12は、空隙率が30体積%以上である。硬質層13は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含む。
 また、図1(b)の断面図に、本発明の光学積層体における構成の別の一例を示す。図示のとおり、この光学積層体10bは、硬質層13における空隙層12とは反対側の面上に、さらに粘接着層14が設けられていること以外は、図1(a)の光学積層体10aと同じである。
 さらに、図1(c)に、硬質層を含まない光学積層体における構成の一例を示す。図示のとおり、この光学積層体20は、硬質層13を含まず、空隙層12上に粘接着層14が直接接触した状態で設けられていること以外は、図1(b)の光学積層体10bと同じである。
 例えば、光学積層体において、図1(c)のように空隙層上に粘接着層が直接接触した状態で設けられていると、空隙層の引き剥がしに対する強度が低いために、空隙層が破損してしまうおそれがある。これに対し、本発明者らは、空隙層上に硬質層を設けることで、空隙層の引き剥がしに対する強度が高くなることを見出し、本発明に到達した。
 本発明の光学積層体は、前述のとおり、前記空隙層と、前記空隙層上に形成された硬質層とを含む。本発明の光学積層体は、前記空隙層及び前記空隙層以外の他の層を含んでいてもよいし、含んでいなくてもよい。例えば、前記他の層として、図1(a)及び図1(b)のように基材11を含んでいてもよいし、含んでいなくてもよい。また、例えば、前記他の層として、図1(b)のように粘接着層14を含んでいてもよいし、含んでいなくてもよい。また、基材11、空隙層12、硬質層13及び粘接着層14の各層の間に、さらに他の層を含んでいてもよいし、含んでいなくてもよい。
 図1(a)及び図1(b)において、基材11は、特に制限されず、例えば、フィルム等の基材であってもよい。前記基材は、例えば、熱可塑性樹脂製の基材、ガラス製の基材、シリコンに代表される無機基板、熱硬化性樹脂等で成形されたプラスチック、半導体等の素子、カーボンナノチューブに代表される炭素繊維系材料等が好ましく使用できるが、これらに限定されない。前記基材の形態は、例えば、フィルム、プレート等があげられる。前記熱可塑性樹脂は、例えば、ポリエチレンテレフタレート(PET)、アクリル、セルロースアセテートプロピオネート(CAP)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)等があげられる。基材11の厚みは、特に限定されないが、例えば10μm以上、20μm以上、又は30μm以上であってもよく、例えば、1000μm以下、500μm以下、400μm以下、300μm以下、200μm以下、又は100μm以下であってもよく、例えば、10μm~1000μm、10μm~500μm、又は10μm~100μmであってもよい。光学積層体の薄型の観点からは、基材11の厚みが大きすぎないことが好ましい。一方、光学積層体の強度の観点からは、基材11の厚みが小さすぎないことが好ましい。
 図1(a)及び図1(b)において、空隙層12は、前述のとおり、空隙率が30体積%以上である。以下、本発明の光学積層体における前記空隙層(以下、「本発明の空隙層」という場合がある。)について、例を挙げて説明する。ただし、本発明の空隙層は、これに限定されない。
 本発明の空隙層は、例えば、空隙率が35体積%以上であってもよい。また、本発明の空隙層は、例えば、ピーク細孔径が50nm以下であってもよい。ただし、これは例示であって、本発明の空隙層は、これに限定されない。
 前記空隙率は、例えば、35体積%以上、38体積%以上、または40体積%以上であってもよく、90体積%以下、80体積%以下、または75体積%以下であってもよい。前記本発明の空隙層は、例えば、空隙率が60体積%以上の高空隙層であっても良い。
 前記空隙率は、例えば、下記の測定方法により測定することができる。
(空隙率の測定方法)
 空隙率の測定対象となる層が単一層で空隙を含んでいるだけならば、層の構成物質と空気との割合(体積比)は、定法(例えば重量および体積を測定して密度を算出する)により算出することが可能であるため、これにより、空隙率(体積%)を算出できる。また、屈折率と空隙率は相関関係があるため、例えば、層としての屈折率の値から空隙率を算出することもできる。具体的には、例えば、エリプソメーターで測定した屈折率の値から、Lorentz‐Lorenz’s formula(ローレンツ-ローレンツの式)より空隙率を算出する。
 本発明の空隙層は、例えば、後述するように、ゲル粉砕物(微細孔粒子)の化学結合により製造することができる。この場合、空隙層の空隙は、便宜上、下記(1)~(3)の3種類に分けることができる。
 
(1)原料ゲル自体(粒子内)が有する空隙
(2)ゲル粉砕物単位が有する空隙
(3)ゲル粉砕物の堆積により生じる粉砕物間の空隙
 前記(2)の空隙は、ゲル粉砕物(微細孔粒子)のサイズ、大きさ等にかかわらず、前記ゲルを粉砕することにより生成された各粒子群を一つの塊(ブロック)とみなした際に、各ブロック内に形成されうる前記(1)とは別に粉砕時に形成される空隙である。また、前記(3)の空隙は、粉砕(例えば、メディアレス粉砕等)において、ゲル粉砕物(微細孔粒子)のサイズ、大きさ等が不ぞろいとなるために生じる空隙である。本発明の空隙層は、例えば、前記(1)~(3)の空隙を有することで、適切な空隙率およびピーク細孔径を有する。
 また、前記ピーク細孔径は、例えば、5nm以上、10nm以上、または20nm以上であってもよく、50nm以下、40nm以下、または30nm以下であってもよい。空隙層において、空隙率が高い状態でピーク細孔径が大きすぎると、光が散乱して不透明になる。また、本発明において、空隙層のピーク細孔径の下限値は特に限定されないが、ピーク細孔径が小さすぎると、空隙率を高くしにくくなるため、ピーク細孔径が小さすぎないことが好ましい。本発明において、ピーク細孔径は、例えば、下記の方法により測定することができる。
(ピーク細孔径の測定方法)
 細孔分布/比表面積測定装置(BELLSORP MINI/マイクロトラックベル社の商品名)を用いて、窒素吸着によるBJHプロットおよびBETプロット、等温吸着線を算出した結果から、ピーク細孔径を算出する。
 また、本発明の空隙層の厚みは、特に限定されないが、例えば、100nm以上、200nm以上、または300nm以上であってもよく、10000nm以下、5000nm以下、または2000nm以下であってもよい。
 本発明の空隙層は、例えば、後述するように、多孔体ゲルの粉砕物を使用することで、前記多孔体ゲルの三次元構造が破壊され、前記多孔体ゲルとは異なる新たな三次元構造が形成されている。このように、本発明の空隙層は、前記多孔体ゲルから形成される層では得られない新たな孔構造(新たな空隙構造)が形成された層となったことで、空隙率が高いナノスケールの空隙層を形成することができる。また、本発明の空隙層は、例えば、前記空隙層がシリコーン多孔体である場合、例えば、ケイ素化合物ゲルのシロキサン結合官能基数を調整しつつ、前記粉砕物同士を化学的に結合する。ここで、「シリコーン多孔体」はシロキサン結合を含む高分子多孔体のことであり、例えば、シルセスキオキサンを構成単位として含む多孔体を含む。また、前記空隙層の前駆体として新たな三次元構造が形成された後に、結合工程で化学結合(例えば、架橋)されるため、本発明の空隙層は、例えば、前記空隙層が機能性多孔体である場合、空隙を有する構造であるが、十分な強度と可撓性とを維持できる。したがって、本発明によれば、容易且つ簡便に、空隙層を、様々な対象物に付与することができる。
 本発明の空隙層は、例えば、後述するように、多孔体ゲルの粉砕物を含み、前記粉砕物同士が化学的に結合している。本発明の空隙層において、前記粉砕物同士の化学的な結合(化学結合)の形態は、特に制限されず、前記化学結合の具体例は、例えば、架橋結合等が挙げられる。なお、前記粉砕物同士を化学的に結合させる方法は、例えば、前述した空隙層の製造方法において、詳細に説明したとおりである。
 前記架橋結合は、例えば、シロキサン結合である。シロキサン結合は、例えば、以下に示す、T2の結合、T3の結合、T4の結合が例示できる。本発明のシリコーン多孔体がシロキサン結合を有する場合、例えば、いずれか一種の結合を有してもよいし、いずれか二種の結合を有してもよいし、三種全ての結合を有してもよい。前記シロキサン結合のうち、T2およびT3の比率が多いほど、可撓性に富み、ゲル本来の特性を期待できるが、膜強度が脆弱になる。一方で、前記シロキサン結合のうちT4比率が多いと、膜強度が発現しやすいが、空隙サイズが小さくなり、可撓性が脆くなる。このため、例えば、用途に応じて、T2、T3、T4比率を変えることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 本発明の空隙層が前記シロキサン結合を有する場合、T2、T3およびT4の割合は、例えば、T2を「1」として相対的に表した場合、T2:T3:T4=1:[1~100]:[0~50]、1:[1~80]:[1~40]、1:[5~60]:[1~30]である。
 また、本発明の空隙層は、例えば、含まれるケイ素原子がシロキサン結合していることが好ましい。具体例として、前記シリコーン多孔体に含まれる全ケイ素原子のうち、未結合のケイ素原子(つまり、残留シラノール)の割合は、例えば、50%未満、30%以下、15%以下、である。
 本発明の空隙層は、例えば、孔構造を有している。本発明において、孔の空隙サイズは、空隙(孔)の長軸の直径および短軸の直径のうち、前記長軸の直径を指すものとする。空孔サイズは、例えば、5nm~50nmである。前記空隙サイズは、その下限が、例えば、5nm以上、10nm以上、20nm以上であり、その上限が、例えば、50nm以下、40nm以下、30nm以下であり、その範囲が、例えば、5nm~50nm、10nm~40nmである。空隙サイズは、空隙構造を用いる用途に応じて好ましい空隙サイズが決まるため、例えば、目的に応じて、所望の空隙サイズに調整する必要がある。空隙サイズは、例えば、以下の方法により評価できる。
(空隙層の断面SEM観察)
 本発明において、空隙層の形態は、SEM(走査型電子顕微鏡)を用いて観察および解析できる。具体的には、例えば、前記空隙層を、冷却下でFIB加工(加速電圧:30kV)し、得られた断面サンプルについてFIB-SEM(FEI社製:商品名Helios NanoLab600、加速電圧:1kV)により、観察倍率100,000倍にて断面電子像を得ることができる。
(空隙サイズの評価)
 本発明において、前記空隙サイズは、BET試験法により定量化できる。具体的には、細孔分布/比表面積測定装置(BELLSORP MINI/マイクロトラックベル社の商品名)のキャピラリに、サンプル(本発明の空隙層)を0.1g投入した後、室温で24時間、減圧乾燥を行って、空隙構造内の気体を脱気する。そして、前記サンプルに窒素ガスを吸着させることで、BETプロットおよびBJHプロット、吸着等温線を描き、細孔分布を求める。これによって、空隙サイズが評価できる。
 本発明の空隙層は、例えば、前述のように孔構造(多孔質構造)を有していてもよく、例えば、前記孔構造が連続した連泡構造体であってもよい。前記連泡構造体とは、例えば、前記空隙層において、三次元的に、孔構造が連なっていることを意味し、前記孔構造の内部空隙が連続している状態ともいえる。多孔質体が連泡構造を有する場合、これにより、バルク中に占める空隙率を高めることが可能であるが、中空シリカのような独泡粒子を使用する場合は、連泡構造を形成できない。これに対して、本発明の空隙層は、ゾル粒子(ゾルを形成する多孔体ゲルの粉砕物)が三次元の樹状構造を有するために、塗工膜(前記多孔体ゲルの粉砕物を含むゾルの塗工膜)中で、前記樹状粒子が沈降・堆積することで、容易に連泡構造を形成することが可能である。また、本発明の空隙層は、より好ましくは、連泡構造が複数の細孔分布を有するモノリス構造を形成することが好ましい。前記モノリス構造は、例えば、ナノサイズの微細な空隙が存在する構造と、同ナノ空隙が集合した連泡構造として存在する階層構造を指すものとする。前記モノリス構造を形成する場合、例えば、微細な空隙で膜強度を付与しつつ、粗大な連泡空隙で高空隙率を付与し、膜強度と高空隙率とを両立することができる。それらのモノリス構造を形成するには、例えば、まず、前記粉砕物に粉砕する前段階の前記多孔体ゲルにおいて、生成する空隙構造の細孔分布を制御することが重要である。また、例えば、前記多孔体ゲルを粉砕する際、前記粉砕物の粒度分布を、所望のサイズに制御することで、前記モノリス構造を形成させることができる。
 本発明の空隙層において、透明性を示すヘイズは、特に制限されず、その下限が、例えば、0.1%以上、0.2%以上、0.3%以上であり、その上限が、例えば、10%以下、5%以下、3%以下であり、その範囲が、例えば、0.1~10%、0.2~5%、0.3~3%である。
 前記ヘイズは、例えば、以下のような方法により測定できる。
(ヘイズの評価)
 空隙層(本発明の空隙層)を50mm×50mmのサイズにカットし、ヘイズメーター(村上色彩技術研究所社製:HM-150)にセットしてヘイズを測定する。ヘイズ値については、以下の式より算出を行う。
    ヘイズ(%)=[拡散透過率(%)/全光線透過率(%)]×100(%)
 前記屈折率は、一般に、真空中の光の波面の伝達速度と、媒質内の伝播速度との比を、その媒質の屈折率という。本発明の空隙層の屈折率は、特に制限されず、その上限が、例えば、1.3以下、1.3未満、1.25以下、1.2以下、1.15以下であり、その下限が、例えば、1.05以上、1.06以上、1.07以上であり、その範囲が、例えば、1.05以上1.3以下、1.05以上1.3未満、1.05以上1.25以下、1.06以上1.2未満、1.07以上1.15以下である。
 本発明において、前記屈折率は、特に断らない限り、波長550nmにおいて測定した屈折率をいう。また、屈折率の測定方法は、特に限定されず、例えば、下記の方法により測定できる。
(屈折率の評価)
 アクリルフィルムに空隙層(本発明の空隙層)を形成した後に、50mm×50mmのサイズにカットし、これを粘着層でガラス板(厚み:3mm)の表面に貼合する。前記ガラス板の裏面中央部(直径20mm程度)を黒インクで塗りつぶして、前記ガラス板の裏面で反射しないサンプルを調製する。エリプソメーター(J.A.Woollam Japan社製:VASE)に前記サンプルをセットし、550nmの波長、入射角50~80度の条件で、屈折率を測定し、その平均値を屈折率とする。
 本発明の空隙層の厚みは、特に制限されず、その下限が、例えば、0.05μm以上、0.1μm以上であり、その上限が、例えば、1000μm以下、100μm以下であり、その範囲が、例えば、0.05~1000μm、0.1~100μmである。
 本発明の空隙層の形態は、特に制限されず、例えば、フィルム形状でもよいし、ブロック形状等でもよい。
 図1(a)及び図1(b)において、硬質層13は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含む。以下、本発明の光学積層体に用いられる硬質層(以下「本発明の硬質層」という場合がある。)について、例を挙げて説明する。
 本発明の硬質層において、前記金属は、特に限定されないが、例えば、アルミニウム、亜鉛、スズ、インジウム、ガリウム、鉛等が挙げられる。前記金属酸化物は、特に限定されないが、例えば、前述のとおり、酸化アルミニウム(例えばAl)、亜鉛スズ複合酸化物(ZTO)、インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IZO)、ガリウム亜鉛複合酸化物(GZO)等が挙げられる。本発明において、前記ケイ素酸化物は、例えば、SiOx(0<x≦2)で表される化合物である。前記ケイ素酸化物は、特に限定されないが、例えば、二酸化ケイ素(SiO)が挙げられる。前記有機無機ハイブリッド材料は、特に限定されないが、例えば、ポリシロキサン、シルセスキオキサン等が挙げられる。ここで、本発明において「有機無機ハイブリッド材料」とは、同一分子内に有機成分と無機成分とが両方存在している材料のことである。
 本発明の硬質層は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つの成分以外の他の成分を、含んでいてもよいし含んでいなくてもよい。本発明の硬質層が前記他の成分を含む場合、その含有率は、特に限定されないが、例えば、10質量%以下、5質量%以下、又は1質量%以下であってもよく、下限値は特に限定されないが、例えば0質量%を超える数値である。
 本発明の硬質層を形成する方法は、特に限定されないが、いわゆるドライプロセス(溶媒を用いない形成方法)が好ましい。具体的には、例えば、前述のとおり、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成してもよい。真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)を行う具体的な方法も特に限定されず、例えば、一般的な方法と同様又はそれに準じてもよい。
 本発明の硬質層は、前述のとおり、ナノインデンターを用いて前記硬質層に対して圧子を20nm押し込んで測定される硬さが、本発明の空隙層よりも大きい。なお、本発明において、前記硬質層の硬さは、前記空隙層上に形成された前記硬質層表面又は側面に直接前記圧子を押し当てて測定した硬さとする。このような硬さの硬質層を形成する方法は、特に限定されない。例えば、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つの材料を用いて、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により硬質層を形成することで、前記硬さが本発明の空隙層よりも大きい硬質層を形成することができる。本発明の硬質層の厚みは、特に限定されないが、例えば、3nm以上、4nm以上、5nm以上、10nm以上、又は40nm以上であってもよく、例えば300nm以下、250nm以下、200nm以下、150nm以下又は100nm以下であってもよく、例えば3~300nm、4~200nm、又は5~100nmであってもよい。光学積層体の薄型の観点からは、本発明の硬質層の厚みが大きすぎないことが好ましい。一方、空隙層の強度向上の観点からは、本発明の硬質層の厚みが小さすぎないことが好ましい。
 本発明の光学積層体は、例えば、前述のとおり、ナノインデンターを用いて、前記光学積層体が有する本発明の硬質層に対して前記硬質層に対して圧子を20nm押し込んで測定される硬さが、0.04GPa以上であってもよい。前記硬さは、前記硬質層上に他の層が存在しない場合は、例えば、前記硬質層表面に直接前記圧子を押し当てて測定することができる。前記硬質層上に他の層(例えば、前述の粘接着層等)が存在する場合は、前記硬さは、例えば、集束イオンビーム(FIB)等で光学積層体を厚み方向に切断した後、光学積層体の側面に露出している硬質層に圧子を押し当てて測定することができる。前記硬さは、例えば、0.04GPa以上、0.06GPa以上、又は0.08GPa以上であってもよい。前記硬さの上限値は特に限定されないが、例えば70GPa以下であってもよい。
 図1(b)において、粘接着層14は、特に限定されないが、例えば、粘着剤(粘着剤組成物)により形成された粘着層でもよい。本発明の光学積層体において、前記粘接着層の厚みは、特に限定されないが、例えば、3μm以上、5μm以上、又は10μm以上であり、例えば100μm以下、75μm以下、又は50μm以下であり、例えば3~100μm、3~50μm、又は5~25μmであってもよい。前記粘着剤は、特に限定されないが、例えば、(メタ)アクリル系ポリマー等が挙げられる。これらは、例えば、溶媒に溶解又は分散させて溶液又は分散液の形態とし、それを前記粘着剤(粘着剤組成物)として用いてもよい。前記溶媒としては、例えば、酢酸エチル等が挙げられ、1種類のみ用いても複数種類併用してもよい。前記溶液又は分散液中の溶質又は分散質(例えば、前記アクリル系ポリマー)の濃度は、例えば、10質量%以上、又は15質量%以上であってもよく、例えば、60質量%以下、50質量%以下、40質量%以下、又は25質量%以下であってもよい。なお、本発明において、「(メタ)アクリル系ポリマー」は、(メタ)アクリル酸、(メタ)アクリル酸エステル、及び(メタ)アクリルアミドの少なくとも一種類のモノマーの重合体又は共重合体をいう。また、本発明において、(メタ)アクリル酸は、「アクリル酸及びメタクリル酸の少なくとも一方」を意味し、「(メタ)アクリル酸エステル」は、「アクリル酸エステル及びメタクリル酸エステルの少なくとも一方」を意味する。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸の直鎖又は分枝アルキルエステル等があげられる。前記(メタ)アクリル酸の直鎖又は分枝アルキルエステルにおいて、アルキル基の炭素数は、例えば、1以上、2以上、3以上、又は4以上であってもよく、例えば、18以下、16以下、14以下、12以下、10以下、又は8以下であってもよい。前記アルキル基は、例えば、1又は複数の置換基で置換されていても置換されていなくてもよい。前記置換基は、例えば、水酸基等が挙げられ、複数の場合は、同一でも異なっていてもよい。前記(メタ)アクリル酸エステルとしては、具体的には、例えば、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート等が挙げられる。また、前記粘着剤は、一種類のみ用いてもよいし、複数種類併用してもよい。
 なお、本発明の光学積層体は、前述のとおり、粘接着層を含んでいてもよいし、含んでいなくてもよい。
 本発明の光学積層体は、例えば、前記光学積層体全体の光透過率が、80%以上であってもよい。また、例えば、前記光学積層体全体のヘイズが3%以下であってもよい。なお、「光学積層体全体」は、例えば、図1(a)の光学積層体10aであれば、基材11、空隙層12及び硬質層13を含む全体を意味し、図1(b)の光学積層体10bであれば、基材11、空隙層12、硬質層13及び粘接着層14を含む全体を意味する。前記光透過率は、例えば、82%以上、84%以上、86%以上、または88%以上であってもよく、上限は、特に限定されないが、理想的には100%であり、例えば、95%以下、92%以下、91%以下、または90%以下であってもよい。前記光学積層体のヘイズの測定は、例えば、前述した空隙層のヘイズの測定と同様の方法で行うことができる。また、前記光透過率は、波長550nmの光の透過率であり、例えば、以下の測定方法により測定することができる。
(光透過率の測定方法)
 分光光度計U-4100(株式会社日立製作所の商品名)を用いて、前記積層体を、測定対象のサンプルとする。そして、空気の全光線透過率を100%とした際の前記サンプルの全光線透過率(光透過率)を測定する。前記全光線透過率(光透過率)の値は、波長550nmでの測定値をその値とする。
 本発明の光学積層体において、前記粘接着層の粘着力又は接着力は、特に限定されないが、例えば、0.7N/25mm以上、0.8N/25mm以上、1.0N/25mm以上、または1.5N/25mm以上であってもよく、50N/25mm以下、30N/25mm以下、10N/25mm以下、5N/25mm以下、または3N/25mm以下であってもよい。本発明の光学積層体をその他の層と貼り合わせをした際の取扱い時の剥がれのリスクという観点からは、前記粘接着層の粘着力または接着力が低すぎないことが好ましい。また、貼り直しの際のリワークという観点からは、前記粘接着層の粘着力または接着力が高すぎないことが好ましい。前記粘接着層の粘着力または接着力は、例えば、以下のようにして測定することができる。
(粘着力または接着力の測定方法)
 本発明の積層フィルム(樹脂フィルム基材上に、本発明の光学積層体が形成されたもの)を、50mm×140mmの短冊状にサンプリングを行い、前記サンプルをステンレス板に両面テープで固定する。PETフィルム(T100:三菱樹脂フィルム社製)にアクリル粘着層(厚み20μm)を貼合し、25mm×100mmにカットした粘着テープ片を、前記本発明の積層フィルムにおける、樹脂フィルムと反対側に貼合し、前記PETフィルムとのラミネートを行う。次に、前記サンプルを、オートグラフ引っ張り試験機(島津製作所社製:AG-Xplus)にチャック間距離が100mmになるようにチャッキングした後に、0.3m/minの引張速度で引っ張り試験を行う。50mmピール試験を行った平均試験力を、粘着ピール強度、すなわち粘着力とする。また、接着力も同一の測定方法で測定できる。本発明において、「粘着力」と「接着力」とに明確な区別はない。
 本発明の光学積層体の用途は特に限定されないが、例えば、前記本発明の光学部材及び前記本発明の光学装置に使用できる。
 本発明の光学部材は、特に限定されないが、例えば、前記本発明の光学積層体を含む光学フィルムでもよい。
 本発明の光学装置(光学デバイス)は、特に限定されないが、例えば、画像表示装置でも照明装置でもよい。画像表示装置としては、例えば、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、マイクロLED(Light Emitting Diode)ディスプレイ等があげられる。照明装置としては、例えば、有機EL照明等があげられる。
 前記本発明の光学部材及び前記本発明の光学装置の用途及びその使用方法は、特に限定されないが、例えば、一般的な光学部材又は一般的な光学装置(例えば、前記各画像表示装置又は照明装置)と同様でもよい。
[2.光学積層体の製造方法、光学部材の製造方法、及び光学装置の製造方法]
 本発明の光学積層体の製造方法は、特に限定されないが、例えば、以下のようにして製造することができる。
 図2(a)~(d)の工程断面図に、本発明の光学積層体の製造方法における工程の一例を示す。まず、図2(a)に示すとおり、基材11を準備する。基材11は特に限定されないが、例えば前述のとおりである。
 つぎに、図2(b)に示すとおり、基材11の一方の面上に空隙層12を形成する(空隙層形成工程)。空隙層12の形成方法(製造方法)は、特に限定されないが、例えば、国際公開第2019/065999号、国際公開第2019/065803号に記載された方法で製造することができる。当該公報の記載は、本明細書に参考として援用される。より具体的には、空隙層12の形成方法は、例えば、空隙層形成用の塗工液を基材11の一方の面上に塗工し、乾燥させ、さらに、必要に応じて光照射、化学処理(例えば、架橋処理)等により硬化、架橋反応等をさせる方法でもよい。前記塗工液は、例えば、ゲル状化合物の粉砕物のゾル粒子液であってもよい。前記ゲル状化合物は、例えば、ケイ素酸化物(例えばシリカゲル等)であってもよい。前記ゲル状化合物の粉砕物のゾル粒子液を製造する方法は、特に制限されないが、例えば、国際公開第2019/065999号または国際公開第2019/065803号に記載された方法で製造することができる。また、前記ゾル粒子液は、例えば、後述する本願実施例の「参考例1」に記載の方法で製造することもできる。また、前記塗工液の塗工方法は特に限定されず、一般的な塗工方法を採用できる。前記塗工方法としては、例えば、スロットダイ法、リバースグラビアコート法、マイクログラビア法(マイクログラビアコート法)、ディップ法(ディップコート法)、スピンコート法、刷毛塗り法、ロールコート法、フレキソ印刷法、ワイヤーバーコート法、スプレーコート法、エクストルージョンコート法、カーテンコート法、リバースコート法等が挙げられる。これらの中で、生産性、塗膜の平滑性等の観点から、エクストルージョンコート法、カーテンコート法、ロールコート法、マイクログラビアコート法等が好ましい。
 つぎに、図2(c)に示すとおり、空隙層12における、基材11と反対側の面上に、硬質層13を形成する(硬質層形成工程)。この硬質層形成工程においては、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法で硬質層13を形成する。この方法は、特に限定されず、例えば、前述のとおり、一般的な真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)と同様又はそれらに準じてもよい。硬質層13の材質、厚み等については、例えば前述のとおりである。このようにして、図2(c)に示すとおり、基材11上に空隙層12が形成され、さらに空隙層12上に硬質層13が形成された光学積層体10aを製造することができる。なお、図2(c)の光学積層体10aは、図1(a)の光学積層体10aと同じである。
 さらに、図2(d)に示すとおり、図2(c)の光学積層体10aにおける硬質層13における空隙層12とは反対側の面上に、さらに粘接着層14を形成し、光学積層体10bとしてもよい。粘接着層14の形成方法(製造方法)は、特に限定されないが、例えば、一般的な粘接着層の形成方法と同様又はそれに準じてもよい。具体的には、例えば、硬質層13の面上に粘着剤又は接着剤を塗工し、さらに、必要に応じて加熱等をしてもよい。前記粘着剤又は接着剤については、特に限定されないが、例えば、前述のとおりである。
 また、図1(a)の光学積層体10a又は図1(b)の光学積層体10bの製造方法は、例えば、長尺フィルム状の基材11を連続的に送り出しながら、前述の各工程を連続的に行ってもよい。
 本発明の光学部材の製造方法及び本発明の光学装置の製造方法は、特に限定されない。例えば、本発明の光学部材は、前記本発明の光学積層体を任意の製造方法(例えば、前述の製造方法)で製造すること以外は、一般的な光学部材と同様の製造方法により製造できる。また、本発明の光学装置は、前記本発明の光学積層体を任意の製造方法(例えば、前述の製造方法)で製造すること以外は、一般的な光学装置と同様の製造方法により製造できる。
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。
 なお、以下の参考例、実施例および比較例において、各物質の部数(相対的な使用量)は、特に断らない限り、質量部(重量部)である。
[参考例1]
 以下のようにして、空隙層(低屈折率層)形成用塗工液を調製した。
(1)ケイ素化合物のゲル化
 2.2gのジメチルスルホキシド(DMSO)に、ケイ素化合物の前駆体であるメチルトリメトキシシラン(MTMS)を0.95g溶解させて混合液Aを調製した。この混合液Aに、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを含む混合液Bを生成した。
 5.5gのDMSOに、28重量%のアンモニア水0.38g、および純水0.2gを添加した後、さらに、前記混合液Bを追添し、室温で15分撹拌することで、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を含む混合液Cを得た。
(2)熟成処理
 前記「(1)ケイ素化合物のゲル化」で調製したゲル状ケイ素化合物を含む混合液Cを、そのまま、40℃で20時間インキュベートして、熟成処理を行った。
(3)粉砕処理
 前記「(2)熟成処理」で熟成処理した前記混合液C中のゲル状ケイ素化合物を、スパチュラを用いて数mm~数cmサイズの顆粒状に砕いた。次いで、前記混合液Cにイソプロピルアルコール(IPA)を40g添加し、軽く撹拌した後、室温で6時間静置して、ゲル中の溶媒および触媒をデカンテーションした。同様のデカンテーション処理を3回行うことにより、溶媒置換し、混合液Dを得た。次いで、前記混合液D中のゲル状ケイ素化合物を粉砕処理(高圧メディアレス粉砕)した。粉砕処理(高圧メディアレス粉砕)は、ホモジナイザー(エスエムテー社製、商品名「UH-50」)を使用し、5ccのスクリュー瓶に、混合液D中のゲル状化合物1.85gおよびIPAを1.15g秤量した後、50W、20kHzの条件で2分間の粉砕で行った。
 この粉砕処理によって、前記混合液D中のゲル状ケイ素化合物を粉砕することにより、前記混合液Dを、粉砕物のゾル液である混合液D’とした。この混合液D’に含まれる粉砕物の粒度バラツキを示す体積平均粒子径を、動的光散乱式ナノトラック粒度分析計(日機装社製、UPA-EX150型)にて確認したところ、0.50~0.70であった。さらに、このゾル液(混合液D’)0.75gに対し、光塩基発生剤(和光純薬工業株式会社:商品名WPBG266)の1.5重量%濃度MEK(メチルエチルケトン)溶液を0.062g、ビス(トリメトキシシリル)エタンの5%濃度MEK溶液を0.036gの比率で添加し、目的物である空隙層形成用塗工液を得た。
[参考例2]
 以下のようにして、アクリル系粘着剤層とPETフィルムの積層体を作製した。まず、攪拌羽根、温度計、窒素ガス導入管、及び冷却器を備えた4つ口フラスコに、ブチルアクリレート90.7部、N-アクリロイルモルホリン6部、アクリル酸3部、2-ヒドロキシブチルアクリレート0.3部、及び重合開始剤として2,2’-アゾビスイソブチロニトリル0.1重量部を酢酸エチル100gと共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した。その後、前記4つ口フラスコ内の液温を55℃付近に保って8時間重合反応を行い、アクリル系ポリマー溶液を調製した。得られたアクリル系ポリマー溶液の固形分100部に対して、イソシアネート架橋剤(日本ポリウレタン工業社製の商品名「コロネートL」、トリメチロールプロパンのトリレンジイソシアネートのアダクト体)0.2部、ベンゾイルパーオキサイド(日本油脂社製のナイパーBMT)0.3部、及びγ-グリシドキシプロピルメトキシシラン(信越化学工業社製:KBM-403)0.2部を配合したアクリル系粘着剤溶液を調製した。次いで、上記アクリル系粘着剤溶液を、シリコーン処理を施したポリエチレンテレフタレート(PET)フィルム(三菱化学ポリエステルフィルム社製、厚さ:38μm)の片面に、乾燥後の粘着剤層の厚さが所定の厚みになるように塗布し、150℃で3分間乾燥を行い、粘着剤層とPETフィルムの積層体を作製した。
[実施例1]
 参考例1で製造した空隙層形成用塗工液を、厚み30μmのアクリルフィルム(基材)上に塗工し、さらに100℃で2分間加熱することにより乾燥させて空隙層を形成した。形成した空隙層は、屈折率が1.18の超低屈折率層であった。また、空隙率は60体積%であった。さらに、形成した前記空隙層上に、スパッタ法で厚み40nmのSiO層を形成し、目的とする本発明の光学積層体を得た。なお、前記SiO層は、本発明の光学積層体における「硬質層」に該当する。前記スパッタ法は既知のスパッタ装置を用いて行った。以下の各実施例におけるスパッタ法も同様である。また、本実施例、以下の各実施例及び各比較例において、空隙層の屈折率は、前述の測定方法により測定した。
[実施例2]
 前記硬質層として、厚み40nmのSiO層に代えて厚み40nmのSi層をスパッタ法で形成したこと以外は、実施例1と同様にして本実施例の光学積層体を得た。
[実施例3]
 前記SiO層(硬質層)の厚みを40nmから5nmに変更したこと以外は実施例1と同じ製造方法で、目的とする本発明の光学積層体を製造した。
[実施例4]
 前記硬質層として、厚み40nmのSiO層に代えて厚み5nmのSi層をスパッタ法で形成したこと以外は、実施例1と同様にして本実施例の光学積層体を得た。
[実施例5]
 前記硬質層として、厚み40nmのSiO層に代えて厚み50nmのZTO層をスパッタ法で形成したこと以外は、実施例1と同様にして本実施例の光学積層体を得た。
[実施例6]
 前記硬質層として、厚み40nmのSiO層に代えて、厚み8nmのポリシロキサン層を形成したこと以外は、実施例1と同様にして本実施例の光学積層体を得た。また、本実施例において、前記ポリシロキサン層は、オクタデシルトリクロロシラン(東京化成工業製)をフッ素系溶剤(3M社製、商品名「Novec7100」)に溶解した溶液を用いて蒸着法により形成した。
[比較例1]
 前記硬質層(厚み40nmのSiO層)を形成しなかったこと以外は実施例1と同様にして本比較例の光学積層体を製造した。すなわち、本比較例の光学積層体は、基材上に空隙層が形成され、空隙層上には何も形成されていない光学積層体であった。
[比較例2]
 比較例1で製造した光学積層体の空隙層上に、硬質層を形成せずに、直接、参考例2で作製した積層体(粘着剤層の厚み10μm)を貼付し、その後PETフィルムを粘着剤層から剥離することにより、本比較例の光学積層体を製造した。
 以上のようにして製造した各実施例及び各比較例の光学積層体に対し、押し込み硬さ及び引張強度を測定した。前記引張強度は、空隙層の引き剥がし(ピール)に対する強度に該当する。前記押し込み硬さ及び引張強度の測定は、下記の試験方法(測定方法)により行った。また、これらの試験結果(測定結果)を、下記表1にまとめて示す。
[押し込み硬さ試験方法]
<測定方法>
 Hysitron Inc.社製のナノインデンター「TI950Triboindenter(商品名)」を用いて測定した。具体的な測定方法は、以下のとおりである。まず、測定サンプルである前記各実施例又は前記各比較例の光学積層体を、前記基材(アクリルフィルム)側を下にしてサンプル台に固定した。つぎに、前記測定サンプルの押し込み硬さ(HIT(N/mm))を、前記測定サンプルの一番上側の層(前記各実施例では硬質層、比較例1では空隙層、比較例2では粘接着層)の上面から稜間角142°の三角錐ダイヤモンド圧子(Berkovich圧子)を押し込むことにより、下記条件で測定した。測定データは、Bruker社「TI950 Triboindenter(商品名)」の専用解析ソフト(version9.4.0.1)により処理した。
 
・測定モード:単一押し込み試験
・最大変位に達した時の保持時間:0秒
・押し込み・引き抜き深さ速度:5nm/sec
・押し込み深さ:20nm
・測定時の環境;24℃±1℃(実験室は24℃設定)、相対湿度35%±10%
[引張強度試験(ピール試験)方法]
<測定構成>
 測定サンプルである前記各実施例又は比較例1の光学積層体の、一番上側の層(前記各実施例では硬質層、比較例1では空隙層)の上面に、参考例2で作製した粘着剤層とPETフィルムの積層体(粘着剤層の厚み10μm)を貼付した。その後、前記PETフィルムを前記粘着剤層から剥離し、さらにその上に38μmのPETフィルムでできたキッカケを貼り合せた。測定サンプルである比較例2の光学積層体は、一番上の層が前記粘接着層であるため、直接、前記キッカケを貼り合せた。さらに、前記各測定サンプルの基材の下面に、参考例2で作製した積層体(粘着剤層の厚み15μm)を貼付した。その後PETフィルムを粘着剤層から剥離し、厚み2mmのアルカリガラスと粘着剤層とを貼り合せた。その後、前記キッカケの上面から重さ2kgのローラーを1往復させ、前記キッカケ及び前記アルカリガラスを前記測定サンプルに圧着させた。なお、前記各測定サンプルの幅は25mmとした。
<測定方法>
 前記アルカリガラスをチャッキングし、剥離角度が180°になるように前記キッカケをセットし、引張速度300mm/minの条件で前記キッカケを8秒間引っ張った。その結果、引張強度が4.0N/25mm以上の測定サンプル(光学積層体)を○と評価し、引張強度が4.0N/25mm未満の測定サンプル(光学積層体)を×と評価した。
Figure JPOXMLDOC01-appb-T000002
 前記表1に示したとおり、空隙層上に硬質層を積層させた各実施例は、引張試験(ピール試験)において空隙層が引き剥がされなかったことから、空隙層の引き剥がしに対する強度が高いことが確認された。これに対し、空隙層上に硬質層を積層させなかった各比較例は引張試験(ピール試験)において空隙層が引き剥がされてしまったことから、空隙層の引き剥がしに対する強度が低いことが確認された。
 以上、説明したとおり、本発明によれば、空隙層の引き剥がしに対する強度が高い光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法を提供することができる。本発明の用途は特に限定されない。例えば、本発明の光学装置は、特に限定されず、画像表示装置、照明装置等が挙げられる。前記画像表示装置としては、例えば、液晶ディスプレイ、有機ELディスプレイ、マイクロLEDディスプレイ等が挙げられる。前記照明装置としては、例えば、有機EL照明等が挙げられる。さらに、本発明の光学積層体の用途は、本発明の光学部材および光学装置に限定されず任意であり、広範な用途に使用可能である。
 この出願は、2021年3月30日に出願された日本出願特願2021-058828を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
10a、10b、20 光学積層体
11 基材
12 空隙層
13 硬質層
14 粘接着剤

Claims (12)

  1.  空隙層と、前記空隙層上に形成された硬質層とを含み、
     前記空隙層は、空隙率が30体積%以上であり、
     前記硬質層は、金属、金属酸化物、ケイ素、ケイ素酸化物及び有機無機ハイブリッド材料からなる群から選択される少なくとも一つを含み、かつ、ナノインデンターを用いて硬質層に対して圧子を20nm押し込んで測定される硬さが、前記空隙層よりも大きいことを特徴とする光学積層体。
  2.  ナノインデンターを用いて、前記硬質層に対して圧子を20nm押し込んで測定される硬さが、0.04GPa以上である、請求項1に記載の光学積層体。
  3.  前記硬質層が、ケイ素、アルミニウム、二酸化ケイ素、酸化アルミニウム、亜鉛スズ複合酸化物(ZTO)、インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IZO)、ガリウム亜鉛複合酸化物(GZO)、及びポリシロキサンからなる群から選択される少なくとも一つを含む請求項1又は2に記載の光学積層体。
  4.  前記硬質層の厚みが5nm以上である、請求項1から3のいずれか一項に記載の光学積層体。
  5.  前記硬質層は、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成される層である、請求項1から4のいずれか一項に記載の光学積層体。
  6.  前記空隙層は、ケイ素化合物の微細孔粒子同士が化学的に結合している多孔体である、請求項1から5のいずれか一項に記載の光学積層体。
  7.  さらに、粘接着層を含み、
     前記粘接着層は、前記硬質層における前記空隙層とは反対側の面上に設けられている請求項1から6のいずれか一項に記載の光学積層体。
  8.  前記空隙層の少なくとも一方の面上に前記硬質層を形成する硬質層形成工程を含み、
     前記硬質層形成工程において、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法で前記硬質層を形成することを特徴とする請求項1から7のいずれか一項に記載の光学積層体の製造方法。
  9.  請求項1から7のいずれか一項に記載の光学積層体を含むことを特徴とする光学部材。
  10.  請求項9記載の光学部材を含むことを特徴とする光学装置。
  11.  請求項8記載の製造方法により請求項1から7のいずれか一項に記載の光学積層体を製造する光学積層体製造工程を含むことを特徴とする、請求項9記載の光学部材の製造方法。
  12.  請求項11記載の製造方法により請求項9記載の光学部材を製造する光学部材製造工程を含むことを特徴とする、請求項10記載の光学装置の製造方法。
PCT/JP2021/049010 2021-03-30 2021-12-28 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法 WO2022209104A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180096670.6A CN117157191A (zh) 2021-03-30 2021-12-28 光学层叠体、光学层叠体的制造方法、光学构件、光学装置、光学构件的制造方法及光学装置的制造方法
KR1020237031264A KR20230164661A (ko) 2021-03-30 2021-12-28 광학 적층체, 광학 적층체의 제조 방법, 광학 부재, 광학 장치, 광학 부재의 제조 방법, 및 광학 장치의 제조 방법
EP21935251.5A EP4309888A1 (en) 2021-03-30 2021-12-28 Optical laminate, optical laminate production method, optical member, optical device, optical member production method and optical device production method
US18/285,067 US20240192408A1 (en) 2021-03-30 2021-12-28 Optical laminate, method for producing optical laminate, optical member, optical appratus, method for producing optical member, and method for producing optical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058828A JP2022155373A (ja) 2021-03-30 2021-03-30 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
JP2021-058828 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209104A1 true WO2022209104A1 (ja) 2022-10-06

Family

ID=83455966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/049010 WO2022209104A1 (ja) 2021-03-30 2021-12-28 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法

Country Status (7)

Country Link
US (1) US20240192408A1 (ja)
EP (1) EP4309888A1 (ja)
JP (1) JP2022155373A (ja)
KR (1) KR20230164661A (ja)
CN (1) CN117157191A (ja)
TW (1) TW202242051A (ja)
WO (1) WO2022209104A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113310A (ja) * 2008-11-10 2010-05-20 Keio Gijuku 反射防止膜、その形成方法、光学素子、交換レンズ及び撮像装置
JP2010272515A (ja) * 2009-04-20 2010-12-02 Fujifilm Corp 有機電界発光表示装置
JP2012156082A (ja) 2011-01-28 2012-08-16 Furukawa Electric Co Ltd:The バックライトパネル、導光板、反射板、および接着シート
JP2017068248A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 光学部材、ならびに、該光学部材を用いた偏光板のセットおよび液晶表示装置
WO2019065803A1 (ja) 2017-09-29 2019-04-04 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置
WO2019065999A1 (ja) 2017-09-29 2019-04-04 日東電工株式会社 積層体、光学部材および光学装置
JP2019064259A (ja) * 2017-09-29 2019-04-25 日東電工株式会社 積層体、光学部材および光学装置
JP2021058828A (ja) 2019-10-04 2021-04-15 学校法人 東洋大学 セレン含有水の処理方法およびセレン含有水の処理装置
JP2022019686A (ja) * 2020-07-17 2022-01-27 デクセリアルズ株式会社 光学積層体、物品、光学積層体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062626A (ja) 1996-06-12 1998-03-06 Nissha Printing Co Ltd 面発光装置とその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113310A (ja) * 2008-11-10 2010-05-20 Keio Gijuku 反射防止膜、その形成方法、光学素子、交換レンズ及び撮像装置
JP2010272515A (ja) * 2009-04-20 2010-12-02 Fujifilm Corp 有機電界発光表示装置
JP2012156082A (ja) 2011-01-28 2012-08-16 Furukawa Electric Co Ltd:The バックライトパネル、導光板、反射板、および接着シート
JP2017068248A (ja) * 2015-09-28 2017-04-06 日東電工株式会社 光学部材、ならびに、該光学部材を用いた偏光板のセットおよび液晶表示装置
WO2019065803A1 (ja) 2017-09-29 2019-04-04 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置
WO2019065999A1 (ja) 2017-09-29 2019-04-04 日東電工株式会社 積層体、光学部材および光学装置
JP2019064259A (ja) * 2017-09-29 2019-04-25 日東電工株式会社 積層体、光学部材および光学装置
JP2019065133A (ja) * 2017-09-29 2019-04-25 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置
JP2021058828A (ja) 2019-10-04 2021-04-15 学校法人 東洋大学 セレン含有水の処理方法およびセレン含有水の処理装置
JP2022019686A (ja) * 2020-07-17 2022-01-27 デクセリアルズ株式会社 光学積層体、物品、光学積層体の製造方法

Also Published As

Publication number Publication date
JP2022155373A (ja) 2022-10-13
EP4309888A1 (en) 2024-01-24
US20240192408A1 (en) 2024-06-13
CN117157191A (zh) 2023-12-01
TW202242051A (zh) 2022-11-01
KR20230164661A (ko) 2023-12-04

Similar Documents

Publication Publication Date Title
JP6852967B2 (ja) 粘着剤層付偏光フィルム、光学部材、及び画像表示装置
JP7182358B2 (ja) 低屈折率層含有粘接着シート、低屈折率層含有粘接着シートの製造方法、および光学デバイス
US11402569B2 (en) Optical sheet for light guide plate type liquid crystal display, backlight unit for light guide plate type liquid crystal display, and light guide plate type liquid crystal display
TWI756341B (zh) 含低折射率層之黏接著片材、含低折射率層之黏接著片材之製造方法及光學組件
JP2018123233A (ja) 空隙層、空隙層含有粘接着シート、空隙層の製造方法、空隙層含有粘接着シートの製造方法、および光学デバイス
WO2019065999A1 (ja) 積層体、光学部材および光学装置
EP4130809A1 (en) Optical laminate with double-sided adhesive layer, and optical device
JP6926474B2 (ja) 反射フィルムおよび面光源装置用反射ユニット
WO2022209104A1 (ja) 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
WO2022209105A1 (ja) 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
WO2018062282A1 (ja) 液晶パネル、及び、画像表示装置
WO2022064782A1 (ja) 光学積層体
JP2022155375A (ja) 光学積層体、光学積層体の製造方法、光学部材、光学装置、光学部材の製造方法、及び光学装置の製造方法
TWI783986B (zh) 導光板方式液晶顯示器用光學片材、導光板方式液晶顯示器用背光單元及導光板方式液晶顯示器
WO2023189556A1 (ja) 光学積層体、光学積層体の製造方法、光学部材、および、光学部材の製造方法
WO2023189089A1 (ja) 光学積層体および光学積層体の製造方法
CN118591742A (zh) 光学层叠体、光学层叠体的制造方法、光学构件、及光学构件的制造方法
JP2023152803A (ja) 光学積層体、光学積層体の製造方法、光学部材、および、光学部材の製造方法
JP2023150235A (ja) 光学積層体、光学積層体の製造方法および両面粘接着光学積層体の製造方法
TW202228998A (zh) 成形用膜
JP2018125153A (ja) 直下型方式液晶ディスプレイ用光学シート、直下型方式液晶ディスプレイ用バックライトユニット、および直下型方式液晶ディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285067

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021935251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935251

Country of ref document: EP

Effective date: 20231019