WO2016006461A1 - 回転角検出装置およびパワーステアリング装置 - Google Patents

回転角検出装置およびパワーステアリング装置 Download PDF

Info

Publication number
WO2016006461A1
WO2016006461A1 PCT/JP2015/068317 JP2015068317W WO2016006461A1 WO 2016006461 A1 WO2016006461 A1 WO 2016006461A1 JP 2015068317 W JP2015068317 W JP 2015068317W WO 2016006461 A1 WO2016006461 A1 WO 2016006461A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding member
magnetic
recess
magnetism collecting
protrusion
Prior art date
Application number
PCT/JP2015/068317
Other languages
English (en)
French (fr)
Inventor
治 吉田
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to DE112015003183.9T priority Critical patent/DE112015003183B4/de
Priority to JP2016532872A priority patent/JP6291682B2/ja
Priority to CN201580036669.9A priority patent/CN106471347B/zh
Priority to US15/322,627 priority patent/US10207733B2/en
Priority to KR1020177000134A priority patent/KR20170015463A/ko
Publication of WO2016006461A1 publication Critical patent/WO2016006461A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0442Conversion of rotational into longitudinal movement
    • B62D5/0454Worm gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a rotation angle detection device and a power steering device.
  • a conventional rotation angle detector includes a permanent magnet and a pair of yokes that rotate relative to each other, a pair of magnetism collecting rings that induces a magnetic flux generated between the pair of yokes by the relative rotation of the permanent magnet and the pair of yokes, And a Hall IC sensor for detecting magnetic flux between the magnetic rings.
  • the pair of yokes and the pair of magnetism collecting rings, which are detection members, are formed of a soft magnetic material such as permalloy, and are provided integrally with a resin holder by insert molding, and are fixed to the input / output shaft or the housing via the holder Has been.
  • Patent Document 1 An example related to the technique described above is described in Patent Document 1.
  • An object of the present invention is to provide a rotation angle detection device and a power steering device that can suppress distortion of a detection member and improve detection accuracy.
  • the first holding member and the second holding member are welded and fixed to each other with the detection member sandwiched between the first holding member and the second holding member.
  • the distortion of the detection member can be suppressed and the detection accuracy can be improved.
  • FIG. 1 is an overall configuration diagram of an electric power steering apparatus according to Embodiment 1.
  • FIG. 1 is a longitudinal sectional view of a steering gear box 16 of Embodiment 1.
  • FIG. It is a disassembled perspective view of a yoke assembly.
  • 4 is a plan view of a yoke holder 23.
  • FIG. It is a principal part enlarged view of FIG. 3 is a perspective view of a welding plate 29.
  • FIG. FIG. 3 is a plan view of the welding plate 29.
  • FIG. 6A. 3 is a cross-sectional view of a protrusion 30.
  • FIG. It is a disassembled perspective view of a magnetism collection ring assembly.
  • FIG. 3 is a plan view of a magnetism collecting ring holder 26.
  • FIG. It is a principal part enlarged view of FIG.
  • FIG. 6 is a diagram showing a state of burrs that occur when the magnetism collecting ring holder 26 and the welding plate 29 are ultrasonically welded.
  • FIG. 6 is a diagram showing a state of burrs that occur when the magnetism collecting ring holder 26 and the welding plate 29 are ultrasonically welded.
  • FIG. 1 is an overall configuration diagram of an electric power steering apparatus according to a first embodiment.
  • a steering input to the steering wheel 1 by the driver is transmitted to the first pinion 5 through the steering shaft (second member, input shaft) 2, the torsion bar 3, and the pinion shaft (first member, output shaft) 4 as rotational motion.
  • the rack bar 6 having the first rack teeth 6a that are transmitted and mesh with the pinion teeth 5a of the first pinion 5 is converted into a linear motion.
  • the linear motion of the rack bar 6 is transmitted to the steered wheels 8 and 8 through the tie rods 7 and 7.
  • the steering shaft 2, the torsion bar 3, the pinion shaft 4, the first pinion 5, the rack bar 6 and the tie rods 7 and 7 constitute a steering mechanism 9 that transmits the steering operation of the steering wheel 1 to the steered wheels 8.
  • the output of the electric motor 10 is transmitted to the second pinion 12 via the speed reducer 11 composed of the worm shaft 11a and the worm wheel 11b, and the second rack teeth 6b that mesh with the pinion teeth 12a of the second pinion 12. Is converted into a straight movement of the rack bar 6.
  • the second pinion 12 is provided integrally with the worm wheel 11b.
  • the electric motor 10 is, for example, a three-phase brushless motor, and applies a steering assist force to the steering mechanism 9 in accordance with a command signal from the motor control circuit 15.
  • the steering shaft 2 is provided with a torque sensor (rotation angle detection device) 13 that detects the relative rotation of the steering shaft 2 and the pinion shaft 4.
  • the motor control circuit 15 calculates a command signal to the electric motor 10 based on the steering torque generated between the steering shaft 2 and the pinion shaft 4 obtained from the output signal of the torque sensor 13 and the traveling state such as the vehicle speed, A command signal is output to the electric motor 10.
  • FIG. 2 is a longitudinal sectional view of the steering gear box 16.
  • the steering gear box 16 includes a gear box housing (housing) 17.
  • the steering shaft 2 and the pinion shaft 4 rotate about the same rotational axis 0 with respect to the gear box housing 17.
  • the x-axis is taken in the direction of the rotation axis O
  • the steering shaft 2 side is the forward direction with respect to the pinion shaft 4.
  • the gear box housing 17 includes a shaft housing portion 17a arranged with the rotation axis direction as a longitudinal direction, a guide housing portion 17b extending from the shaft housing portion 17a toward the vehicle rear side, and orthogonal to the shaft housing portion 17a.
  • a rack accommodating portion (not shown) disposed substantially with the vehicle width direction as the longitudinal direction.
  • the shaft accommodating portion 17a, the guide accommodating portion 17b, and the rack accommodating portion are all cylindrical. A part of the steering shaft 2 and the torsion bar 3, the pinion shaft 4 and the torque sensor 13 are accommodated in the shaft accommodating portion 17a.
  • the torsion bar 3 is inserted through a hollow portion 2a provided at the end of the steering shaft 2 in the negative x-axis direction so as not to be relatively rotatable.
  • the x-axis negative direction end of the torsion bar 3 is spline-fitted with the pinion shaft 4.
  • the steering shaft 2 is rotatably supported with respect to the gear box housing 17 by a bearing 18a.
  • Both ends of the pinion shaft 4 in the x-axis direction are rotatably supported with respect to the gear box housing 17 by bearings 18b and 18c.
  • a rack bar 6 is accommodated in the rack accommodating portion.
  • a rack guide 19a having a substantially cylindrical shape is accommodated in the guide accommodating portion 17b so as to be movable in the axial direction along the guide accommodating portion 17b. Further, a cap 19b is screwed to the open end of the guide housing portion 17b.
  • a seat 19c for preventing wear of the rack guide 19a is attached to the rack bar side of the rack guide 19a.
  • the torque sensor 13 includes a multi-pole magnet (magnetic member) 20, a pair of yokes (detection members) 21, 22, a yoke holder (first holding member) 23, and a pair of magnetism collecting rings (detection members) 24, 25.
  • the magnetic flux collecting ring holder (first holding member) 26 and the Hall IC sensor (magnetic sensor) 27 are provided.
  • the multipolar magnet 20, the pair of yokes 21 and 22, the yoke holder 23, the pair of magnetism collecting rings 24 and 25, and the magnetism collecting ring holder 26 are arranged concentrically with the rotation axis O.
  • the multipolar magnet 20 is a cylindrical permanent magnet in which 16 poles (the same number of poles each of N and S poles) are alternately magnetized at equal intervals in the circumferential direction.
  • the multipolar magnet 20 is fixed to the pinion shaft 4 via a magnet holder 28.
  • the magnet holder 28 is formed in a cylindrical shape having a large diameter portion 28a and a small diameter portion 28b.
  • the large diameter portion 28a is fixed to the outer periphery of the pinion shaft 4 at the end in the x-axis positive direction.
  • the small diameter portion 28b is located on the positive side in the x-axis direction of the large diameter portion 28a, and the inner periphery of the multipolar magnet 20 is fixed.
  • the pair of yokes 21 and 22 are made of permalloy (soft magnetic alloy) and have eight claw portions 211 and 221 and annular portions 212 and 222 as shown in FIG.
  • the claw portions 211 and 221 are alternately arranged with a predetermined gap on the same circumference so as to surround the outer periphery of the multipolar magnet 20 and face the multipolar magnet 20 with a predetermined radial gap.
  • the annular portions 212 and 222 are positioned on the positive side of the claw portions 211 and 221 in the x-axis positive direction and face each other with a predetermined radial gap.
  • the pair of yokes 21 and 22 is such that the tips of the claw portions 211 and 221 indicate the boundary between the north pole and the south pole of the multipolar magnet 20 in a steering neutral state where no torque is applied to the steering shaft 2 and the pinion shaft 4.
  • the yoke holder 23 is formed of a thermoplastic resin in a substantially convex shape, and holds the pair of yokes 21 and 22.
  • the yoke holder 23 is fixed to the steering shaft 2.
  • the pair of magnetism collecting rings 24 and 25 are formed by a permalloy in a C shape, have a predetermined radial air gap with each other, and are positioned at intermediate positions of the radial gaps of the annular portions 212 and 222 of the yokes 21 and 22.
  • the yokes 21 and 22 are arranged in a non-contact state.
  • the magnetism collecting ring holder 26 is formed in a cylindrical shape with a thermoplastic resin, and holds the pair of magnetism collecting rings 24 and 25.
  • the magnetism collecting ring holder 26 is fixed to the gear box housing 17.
  • the Hall IC sensor 27 includes a Hall element 27a and a circuit board 27b, and detects the density of magnetic flux generated in the radial air gap between the pair of magnetism collecting rings 24 and 25.
  • the Hall element 27a is disposed at a position intermediate between the radial air gaps of the pair of magnetic flux collecting rings 24 and 25 in a non-contact state with the magnetic flux collecting rings 24 and 25.
  • the circuit board 27b is connected to the Hall element 27a on the x-axis positive direction side of the magnetism collecting ring holder 26. Electric power from the vehicle battery is supplied to the hall element 27a via the circuit board 27b, and an output of the hall element 27a is output to the motor control circuit 15 via the circuit board 27b.
  • FIG. 3 is an exploded perspective view of the yoke assembly
  • FIG. 4 is a plan view of the yoke holder 23
  • FIG. 5 is an enlarged view of the main part of FIG.
  • the yoke assembly includes a pair of yokes 21 and 22, a yoke holder 23, and a welding plate (second holding member) 29.
  • the welding plate 29 and the yoke holder 23 constitute a holding member.
  • the first yoke (first yoke member) 21 has eight first claw portions 211 and a first annular portion 212.
  • claw part 211 is a plate-shaped member, and the front-end
  • the first annular portion 212 is formed in an annular shape so as to surround the rotation axis O.
  • Each first claw portion 211 is opposed to the first bent portion 211a extending radially inward from the first annular portion 212 and the multipolar magnet 20 along the x-axis direction from the first bent portion 211a.
  • a first detection unit 211b extending so as to extend.
  • Each first bent portion 211a is arranged so as to be perpendicular to the rotation axis O.
  • Each first detection unit 211b is arranged to be perpendicular to the radial direction of the rotation axis O.
  • the second yoke (second yoke member) 22 has eight second claw portions 221 and a second annular portion 222.
  • claw part 221 is a plate-shaped member, and the front-end
  • the second claw portion 221 has the same length in the x-axis direction as the first claw portion 211.
  • the second annular portion 222 is formed in an annular shape so as to surround the rotation axis O.
  • the second annular portion 222 is set to have a smaller diameter than the first annular portion 212.
  • Each second claw portion 221 is opposed to the multipolar magnet 20 along the x-axis direction from the second bent portion 221a and the second bent portion 221a extending radially outward from the second annular portion 222. And a second detector 221b extending so as to extend.
  • Each second bent portion 221a is disposed so as to be perpendicular to the rotation axis O.
  • the second detection units 221b are arranged so as to be perpendicular to the radial direction of the rotation axis O and alternately arranged between the adjacent first detection units 211b and 211b.
  • the yoke holder 23 includes a main body 231, a first through hole 232, a first housing part 233, a second through hole 234, and a second housing part 235.
  • the main body portion 231 has a small diameter portion 231a, a large diameter portion 231b, and a mounting surface 231c.
  • the small diameter portion 213a has an inner diameter that substantially matches the outer diameter of the steering shaft 2, and is fixed to the outer periphery of the steering shaft 2.
  • the large diameter portion 231b is set to have a larger diameter than the small diameter portion 231a, and the claw portions 211 and 221 of the first yoke 21 and the second yoke 22 are accommodated therein.
  • the mounting surface 231c is provided substantially perpendicular to the rotation axis O, and connects the small diameter portion 231a and the large diameter portion 231b.
  • the first annular portion 212 of the first yoke 21 and the second annular portion 222 of the second yoke 22 are placed on the mounting surface 231c.
  • the first through hole 232 is formed such that the first detection unit 211b penetrates the mounting surface 231c.
  • the first housing portion 233 is provided so as to extend radially outward continuously from the first through-hole 232, and is formed in a concave shape so as to open toward the mounting surface 231c. Part 211a is accommodated.
  • the second through hole 234 is formed so that the second detection unit 221b penetrates the mounting surface 231c.
  • the second accommodating portion 235 is provided so as to extend radially inward continuously with the second through hole 234, is formed in a concave shape so as to open toward the mounting surface 231c, and the second bent portion 221a
  • the mounting surface 231c is provided with a recess 236 and a wall 237. Eight concave portions 236 are provided at equal intervals in the circumferential direction.
  • the recess 236 includes an inner diameter side portion 236a and a radially extending portion 236b.
  • the inner diameter side portion 236a is formed radially inward from the first through hole 232 and extends in the circumferential direction.
  • the radial width of the inner diameter side portion 236a is formed to be smaller than half the width from the inner peripheral edge to the outer peripheral edge of the mounting surface 231c.
  • the radially extending portion 236b is provided so as to pass between the first through hole 232 and the second through hole 234 in the radially outward direction from both circumferential ends of the inner diameter side portion 236a.
  • the concave portion 236 has a bottom portion 238 to be welded to the welding plate 29, and is formed so as to open toward the welding plate 29 side (x-axis positive direction side).
  • the bottom 238 is formed in a planar shape orthogonal to the x-axis direction.
  • the wall portion 237 is provided so as to surround the entire periphery of the opening edge along the opening edge of the recess 236, and the distance in the x-axis direction with the welding plate 29 is greater than the distance in the x-axis direction between the bottom portion 238 and the welding plate 29.
  • the yoke holder 23 and the welding plate 29 are formed so as not to come into contact with the welding plate 29 when the yoke holder 23 and the welding plate 29 are fixed by welding.
  • the wall portion 237 has an inclined portion 239 that is inclined so that the opening area of the concave portion 236 increases from the bottom portion 238 toward the opening edge side.
  • FIG. 6A is a perspective view of the welding plate 29, FIG. 6B is a plan view of the welding plate 29, and FIG. 7 is an enlarged view of the main part of FIG. 6A.
  • the welding plate 29 holds the pair of yokes 21 and 22 between the yoke holder 23 and the welding plate 29 by contacting the bent portions 211a and 221a of the pair of yokes 21 and 22.
  • the welding plate 29 is disposed concentrically with the rotation axis O.
  • the welding plate 29 is made of thermoplastic resin and has an annular shape having an inner peripheral diameter larger than that of the small diameter portion 231a of the yoke holder 23 and having an outer peripheral diameter smaller than that of the large diameter portion 231b.
  • Four cutouts 29 a are formed on the outer peripheral edge of the welding plate 29.
  • the two notches 29a are arranged on the left and right sides symmetrically with respect to the y-axis.
  • the angle between the two notches 29a and 29a located on the left and right sides of the y-axis is 45 °. The same applies to the left and right other sides of the y-axis.
  • the surface on the positive x-axis side of the welding plate 29 is formed flat, and eight protrusions 30 are provided at equal intervals in the circumferential direction on the negative x-axis surface.
  • the protrusion 30 melts in a state where the tip is in contact with the bottom 238, thereby welding the yoke holder 23 and the welding plate 29 together.
  • the protrusion 30 is formed to face the recess 236 and protrude in a direction perpendicular to the bottom 238, that is, in the x-axis direction.
  • the protrusion 30 is formed of a radial protrusion 302 extending from the radially inner side to the outer side and a circumferential protrusion 303 extending in the circumferential direction.
  • four protrusions 30 close to the y-axis are formed in a U shape in plan view from two radial protrusions 302 and one circumferential protrusion 303.
  • Four protrusions 30 far from the y-axis are formed in a letter shape in plan view from one radial protrusion 302 and one circumferential protrusion 303.
  • FIG. 8 is a cross-sectional view of the protrusion 30.
  • the protrusion 30 has a tip portion 30a and a proportional melting portion 30b.
  • the tip part 30a is formed in a sharp, substantially conical shape.
  • the proportional melting part 30b is located on the positive side of the x-axis from the tip part 30a, and is formed so that the cross-sectional area perpendicular to the x-axis is constant in a predetermined range in the x-axis direction before melting. ing.
  • Two engaging protrusions 31 are provided on the y-axis on the surface of the welding plate 29 on the x-axis negative direction side.
  • the engaging protrusion 31 engages with the second through hole 234 and restricts the circumferential movement of the welding plate 29 with respect to the yoke holder 23.
  • the distance in the x-axis direction between the bottom portion 238 of the yoke holder 23 and the welding plate 29 is such that when the projection 30 or a part of the bottom portion 238 that has melted at the time of welding and fixing the yoke holder 23 and the welding plate 29 grows as a burr, Is set so as to contact the welding plate 29.
  • the welded portion between the bottom 238 and the protrusion 30 is indicated by a thick solid line.
  • the yoke assembly is obtained by attaching a pair of yokes 21 and 22 to the yoke holder 23, covering the welding plate 29, and ultrasonically welding the yoke holder 23 and the welding plate 29.
  • Ultrasonic welding is a processing technique in which a thermoplastic resin is instantaneously melted and joined by fine ultrasonic vibration and pressure. Since the assembly of the pair of yokes 21 and 22 and the welding plate 29 to the yoke holder 23 can all be performed from one direction, it is advantageous in terms of assembly workability.
  • FIG. 10 is a plan view of the magnetism collecting ring holder 26, and FIG. 11 is an enlarged view of the main part of FIG.
  • the magnetism collecting ring assembly includes a pair of magnetism collecting rings 24 and 25, a magnetism collecting ring holder 26, and a welding plate (first holding member) 29.
  • the welding plate 29 and the magnetism collecting ring holder 26 constitute a holding member.
  • the first magnetism collecting ring (first detection member) 24 is formed so as to surround the rotation axis O, and is formed along a virtual circle centered on the rotation axis O and is a pair of arcuate portions 241 and 241 facing each other.
  • the virtual circle of the pair of arcuate portions 241 and 241 is set to have a larger diameter than the second annular portion 222 of the second yoke 22 and a smaller diameter than the first annular portion 212 of the first yoke 21.
  • the magnetic flux collector 242 is formed at a right angle to the rotation axis O.
  • the second magnetism collecting ring (second detection member) 25 is formed so as to surround the rotation axis O, and is formed along a virtual circle with the rotation axis O as the center, and a pair of arcuate portions 251 and 251 facing each other.
  • a magnetic flux collector 252 that connects the pair of arcuate portions 251, 251.
  • the virtual circles of the pair of arcuate portions 251 and 251 are set to have a smaller diameter than the virtual circle of the first magnetic flux collecting ring 24 and a larger diameter than the second annular portion 222 of the second yoke 22.
  • the magnetism collecting portion 252 is convex toward the outer side in the radial direction and is formed at right angles to the rotation axis O.
  • the magnetism collecting ring holder 26 includes an annular part 261 having an opening 261c at the center, an outer peripheral part 262 extending from the outer peripheral edge of the annular part 261 to the x-axis negative direction side, and a radially outer side of the annular part 261. And two cylindrical portions 263 extending in the x-axis direction.
  • the opening 261 c of the annular portion 261 is set to have a larger diameter than the outer diameter of the yoke holder 23.
  • a first engagement groove 264 that accommodates the x-axis positive direction end of the first magnetism collecting ring 24 and an x-axis positive direction end of the second magnetism collecting ring 25 are provided.
  • a second engagement groove 265 that accommodates the portion is formed. Between the first engagement groove 264 and the second engagement groove 265, portions corresponding to the magnetic flux collecting portion 243 of the first magnetic flux collecting ring 24 and the magnetic flux collecting portion 253 of the second magnetic flux collecting ring 25 are notched.
  • An arcuate wall portion 266 having a C-shape in plan view is provided.
  • the arc-shaped portions 241 and 241 of the first magnetism collecting ring 24 are formed on the arc-shaped wall portion 266.
  • the arcuate portions 251 and 251 of the second magnetism collecting ring 25 are in contact with the inner peripheral surface of the arcuate wall portion 266.
  • the magnetism collecting portion 252 of the second magnetism collecting ring 25 is in contact with the end surface 266b of the cutout portion of the arcuate wall portion 266.
  • the magnetic flux collecting portions 242 and 252 of the pair of magnetic flux collecting rings 24 and 25 face each other at the cutout portion of the arcuate wall portion 266.
  • An engagement groove 267 that is provided on the x-axis negative direction surface 266a of the arc-shaped wall portion 266 at a right angle to the rotation axis O and engages with the engagement protrusion 31 of the welding plate 29 when the welding plate 29 is welded. Is formed.
  • the length in the x-axis direction from the first engagement groove 264 and the second engagement groove 265 to the x-axis negative direction surface 266a of the arc-shaped wall portion 266 is the x of the first magnetism collecting ring 24 and the second magnetism collecting ring 25. It is set shorter than the axial length.
  • a concave portion 32 and a wall portion 33 are provided on the x-axis negative direction surface 266a of the arc-shaped wall portion 266.
  • Eight concave portions 32 are provided at equal intervals in the circumferential direction.
  • the recess 236 is formed of a radial recess 32a extending from the radially inner side to the outer side and a circumferential recess 32b extending in the circumferential direction.
  • two recesses 32 close to the end surface 266b of the cutout portion of the arc-shaped wall 266 are composed of one radial recess 32a and one circumferential recess 32b.
  • the remaining six recesses 32 are composed of two radial recesses 32a and one circumferential recess 32b.
  • the radial width of the circumferential recess 32b is formed to be smaller than half the width from the inner peripheral edge to the outer peripheral edge of the arcuate wall portion 266.
  • the recess 32 has a bottom 34 to be welded to the welding plate 29, and is formed so as to open toward the welding plate 29 side (x-axis negative direction side).
  • the bottom 34 is formed in a planar shape orthogonal to the x-axis direction.
  • the wall 33 is provided so as to surround the entire circumference of the opening edge along the opening edge of the recess 32, and the x-axis direction distance between the welding plate 29 and the x-axis direction distance between the bottom 34 and the welding plate 29
  • the magnetic flux collection ring holder 26 and the welding plate 29 are formed so as not to contact the welding plate 29 when the magnetism collecting ring holder 26 and the welding plate 29 are fixed.
  • the wall portion 33 has an inclined portion 35 that is inclined so that the opening area of the recess 32 increases from the bottom portion 34 toward the opening edge side.
  • a cylindrical portion 268 that supports the circuit board 27b of the Hall IC sensor 27 is provided on the x-axis positive direction surface of the annular portion 261.
  • the cylindrical portion 268 is formed with a screw hole 268a for bolting the circuit board 27b.
  • an opening portion 261e through which the Hall IC sensor 27 passes is formed at an axial position corresponding to the radial air gap between the pair of magnetism collecting portions 242 and 252.
  • the sensor part of the Hall IC sensor 27 is disposed at an intermediate position of the radial air gap.
  • the x-axis negative direction side end portion of the outer peripheral portion 262 has an outer diameter that can be fitted into the side wall of the shaft housing portion 17a (see FIG. 2) of the gear box housing 17.
  • the cylindrical portion 263 is formed with a screw hole 263a for bolting the magnetism collecting ring holder 26 to the gear box housing 17.
  • the welding plate 29 is the same as that of the yoke assembly.
  • the distance in the x-axis direction between the bottom 34 of the magnetism collecting ring holder 26 and the welding plate 29 is such that the protrusion 30 or a part of the bottom 34 melted when the magnetism collecting ring holder 26 and the welding plate 29 are fixed to each other is burr.
  • the burrs are set so as to come into contact with the welding plate 29 when grown.
  • the welded portion between the bottom 34 and the protrusion 30 is indicated by a thick solid line.
  • the magnetism collecting ring assembly is obtained by attaching the pair of magnetism collecting rings 24 and 25 to the magnetism collecting ring holder 26, covering the welding plate 29, and ultrasonically welding the magnetism collecting ring holder 26 and the welding plate 29. Since the assembly of the pair of magnetism collecting rings 24 and 25 and the welding plate 29 to the magnetism collecting ring holder 26 can all be performed from one direction, it is advantageous in terms of assembling workability. Further, since the same welding plate 29 as the yoke assembly is used, an increase in the number of parts can be suppressed, which can contribute to cost reduction.
  • the operation of the torque sensor 13 according to the first embodiment will be described.
  • the circumferential center of the claw portions 211, 221 is located on the pole boundary of the multipolar magnet 20, and the permeance of the multipole magnet 20 with respect to the north and south poles as seen from the claw portions 211, 221 is equal. Therefore, the magnetic flux generated from the N pole of the multipolar magnet 20 enters the claw portions 211 and 221 and enters the S pole of the multipolar magnet 20 as it is. Therefore, since the magnetic flux does not flow between the pair of magnetism collecting rings 24 and 25, the Hall IC sensor 27 outputs an intermediate voltage.
  • Example 1 In the rotation angle detection device, when the detection member is held on the holding member by insert molding, an internal stress is generated in the detection member due to cooling contraction of the holding member, and there is a possibility that the detection accuracy is lowered.
  • the welding plate 29 and the yoke holder 23 are welded and fixed to each other in a state where the pair of yokes 21 and 22 are sandwiched between the welding plate 29 and the yoke holder 23 in the x-axis direction. Therefore, no internal stress is generated in the pair of yokes 21 and 22 due to cooling shrinkage accompanying insert molding.
  • the distortion of the pair of yokes 21 and 22 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved. Further, since the two yokes 21 and 22 can be held by a pair of holding members (welding plate 29 and yoke holder 23), a welding plate is not required for each yoke, and the number of parts can be reduced. Furthermore, by improving the torque detection accuracy, the control accuracy of the steering assist force by the electric power steering device can be improved.
  • the welding plate 29 and the magnetism collecting ring holder 26 are connected to each other with the welding plate 29 and the magnetism collecting ring holder 26 sandwiching the pair of magnetism collecting rings 24 and 25 in the x-axis direction. Fix by welding. Therefore, internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of magnetism collecting rings 24 and 25. Thereby, the distortion of the pair of magnetism collecting rings 24 and 25 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved.
  • the two magnetism collecting rings 24 and 25 can be held by a pair of holding members (welding plate 29 and magnetism collecting ring holder 26), a welding plate is not required for each magnetism collecting ring, and the number of parts can be reduced. Furthermore, by improving the torque detection accuracy, the control accuracy of the steering assist force by the electric power steering device can be improved.
  • the burr generated when the yoke holder 23 and the welding plate 29 are fixed to each other is housed in the recess 236 surrounded by the wall portion 237, so that the burr can be prevented from falling off from the yoke assembly.
  • the projection 32 of the welding plate 29 is welded to the recess 32 and the entire periphery of the opening edge of the recess 32 is surrounded, and the distance from the welding plate 29 is shorter than the bottom 34. Wall 33 was provided.
  • the burr generated when the magnetism collecting ring holder 26 and the welding plate 29 are fixed to each other is housed in the recess 32 surrounded by the wall 33, and the burr is prevented from falling off the magnetism collecting ring assembly. it can.
  • FIG. 12A and 12B are views showing the state of burrs generated when the magnetism collecting ring holder 26 and the welding plate 29 are ultrasonically welded.
  • the magnetism collecting ring holder 26 and the welding plate 29 are frictionally vibrated by vibration energy from a state in which the protrusion 30 is abutted against the bottom 34, and friction heat is generated to generate the frictional heat.
  • the protrusion 30 or a part of the bottom 34 grows as a burr.
  • the distance between the welding plate 29 and the bottom 34 was set so that the grown burr contacted the welding plate 29. As a result, as shown in FIG.
  • the grown burrs are sandwiched between the bottom 34 and the welding plate 29, so that burrs can be prevented from fluttering in the recess 32.
  • the radial width of the circumferential recess 32b of the recess 32 is formed to be smaller than half of the width from the inner peripheral edge to the outer peripheral edge of the arc-shaped wall portion 266. That is, flapping of the burrs in the recesses 32 can be suppressed by not increasing the radial width of the recesses 32 more than necessary.
  • the distance between the welding plate 29 and the bottom portion 238 is set such that when the projection 30 or a part of the bottom portion 238 melted at the time of welding and fixing the yoke holder 23 and the welding plate 29 grows as a burr. Was set to contact the welding plate 29.
  • the burr since the burr is sandwiched between the bottom portion 238 and the welding plate 29, it is possible to suppress the burr flapping (moving) in the recess 236.
  • the width in the radial direction of the inner diameter side portion 236a of the recess 236 is formed to be smaller than half of the width from the inner peripheral edge to the outer peripheral edge of the mounting surface 231c. In other words, flapping of the burrs in the recesses 236 can be suppressed by making the radial width of the recesses 236 larger than necessary.
  • the recess 236 and the protrusion 30 are divided into a part extending from the radially inner side to the outer side (a radially extending part 236b and a radial protruding part 302) and a part extending in the circumferential direction (inner diameter side).
  • a portion 236a and a circumferential protrusion 303 that is, by providing the radial welded portion and the circumferential welded portion, the weld length can be increased in the right-angle direction compared to the case where the welded portion is provided only in one of the radial direction or the circumferential direction. Can be improved.
  • the recess 32 and the protrusion 30 are divided into a portion extending from the radially inner side to the outer side (the radial recess 32a and the radial protrusion 302) and a portion extending in the circumferential direction (circumferential direction).
  • Concave portion 32b and circumferential protrusion 303 that is, by providing the radial welded portion and the circumferential welded portion, the weld length can be increased in the right-angle direction compared to the case where the welded portion is provided only in one of the radial direction or the circumferential direction. Can be improved.
  • the wall portion 237 is provided with the inclined portion 239 that is inclined so that the opening area increases from the bottom portion 238 toward the opening edge side. If the opening area is constant from the bottom to the opening edge, the strength of the wall cannot be secured if the opening area is increased. On the other hand, if the opening area is reduced, the volume of the recess necessary for accommodating the burr cannot be secured. Therefore, by providing the inclined portion 239 that increases the opening area from the bottom portion 238 toward the opening edge side, both the strength of the wall portion 237 and the volume of the concave portion 236 can be ensured.
  • the wall portion 33 has an inclined portion 35 that is inclined so that the opening area increases from the bottom portion 34 toward the opening edge side. As a result, both the strength of the wall 33 and the volume of the recess 32 can be ensured.
  • the protrusion 30 of the welding plate 29 includes a proportional fusion portion 30b formed so that a cross-sectional area in a direction perpendicular to the x axis is constant in a predetermined range in the x axis direction before melting.
  • the melt volume increases in a quadratic curve with respect to the melt length in the x-axis direction. That is, since the amount of burrs increases with a quadratic curve with respect to the melt length, it becomes difficult to manage the amount of burrs.
  • the melt volume increases in proportion to the melt length in the x-axis direction, so that the amount of burrs can be suppressed and the amount of burrs generated can be managed. It becomes easy.
  • the smaller the amount of burrs generated the smaller the volume of the recess 236 (or recess 32) required to accommodate the burrs, so the strength of the wall 237 (or wall 33) can be easily secured. [Uniform welding strength and suppression of welding defects]
  • the entire protrusion has a conical or pyramidal shape, the cross-sectional area of the protrusion at the joint position changes according to the joint position with the bottom in the x-axis direction.
  • the protrusion 30 of the first embodiment has a proportional melting portion 30b formed so that the cross-sectional area in the direction perpendicular to the x axis is constant in a predetermined range in the x axis direction before melting. Therefore, even if the joining position in the x-axis direction with the bottom 238 (or the bottom 34) changes, the cross-sectional area of the joining position is constant. Therefore, even if the joining position in the x-axis direction with the bottom portion 238 (or the bottom portion 34) is different for each protrusion 30, the welding strength can be made uniform.
  • the proportional melting portion 30b has x Since the cross-sectional area of the predetermined range in the axial direction is constant, it is possible to suppress the heat of fusion from moving to the welding plate 29 side.
  • the poor welding causes the welding plate 29 to float with respect to the yoke holder 23 (or the magnetism collecting ring holder 26).
  • the proportional melted portion 30b is provided on the protrusion 30, so that the welding plate 29 floats. Can be suppressed.
  • the pinion shaft 4 and the steering shaft 2 that are provided to be rotatable relative to each other about the rotation axis O, and the multi-pole that is provided on the pinion shaft 4 and in which N poles and S poles are alternately arranged around the rotation axis O
  • a Hall IC sensor 27 that detects a relative rotation angle of the pinion shaft 4 and the steering shaft 2 by detecting a change in the magnetic field within 21 and 22. Therefore, internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of yokes 21 and 22, so that distortion of the pair of yokes 21 and 22 can be suppressed and the detection accuracy of the torque sensor 13 can be improved.
  • the burr generated when the yoke holder 23 and the welding plate 29 are fixed to each other is housed in the recess 236 surrounded by the wall portion 237, so that the burr can be prevented from falling off from the yoke assembly.
  • the distance between the bottom portion 238 and the welding plate 29 is such that the protrusion 30 or a part of the bottom portion 238 that melted when the yoke holder 23 and the welding plate 29 are fixed is grown as a burr. Is provided in contact with the welding plate 29. Therefore, since the burr is sandwiched between the bottom portion 238 and the welding plate 29, it is possible to suppress the burr flapping (moving) in the recess 236.
  • the yoke holder 23 and the welding plate 29 are formed in an annular shape or an arc shape so as to surround the rotating shaft O, and when the radial direction of the rotating shaft O is the radial direction and the direction around the rotating shaft is the circumferential direction,
  • the recessed portion 236 and the protruding portion 30 are a portion extending from the radially inner side toward the outer side (the radially extending portion 236b and the radially protruding portion 302) and a portion extending in the circumferential direction (the inner diameter side portion 236a and the circumferential protruding portion 303). And).
  • the melt length can be increased in the perpendicular direction, so that the weld strength can be improved.
  • the circumferentially extending portion of the recess 236 is formed such that the radial width is smaller than half of the width from the inner peripheral edge to the outer peripheral edge of the mounting surface 231c of the yoke holder 23. Therefore, flapping of the burrs in the recess 236 can be suppressed by not increasing the radial width of the recess 236 more than necessary.
  • the wall portion 237 has an inclined portion 239 that is inclined so that the opening area increases from the bottom portion 238 toward the opening edge side.
  • the bottom 238 is formed in a flat shape, and when the direction perpendicular to the plane of the bottom 238 is a reference axis, the protrusion 30 is formed so as to protrude along the reference axis, and is in a state before melting.
  • the cross-sectional area in the direction perpendicular to the reference axis is substantially constant in a predetermined range in the reference axis direction. Therefore, the amount of burrs generated can be suppressed, and the amount of burrs generated can be easily managed. Further, it is possible to make the welding strength uniform and to suppress poor welding.
  • a steering shaft 2 that rotates as the steering wheel 1 rotates, and a pinion shaft 4 that is connected to the steering shaft 2 via the torsion bar 3 are provided, and the steering operation of the steering wheel 1 is performed on the steered wheels 8 and 8.
  • Is provided on the pinion shaft 4 and the N and S poles are alternately arranged around the rotation axis O.
  • the steering mechanism 9 for transmitting to the steering wheel 9 and the gear box housing 17 for rotatably holding the steering shaft 2 and the pinion shaft 4 are provided.
  • the yoke holder 23 and the welding plate 29 are connected to each other in a state where the yoke holder 23 and the welding plate 29 sandwich the pair of yokes 21 and 22.
  • it is provided on the side facing the welding plate 29 of the yoke holder 23 and a holding member for holding the pair of yokes 21 and 22 so that the pair of yokes 21 and 22 and the steering shaft 2 do not come into contact with each other.
  • the Hall IC sensor 27 detects the relative rotation angle of the pinion shaft 4 and the steering shaft 2 by detecting the change of the magnetic field in the pair of yokes 21 and 22 that changes due to the relative rotation of the steering shaft 22, and the steering assist
  • a command signal to the electric motor 10 is calculated based on torque generated between the steering motor 2 and the pinion shaft 4 obtained from the output signal of the Hall IC sensor 27 and the electric motor 10 that applies force, and the electric motor 10 is commanded A motor control circuit 15 for outputting a signal. Therefore, internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of yokes 21 and 22, so that distortion of the pair of yokes 21 and 22 can be suppressed and the detection accuracy of the torque sensor 13 can be improved. Further, the burr generated when the yoke holder 23 and the welding plate 29 are fixed to each other is housed in the recess 236 surrounded by the wall portion 237, so that the burr can be prevented from falling off from the yoke assembly.
  • the pair of yokes 21 and 22 are first annularly formed so as to surround the rotation axis O.
  • a first claw portion 211 that is a plurality of plate-like members provided so as to be spaced apart from each other in the circumferential direction of the first annular portion 212.
  • Each of the claw portions 211 is opposed to the multipolar magnet 20 along the rotation axis direction from the first bent portion 211a extending inward in the radial direction from the first annular portion 212 and the first bent portion 211a.
  • the first yoke 21 having the first detection portion 211b extending in the direction of the first annular portion 212 is provided on the radially inner side of the first annular portion 212 and spaced from the first annular portion 212, and is formed in an annular shape.
  • the second annular portion 222, and the second claw portion 221 that is a plurality of plate-like members provided in a plurality so as to be spaced apart from each other in the circumferential direction of the second annular portion 222,
  • Each of the second claw portions 221 includes a second bent portion 221a extending radially outward from the second annular portion 222 and a multipolar magnet along the rotational axis direction from the second bent portion 221a.
  • the second detection units 221b are arranged alternately between the first detection units 211b and the first detection unit 211b.
  • the detection unit 211b and the second detection unit 221b are composed of a second yoke 22 arranged on the same circle with the rotation axis O as the center, and the yoke holder 23 is a plane substantially perpendicular to the rotation axis O.
  • a main body portion 231 having a certain mounting surface 231c, a first through hole 232 formed so that the first detection portion 211b penetrates the mounting surface 231c, and a radially outer side continuous with the first through hole 232
  • First housing that extends toward the mounting surface, is formed in a concave shape so as to open toward the mounting surface 231c, and houses the first bent portion 211a.
  • the second detection part 221b is provided so as to extend radially inward continuously with the second through hole 234 formed so as to penetrate the mounting surface 231c, and the second through hole 234.
  • a second accommodating portion 235 that is formed in a concave shape so as to open toward the mounting surface 231c and accommodates the second bent portion 221a, and the concave portion 236 is more than the first through hole 232
  • An inner diameter side portion 236a formed on the inner side in the radial direction, and a radial extension provided so as to pass between the first through hole 232 and the second through hole 234 from the inner diameter side portion 236a toward the outer side in the radial direction.
  • an installation part 236b is an installation part 236b.
  • the apparatus can be downsized. Can be achieved.
  • the pinion shaft 4 and the steering shaft 2 provided so as to be rotatable relative to each other around the rotation axis O, and the multi-poles provided on the pinion shaft 4 and alternately arranged with N and S poles around the rotation axis O
  • the magnetic flux collecting ring holder 26 and the welding plate 29 are welded and fixed to each other with the magnetic flux collecting ring holder 26 and the welding plate 29 sandwiching the pair of magnetic flux collecting rings 24 and 25.
  • a recess 32 formed so as to open toward the rate 29 side and having a bottom 34, and provided along the opening edge of the recess 32, the distance between the welding plate 29 is a distance between the bottom 34 and the welding plate 29.
  • the wall portion 33 is formed so as to be shorter than the distance and not to contact the welding plate 29, and is provided on the welding plate 29 so as to face the concave portion 32 and project toward the concave portion 32 side, and a tip portion 30a is provided.
  • a Hall IC sensor 27 that detects the relative rotation angle of the pinion shaft 4 and the steering shaft 2 by detecting a change in the magnetic field in the pair of magnetic flux collecting rings 24 and 25 that changes due to the relative rotation of the magnetic rings 24 and 25.
  • the burr generated when the magnetism collecting ring holder 26 and the welding plate 29 are fixed to each other is housed in the recess 32 surrounded by the wall 33, and the burr can be prevented from falling off the magnetism collecting ring assembly. .
  • the distance between the bottom 34 and the welding plate 29 is such that the protrusion 30 or a part of the bottom 34 that has melted when the magnetism collecting ring holder 26 and the welding plate 29 are fixed is grown as a burr.
  • the burr is provided so as to come into contact with the welding plate 29. Therefore, since the burr is sandwiched between the bottom 34 and the welding plate 29, it is possible to suppress the burr flapping (moving) in the recess 32.
  • the magnetism collecting ring holder 26 and the welding plate 29 are formed in an annular shape or an arc shape so as to surround the rotating shaft O, and the radial direction of the rotating shaft O is the radial direction, and the direction around the rotating shaft is the circumferential direction.
  • the recess 32 and the protrusion 30 are divided into a portion extending from the radially inner side to the outer side (the radial recess 32a and the radial protrusion 302) and a portion extending in the circumferential direction (the circumferential recess 32b and the circumferential protrusion). 303). Therefore, compared to the case where the welded portion is provided only in one of the radial direction and the circumferential direction, the melt length can be increased in the perpendicular direction, so that the weld strength can be improved.
  • the circumferentially extending portion of the recess 32 is formed such that the radial width is smaller than half of the width to the inner peripheral edge of the arc-shaped wall portion 266 of the magnetism collecting ring holder 26. Therefore, flapping of the burrs in the recesses 32 can be suppressed by not increasing the radial width of the recesses 32 more than necessary.
  • the wall portion 33 has an inclined portion 35 that is inclined so that the opening area increases from the bottom portion 34 toward the opening edge side. Therefore, it is possible to achieve both the strength of the wall 33 and the volume of the recess 32.
  • the bottom 34 is formed in a flat shape, and when the direction perpendicular to the plane of the bottom 34 is taken as the reference axis, the protrusion 30 is formed so as to protrude along the reference axis, and the state before melting
  • the cross-sectional area in the direction perpendicular to the reference axis is substantially constant in a predetermined range in the reference axis direction. Therefore, the amount of burrs generated can be suppressed, and the amount of burrs generated can be easily managed. Further, it is possible to make the welding strength uniform and to suppress poor welding.
  • a steering shaft 2 that rotates as the steering wheel 1 rotates, and a pinion shaft 4 that is connected to the steering shaft 2 via the torsion bar 3 are provided, and the steering operation of the steering wheel 1 is performed on the steered wheels 8 and 8.
  • Is provided on the pinion shaft 4 and the N and S poles are alternately arranged around the rotation axis O.
  • the steering mechanism 9 for transmitting to the steering wheel 9 and the gear box housing 17 for rotatably holding the steering shaft 2 and the pinion shaft 4 are provided.
  • the magnetism ring holder 26 is composed of a magnet ring holder 26 and a welding plate 29, and the magnetism collecting ring holder 26 is sandwiched between the magnetism collecting ring holder 26 and the welding plate 29.
  • a holding member that holds the pair of magnetism collecting rings 24 and 25 and the magnetism collecting ring holder 26 so that the pair of magnetism collecting rings 24 and 25 and the steering shaft 2 do not come into contact with each other by welding and fixing the welding plate 29 to each other.
  • the wall 33 faces the recess 32 and protrudes toward the recess 32.
  • the projection 30 is provided on the welding plate 29 and melts in a state where the tip 30a is in contact with the bottom 34, and the projection 30 for welding the magnetism collecting ring holder 26 and the welding plate 29, the pinion shaft 4 and the steering shaft 2 Relative times
  • the relative rotation angle of the pinion shaft 4 and the steering shaft 2 is detected by detecting the change in the magnetic field in the pair of magnetism collecting rings 24 and 25 that changes due to the relative rotation of the multipolar magnet 20 and the magnetism collecting rings 24 and 25 accompanying Based on the torque generated between the steering shaft 2 and the pinion shaft 4 obtained from the output signal of the Hall IC sensor 27, and the electric motor 10 for applying a steering assist force to the steering mechanism 9.
  • a motor control circuit 15 that calculates a command signal to 10 and outputs a command signal to the electric motor 10. Therefore, since internal stress due to cooling shrinkage accompanying insert molding does not occur in the pair of magnetism collecting rings 24 and 25, distortion of the pair of magnetism collecting rings 24 and 25 can be suppressed, and the detection accuracy of the torque sensor 13 can be improved. . Further, the burr generated when the magnetism collecting ring holder 26 and the welding plate 29 are fixed to each other is housed in the recess 32 surrounded by the wall 33, and the burr can be prevented from falling off the magnetism collecting ring assembly. .
  • the detection member is provided between the first annular portion 212 and the second annular portion 222 in the radial direction, and has a first magnetism collecting ring 24 formed in an arc shape around the rotation axis O;
  • a second magnetism collecting ring 25 provided between the first magnetism collecting ring 24 and the second annular portion 222 in the radial direction and formed in an arc shape around the rotation axis O;
  • 26 and the welding plate 29 are members that sandwich the first magnetism collecting ring 24 and the second magnetism collecting ring 25, and the Hall IC sensor 27 includes the first magnetism collecting ring 24 and the second magnetism collecting ring 25 in the radial direction.
  • the concrete structure of this invention is not limited to the structure shown in the Example, and is the range which does not deviate from the summary of invention. Any design changes are included in the present invention.
  • the present invention is applied to a torque sensor is shown, but the present invention can also be applied to a rotation sensor.
  • the second member is provided in the housing.
  • the number of poles of the magnetic member may be one or more for each of the N pole and the S pole.
  • the wall portion does not necessarily need to surround the entire circumference of the concave portion, and may be any wall portion that is provided in a predetermined range of the opening edge portion of the concave portion and has a burr drop-off suppressing effect.
  • any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

 検出部材の歪を抑制でき、検出精度を向上できる回転角検出装置およびパワーステアリング装置を提供する。 溶着プレートとヨークホルダとで一対のヨークを挟み込んだ状態で溶着プレートとヨークホルダとを互いに溶着固定する。

Description

回転角検出装置およびパワーステアリング装置
 本発明は、回転角検出装置およびパワーステアリング装置に関する。
 従来の回転角検出装置は、互いに相対回転する永久磁石および一対のヨークと、永久磁石と一対のヨークとの相対回転により一対のヨーク間に生じた磁束を誘導する一対の集磁リングと、集磁リング間の磁束を検出するホールICセンサとを有している。検出部材である一対のヨークおよび一対の集磁リングは、パーマロイ等の軟磁性体で形成され、インサートモールド成形により樹脂製のホルダと一体に設けられ、ホルダを介して入出力軸またはハウジングに固定されている。上記説明の技術に関係する一例は、特許文献1に記載されている。
特開2008-180518号公報
 しかしながら、上記従来技術にあっては、インサート成形に伴う冷却収縮による内部応力が検出部材の内部に発生するため、検出部材が歪むことで磁気損失によりパーマロイの磁気ヒステリシスが増大し、検出精度の低下を招くという問題があった。
  本発明の目的は、検出部材の歪を抑制でき、検出精度を向上できる回転角検出装置およびパワーステアリング装置を提供することにある。
 本発明の一実施形態の回転角検出装置では、第1保持部材と第2保持部材とで検出部材を挟み込んだ状態で第1保持部材と第2保持部材とを互いに溶着固定する。
 よって、本発明では、検出部材の歪を抑制でき、検出精度を向上できる。
実施例1の電動パワーステアリング装置の全体構成図である。 実施例1のステアリングギアボックス16の縦断面図である。 ヨークアッシーの分解斜視図である。 ヨークホルダ23の平面図である。 図3の要部拡大図である。 溶着プレート29の斜視図である。 は溶着プレート29の平面図である。 図6Aの要部拡大図である。 突起部30の断面図である。 集磁リングアッシーの分解斜視図である。 集磁リングホルダ26の平面図である。 図9の要部拡大図である。 集磁リングホルダ26と溶着プレート29とを超音波溶着したときに発生するバリの状態を示す図である。 集磁リングホルダ26と溶着プレート29とを超音波溶着したときに発生するバリの状態を示す図である。
 〔実施例1〕
  まず、構成を説明する。
  [電動パワーステアリング装置]
  図1は、実施例1の電動パワーステアリング装置の全体構成図である。
  運転者によるステアリングホイール1への操舵入力は、回転運動としてステアリングシャフト(第2部材,入力軸)2、トーションバー3、ピニオンシャフト(第1部材,出力軸)4を介して第1ピニオン5に伝達され、第1ピニオン5のピニオン歯5aと噛み合う第1ラック歯6aを有するラックバー6により直線運動に変換される。ラックバー6の直線運動は、タイロッド7,7を介して転舵輪8,8へと伝達される。ステアリングシャフト2、トーションバー3、ピニオンシャフト4、第1ピニオン5、ラックバー6およびタイロッド7,7により、ステアリングホイール1の操舵操作を転舵輪8に伝達する操舵機構9が構成される。
  一方、電動モータ10の出力は、ウォームシャフト11aとウォームホイール11bとから構成される減速機11を介して第2ピニオン12に伝達され、第2ピニオン12のピニオン歯12aと噛み合う第2ラック歯6bを介してラックバー6の直進運動に変換される。第2ピニオン12はウォームホイール11bと一体に設けられている。電動モータ10は、例えば、三相ブラシレスモータであり、モータ制御回路15からの指令信号に応じて操舵機構9に操舵アシスト力を付与する。
  ステアリングシャフト2には、ステアリングシャフト2とピニオンシャフト4の相対回転を検出するトルクセンサ(回転角検出装置)13が設けられている。
  モータ制御回路15は、トルクセンサ13の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じる操舵トルク、および車速等の走行状態に基づき、電動モータ10への指令信号を演算し、当該指令信号を電動モータ10へ出力する。
 図2は、ステアリングギアボックス16の縦断面図である。
  ステアリングギアボックス16は、ギアボックスハウジング(ハウジング)17を備えている。ステアリングシャフト2およびピニオンシャフト4は、ギアボックスハウジング17に対し、同一の回転軸0を中心に回転する。以下、回転軸Oの方向にx軸をとり、ピニオンシャフト4に対してステアリングシャフト2側を正方向とする。ギアボックスハウジング17は、回転軸方向を長手方向として配置されるシャフト収容部17aと、このシャフト収容部17aから車両後方側へ延出されたガイド収容部17bと、シャフト収容部17aに対して直交して設けられかつ略車両幅方向を長手方向として配置されるラック収容部(図示省略)とを有する。なお、シャフト収容部17a、ガイド収容部17bおよびラック収容部は、いずれも円筒形状である。
  シャフト収容部17aには、ステアリングシャフト2およびトーションバー3の一部、ピニオンシャフト4およびトルクセンサ13が収容されている。トーションバー3は、ステアリングシャフト2のx軸負方向端に設けられた中空部2aに相対回転不能に挿通されている。トーションバー3のx軸負方向端は、ピニオンシャフト4とスプライン嵌合されている。ステアリングシャフト2はベアリング18aによりギアボックスハウジング17に対し回転可能に支持されている。ピニオンシャフト4のx軸方向両端は、ベアリング18b,18cによりギアボックスハウジング17に対し回転可能に支持されている。
  ラック収容部には、ラックバー6が収容されている。
  ガイド収容部17bには略円筒形状のラックガイド19aがガイド収容部17bに沿って軸方向移動可能に収容されている。さらに、ガイド収容部17bの開放側の端部にはキャップ19bが螺合されている。ラックガイド19aのラックバー側には、ラックガイド19aの磨耗防止等のためのシート19cが取り付けられている。
 [トルクセンサ]
  トルクセンサ13は、多極磁石(磁性部材)20と、一対のヨーク(検出部材)21,22と、ヨークホルダ(第1保持部材)23と、一対の集磁リング(検出部材)24,25と、集磁リングホルダ(第1保持部材)26と、ホールICセンサ(磁気センサ)27とを有する。多極磁石20、一対のヨーク21,22、ヨークホルダ23、一対の集磁リング24,25および集磁リングホルダ26は、回転軸Oと同心円上に配置されている。
  多極磁石20は、16個の極(N極,S極それぞれ同じ極数)が周方向に等間隔で交互に着磁された円筒形状の永久磁石である。多極磁石20は、磁石ホルダ28を介してピニオンシャフト4に固定されている。磁石ホルダ28は、大径部28aと小径部28bとを有する円筒形状に形成されている。大径部28aはピニオンシャフト4のx軸正方向端の外周に固定されている。小径部28bは大径部28aのx軸正方向側に位置し、多極磁石20の内周が固定されている。
  一対のヨーク21,22は、パーマロイ(軟質磁性合金)で形成され、図3に示すように、8個の爪部211,221と円環部212,222とを有する。爪部211,221は、多極磁石20の外周を取り囲むように、同一円周上に所定の隙間を持って交互に配置され、多極磁石20と所定の径方向隙間を有して対向する。円環部212,222は、爪部211,221のx軸正方向側に位置し、互いに所定の径方向隙間を有して対向する。なお、一対のヨーク21,22は、ステアリングシャフト2およびピニオンシャフト4にトルクが加えられていない操舵中立状態において、爪部211,221の先端が、多極磁石20のN極およびS極の境界を指すように配置される。
  ヨークホルダ23は、熱可塑性樹脂で略凸字形状に形成され、一対のヨーク21,22を保持する。ヨークホルダ23は、ステアリングシャフト2に固定されている。
  一対の集磁リング24,25は、パーマロイでC字形状に形成され、互いに所定の径方向エアギャップを有して、ヨーク21,22の円環部212,222の径方向隙間の中間位置に、両ヨーク21,22と非接触状態で配置されている。
  集磁リングホルダ26は、熱可塑性樹脂で筒状に形成され、一対の集磁リング24,25を保持する。集磁リングホルダ26は、ギアボックスハウジング17に固定されている。
  ホールICセンサ27は、ホール素子27aと回路基板27bとを有し、一対の集磁リング24,25の径方向エアギャップに生じる磁束の密度を検出する。ホール素子27aは、一対の集磁リング24,25の径方向エアギャップの中間位置に、両集磁リング24,25と非接触状態で配置されている。回路基板27bは、集磁リングホルダ26のx軸正方向側でホール素子27aと接続されている。車両のバッテリからの電力は、回路基板27bを介してホール素子27aに供給され、ホール素子27aの出力は、回路基板27bを介してモータ制御回路15に出力される。
 以下、トルクセンサ13を構成する各部の構造を詳細に説明する。
  [ヨークアッシー]
  図3はヨークアッシーの分解斜視図、図4はヨークホルダ23の平面図、図5は図3の要部拡大図である。
  ヨークアッシーは、一対のヨーク21,22とヨークホルダ23と溶着プレート(第2保持部材)29を備える。溶着プレート29とヨークホルダ23とから保持部材が構成される。
  第1ヨーク(第1ヨーク部材)21は、8個の第1の爪部211と第1の円環部212とを有する。第1の爪部211は板状部材であり、先端は先細り形状に形成されている。第1の円環部212は、回転軸Oを包囲するように円環状に形成されている。各第1の爪部211は、第1の円環部212から径方向内側方向に延びる第1の屈曲部211aと、第1の屈曲部211aからx軸方向に沿って多極磁石20と対向するように延びる第1の検出部211bとを有する。各第1の屈曲部211aは、回転軸Oに対して直角となるように配置されている。各第1の検出部211bは、回転軸Oの放射方向に対して直角となるように配置されている。
  第2ヨーク(第2ヨーク部材)22は、8個の第2の爪部221と第2の円環部222とを有する。第2の爪部221は板状部材であり、先端は先細り形状に形成されている。第2の爪部221は第1の爪部211と同じx軸方向長さを有する。第2の円環部222は、回転軸Oを包囲するように円環状に形成されている。第2の円環部222は、第1の円環部212よりも小径に設定されている。各第2の爪部221は、第2の円環部222から径方向外側方向に延びる第2の屈曲部221aと、第2の屈曲部221aからx軸方向に沿って多極磁石20と対向するように延びる第2の検出部221bとを有する。各第2の屈曲部221aは、回転軸Oに対して直角となるように配置されている。各第2の検出部221bは、回転軸Oの放射方向に対して直角、かつ、隣接する第1の検出部211b,211b間の交互に並ぶように配置されている。
 ヨークホルダ23は、本体部231と第1の貫通孔232と第1の収容部233と第2の貫通孔234と第2の収容部235とを有する。本体部231は、小径部231aと大径部231bと搭載面231cとを有する。小径部213aは、ステアリングシャフト2の外径と略一致する内径を有し、ステアリングシャフト2の外周に固定される。大径部231bは、小径部231aよりも大径に設定され、内部に第1ヨーク21および第2ヨーク22の爪部211,221が収容される。搭載面231cは、回転軸Oと略垂直に設けられ、小径部231aと大径部231bとを接続する。搭載面231cには、第1ヨーク21の第1の円環部212と第2ヨーク22の第2の円環部222が載置される。第1の貫通孔232は、第1の検出部211bが搭載面231cを貫通するように形成されている。第1の収容部233は、第1の貫通孔232と連続して径方向外側に向かって延びるように設けられ、搭載面231c側に向かって開口するように凹状に形成され、第1の屈曲部211aを収容する。第2の貫通孔234は、第2の検出部221bが搭載面231cを貫通するように形成されている。第2の収容部235は、第2の貫通孔234と連続して径方向内側に延びるように設けられ、搭載面231c側に向かって開口するように凹状に形成され、第2の屈曲部221aを収容する。
 搭載面231cには、凹部236と壁部237とが設けられている。凹部236は、周方向に等間隔で8個設けられている。凹部236は、内径側部分236aと径方向延設部236bとから構成されている。内径側部分236aは、第1の貫通孔232よりも径方向内側に形成され、周方向に延在されている。内径側部分236aの径方向の幅は、搭載面231cの内周縁から外周縁までの幅の半分よりも小さくなるように形成されている。径方向延設部236bは、内径側部分236aの周方向両端部から径方向外側方向に向かって第1の貫通孔232と第2の貫通孔234との間を通るように設けられている。凹部236は、溶着プレート29と溶着される底部238を有し、溶着プレート29側(x軸正方向側)に向かって開口するように形成されている。底部238は、x軸方向と直交する平面状に形成されている。
  壁部237は、凹部236の開口縁に沿って開口縁全周を包囲するように設けられ、溶着プレート29とのx軸方向距離が底部238と溶着プレート29との間のx軸方向距離よりも短く、かつ、ヨークホルダ23と溶着プレート29とを溶着固定したとき、溶着プレート29と当接しないように形成されている。壁部237は、底部238から開口縁側に向かって凹部236の開口面積が増大するように傾斜する傾斜部239を有する。
 図6Aは溶着プレート29の斜視図、図6Bは溶着プレート29の平面図、図7は図6Aの要部拡大図である。
  溶着プレート29は、一対のヨーク21,22の屈曲部211a,221aと当接することにより、一対のヨーク21,22をヨークホルダ23と溶着プレート29との間に保持する。溶着プレート29は、回転軸Oと同心円上に配置されている。溶着プレート29は、熱可塑性樹脂でヨークホルダ23の小径部231aよりも大きな内周径を有し、大径部231bよりも小さな外周径を有する円環形状に形成されている。溶着プレート29の外周縁には、4個の切り欠き29aが形成されている。切り欠き29aは、回転軸Oを通る所定の直線上にy軸を規定したとき、y軸対称に左右2個ずつ配置されている。y軸の左右一方側に位置する2つの切り欠き29a,29a間の角度は45°である。y軸の左右他方側も同様である。溶着プレート29のx軸正方向側の面は平坦に形成され、x軸負方向側の面には、周方向に等間隔で8個の突起部30が設けられている。
  突起部30は、先端が底部238と当接した状態で溶融することによりヨークホルダ23と溶着プレート29とを溶着させる。突起部30は、凹部236と対向し、底部238に対して直角な方向、すなわちx軸方向に向かって突出するように形成されている。突起部30は、径方向内側から外側に向かって延びる径方向突起部302と、周方向に延びる周方向突起部303とから形成されている。8個の突起部30のうちy軸に近い4個の突起部30は、2つの径方向突起部302と1つの周方向突起部303とから平面視コ字状に形成されている。y軸から遠い4個の突起部30は、1つの径方向突起部302と1つの周方向突起部303とから平面視く字状に形成されている。
 図8は、突起部30の断面図であり、突起部30は、先端部30aと比例溶融部30bとを有する。先端部30aは、先鋭な略円錐状に形成されている。比例溶融部30bは、先端部30aよりもx軸正方向側に位置し、溶融前の状態においてx軸に対し直角方向の断面積が、x軸方向の所定範囲において一定となるように形成されている。
  溶着プレート29のx軸負方向側の面において、y軸上には、2つの係合突起31が設けられている。係合突起31は、ヨークホルダ23と溶着プレート29とを溶着固定する際、第2の貫通孔234と係合し、ヨークホルダ23に対する溶着プレート29の周方向移動を規制する。
  ヨークホルダ23の底部238と溶着プレート29との間のx軸方向距離は、ヨークホルダ23と溶着プレート29との溶着固定時に溶融した突起部30または底部238の一部がバリとして成長したとき、このバリが溶着プレート29と当接するように設定されている。
  図4に、底部238と突起部30との溶着部分を太実線で示す。
  ヨークアッシーは、ヨークホルダ23に一対のヨーク21,22を装着後、溶着プレート29を被せ、ヨークホルダ23と溶着プレート29を超音波溶着することで得られる。超音波溶着とは、熱可塑性樹脂を微細な超音波振動と加圧力とによって瞬時に溶融し、接合する加工技術である。ヨークホルダ23に対する一対のヨーク21,22および溶着プレート29の組み付けは、全て一方向から行うことができるため、組み付け作業性の点で有利である。
 [集磁リングアッシー]
  図9は集磁リングアッシーの分解斜視図、図10は集磁リングホルダ26の平面図、図11は図9の要部拡大図である。
  集磁リングアッシーは、一対の集磁リング24,25と集磁リングホルダ26と溶着プレート(第1保持部材)29を備える。溶着プレート29と集磁リングホルダ26とから保持部材が構成される。
  第1集磁リング(第1の検出部材)24は、回転軸Oを包囲するように形成され、回転軸Oを中心とした仮想円に沿うように形成され互いに対向する一対の円弧状部241,241と、一対の円弧状部241,241を接続する集磁部242とを有する。一対の円弧状部241,241の仮想円は、第2ヨーク22の第2の円環部222よりも大径、かつ、第1ヨーク21の第1の円環部212よりも小径に設定されている。集磁部242は、回転軸Oに対して直角に形成されている。
  第2集磁リング(第2の検出部材)25は、回転軸Oを包囲するように形成され、回転軸Oを中心とした仮想円に沿うように形成され互いに対向する一対の円弧状部251,251と、一対の円弧状部251,251を接続する集磁部252とを有する。一対の円弧状部251,251の仮想円は、第1集磁リング24の仮想円よりも小径、かつ、第2ヨーク22の第2の円環部222よりも大径に設定されている。集磁部252は、径方向外側に向かって凸状、かつ、回転軸Oに対して直角に形成されている。
 集磁リングホルダ26は、中心に開口部261cを有する円環部261と、円環部261の外周縁からx軸負方向側への延びる外周部262と、円環部261の径方向外側に設けられ、x軸方向に延びる2個の円柱部263とを有する。
  円環部261の開口部261cは、ヨークホルダ23の外径よりも大径に設定されている。円環部261のx軸負方向側面261aには、第1集磁リング24のx軸正方向端部を収容する第1係合溝264と、第2集磁リング25のx軸正方向端部を収容する第2係合溝265が形成されている。第1係合溝264と第2係合溝265との間には、第1集磁リング24の集磁部243および第2集磁リング25の集磁部253と対応する部分が切り欠かれた平面視C字形状の円弧状壁部266が設けられている。第1係合溝264および第2係合溝265に第1集磁リング24および第2集磁リング25を装着したとき、第1集磁リング24の円弧状部241,241は円弧状壁部266の外周面と当接し、第2集磁リング25の円弧状部251,251は円弧状壁部266の内周面と当接する。また、第2集磁リング25の集磁部252は円弧状壁部266の切り欠き部分の端面266bと当接する。一対の集磁リング24,25の集磁部242,252は、円弧状壁部266の切り欠き部分で対面する。円弧状壁部266のx軸負方向面266aには、回転軸Oに対して直角に設けられ、溶着プレート29を溶着したとき、溶着プレート29の係合突起31と係合する係合溝267が形成されている。第1係合溝264および第2係合溝265から円弧状壁部266のx軸負方向面266aまでのx軸方向長さは、第1集磁リング24および第2集磁リング25のx軸方向長さよりも短く設定されている。
 円弧状壁部266のx軸負方向面266aには、凹部32と壁部33とが設けられている。凹部32は、周方向に等間隔で8個設けられている。凹部236は、径方向内側から外側に向かって延びる径方向凹部32aと、周方向に延びる周方向凹部32bとから形成されている。8個の凹部32のうち円弧状壁部266の切り欠き部分の端面266bに近い2つの凹部32は、1つの径方向凹部32aと1つの周方向凹部32bとから構成されている。残り6つの凹部32は、2つの径方向凹部32aと1つの周方向凹部32bとから構成されている。周方向凹部32bの径方向の幅は、円弧状壁部266の内周縁から外周縁までの幅の半分よりも小さくなるように形成されている。凹部32は、溶着プレート29と溶着される底部34を有し、溶着プレート29側(x軸負方向側)に向かって開口するように形成されている。底部34は、x軸方向と直交する平面状に形成されている。
  壁部33は、凹部32の開口縁に沿って開口縁の全周を包囲するように設けられ、溶着プレート29とのx軸方向距離が底部34と溶着プレート29との間のx軸方向距離よりも短く、かつ、集磁リングホルダ26と溶着プレート29とを溶着固定したとき、溶着プレート29と当接しないように形成されている。壁部33は、底部34から開口縁側に向かって凹部32の開口面積が増大するように傾斜する傾斜部35を有する。
 円環部261のx軸正方向面には、ホールICセンサ27の回路基板27bを支持する円柱部268が設けられている。円柱部268には、回路基板27bをボルト固定するためのネジ穴268aが形成されている。
  円環部261において、一対の集磁部242,252との間の径方向エアギャップと対応する軸方向位置には、ホールICセンサ27が貫通する開口部261eが形成されている。ホールICセンサ27のセンサ部は、径方向エアギャップの中間位置に配置されている。
  外周部262のx軸負方向側端部は、ギアボックスハウジング17のシャフト収容部17a(図2参照)の側壁に嵌挿可能な外径を有する。
  円柱部263は、集磁リングホルダ26をギアボックスハウジング17にボルト固定するためのネジ穴263aが形成されている。
  溶着プレート29は、ヨークアッシーのものと同じである。集磁リングホルダ26の底部34と溶着プレート29との間のx軸方向距離は、集磁リングホルダ26と溶着プレート29との溶着固定時に溶融した突起部30または底部34の一部がバリとして成長したとき、このバリが溶着プレート29と当接するように設定されている。
  図10に、底部34と突起部30との溶着部分を太実線で示す。
  集磁リングアッシーは、集磁リングホルダ26に一対の集磁リング24,25を装着後、溶着プレート29を被せ、集磁リングホルダ26と溶着プレート29を超音波溶着することで得られる。集磁リングホルダ26に対する一対の集磁リング24,25および溶着プレート29の組み付けは、全て一方向から行うことができるため、組み付け作業性の点で有利である。また、溶着プレート29はヨークアッシーと同じものを用いるため、部品点数の増加を抑制でき、コスト低減に寄与できる。
 次に、実施例1のトルクセンサ13の動作を説明する。
  トルクの入力が無い状態では、爪部211,221の円周方向中心が多極磁石20の極の境界上に位置し、爪部211,221から見た多極磁石20のN極、S極に対するパーミアンスが等しいので、多極磁石20のN極から発生した磁束は、爪部211,221に入り、そのまま多極磁石20のS極へ入る。よって、一対の集磁リング24,25間には磁束が流れないため、ホールICセンサ27は中間電圧を出力する。
  運転者がステアリングホイール1を回転させると、トーションバー3に捻れが生じ、ステアリングシャフト2とピニオンシャフト4とに相対角度変位が発生する。この相対角度変位は、爪部211,221と多極磁石20との間の相対角度変位として現れる。爪部211,221と多極磁石20との間に相対角度変位が生じると、パーミアンスのバランスが崩れ、ホールICセンサ27を含む磁気回路、すなわち、多極磁石20のN極から発生した磁束が爪部211,221のうちN極と対向する面積が広い方の爪部に流れ、一対の集磁リング24,25を経由してS極と対向する面積が広い方の爪部から多極磁石20のS極へと戻る磁気回路に磁束が流れる。このとき、一対の集磁リング24,25間に流れる磁束をホールICセンサ27で検出することで、相対角度変位を測定でき、トーションバー3に作用するトルクを検出できる。
 次に、実施例1の作用効果を説明する。
  [検出精度向上]
  回転角検出装置において、検出部材をインサート成形により保持部材に保持させる場合、保持部材の冷却収縮により検出部材内に内部応力が発生し、検出精度が低下するおそれがある。
  これに対し、実施例1のヨークアッシーでは、溶着プレート29とヨークホルダ23とで一対のヨーク21,22をx軸方向に挟み込んだ状態で溶着プレート29とヨークホルダ23とを互いに溶着固定する。よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しない。これにより、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。また、2個のヨーク21,22を一対の保持部材(溶着プレート29,ヨークホルダ23)で保持できるため、ヨーク毎に溶着プレートを必要とせず、部品点数を削減できる。さらに、トルク検出精度を高めたことで、電動パワーステアリング装置による操舵アシスト力の制御精度を向上できる。
  実施例1の集磁リングアッシーでは、溶着プレート29と集磁リングホルダ26とで一対の集磁リング24,25をx軸方向に挟み込んだ状態で溶着プレート29と集磁リングホルダ26とを互いに溶着固定する。よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しない。これにより、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。また、2個の集磁リング24,25を一対の保持部材(溶着プレート29,集磁リングホルダ26)で保持できるため、集磁リング毎に溶着プレートを必要とせず、部品点数を削減できる。さらに、トルク検出精度を高めたことで、電動パワーステアリング装置による操舵アシスト力の制御精度を向上できる。
 [バリの脱落抑制]
  ヨークホルダ23と溶着プレート29との溶着固定時、突起部30または底部238が溶融してバリが発生する。このバリが脱落すると、異物混入等の不具合が生じるおそれがある。そこで、実施例1のヨークアッシーでは、溶着プレート29の突起部30と溶着される凹部236と、凹部236の開口縁全周を包囲し、溶着プレート29との距離が底部238よりも短い壁部237を設けた。これにより、ヨークホルダ23と溶着プレート29との溶着固定時に発生したバリは、壁部237に囲まれた凹部236内に収容されることとなり、ヨークアッシーからのバリの脱落を抑制できる。
  また、実施例1の集磁リングアッシーでは、溶着プレート29の突起部30と溶着される凹部32と、凹部32の開口縁全周を包囲し、溶着プレート29との距離が底部34よりも短い壁部33を設けた。これにより、集磁リングホルダ26と溶着プレート29との溶着固定時に発生したバリは、壁部33に囲まれた凹部32内に収容されることとなり、集磁リングアッシーからのバリの脱落を抑制できる。
 [バリのばたつき抑制]
  図12Aおよび図12Bは、集磁リングホルダ26と溶着プレート29とを超音波溶着したときに発生するバリの状態を示す図である。図12Aのように突起部30を底部34に突き当てた状態から振動エネルギーによって集磁リングホルダ26と溶着プレート29とを摩擦振動させて摩擦熱を発生させつつ、溶着プレート29を集磁リングホルダ26側に押圧すると、突起部30または底部34の一部がバリとして成長する。ここで、実施例1の集磁リングアッシーでは、溶着プレート29と底部34との距離を、成長したバリが溶着プレート29と当接するように設定した。これにより、図12Bに示すように、成長したバリは底部34と溶着プレート29との間に挟まれた状態となるため、凹部32内でバリがばたつくことを抑制できる。
  また、凹部32の周方向凹部32bの径方向の幅を、円弧状壁部266の内周縁から外周縁までの幅の半分よりも小さくなるように形成した。すなわち、凹部32の径方向幅を必要以上に大きくしないことにより、凹部32内でバリがばたつくことを抑制できる。
  実施例1のヨークアッシーでは、溶着プレート29と底部238との距離を、ヨークホルダ23と溶着プレート29との溶着固定時に溶融した突起部30または底部238の一部がバリとして成長したとき、このバリが溶着プレート29と当接するように設定した。これにより、バリが底部238と溶着プレート29との間で挟まれるため、凹部236内でバリがばたつく(移動する)ことを抑制できる。
  また、凹部236の内径側部分236aの径方向の幅を、搭載面231cの内周縁から外周縁までの幅の半分よりも小さくなるように形成した。すなわち、凹部236の径方向幅を必要以上に大きくしないことにより、凹部236内でバリがばたつくことを抑制できる。
 [溶着強度向上]
  実施例1のヨークアッシーでは、凹部236および突起部30を、径方向内側から外側に向かって延びる部分(径方向延設部236b,径方向突起部302)と、周方向に延びる部分(内径側部分236a,周方向突起部303)とから構成した。すなわち、径方向溶着部分と周方向溶着部分とを設けることにより、径方向または周方向の一方にのみ溶着部分を設けた場合と比較して、溶融長さを直角方向に長くできるため、溶着強度の向上を図ることができる。
  実施例1の集磁リングアッシーでは、凹部32および突起部30を、径方向内側から外側に向かって延びる部分(径方向凹部32a,径方向突起部302)と、周方向に延びる部分(周方向凹部32b,周方向突起部303)とから構成した。すなわち、径方向溶着部分と周方向溶着部分とを設けることにより、径方向または周方向の一方にのみ溶着部分を設けた場合と比較して、溶融長さを直角方向に長くできるため、溶着強度の向上を図ることができる。
  [強度確保と容積確保の両立]
  実施例1のヨークアッシーでは、壁部237に、底部238から開口縁側に向かって開口面積が増大するように傾斜する傾斜部239を設けた。仮に底部から開口縁まで一定の開口面積である場合、開口面積を大きくすると壁部の強度を確保できない。一方、開口面積を小さくするとバリを収容するために必要な凹部の容積を確保できない。よって、底部238から開口縁側に向かって開口面積を増大させる傾斜部239を設けることにより、壁部237の強度確保と凹部236の容積確保との両立を図ることができる。
  実施例1の集磁リングアッシーでは、壁部33は、底部34から開口縁側に向かって開口面積が増大するように傾斜する傾斜部35を有する。これにより、壁部33の強度確保と凹部32の容積確保との両立を図ることができる。
 [バリの発生量の抑制および管理の容易化]
  実施例1において、溶着プレート29の突起部30は、溶融前の状態においてx軸に対し直角方向の断面積が、x軸方向の所定範囲において一定となるように形成された比例溶融部30bを有する。仮に突起部全体が円錐や角錐形状等の先端から根元側に向かって徐々に拡径した形状である場合、x軸方向の溶融長さに対して溶融体積は2次曲線的に増大する。つまり、溶融長さに対してバリの発生量が2次曲線的に増大するため、バリの発生量管理が困難となる。これに対し、実施例1の比例溶融部30bでは、x軸方向の溶融長さに対して溶融体積が比例的に増大するため、バリの発生量を抑制できると共に、バリの発生量の管理が容易となる。バリの発生量が少ないほど、バリを収容するために必要な凹部236(または凹部32)の容積を小さくできるため、壁部237(または壁部33)の強度確保が容易となる。
  [溶着強度の均一化と溶着不良の抑制]
  突起部全体が円錐または角錐形状である場合、底部とのx軸方向の接合位置に応じて、当該接合位置における突起部の断面積は変化する。このため、底部とのx軸方向の接合位置が突起部毎で異なると、溶着強度にばらつきが生じる。これに対し、実施例1の突起部30は、溶融前の状態においてx軸に対し直角方向の断面積が、x軸方向の所定範囲において一定となるように形成された比例溶融部30bを有するため、底部238(または底部34)とのx軸方向の接合位置が変化しても、当該接合位置の断面積は一定である。よって、底部238(または底部34)とのx軸方向の接合位置が突起部30毎で異なる場合であっても、溶着強度を均一化できる。
  また、突起部全体が円錐または角錐形状である場合には、突起部の先端部と底部との摩擦部分で発生した溶融熱が溶着プレート側に逃げやすくなるのに対し、比例溶融部30bはx軸方向における所定範囲の断面積が一定であるため、溶融熱が溶着プレート29側に移動するのを抑制できる。溶着不良は、ヨークホルダ23(または集磁リングホルダ26)に対する溶着プレート29の浮きの原因となるが、実施例1では、突起部30に比例溶融部30bを設けたことにより、溶着プレート29の浮きを抑制できる。
 次に、実施例1のヨークアッシーの構成とこれに対応する効果とを列挙する。
  (1) 回転軸Oを中心に互いに相対回転可能設けられたピニオンシャフト4およびステアリングシャフト2と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対のヨーク21,22と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成されたヨークホルダ23と溶着プレート29とから構成され、ヨークホルダ23と溶着プレート29とで一対のヨーク21,22を挟み込んだ状態でヨークホルダ23と溶着プレート29とが互いに溶着固定されることにより一対のヨーク21,22とステアリングシャフト2とが接触しないように一対のヨーク21,22を保持する保持部材と、ヨークホルダ23の溶着プレート29と対向する側に設けられ、溶着プレート29側に向かって開口するように形成され底部238を有する凹部236と、凹部236の開口縁に沿って設けられ、溶着プレート29との間の距離が底部238と溶着プレート29との間の距離よりも短くかつ溶着プレート29と当接しないように形成された壁部237と、凹部236と対向し、かつ凹部236側に向かって突出するように溶着プレート29に設けられ、先端部30aが底部238と当接した状態で溶融することによりヨークホルダ23と溶着プレート29とを溶着させる突起部30と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と一対のヨーク21,22の相対回転により変化する一対のヨーク21,22内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転角を検出するホールICセンサ27と、を有する。
  よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
  また、ヨークホルダ23と溶着プレート29との溶着固定時に発生したバリは、壁部237に囲まれた凹部236内に収容されることとなり、ヨークアッシーからのバリの脱落を抑制できる。
 (2) 溶着プレート29は、底部238と溶着プレート29との間の距離が、ヨークホルダ23と溶着プレート29との溶着固定時に溶融した突起部30または底部238の一部がバリとして成長し、バリが溶着プレート29と当接するように設けられる。
  よって、バリが底部238と溶着プレート29との間で挟まれるため、凹部236内でバリがばたつく(移動する)ことを抑制できる。
  (3) ヨークホルダ23および溶着プレート29は、回転軸Oを包囲するように円環状または円弧状に形成され、回転軸Oの放射方向を径方向、回転軸周りの方向を周方向としたとき、凹部236および突起部30は、径方向内側から外側に向かって延びる部分(径方向延設部236b,径方向突起部302)と、周方向に延びる部分(内径側部分236a,周方向突起部303)と、を有する。
  よって、径方向または周方向の一方にのみ溶着部分を設けた場合と比較して、溶融長さを直角方向に長くできるため、溶着強度の向上を図ることができる。
  (4) 凹部236の周方向に延びる部分は、径方向の幅がヨークホルダ23の搭載面231cの内周縁から外周縁までの幅の半分よりも小さくなるように形成される。
  よって、凹部236の径方向幅を必要以上に大きくしないことにより、凹部236内でバリがばたつくことを抑制できる。
  (5) 壁部237は、底部238から開口縁側に向かって開口面積が増大するように傾斜する傾斜部239を有する。
  よって、壁部237の強度確保と凹部236の容積確保との両立を図ることができる。
  (6) 底部238は平面状に形成され、底部238の平面に対し直角な方向を基準軸線としたとき、突起部30は、基準軸線方向に沿って突出するように形成され、溶融前の状態において基準軸線に対し直角方向断面積が基準軸線方向所定範囲においてほぼ一定となるように形成された比例溶融部30bを有する。
  よって、バリの発生量を抑制できると共に、バリの発生量の管理が容易となる。また、溶着強度を均一化できると共に、溶着不良を抑制できる。
 (7) ステアリングホイール1の回転に伴い回転するステアリングシャフト2と、ステアリングシャフト2とトーションバー3を介して接続されるピニオンシャフト4と、を備え、ステアリングホイール1の操舵操作を転舵輪8,8に伝達する操舵機構9と、ステアリングシャフト2およびピニオンシャフト4を回転自在に保持するギアボックスハウジング17と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対のヨーク21,22と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成されたヨークホルダ23と溶着プレート29とから構成され、ヨークホルダ23と溶着プレート29とで一対のヨーク21,22を挟み込んだ状態でヨークホルダ23と溶着プレート29とが互いに溶着固定されることにより一対のヨーク21,22とステアリングシャフト2とが接触しないように一対のヨーク21,22を保持する保持部材と、ヨークホルダ23の溶着プレート29と対向する側に設けられ、溶着プレート29側に向かって開口するように形成され底部238を有する凹部236と、凹部236の開口縁に沿って設けられ、溶着プレート29との間の距離が底部238と溶着プレート29との間の距離よりも短くかつ溶着プレート29と当接しないように形成された壁部237と、凹部236と対向し、かつ凹部236側に向かって突出するように溶着プレート29に設けられ、先端部30aが底部238と当接した状態で溶融することによりヨークホルダ23と溶着プレート29とを溶着させる突起部30と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と一対のヨーク21,22の相対回転により変化する一対のヨーク21,22内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転角を検出するホールICセンサ27と、操舵機構9に操舵アシスト力を付与する電動モータ10と、ホールICセンサ27の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じるトルクに基づき電動モータ10への指令信号を演算すると共に、電動モータ10に指令信号を出力するモータ制御回路15と、を有する。
  よって、一対のヨーク21,22には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対のヨーク21,22の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
  また、ヨークホルダ23と溶着プレート29との溶着固定時に発生したバリは、壁部237に囲まれた凹部236内に収容されることとなり、ヨークアッシーからのバリの脱落を抑制できる。
 (8) 回転軸Oの放射方向を径方向とし回転軸O周りの方向を周方向としたとき、一対のヨーク21,22は、回転軸Oを包囲するように円環状に形成された第1の円環部212と、第1の円環部212の周方向において互いに離間して並ぶように複数個設けられた複数の板状部材である第1の爪部211と、から構成され、第1の爪部211の夫々が第1の円環部212から径方向内側方向に延びる第1の屈曲部211aと第1の屈曲部211aから回転軸方向に沿って多極磁石20と対向するように延びる第1の検出部211bとを有する第1ヨーク21と、第1の円環部212の径方向内側であって第1の円環部212と離間するように設けられ、円環状に形成された第2の円環部222と、第2の円環部222の周方向において互いに離間して並ぶように複数個設けられた複数の板状部材である第2の爪部221と、から構成され、第2の爪部221の夫々が第2の円環部222から径方向外側方向に延びる第2の屈曲部221aと第2の屈曲部221aから回転軸方向に沿って多極磁石20と対向するように延びる第2の検出部221bとを有し、第2の検出部221bの夫々は第1の検出部211bの夫々の間に交互に並ぶように配置されると共に、第1の検出部211bと第2の検出部221bが回転軸Oを中心とした同一円上に配置された第2ヨーク22と、から構成され、ヨークホルダ23は、回転軸Oに対しほぼ直角な平面である搭載面231cを有する本体部231と、第1の検出部211bが搭載面231cを貫通するように形成された第1の貫通孔232と、第1の貫通孔232と連続して径方向外側に向かって延びるように設けられ、搭載面231c側に開口するように凹状に形成されると共に第1の屈曲部211aを収容する第1の収容部233と、第2の検出部221bが搭載面231cを貫通するように形成された第2の貫通孔234と、第2の貫通孔234と連続して径方向内側に向かって延びるように設けられ、搭載面231c側に向かって開口するように凹状に形成されると共に第2の屈曲部221aを収容する第2の収容部235と、を備え、凹部236は、第1の貫通孔232よりも径方向内側に形成された内径側部分236aと、内径側部分236aから径方向外側方向に向かって第1の貫通孔232と第2の貫通孔234の間を通るように設けられた径方向延設部236bと、から構成される。
  よって、互いに並ぶ第1の貫通孔232および第1の収容部233ならびに第2の貫通孔234および第2の収容部235の間の隙間を縫うように凹部236を設けることにより、装置の小型化を図ることができる。
 次に、実施例1の集磁リングアッシーの構成とこれに対応する効果とを列挙する。
  (9) 回転軸Oを中心に互いに相対回転可能設けられたピニオンシャフト4およびステアリングシャフト2と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対の集磁リング24,25と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された集磁リングホルダ26と溶着プレート29とから構成され、集磁リングホルダ26と溶着プレート29とで一対の集磁リング24,25を挟み込んだ状態で集磁リングホルダ26と溶着プレート29とが互いに溶着固定されることにより一対の集磁リング24,25とステアリングシャフト2とが接触しないように一対の集磁リング24,25を保持する保持部材と、集磁リングホルダ26の溶着プレート29と対向する側に設けられ、溶着プレート29側に向かって開口するように形成され底部34を有する凹部32と、凹部32の開口縁に沿って設けられ、溶着プレート29との間の距離が底部34と溶着プレート29との間の距離よりも短くかつ溶着プレート29と当接しないように形成された壁部33と、凹部32と対向し、かつ凹部32側に向かって突出するように溶着プレート29に設けられ、先端部30aが底部34と当接した状態で溶融することにより集磁リングホルダ26と溶着プレート29とを溶着させる突起部30と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と一対の集磁リング24,25の相対回転により変化する一対の集磁リング24,25内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転角を検出するホールICセンサ27と、を有する。
  よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
  また、集磁リングホルダ26と溶着プレート29との溶着固定時に発生したバリは、壁部33に囲まれた凹部32内に収容されることとなり、集磁リングアッシーからのバリの脱落を抑制できる。
 (10) 溶着プレート29は、底部34と溶着プレート29との間の距離が、集磁リングホルダ26と溶着プレート29との溶着固定時に溶融した突起部30または底部34の一部がバリとして成長し、バリが溶着プレート29と当接するように設けられる。
  よって、バリが底部34と溶着プレート29との間で挟まれるため、凹部32内でバリがばたつく(移動する)ことを抑制できる。
  (11) 集磁リングホルダ26および溶着プレート29は、回転軸Oを包囲するように円環状または円弧状に形成され、回転軸Oの放射方向を径方向、回転軸周りの方向を周方向としたとき、凹部32および突起部30は、径方向内側から外側に向かって延びる部分(径方向凹部32a,径方向突起部302)と、周方向に延びる部分(周方向凹部32b,周方向突起部303)と、を有する。
  よって、径方向または周方向の一方にのみ溶着部分を設けた場合と比較して、溶融長さを直角方向に長くできるため、溶着強度の向上を図ることができる。
  (12) 凹部32の周方向に延びる部分は、径方向の幅が集磁リングホルダ26の円弧状壁部266の内周縁までの幅の半分よりも小さくなるように形成される。
  よって、凹部32の径方向幅を必要以上に大きくしないことにより、凹部32内でバリがばたつくことを抑制できる。
  (13) 壁部33は、底部34から開口縁側に向かって開口面積が増大するように傾斜する傾斜部35を有する。
  よって、壁部33の強度確保と凹部32の容積確保との両立を図ることができる。
  (14) 底部34は平面状に形成され、底部34の平面に対し直角な方向を基準軸線としたとき、突起部30は、基準軸線方向に沿って突出するように形成され、溶融前の状態において基準軸線に対し直角方向断面積が基準軸線方向所定範囲においてほぼ一定となるように形成された比例溶融部30bを有する。
  よって、バリの発生量を抑制できると共に、バリの発生量の管理が容易となる。また、溶着強度を均一化できると共に、溶着不良を抑制できる。
 (15) ステアリングホイール1の回転に伴い回転するステアリングシャフト2と、ステアリングシャフト2とトーションバー3を介して接続されるピニオンシャフト4と、を備え、ステアリングホイール1の操舵操作を転舵輪8,8に伝達する操舵機構9と、ステアリングシャフト2およびピニオンシャフト4を回転自在に保持するギアボックスハウジング17と、ピニオンシャフト4に設けられ、回転軸O周りにN極とS極が交互に配置された多極磁石20と、多極磁石20と対向するように設けられ、磁性材料で形成された一対の集磁リング24,25と、ステアリングシャフト2に固定され、熱可塑性樹脂材料で形成された集磁リングホルダ26と溶着プレート29とから構成され、集磁リングホルダ26と溶着プレート29とで一対の集磁リング24,25を挟み込んだ状態で集磁リングホルダ26と溶着プレート29とが互いに溶着固定されることにより一対の集磁リング24,25とステアリングシャフト2とが接触しないように一対の集磁リング24,25を保持する保持部材と、集磁リングホルダ26の溶着プレート29と対向する側に設けられ、溶着プレート29側に向かって開口するように形成され底部34を有する凹部32と、凹部32の開口縁に沿って設けられ、溶着プレート29との間の距離が底部34と溶着プレート29との間の距離よりも短くかつ溶着プレート29と当接しないように形成された壁部33と、凹部32と対向し、かつ凹部32側に向かって突出するように溶着プレート29に設けられ、先端部30aが底部34と当接した状態で溶融することにより集磁リングホルダ26と溶着プレート29とを溶着させる突起部30と、ピニオンシャフト4とステアリングシャフト2の相対回転に伴う多極磁石20と一対の集磁リング24,25の相対回転により変化する一対の集磁リング24,25内の磁界の変化を検出することによりピニオンシャフト4とステアリングシャフト2の相対回転角を検出するホールICセンサ27と、操舵機構9に操舵アシスト力を付与する電動モータ10と、ホールICセンサ27の出力信号から求められるステアリングシャフト2とピニオンシャフト4の間に生じるトルクに基づき電動モータ10への指令信号を演算すると共に、電動モータ10に指令信号を出力するモータ制御回路15と、を有する。
  よって、一対の集磁リング24,25には、インサート成形に伴う冷却収縮による内部応力が発生しないため、一対の集磁リング24,25の歪を抑制でき、トルクセンサ13の検出精度を向上できる。
  また、集磁リングホルダ26と溶着プレート29との溶着固定時に発生したバリは、壁部33に囲まれた凹部32内に収容されることとなり、集磁リングアッシーからのバリの脱落を抑制できる。
 (16) 検出部材は、径方向において第1の円環部212と第2の円環部222の間に設けられ、回転軸O周りに円弧状に形成された第1集磁リング24と、径方向において第1集磁リング24と第2の円環部222の間に設けられ、回転軸O周りに円弧状に形成された第2集磁リング25と、から構成され、集磁リングホルダ26および溶着プレート29は、第1集磁リング24および第2集磁リング25を挟持する部材であって、ホールICセンサ27は、径方向において第1集磁リング24と第2集磁リング25の間に設けられ、第1集磁リング24と第2集磁リング25の間の磁界の変化を検出するホール素子である。
  よって、ヨークアッシーと同じ構造を集磁リングアッシーにおいても用いることができる。
 〔他の実施例〕
  以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  例えば、実施例では、トルクセンサに適用した例を示したが、回転センサにも適用できる。この場合、第2部材はハウジングに設けられる。
  また、磁性部材の極数は、N極とS極が1極ずつ以上であればよい。
  壁部は、必ずしも凹部の全周を包囲する必要はなく、凹部の開口縁部の所定範囲に設けられ、バリの脱落抑制効果を有するものであればよい。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2014年7月9日出願の日本特許出願番号2014-141097号に基づく優先権を主張する。2014年7月9日出願の日本特許出願番号2014-141097号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
1 ステアリングホイール、2 ステアリングシャフト(第2部材,入力軸)、3 トーションバー、4 ピニオンシャフト(第1部材,出力軸)、8 転舵輪、9 操舵機構、10 電動モータ、15 モータ制御回路、17 ギアボックスハウジング(ハウジング)、20 多極磁石(磁性部材)、21 第1ヨーク(検出部材)、22 第2ヨーク(検出部材)、23 ヨークホルダ(保持部材)、24 第1集磁リング(検出部材)、25 第2集磁リング(検出部材)、26 集磁リングホルダ(保持部材)、27 ホールICセンサ(磁気センサ)、29 溶着プレート(保持部材)、30 突起部、32 凹部、33 壁部、34 底部、236 凹部、237 壁部、238 底部

Claims (18)

  1.  回転角検出装置であって、
     回転軸を中心に互いに相対回転可能に設けられた第1部材および第2部材と、
     前記第1部材に設けられ、前記回転軸周りにN極とS極が隣接するように配置された磁性部材と、
     前記磁性部材と対向するように設けられ、磁性材料で形成された検出部材と、
     前記第2部材に固定され、熱可塑性樹脂材料で形成された第1保持部材と第2保持部材とから構成され、前記第1保持部材と前記第2保持部材とで前記検出部材を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記検出部材と前記第2部材とが接触しないように前記検出部材を保持する保持部材と、
     前記第1保持部材の前記第2保持部材と対向する側に設けられ、前記第2保持部材側に向かって開口するように形成され底部を有する凹部と、前記凹部の開口縁に沿って設けられ、前記第2保持部材との間の距離が前記底部と前記第2保持部材との間の距離よりも短くかつ前記第2保持部材と当接しないように形成された壁部と、
     前記凹部と対向し、かつ前記凹部側に向かって突出するように前記第2保持部材に設けられ、先端部が前記底部と当接した状態で溶融することにより前記第1保持部材と前記第2保持部材とを溶着させる突起部と、
     前記第1部材と前記第2部材の相対回転に伴う前記磁性部材と前記検出部材の相対回転により変化する前記検出部材内の磁界の変化を検出することにより前記第1部材と前記第2部材の相対回転角を検出する磁気センサと、
     を備える回転角検出装置。
  2.  請求項1に記載の回転角検出装置であって、
     前記第2保持部材は、前記底部と前記第2保持部材との間の距離が、前記第1保持部材と前記第2保持部材との溶着固定時に溶融した前記突起部または前記底部の一部がバリとして成長し、前記バリが前記第2保持部材と当接するように設けられる
     回転角検出装置。
  3.  請求項1に記載の回転角検出装置であって、
     前記第1保持部材および前記第2保持部材は、前記回転軸を包囲するように円環状または円弧状に形成され、
     前記回転軸の放射方向を径方向、前記回転軸周りの方向を周方向としたとき、前記凹部および前記突起部は、前記径方向内側から外側に向かって延びる部分と、前記周方向に延びる部分と、を有する
     回転角検出装置。
  4.  請求項3に記載の回転角検出装置であって、
     前記凹部の前記周方向に延びる部分は、前記径方向の幅が前記第1保持部材の前記径方向の幅の半分よりも小さくなるように形成される
     回転角検出装置。
  5.  請求項1に記載の回転角検出装置であって、
     前記壁部は、前記底部から前記開口縁部側に向かって開口面積が増大するように傾斜する傾斜部を有する
     回転角検出装置。
  6.  請求項1に記載の回転角検出装置であって、
     前記底部は平面状に形成され、
     前記底部の平面に対し直角な方向を基準軸線としたとき、前記突起部は、前記基準軸線方向に沿って突出するように形成され、溶融前の状態において前記基準軸線に対し直角方向断面積が前記基準軸線方向所定範囲においてほぼ一定となるように形成された比例溶融部を有する
     回転角検出装置。
  7.  請求項1に記載の回転角検出装置であって、
     前記検出部材は、第1ヨーク部材と第2ヨーク部材を備え、
     前記第1ヨーク部材は、前記回転軸と同心円上であってかつ前記磁性部材と対向するように配置された複数の板状部材である第1の爪部と、円筒状に形成され前記第1の爪部同士を接続する第1の円筒部と、を備え、
     前記第2ヨーク部材は、前記回転軸と同心円上であってかつ前記磁性部材と対向するように配置された複数の板状部材である第2の爪部と、円筒状に形成され前記第2の爪部同士を接続する第2の円筒部と、を備え、前記第2の爪部の夫々が前記第1の爪部の各爪部の間に交互に並ぶように配置されると共に、前記第2の円筒部が前記第1の円筒部の内周側であって互いに径方向に離間するように配置され、
     前記磁気センサは、前記第1部材と前記第2部材の相対回転によって生じる前記磁性部材と前記第1の爪部および前記第2の爪部との相対角度の変化に伴い変化する磁界検出するホール素子を備え、
     前記第1保持部材は、前記第1の爪部および前記第2の爪部が挿入される挿入孔を備え、
     前記第2保持部材は、前記第1の爪部および前記第2の爪部が前記第1保持部材の前記挿入孔に挿入された状態で前記第1保持部材と共に前記第1ヨーク部材および前記第2ヨーク部材を挟み込んだ状態で前記第1保持部材と溶着固定される
     回転角検出装置。
  8.  パワーステアリング装置であって、
     ステアリングホイールの回転に伴い回転する入力軸と、前記入力軸とトーションバーを介して接続される出力軸と、を備え、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記入力軸および前記出力軸を回転自在に保持するハウジングと、
     前記出力軸に設けられ、前記回転軸周りにN極とS極が隣接するように配置された磁性部材と、
     前記磁性部材と対向するように設けられ、磁性材料で形成された検出部材と、
     前記入力軸に固定され、熱可塑性樹脂材料で形成された第1保持部材と第2保持部材とから構成され、前記第1保持部材と前記第2保持部材とで前記検出部材を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記検出部材と前記第2部材とが接触しないように前記検出部材を保持する保持部材と、
     前記第1保持部材の前記第2保持部材と対向する側に設けられ、前記第2保持部材側に向かって開口するように形成され底部を有する凹部と、
     前記凹部の開口縁に沿って設けられ、前記第2保持部材との間の距離が前記底部と前記第2保持部材との間の距離よりも短くかつ前記第2保持部材と当接しないように形成された壁部と、
     前記凹部と対向し、かつ前記凹部側に向かって突出するように前記第2保持部材に設けられ、先端部が前記底部と当接した状態で溶融することにより前記第1保持部材と前記第2保持部材とを溶着させる突起部と、
     前記入力軸と前記出力軸の相対回転に伴う前記磁性部材と前記検出部材の相対回転により変化する前記検出部材内の磁界の変化を検出することにより前記入力軸と前記出力軸の相対回転角を検出する磁気センサと、
     前記操舵機構に操舵アシスト力を付与する電動モータと、
     前記磁気センサの出力信号から求められる前記入力軸と前記出力軸の間に生じるトルクに基づき前記電動モータへの指令信号を演算すると共に、前記電動モータに前記指令信号を出力するモータ制御回路と、
     を備えるパワーステアリング装置。
  9.  請求項8に記載のパワーステアリング装置であって、
     前記回転軸の放射方向を径方向とし前記回転軸周りの方向を周方向としたとき、前記検出部材は、前記回転軸を包囲するように円環状に形成された第1の円環部と、前記第1の円環部の前記周方向において互いに離間して並ぶように複数個設けられた複数の板状部材である第1の爪部と、から構成され、前記第1の爪部の夫々が前記第1の円環部から前記径方向内側方向に延びる第1の屈曲部と前記第1の屈曲部から前記回転軸方向に沿って前記磁性部材と対向するように延びる第1の検出部とを有する第1ヨーク部材と、前記第1の円環部の前記径方向内側であって前記第1の円環部と離間するように設けられ、円環状に形成された第2の円環部と、前記第2の円環部の前記周方向において互いに離間して並ぶように複数個設けられた複数の板状部材である第2の爪部と、から構成され、前記第2の爪部の夫々が前記第2の円環部から前記径方向外側方向に延びる第2の屈曲部と前記第2の屈曲部から前記回転軸方向に沿って前記磁性部材と対向するように延びる第2の検出部とを有し、前記第2の検出部の夫々は前記第1の検出部の夫々の間に交互に並ぶように配置されると共に、前記第1の検出部と前記第2の検出部が前記回転軸を中心とした同一円上に配置された第2ヨーク部材と、から構成され、
     前記第1保持部材は、前記回転軸に対しほぼ直角な平面である搭載面を有する本体部と、前記第1の検出部が前記搭載面を貫通するように形成された第1の貫通孔と、前記第1の貫通孔と連続して前記径方向外側に向かって延びるように設けられ、前記搭載面側に開口するように凹状に形成されると共に前記第1の屈曲部を収容する第1の収容部と、前記第2の検出部が前記搭載面を貫通するように形成された第2の貫通孔と、前記第2の貫通孔と連続して前記径方向内側に向かって延びるように設けられ、前記搭載面側に向かって開口するように凹状に形成されると共に前記第2の屈曲部を収容する第2の収容部と、を備え、
     前記凹部は、前記第1の貫通孔よりも前記径方向内側に形成された内径側部分と、前記内径側部分から前記径方向外側方向に向かって前記第1の貫通孔と前記第2の貫通孔の間を通るように設けられた径方向延設部と、
     から構成されるパワーステアリング装置。
  10.  請求項9に記載のパワーステアリング装置であって、
     磁性材料で形成され、前記第1の円環部と対向するように設けられた第1の集磁リングと、
     磁性材料で形成され、前記第2の円環部および前記第2の集磁リングと対向するように設けられた第2の集磁リングと、
     熱可塑性樹脂で形成された第3の保持部材と、
     熱可塑性樹脂で形成され、前記第3の保持部材と共に前記第1の集磁リングおよび前記第2の集磁リングを挟み込んだ状態で前記第3の保持部材と互いに溶着固定されることにより前記第1の集磁リングおよび前記第2の集磁リングを固定する第4の保持部材と、
     前記第3の保持部材の前記第4の保持部材と対向する側に設けられ、前記第4保持部材側に向かって開口するように形成され第2の底部を有する第2の凹部と、前記第2の凹部の開口縁に沿って設けられ、前記第4保持部材との間の距離が前記第2の底部と前記第4保持部材との間の距離よりも短くかつ前記第4保持部材と当接しないように形成された第2の壁部と、
     前記第2の凹部と対向し、かつ前記第2の凹部側に向かって吐出するように前記第4保持部材に設けられ、先端部が前記第2の底部と当接した状態で溶融することにより前記第3保持部材と前記第4保持部材とを溶着させる第2の突起部と、
     を備え、
     前記磁気センサは、前記第1の集磁リングと前記第2の集磁リングの間に配置され、前記第1の集磁リングと前記第2の集磁リングの間の磁界の変化を検出することにより前記入力軸と前記出力軸の相対回転角を検出する
     パワーステアリング装置。
  11.  請求項9に記載のパワーステアリング装置であって、
     前記第2保持部材は、前記底部と前記第2保持部材との間の距離が、前記第1保持部材と前記第2保持部材との溶着固定時に溶融した前記突起部または前記底部の一部がバリとして成長し、前記バリが前記第2保持部材と当接するように設けられる
     パワーステアリング装置。
  12.  請求項9に記載のパワーステアリング装置であって、
     前記第1保持部材および前記第2保持部材は、前記回転軸を包囲するように円環状または円弧状に形成され、
     前記回転軸の放射方向を径方向、前記回転軸周りの方向を周方向としたとき、前記凹部および前記突起部は、前記径方向内側から外側に向かって延びる部分と、前記周方向に延びる部分と、を有する
     パワーステアリング装置。
  13.  請求項9に記載のパワーステアリング装置であって、
     前記壁部は、前記底部から前記開口縁部側に向かって開口面積が増大するように傾斜する傾斜部を有する
     パワーステアリング装置。
  14.  請求項9に記載のパワーステアリング装置であって、
     前記底部は平面状に形成され、
     前記底部の平面に対し直角な方向を基準軸線としたとき、前記突起部は、前記基準軸線方向に沿って突出するように形成され、溶融前の状態において前記基準軸線に対し直角方向断面積が前記基準軸線方向所定範囲においてほぼ一定となるように形成された比例溶融部を有する
     パワーステアリング装置。
  15.  固定構造であって、
     金属材料で形成された被保持部材と、
     熱可塑性樹脂で形成され、第1保持部材と第2保持部材を有し、前記第1保持部材と前記第2保持部材とで前記被保持部材を挟み込んだ状態で前記第1保持部材と前記第2保持部材とが互いに溶着固定されることにより前記被保持部材を保持する保持部材と、
     前記第1保持部材の前記第2保持部材と対向する側に設けられ、前記第2保持部材側に向かって開口するように形成され底部を有する凹部と、
     前記凹部の開口縁に沿って設けられ、前記第2保持部材との間の距離が前記底部と前記第2保持部材との間の距離よりも短くかつ前記第2保持部材と当接しないように形成された壁部と、
     前記凹部と対向し、かつ前記凹部側に向かって突出するように前記第2保持部材に設けられ、先端部が前記底部と当接した状態で溶融することにより前記第1保持部材と前記第2保持部材とを溶着させる突起部と、
     を備える固定構造。
  16.  請求項15に記載の固定構造であって、
     前記第2保持部材は、前記底部と前記第2保持部材との間の距離が、前記第1保持部材と前記第2保持部材との溶着固定時に溶融した前記突起部または前記底部の一部がバリとして成長し、前記バリが前記第2保持部材と当接するように設けられる
     固定構造。
  17.  請求項15に記載の固定構造であって、
     前記壁部は、前記底部から前記開口縁部側に向かって開口面積が増大するように傾斜する傾斜部を有する
     固定構造。
  18.  請求項15に記載の固定構造であって、
     前記底部は平面状に形成され、
     前記底部の平面に対し直角な方向を基準軸線としたとき、前記突起部は、前記基準軸線方向に沿って突出するように形成され、溶融前の状態において前記基準軸線に対し直角方向断面積が前記基準軸線方向所定範囲においてほぼ一定となるように形成された比例溶融部を有する
     固定構造。
PCT/JP2015/068317 2014-07-09 2015-06-25 回転角検出装置およびパワーステアリング装置 WO2016006461A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015003183.9T DE112015003183B4 (de) 2014-07-09 2015-06-25 Drehwinkelerfassungsvorrichtung und Servolenkvorrichtung.
JP2016532872A JP6291682B2 (ja) 2014-07-09 2015-06-25 回転角検出装置およびパワーステアリング装置
CN201580036669.9A CN106471347B (zh) 2014-07-09 2015-06-25 旋转角检测装置及动力转向装置
US15/322,627 US10207733B2 (en) 2014-07-09 2015-06-25 Rotational angle detection apparatus and power steering apparatus
KR1020177000134A KR20170015463A (ko) 2014-07-09 2015-06-25 회전각 검출 장치 및 파워 스티어링 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-141097 2014-07-09
JP2014141097 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006461A1 true WO2016006461A1 (ja) 2016-01-14

Family

ID=55064099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068317 WO2016006461A1 (ja) 2014-07-09 2015-06-25 回転角検出装置およびパワーステアリング装置

Country Status (6)

Country Link
US (1) US10207733B2 (ja)
JP (1) JP6291682B2 (ja)
KR (1) KR20170015463A (ja)
CN (1) CN106471347B (ja)
DE (1) DE112015003183B4 (ja)
WO (1) WO2016006461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059740A (ja) * 2016-10-03 2018-04-12 Kyb株式会社 トルクセンサ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278050B2 (ja) * 2016-03-11 2018-02-14 Tdk株式会社 回転角度検出装置及び回転機械装置
CN106809212A (zh) * 2017-03-30 2017-06-09 福建船政交通职业学院 一种爆胎车身稳定控制系统
KR102330201B1 (ko) * 2017-04-17 2021-11-22 로오드 코포레이션 회전 샤프트들 및 커플링들의 매개변수들을 측정하기 위한 방법들 및 시스템들
CN108116476B (zh) * 2017-12-30 2019-01-04 曹胜伟 一种电机动力转向装置
US11052937B2 (en) * 2018-01-19 2021-07-06 Steering Solutions Ip Holding Corporation Splined component assembly and method
CN111820819B (zh) * 2019-04-20 2022-09-23 青岛塔波尔机器人技术股份有限公司 一种转向辅助组件、清洁设备及其转向控制方法
CN110356473A (zh) * 2019-07-24 2019-10-22 重庆长安汽车股份有限公司 一种车辆冗余转角传感系统
CN110763385B (zh) * 2019-11-19 2021-02-12 重庆前卫科技集团有限公司 直接传动组扭矩检测机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144990A (en) * 1978-05-04 1979-11-12 Hitachi Ltd Impact detector
JPH0956141A (ja) * 1995-08-14 1997-02-25 Sanyo Electric Co Ltd 小形モータ
JP2004093183A (ja) * 2002-08-29 2004-03-25 Unisia Jkc Steering System Co Ltd 電動パワーステアリング用トルクセンサ
JP2004135402A (ja) * 2002-10-09 2004-04-30 Tamagawa Seiki Co Ltd 回転検出器用ステータ構造
JP2009271055A (ja) * 2008-04-10 2009-11-19 Nsk Ltd トルク検出器及び電動パワーステアリング装置並びにトルク検出器の製造方法
JP2010539472A (ja) * 2007-09-10 2010-12-16 エルジー イノテック カンパニー,リミティド ステーターアセンブリー及びトルク測定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316124A1 (de) * 2003-04-04 2004-10-28 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum Bestimmen eines auf eine Welle ausgeübten Drehmoments
US7406884B2 (en) * 2004-01-20 2008-08-05 Valeo Schalter Und Sensoren Gmbh Device for determining a steering angle and a torque that is exerted on a steering shaft
JP2006038767A (ja) * 2004-07-29 2006-02-09 Favess Co Ltd トルク検出装置
JP4783012B2 (ja) * 2004-12-28 2011-09-28 日立オートモティブシステムズ株式会社 電動パワーステアリング用モータ及びその製造方法
JP2008180518A (ja) 2007-01-23 2008-08-07 Nsk Ltd トルクセンサ
JP2009273195A (ja) 2008-04-30 2009-11-19 Tamagawa Seiki Co Ltd レゾルバステータ構造
JP5994264B2 (ja) * 2012-02-01 2016-09-21 株式会社ジェイテクト トルク検出装置およびその製造方法
JP5994286B2 (ja) * 2012-02-28 2016-09-21 株式会社ジェイテクト トルク検出装置およびその製造方法
JP5899090B2 (ja) * 2012-09-14 2016-04-06 日立オートモティブシステムズステアリング株式会社 トルクセンサ
DE102012021137A1 (de) * 2012-10-27 2014-04-30 Valeo Schalter Und Sensoren Gmbh Sensoreinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Erstellen einer Sensoreinrichtung
JP5864466B2 (ja) * 2013-03-22 2016-02-17 日立オートモティブシステムズステアリング株式会社 回転検出装置およびパワーステアリング装置
JP5698397B2 (ja) 2014-03-13 2015-04-08 株式会社ブリヂストン セクター金型におけるパタンブロックの加工用冶具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144990A (en) * 1978-05-04 1979-11-12 Hitachi Ltd Impact detector
JPH0956141A (ja) * 1995-08-14 1997-02-25 Sanyo Electric Co Ltd 小形モータ
JP2004093183A (ja) * 2002-08-29 2004-03-25 Unisia Jkc Steering System Co Ltd 電動パワーステアリング用トルクセンサ
JP2004135402A (ja) * 2002-10-09 2004-04-30 Tamagawa Seiki Co Ltd 回転検出器用ステータ構造
JP2010539472A (ja) * 2007-09-10 2010-12-16 エルジー イノテック カンパニー,リミティド ステーターアセンブリー及びトルク測定装置
JP2009271055A (ja) * 2008-04-10 2009-11-19 Nsk Ltd トルク検出器及び電動パワーステアリング装置並びにトルク検出器の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059740A (ja) * 2016-10-03 2018-04-12 Kyb株式会社 トルクセンサ

Also Published As

Publication number Publication date
US10207733B2 (en) 2019-02-19
DE112015003183T5 (de) 2017-03-23
CN106471347A (zh) 2017-03-01
US20170129532A1 (en) 2017-05-11
JPWO2016006461A1 (ja) 2017-07-20
DE112015003183B4 (de) 2024-03-21
JP6291682B2 (ja) 2018-03-14
KR20170015463A (ko) 2017-02-08
CN106471347B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
JP6291682B2 (ja) 回転角検出装置およびパワーステアリング装置
JP5864466B2 (ja) 回転検出装置およびパワーステアリング装置
JP6295483B2 (ja) パワーステアリング装置およびパワーステアリング装置の組み立て方法
US9459165B2 (en) Sensor unit, torque detector, and electric power steering device
JP2007240496A (ja) トルクセンサ
JP4941847B2 (ja) 回転角検出装置
JP2004020527A (ja) トルクセンサ
JP2009244205A (ja) トルクセンサ
JP2007269281A (ja) ステアリング装置
JP2007121149A (ja) トルク検出装置
WO2018024126A1 (zh) 非接触式扭矩传感器
JP7021957B2 (ja) トルクセンサ
JP2014149180A (ja) トルクセンサ
JP5852484B2 (ja) トルクセンサ
JP2008157762A (ja) トルク測定器
JP2013195288A (ja) トルクセンサ
JP2007271565A (ja) トルク検出装置
JP6515760B2 (ja) 回転角検出装置
JP2018128387A (ja) 電動パワーステアリング装置、及び車両
JP2012194144A (ja) トルクセンサ
JP2022154907A (ja) センサ装置、電動パワーステアリング装置
JP2021110593A (ja) 磁束検出装置
JP5814443B2 (ja) トルクセンサ
JP2018131092A (ja) 電動パワーステアリング装置
JP2010190764A (ja) トルクセンサ及びこれを用いる電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020177000134

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112015003183

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819547

Country of ref document: EP

Kind code of ref document: A1