WO2016006045A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016006045A1
WO2016006045A1 PCT/JP2014/068235 JP2014068235W WO2016006045A1 WO 2016006045 A1 WO2016006045 A1 WO 2016006045A1 JP 2014068235 W JP2014068235 W JP 2014068235W WO 2016006045 A1 WO2016006045 A1 WO 2016006045A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference voltage
power supply
drive signal
power
control unit
Prior art date
Application number
PCT/JP2014/068235
Other languages
English (en)
French (fr)
Inventor
有澤 浩一
崇 山川
裕次 ▲高▼山
卓也 下麥
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14897183.1A priority Critical patent/EP3168974B1/en
Priority to JP2016532825A priority patent/JP6279080B2/ja
Priority to US15/129,112 priority patent/US9941810B2/en
Priority to PCT/JP2014/068235 priority patent/WO2016006045A1/ja
Priority to CN201480079357.1A priority patent/CN106464150B/zh
Publication of WO2016006045A1 publication Critical patent/WO2016006045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device that converts AC power into DC power.
  • a power factor correction circuit that improves the power source power factor and reduces the harmonic component included in the input current is disclosed, and the full-wave rectification mode or the voltage doubler rectification mode is selected.
  • the power factor improvement function and the boosting function are realized by controlling the short circuit start time and the short circuit time of the short circuit element in an open loop. That is, in the prior art of Patent Document 1 below, the rectifier circuit is controlled to the full-wave rectification mode or the double voltage rectification mode by turning on and off the rectifier circuit switching switch, and the DC output voltage of the power factor correction circuit is roughly divided into two stages.
  • Patent Document 2 discloses a DC voltage that outputs a DC voltage control signal corresponding to a deviation value between a DC output voltage reference value set corresponding to a load and a voltage between terminals of a smoothing capacitor.
  • a control unit is provided, and a current reference calculation unit that outputs a current reference signal from the product of the control signal from the DC voltage control unit and a sine wave-like synchronization signal synchronized with the AC power supply is provided.
  • the switch element is controlled to be turned on and off at a high frequency, and the DC output voltage is controlled to a desired value while controlling the AC input current in a sine wave shape.
  • the power source power factor can be set to 1 to suppress the generation of harmonics.
  • the control pattern of the short circuit element is limited. That is, in these conventional techniques, the control pattern of the short-circuit element is limited to either the high-frequency switching mode in which current is fed back in the entire load region or the partial switching mode of current open loop control. Therefore, these prior arts do not operate the short-circuit element in order to avoid excessive boosting of the DC output voltage in the low load region, and power factor improvement is not performed. For this reason, the waveform distortion of the input current is large in the low load region, and the current containing a large amount of harmonic components flows through the reactor, increasing the reactor iron loss, thereby reducing the AC / DC conversion efficiency of the power factor correction circuit. .
  • the short-circuit control of the short-circuit element when performing the power factor improvement in the prior art of Patent Document 1 described above is a part in which the short-circuit start timing and the short-circuit time are controlled by an open loop, and the short-circuit operation is performed only for a certain period with respect to the power cycle Although it is a switching system, the power factor can be improved and the DC output voltage can be boosted, but the effect is small on the high load side where the amount of harmonic generation increases. Therefore, in order to obtain a sufficient power factor improvement effect in the conventional technology, that is, a harmonic suppression capability, with a future harmonic regulation strengthening, a reactor having a large inductance value is required. There arises a problem that the circuit is increased in size and cost.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can satisfy high boosting performance and harmonic standards while achieving high efficiency over the entire operation region of the load. To do.
  • the present invention includes a rectifier circuit that converts AC power from an AC power source into DC power, and a reactor connected between the AC power source and the rectifier circuit.
  • a short-circuit unit that short-circuits the AC power source, and a control unit that generates a plurality of switching pulses that control the short-circuit unit during a half cycle of the AC power source, and the control unit includes the switching pulses.
  • the threshold value for limiting the value of the power supply current of the AC power supply is varied stepwise in the on section or the off section.
  • the peak of the power source current during the half cycle of the AC power source is suppressed by changing the threshold stepwise, and high boosting performance and harmonics are achieved while achieving high efficiency over the entire operating region of the load. There is an effect that the standard can be satisfied.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 4 is a diagram illustrating a simple circuit including a reactor, a short-circuit unit, a rectifier circuit, and a smoothing capacitor.
  • FIG. 5 is a diagram showing a waveform of the power supply current when the short-circuit element is switched once in the half cycle of the AC power supply in the partial switching pulse mode.
  • FIG. 6 is an explanatory diagram of an operation when pulse conversion is not performed in the pulse conversion unit.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage
  • FIG. 7 is an explanatory diagram of the operation when pulse conversion is performed in the pulse conversion unit.
  • FIG. 8 is a diagram illustrating a state in which the current control range is expanded.
  • FIG. 9 is a diagram showing a state where the current control range is narrowed.
  • FIG. 10 is an explanatory diagram of an operation when pulse conversion is performed in a period shorter than the ON period of the drive signal.
  • FIG. 11 is an explanatory diagram of the operation when the reference voltage is varied in accordance with the elapsed time from the zero cross of the power supply voltage.
  • FIG. 12 is a diagram illustrating a configuration example of the pulse conversion unit.
  • FIG. 13 is an explanatory diagram of the operation when the pulse converter shown in FIG. 12 is used.
  • FIG. 14 is a diagram for explaining the operation when the drive signal is switched twice during the half cycle of the power supply voltage.
  • FIG. 15 is a diagram illustrating a configuration example of the power conversion device according to the second embodiment of the present invention.
  • FIG. 16 is a diagram for explaining an operation of the power conversion device according to the second embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 4 is a diagram illustrating a simple circuit including the reactor 2, the short-circuit unit 30, the rectifier circuit 3, and the smoothing capacitor 4.
  • FIG. 5 is a diagram showing a waveform of the power supply current Is when the short-circuit element 32 is switched once in the positive-side half cycle of the AC power supply 1 in the partial switching pulse mode.
  • FIG. 6 is an explanatory diagram of the operation when the pulse conversion unit 22 does not perform pulse conversion.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of
  • FIG. 7 is an explanatory diagram of the operation when pulse conversion is performed in the pulse conversion unit 22.
  • FIG. 8 is a diagram illustrating a state in which the current control range is expanded.
  • FIG. 9 is a diagram showing a state where the current control range is narrowed.
  • FIG. 10 is an explanatory diagram of an operation when performing pulse conversion in a period shorter than the on period t of the drive signal Sa.
  • FIG. 11 is an explanatory diagram of an operation when the reference voltage V ref is varied in accordance with the elapsed time from the zero cross of the power supply voltage Vs.
  • FIG. 12 is a diagram illustrating a configuration example of the pulse conversion unit 22.
  • FIG. 13 is an explanatory diagram of the operation when the pulse converter 22 shown in FIG. 12 is used.
  • FIG. 14 is an explanatory diagram of the operation when the drive signal Sa is switched twice during the half cycle of the power supply voltage Vs.
  • a power conversion device 100 shown in FIG. 1 generates a DC voltage based on an AC voltage supplied from an AC power source 1 and supplies the DC voltage to a DC load 10 shown in FIG. , A smoothing capacitor 4, a DC voltage detection unit 5, a power supply voltage detection unit 6, a current detection unit 9, a control unit 20, a pulse transmission unit 24, and a short-circuit unit 30.
  • the reactor 2 is inserted between one input end of the rectifier circuit 3 and the AC power source 1.
  • the rectifier circuit 3 is connected to the AC power source 1 through the reactor 2 and converts the AC voltage of the AC power source 1 into a DC voltage.
  • the rectifier circuit 3 in the illustrated example is configured by a diode bridge in which four diodes are combined.
  • the rectifier circuit 3 is not limited to this, and a metal oxide semiconductor field effect transistor which is a diode-connected unidirectional conducting element is combined. May be configured.
  • a smoothing capacitor 4 is connected between the output terminals of the rectifier circuit 3, and the smoothing capacitor 4 smoothes the voltage of the full-wave rectified waveform output from the rectifier circuit 3.
  • a DC load 10 is connected in parallel to both ends of the smoothing capacitor 4.
  • the current detection means 9 includes a current detection element 8 and a current detection unit 7.
  • the current detection element 8 is connected between the reactor 2 and the rectifier circuit 3 and detects the current value at the connection position.
  • a current transformer or a shunt resistor is used for the current detection element 8.
  • the current detection unit 7 is realized by an amplifier or a level shift circuit, converts a voltage directly proportional to the current detected by the current detection element 8 into a current detection voltage Vis within a low voltage range that can be handled by the control unit 20, and outputs the voltage. To do.
  • the DC voltage detection unit 5 is realized by an amplifier or a level shift circuit, detects the voltage across the smoothing capacitor 4, converts the detected voltage into a voltage detection value within a low voltage range that can be handled by the control unit 20, and outputs the detected voltage. To do.
  • the short-circuit unit 30 which is a bidirectional switch is composed of a diode bridge 31 connected in parallel to the AC power supply 1 via the reactor 2 and a short-circuit element 32 connected to both output terminals of the diode bridge 31.
  • the short-circuit element 32 is a metal oxide semiconductor field effect transistor
  • the gate of the short-circuit element 32 is connected to the pulse transmission unit 24, and the short-circuit element 32 is turned on / off by the drive signal Sa2 that is a gate drive signal from the pulse transmission unit 24.
  • the drive signal Sa2 that is a gate drive signal from the pulse transmission unit 24.
  • the control unit 20 includes a drive signal generation unit 21, a pulse conversion unit 22, and a reference voltage control unit 23, and includes a microcomputer or a central processing unit.
  • the drive signal generation unit 21 Based on the value of the DC output voltage Vdc detected by the DC voltage detection unit 5 and the value of the power supply voltage Vs detected by the power supply voltage detection unit 6, the drive signal generation unit 21 detects the short circuit element 32 of the short circuit unit 30. A drive signal Sa that is a plurality of switching pulses to be controlled is generated.
  • the drive signal generation unit 21 generates a hysteresis reference voltage that is a threshold value that limits the value of the power supply current Is of the AC power supply 1.
  • the hysteresis reference voltage is referred to as a reference voltage V ref
  • the reference voltage V ref is a threshold value that limits the value of the power source current Is of the AC power source 1.
  • the reference voltage V ref generated by the drive signal generation unit 21 of the first embodiment is the reference voltage V HA , the reference voltage V HB , the reference voltage V LA , and the reference voltage V LB.
  • the reference voltage V HA and the reference voltage V HB are the positive reference voltage V refH
  • the reference voltage V LA and the reference voltage V LB are the negative reference voltage V refL
  • the reference voltage V HB is a reference voltage having a value higher than the reference voltage V HA
  • the reference voltage V LB is a reference voltage having a value higher than the reference voltage V LA .
  • These reference voltages V ref are generated by the circuit shown in FIG. 2 or FIG.
  • the circuit in FIG. 2 generates the reference voltage V ref by converting the pulse width modulation signal, which is the port output Sb of the drive signal generation unit 21, into a DC value using a low-pass filter.
  • the value of the reference voltage V ref can be changed seamlessly, and the reference voltage V ref generated using this circuit becomes the reference voltage V HA ,
  • the reference voltage V HB , the reference voltage V LA , and the reference voltage V LB are obtained.
  • the circuit of FIG. 3 can vary the value of the reference voltage V ref stepwise by the voltage dividing ratio of the resistors Rb and Rc by driving the switch TR with the port output Sb of the drive signal generator 21.
  • the reference voltage V ref generated stepwise using the circuit becomes the reference voltage V HA , the reference voltage V HB , the reference voltage V LA , and the reference voltage V LB.
  • the circuit for generating the reference voltage V ref is not limited to this, and may be generated by a known circuit other than the circuit shown in FIG. 2 or 3, or generated outside the control unit 20. These reference voltages V ref may be used.
  • the reference voltage control unit 23 receives the drive signal Sa, the power supply voltage Vs detected by the power supply voltage detection unit 6, and the reference voltage Vref from the drive signal generation unit 21, and detects it in a half cycle of the power supply voltage Vs.
  • the reference voltage V ref is varied stepwise in the on period or the off period of the plurality of drive signals Sa. Details of the reference voltage control unit 23 will be described later.
  • the pulse converter 22 generates a switching pulse that contains the peak value of the power supply current Is within the current control range w that is the target control range of the power supply current Is of the AC power supply 1. Specifically, the pulse converter 22 is set with an upper limit threshold and a lower limit threshold of the current control range w having the reference voltage V ref from the drive signal generator 21 as a center value. Then, the pulse converter 22 divides the drive signal Sa into a plurality of pulses in order to hold the peak value of the power supply current Is detected during the ON period t of the drive signal Sa between the upper limit threshold and the lower limit threshold. The divided drive signal Sa becomes the drive signal Sa1. Note that the on period t is a period from when the drive signal Sa is turned on to when it is turned off.
  • the upper threshold is a threshold that regulates the upper limit of the short-circuit current that flows when the short-circuit unit 30 is turned on
  • the lower threshold is a threshold that is set to a value smaller than the upper threshold.
  • the pulse transmission unit 24 is configured by a level shift circuit, performs voltage level shift so that gate driving can be performed, converts the drive signal Sa1 into the drive signal Sa2, and outputs the converted signal.
  • the open / close operation of the short-circuit portion 30 is performed by the drive signal Sa2 obtained in this way.
  • FIG. 4 shows a current path when the short-circuit unit 30 is turned on / off.
  • the short-circuit unit 30 When the short-circuit unit 30 is turned on, a closed circuit is formed by the AC power source 1, the reactor 2, and the short-circuit unit 30, and the AC power source 1 is short-circuited via the reactor 2. Therefore, the power source current Is flows in the closed circuit, and the magnetic energy obtained by (1/2) ⁇ LI 2 is accumulated in the reactor 2.
  • the stored energy is discharged to the DC load 10 side at the same time as the short-circuit unit 30 is turned off, rectified by the rectifier circuit 3, and transferred to the smoothing capacitor 4.
  • the power source current Is as shown in FIG. 5 flows, and the conduction angle of the power source current Is can be expanded as compared with the passive mode without power factor improvement, and the power factor can be improved.
  • the energy accumulated in the reactor 2 can be controlled by controlling the short circuit start time and the short circuit duration time of the short circuit unit 30, and the DC output voltage Vdc can be boosted steplessly.
  • FIG. 5 shows an example of the operation in the partial switching pulse mode, and shows the drive signal Sa1 that is a single pulse when the short-circuit unit 30 is switched once during the power supply half cycle.
  • the number of times of switching the short-circuit portion 30 may be two or more.
  • FIG. 6 shows the waveform of the power supply current Is when the drive signal Sa, which is a single pulse from the drive signal generator 21, is not converted into a plurality of pulses.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, and the drive signal Sa1 is also turned on during the on period t of the drive signal Sa. Only on for a period equal to Accordingly, the short-circuit time of the short-circuit element 32 becomes longer in direct proportion to the on-period t of the drive signal Sa when the power supply voltage Vs is boosted, and the power supply current Is increases as shown in the illustrated example.
  • the power supply current Is reaches the set value, the drive signal Sa is turned off, and the drive signal Sa1 is turned off at the timing when the drive signal Sa is turned off.
  • FIG. 7 shows the waveform of the power supply current Is when the drive signal Sa, which is a single pulse from the drive signal generator 21, is converted into a plurality of pulses.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, and the power supply current Is increases.
  • the current detection voltage Vis output from the current detection unit 7, that is, the current detection value detected by the current detection unit 7 increases.
  • the pulse converter 22 turns off the drive signal Sa1.
  • the power supply current Is decreases and the current detection value decreases. Thereafter, when the current detection value falls below the lower limit threshold during the period in which the drive signal Sa is on, the pulse converter 22 turns on the drive signal Sa1 again. As a result, the power supply current Is increases again, and the current detection value detected by the current detection unit 7 increases.
  • the peak value of the power supply current Is within the on period t of the driving signal Sa is controlled within the current control range w. . Therefore, even when the DC output voltage Vdc is boosted to a relatively high value, the peak value of the power supply current Is within the on period t of the drive signal Sa shown in FIG. 7 is the peak value when the drive signal Sa1 is turned off. More suppressed.
  • the upper and lower thresholds As shown in FIGS. 8 and 9, by adjusting the upper and lower thresholds, the number of switching times of the drive signal Sa1 within the above-described on period t of the drive signal Sa is controlled, and the waveform of the power supply current Is is changed. be able to.
  • the current control range w1 shown in FIG. 8 is set wider than the current control range w2 shown in FIG.
  • the performance can be satisfied corresponding to the reactor 2, the DC load 10, and the harmonic standards.
  • the pulse conversion permission period equal to the on period t of the drive signal Sa is set has been described, but the pulse conversion permission period need not be the same as the on period t of the drive signal Sa.
  • a time shorter than the ON period t of the drive signal Sa may be set as the pulse conversion permission period t1.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, thereby increasing the power supply current Is.
  • the pulse conversion unit 22 does not perform pulse conversion, and the pulse indicating the start of the pulse conversion permission period t1 is turned on.
  • the drive signal Sa1 is turned off, and the power supply current Is decreases.
  • the drive signal Sa1 is turned on in the pulse converter 22 and the power supply current Is increases.
  • the drive signal Sa1 is turned off in the pulse converter 22, and the power supply current Is decreases again.
  • the pulse conversion permission period t1 shorter than the ON period t of the drive signal Sa is set, the peak value of the power supply current Is within the pulse conversion permission period t1 is controlled within the current control range w. .
  • the pulse conversion permission period equal to the on period t of the drive signal Sa is set, the number of switching times of the drive signal Sa1 is reduced, and the temperature rise is suppressed and the noise is reduced by suppressing the loss of the element. Is possible.
  • the reference voltage V ref is a constant value in the half cycle of the power supply.
  • the upper limit threshold and the lower limit threshold need not be constant, and the power supply voltage Vs as shown in FIG.
  • the reference voltage V ref may be varied in accordance with the elapsed time from the zero cross.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, which increases the power supply current Is. Then, the pulse conversion unit 22 performs pulse conversion according to the upper limit threshold 1 and the lower limit threshold 1 until a predetermined time T1 elapses from the zero cross point.
  • the lower threshold 1 is a threshold lower than the upper threshold 1. As a result, the peak value of the power supply current Is is controlled within the current control range w1 during the fixed time T1.
  • the upper threshold 2 and the lower threshold 2 centered on the reference voltage V ref that is higher than the reference voltage V ref in the current control range w1. Pulse conversion is performed.
  • the upper threshold 2 is a threshold higher than the upper threshold 1
  • the lower threshold 2 is a threshold lower than the upper threshold 2 and higher than the upper threshold 1.
  • the upper threshold 1 having the same value as the upper threshold and the lower threshold set until the fixed time T1 has passed since the zero crossing time. And pulse conversion is performed according to the lower threshold 1.
  • the peak value of the power supply current Is is controlled within the current control range w1.
  • the pulse converter 22 shown in FIG. 12 includes a positive-side hysteresis comparator HCH, a negative-side hysteresis comparator HCL, and a plurality of logic ICs.
  • the positive side hysteresis comparator HCH receives the current detection voltage Vis that is the output of the current detection unit 7 and the positive side reference voltage V refH from the drive signal generation unit 21.
  • the current detection voltage Vis and the negative reference voltage V refL from the drive signal generation unit 21 are input to the negative hysteresis comparator HCL.
  • the pulse converter 22 in FIG. 12 can generate the drive signal Sa1 regardless of the current polarity.
  • the positive-side hysteresis comparator HCH the positive-side upper limit threshold V THH (H) calculated by the expression (1), the positive-side lower limit threshold V THH (L) calculated by the expression (2), and the positive-side reference voltage V
  • the hysteresis ⁇ corresponding to the current control range w on the positive electrode side is determined by the relationship with refH .
  • the output of the positive side hysteresis comparator HCH is inverted by the NOT logic IC3.
  • the AND logic IC2 ′ takes an AND of the output of the NOT logic IC3 and the drive signal Sa, and outputs a positive drive signal SaH.
  • V d of equation (1) represents a low-voltage power supply
  • (2) the V OL represents the output saturation voltage of the operational amplifier.
  • the negative-side upper limit threshold V THL (H) is calculated by the equation (1)
  • the negative-side lower limit threshold V THL (L) is calculated by the equation (2).
  • the hysteresis ⁇ corresponding to the current control range w on the negative electrode side is determined by the relationship between the negative electrode side upper limit threshold value V THL (H), the negative electrode side lower limit threshold value V THL (L), and the negative electrode side reference voltage V refL .
  • the AND logic IC2 the AND logic of the output of the negative side hysteresis comparator HCL and the drive signal Sa is taken and the negative side drive signal SaL is output.
  • the AND logic IC4 takes the AND logic of the positive drive signal SaH and the negative drive signal SaL, and outputs the drive signal Sa1 as a result of the AND logic.
  • the pulse converter 22 having a plurality of hysteresis comparators as shown in FIG. 12 it becomes possible to generate the drive signal Sa1 regardless of the current polarity, and the power supply current Is of FIG. 13, that is, the waveform of the current detection voltage Vis. Can be controlled. Therefore, the DC output voltage Vdc can be boosted while suppressing the peak value of the short-circuit current that flows when the short-circuit unit 30 is turned on.
  • the hysteresis comparator of FIG. 12 can change the width of the hysteresis ⁇ by changing the resistance values of the resistors R1, R2, and R3.
  • the combined resistance value can be switched by connecting a series circuit of a switch and a resistor in parallel to the resistor R2 or the resistor R2 'and opening and closing the switch.
  • FIG. 14 shows how the reference voltage, the drive signal Sa1, and the power supply current Is change when the drive signal Sa is switched twice during a half cycle of the power supply voltage Vs.
  • the two drive signals Sa when the power supply voltage Vs is positive the period from when the first drive signal Sa is turned on until it is turned off is the on period t1, and the second drive signal Sa is turned on.
  • the period from turning on to turning off is the on period t2.
  • X1 represents a power supply zero cross point when the power supply voltage Vs changes from the negative electrode to the positive electrode.
  • Y1 represents the time when a certain time has elapsed from the time when the falling edge of the first drive signal Sa detected when the power supply voltage Vs is positive.
  • X2 represents a power supply zero cross point when the power supply voltage Vs changes from the positive electrode to the negative electrode.
  • Y2 represents the time when a certain time has elapsed from the time when the falling edge of the first drive signal Sa detected when the power supply voltage Vs is negative.
  • the reference voltage control unit 23 determines that the power supply voltage Vs is positive.
  • the reference voltage control unit 23 selects the reference voltage V HB until the time Y1, and selects the reference voltage V HA at the time Y1. That is, when the power supply voltage Vs is positive, the reference voltage control unit 23 maintains the positive reference voltage V refH at a high value until the falling edge of the first drive signal Sa is detected. Further, the reference voltage control unit 23 changes the value of the positive reference voltage V refH to decrease in the off period between the first drive signal Sa and the second drive signal Sa.
  • the pulse converter 22 controls the switching frequency of the drive signal Sa1 in accordance with the positive reference voltage V refH changed by the reference voltage controller 23. Therefore, the drive signal Sa1 when the reference voltage V HB is selected is turned on for a period equal to the on period t1 of the first drive signal Sa.
  • the power supply voltage Vs becomes second form of the waveform obtained by dividing the driving signal Sa into a plurality of time of the positive electrode.
  • the positive reference voltage V refH changes in a decreasing direction in the off section between the first drive signal Sa and the second drive signal Sa
  • a plurality of second drive signals Sa are present.
  • the plurality of divided switching pulses, that is, the plurality of drive signals Sa1 are output to the pulse transmission unit 24.
  • the reference voltage control unit 23 selects the reference voltage V HB having a value higher than the reference voltage V HA so as to limit the value of the power supply current Is. Can be turned off in a pseudo manner. Further, when the reference voltage control unit 23 selects the reference voltage V HA at the time point Y1, the peak value of the power supply current Is can be kept within the current control range w having the reference voltage V HA as the center value.
  • the pulse converter 22 does not perform pulse division operation with the positive reference voltage V refH . Therefore, after the reference voltage VHA is selected when the power supply voltage Vs is positive, the timing for switching to the reference voltage VHB may be the power supply zero-cross point after one cycle has elapsed from the timing X1, or 1 when the power supply voltage Vs is positive. It may be the timing after one cycle has elapsed from the timing when the first drive signal Sa rises.
  • the reference voltage control unit 23 determines that the power supply voltage Vs is negative.
  • the reference voltage control unit 23 selects the reference voltage V LA during the period from X2 to Y2, and selects the reference voltage V LB at the time point Y2. That is, when the power supply voltage Vs is negative, the reference voltage control unit 23 maintains the negative reference voltage V refL at a low value until the falling edge of the first drive signal Sa is detected.
  • the reference voltage control unit 23 changes the value of the negative reference voltage V refL in the off period between the first drive signal Sa and the second drive signal Sa.
  • the pulse converter 22 controls the switching frequency of the drive signal Sa1 corresponding to the negative reference voltage V refL controlled by the reference voltage controller 23. Therefore, the drive signal Sa1 when the reference voltage VLA is selected is turned on for a period equal to the on period t1 of the first drive signal Sa.
  • the driving signals Sa1 after the reference voltage V LB is selected will second form of the waveform obtained by dividing the driving signal Sa to a plurality of detected when the power supply voltage Vs is negative. Specifically, when the negative reference voltage V refL changes in the off period between the first drive signal Sa and the second drive signal Sa, the second drive signal Sa The switching pulse is divided into a plurality of drive signals Sa1. The plurality of divided drive signals Sa1 are output to the pulse transmission unit 24.
  • the reference voltage control unit 23 selects the reference voltage V LA of a value lower than the reference voltage V LB, limits the value of the supply current Is The operation can be turned off in a pseudo manner. Further, when the reference voltage control unit 23 selects the reference voltage V LB at the time point Y2, the peak value of the power supply current Is can be kept within the current control range w having the reference voltage V LB as the center value.
  • the timing for switching to the reference voltage V LA after the reference voltage V LB is selected when the power supply voltage Vs is negative may be the power supply zero cross point after one cycle has elapsed from the timing of X2, or 1 when the power supply voltage Vs is negative. It may be the timing after one cycle has elapsed from the timing when the first drive signal Sa rises.
  • FIG. FIG. 15 is a diagram illustrating a configuration example of the power conversion device 100 according to Embodiment 2 of the present invention.
  • FIG. 16 is a diagram for explaining the operation of the power conversion apparatus 100 according to Embodiment 2 of the present invention.
  • the difference from the first embodiment is that three reference voltages having different values that are the positive reference voltage V refH are used, and three reference voltages having different values that are the negative reference voltage V refL are used. is there.
  • the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted, and only different parts will be described here.
  • the reference voltage V ref generated by the drive signal generation unit 21 of the second embodiment includes a reference voltage V HA , a reference voltage V HB , a reference voltage V HC , a reference voltage V LA , a reference voltage V LB , and a reference voltage V LC. It is.
  • the reference voltage V HA , the reference voltage V HB , and the reference voltage V HC are the positive reference voltage V refH
  • the reference voltage V LA , the reference voltage V LB , and the reference voltage V LC are the negative reference voltage V refL
  • the reference voltage V HC is a reference voltage that is higher than the reference voltage V HA and lower than the reference voltage V HB
  • the reference voltage V LC is higher than the reference voltage V LA and the reference voltage V LB.
  • the reference voltage has a lower value.
  • Y3 represents the time point from the time point Y1 until the second on-period t2 detected when the power supply voltage Vs is positive.
  • Y4 represents a time point from the time point Y2 until the second on-period t2 detected when the power supply voltage Vs is negative.
  • the reference voltage control unit 23 determines that the power supply voltage Vs is positive.
  • the reference voltage control unit 23 selects the reference voltage V HB until the time point Y1, selects the reference voltage V HA at the time point Y1, and the reference voltage V HC at the time point Y3. Select. That is, when the power supply voltage Vs is positive, the reference voltage control unit 23 maintains the positive reference voltage V refH at a high value until the falling edge of the first drive signal Sa is detected. Further, the reference voltage control unit 23 changes the value of the positive reference voltage V refH to decrease in the off period between the first drive signal Sa and the second drive signal Sa. Further, the reference voltage control unit 23 changes the value of the positive reference voltage V refH to increase in the second ON period t2, that is, the ON period of the drive signal Sa.
  • the pulse converter 22 controls the switching frequency of the drive signal Sa1 in accordance with the positive reference voltage V refH controlled by the reference voltage controller 23. Therefore, the drive signal Sa1 when the reference voltage V HB is selected is turned on for a period equal to the on period t1 of the first drive signal Sa.
  • the driving signals Sa1 after the reference voltage V HA and V HC is selected the power supply voltage Vs becomes the second waveform in the form obtained by dividing the driving signal Sa into a plurality to be detected when the positive electrode.
  • the width of the drive signal Sa1 when the reference voltage V HC is selected wider than the width of the drive signal Sa1 when the reference voltage V HA is selected.
  • the reference voltage control unit 23 selects the reference voltage V HB having a value higher than the reference voltage V HA so as to limit the value of the power supply current Is. Can be turned off in a pseudo manner. Further, when the reference voltage control unit 23 selects the reference voltage V HA at the time of Y1, the peak value of the power supply current Is can be kept within the current control range w1 having the reference voltage V HA as the center value. Furthermore, when the reference voltage control unit 23 selects the reference voltage V HC at Y3, the peak value of the power supply current Is can be kept in the current control range w2 higher than the value of the current control range w1.
  • the peak value of the power supply current Is can be kept within the current control range w2 having the reference voltage VHC as the center value. As a result, a power supply current Is close to a sine wave is obtained, and the power supply current Is near the peak value of the positive power supply voltage Vs easily flows.
  • the pulse converter 22 When the power supply voltage Vs is negative, the pulse converter 22 does not perform the pulse division operation with the positive reference voltage VrefH . Therefore, after the reference voltage V HC is selected when the power supply voltage Vs is positive, the timing for switching to the reference voltage V HB may be the power zero cross point after one cycle has elapsed from the timing of X1, or 1 when positive. It may be the timing after one cycle has elapsed from the timing when the first drive signal Sa rises.
  • Reference voltage control unit 23 when the power supply voltage Vs is determined to the negative electrode, until the point of Y2 selects the reference voltage V LA, the reference voltage is selected V LB at the time of Y2. Further, the reference voltage control unit 23 selects the reference voltage V LC at the time point Y4. That is, when the power supply voltage Vs is negative, the reference voltage control unit 23 maintains the negative reference voltage V refL at a low value until the falling edge of the first drive signal Sa is detected. In addition, the reference voltage control unit 23 changes the value of the negative reference voltage V refL in the off period between the first drive signal Sa and the second drive signal Sa. Further, the reference voltage control unit 23 changes the value of the negative reference voltage V refL in the direction of decreasing the second on period t2, that is, the on period of the drive signal Sa.
  • the pulse converter 22 controls the switching frequency of the drive signal Sa1 corresponding to the negative reference voltage V refL controlled by the reference voltage controller 23. Therefore, the drive signal Sa1 when the reference voltage VLA is selected is turned on for a period equal to the on period t1 of the first drive signal Sa.
  • the drive signal Sa1 after the selection of the reference voltages VLB and VLC has a waveform obtained by dividing the second drive signal Sa detected when the power supply voltage Vs is negative into a plurality of parts.
  • the width of the drive signal Sa1 when the reference voltage VLC is selected is wider than the width of the drive signal Sa1 when the reference voltage VLB is selected.
  • the reference voltage control unit 23 selects the reference voltage V LB of a value higher than the reference voltage V LA, limits the value of the supply current Is The operation can be turned off in a pseudo manner. Further, when the reference voltage control unit 23 selects the reference voltage V LB at the time of Y2, the peak value of the power supply current Is can be kept within the current control range w1 having the reference voltage V LB as the center value. Further, when the reference voltage control unit 23 selects the reference voltage V LC at the time point Y4, the peak value of the power supply current Is can be set in the current control range w2 having a value higher than the absolute value of the current control range w1.
  • the peak value of the power supply current Is can be kept within the current control range w2 having the reference voltage VLC as the center value. As a result, a power supply current Is close to a sine wave is obtained, and the power supply current Is near the peak value of the negative power supply voltage Vs easily flows.
  • the pulse converter 22 does not perform the pulse division operation with the negative reference voltage VrefL . Therefore, after the reference voltage VLC is selected when the power supply voltage Vs is negative, the timing for switching to the reference voltage VHA may be the power supply zero-cross point after one cycle has elapsed from the timing of X2, or 1 when the power supply voltage Vs is negative. It may be the timing after one cycle has elapsed from the timing when the first drive signal Sa rises.
  • the power supply current Is closer to a sine wave can be obtained. Therefore, the power supply current Is near the peak value of the positive or negative power supply voltage Vs can easily flow.
  • the variable number of the reference voltage V ref is three has been described. However, the variable number of the reference voltage V ref is not limited to three, and may be four or more.
  • the reference voltage control unit 23 selects the reference voltage V HC at the time point Y3 in the second on-period t2, and then further increases the reference voltage V By selecting a reference voltage higher than HC and lower than the reference voltage V HB , a positive power supply current Is closer to a sine wave can be obtained.
  • the reference voltage control unit 23 selects the reference voltage VLC at the time point Y4 in the second on-period t2, and then is lower than the reference voltage VLC.
  • a negative power supply current Is closer to a sine wave can be obtained.
  • the reference voltage V ref which is a threshold value for controlling the value of the power source current Is of the AC power source 1, is changed every half cycle of the AC power source 1.
  • the reference voltage V ref may be varied only when the polarity is one, for example, the positive electrode.
  • the short-circuit unit 30 is controlled using the power supply current Is detected by the current detection unit 7 , but the present invention is not limited to this.
  • the power supply current Is and the drive signal Sa1 that is a plurality of switching pulses are associated with each other, and the corresponding relationship is held in the external input or the control unit 20 so that the short circuit unit is detected without detecting the power supply current Is. 30 controls are possible.
  • the necessity of detection of the power supply current Is may be selected according to the system specifications to be constructed.
  • the drive signal Sa1 is generated by a hysteresis comparator configured by hardware.
  • the hysteresis comparator may be configured by software. Even when configured by software, the same effect can be obtained.
  • the hysteresis comparator is preferably configured by hardware from the viewpoint of reducing the load.
  • the power converter device 100 of Embodiment 1, 2 is a structure which produces
  • the control unit 20 may directly detect the value of the power supply current Is and generate the drive signal Sa1.
  • the power conversion device 100 includes the rectifier circuit 3 that converts AC power from the AC power source 1 into DC power, and the AC power source 1 and the rectifier circuit 3.
  • a short-circuit unit 30 that short-circuits the AC power source 1 via the connected reactor 2, and a control unit 20 that generates a drive signal Sa that is a plurality of switching pulses that control the short-circuit unit 30 during a half cycle of the AC power source 1.
  • the control unit 20 varies the reference voltage V ref that is a threshold value for limiting the value of the power supply current Is of the AC power supply 1 in a stepwise manner during an on period or an off period of the plurality of drive signals Sa.
  • the DC output voltage Vdc can be boosted while suppressing the peak of the power supply current Is as compared with the conventional simple switching converter. Moreover, since the peak of the power supply current Is can be suppressed, distortion of the power supply current Is when the short-circuit portion 30 is turned on can be suppressed, and harmonic components can be suppressed. In addition, since the peak of the power supply current Is can be suppressed, the passing period of the power supply current Is can be extended, and the power factor can be improved. In addition, since the peak of the power supply current Is can be suppressed, an increase in capacity of the filter circuit and other components that constitute the AC power supply 1 can be suppressed, and an increase in cost can be suppressed.
  • the design of the setting time of each switching pulse becomes unnecessary, and the current upper limit corresponding to the positive and negative electrodes Since threshold design at the lower limit is possible, control design is relatively easy.
  • the design load can be reduced because control can be performed with a suitable number of switching times and pulse timing regardless of the load condition.
  • the reference voltage V ref can be changed during the half cycle of the power supply. Therefore, the power supply current Is can be changed as compared with the case where the reference voltage V ref is not changed.
  • the degree of freedom of control can be increased.
  • a part of the processing in the control unit 20 is performed by a hysteresis comparator, thereby reducing the calculation load in the control unit 20 and without excessively generating heat of the apparatus.
  • the system can be driven with high reliability in a safe operating area.
  • the processing capacity of the central processing unit is high, the system can be driven with high reliability without using the hysteresis comparator.
  • the component mounting area can be reduced.
  • the reference voltage V ref by changing the reference voltage V ref , an excessive increase in switching pulses can be prevented and generated noise can be suppressed.
  • the pulse division operation can be restricted only to a specific region. Therefore, noise caused by the switching operation can be reduced.
  • control unit 20 of the first and second embodiments may be configured to divide and output the drive signal Sa that is a switching pulse based on the reference voltage V ref that is a threshold.
  • the control unit 20 is close to a sine wave. The power supply current Is is obtained, and the power supply current Is near the peak value of the positive power supply voltage Vs easily flows.
  • control unit 20 may be configured such that the threshold value is varied in an off section between one switching pulse and another switching pulse among the switching pulses.
  • fluctuations in the power supply current Is can be suppressed, and the calculation load on the control unit 20 is reduced as compared with the case where the threshold value is varied in both the off period and the on period, and power conversion is performed by a relatively inexpensive central processing unit.
  • the device 100 can be manufactured.
  • control unit 20 varies the threshold in the ON period of the switching pulse generated after the OFF period between one switching pulse and the other switching pulse.
  • the structure to do may be sufficient. With this configuration, fluctuations in the power supply current Is can be suppressed, and the calculation load on the control unit 20 is reduced as compared with the case where the threshold value is varied in both the off period and the on period, and power conversion is performed by a relatively inexpensive central processing unit.
  • the device 100 can be manufactured.
  • control part 20 of Embodiment 1, 2 may be the structure which varies the reference voltage Vref which is a threshold value for every period of AC power supply 1.
  • Vref the reference voltage
  • FIG. 1 With this configuration, fluctuations in the power supply current Is can be suppressed, and the calculation load on the control unit 20 is reduced as compared with the case where the threshold value is varied every half cycle of the AC power supply 1, and power conversion is performed with a relatively inexpensive central processing unit.
  • the device 100 can be manufactured.
  • control part 20 of Embodiment 1, 2 may be the structure which varies the reference voltage Vref which is a threshold only when the alternating current power supply 1 is a positive electrode or a negative electrode. With this configuration, the calculation load in the control unit 20 is reduced as compared with the case where the threshold value is varied every half cycle of the AC power supply 1.
  • this invention is useful for the power converter device provided with the short circuit part which short-circuits AC power supply.

Abstract

 電力変換装置100は、交流電源1からの交流電力を直流電力に変換する整流回路3と、交流電源1と整流回路3との間に接続されたリアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に、短絡部30を制御する複数の駆動信号Saを生成する制御部20と、平滑コンデンサ4とを備え、制御部20は、複数の駆動信号Saのオン区間またはオフ区間で、交流電源1の電源電流の値を制限する閾値を段階的に可変する。

Description

電力変換装置
 本発明は、交流電力を直流電力に変換する電力変換装置に関する。
 下記特許文献1に示される従来技術では、電源力率を改善し入力電流に含まれる高調波成分を低減する力率改善回路が開示され、全波整流モードまたは倍電圧整流モードを選択すると共に、短絡素子の短絡開始時期と短絡時間をオープンループにて制御することで力率改善機能と昇圧機能を実現するものである。すなわち、下記特許文献1の従来技術は、整流回路切換用スイッチのオンオフにより整流回路を全波整流モードまたは倍電圧整流モードに制御し、力率改善回路の直流出力電圧を大きく2段階に分け、この2段階に分けた領域を更に短絡素子のオープンループでの短絡可変制御により、力率改善なしと力率改善ありの2段階に分けることにより、全体で4段階の直流出力電圧領域を構成し、これにより直流出力電圧の出力範囲を拡大しつつ、高負荷側での力率を改善することができる。
 また、下記特許文献2に示される従来技術は、負荷に対応して設定された直流出力電圧基準値と平滑コンデンサの端子間電圧との偏差値に対応して直流電圧制御信号を出力する直流電圧制御部を設け、また、直流電圧制御部からの制御信号と交流電源に同期した正弦波状の同期信号との積から電流基準信号を出力する電流基準演算部を設ける。この電流基準信号と整流素子の交流側電流とを比較することでスイッチ素子を高周波でオンオフ制御し、交流入力電流を正弦波状に制御しながら直流出力電圧を所望の値に制御するものであり、電源力率を1とし、高調波の発生を抑制することができる。
特開平11-206130号公報 特許第2140103号明細書
 しかしながら、上記特許文献1,2の従来技術によれば短絡素子の制御パターンが限定される。すなわちこれらの従来技術では、全負荷領域において電流をフィードバックする高周波スイッチングモードと、電流オープンループ制御の部分スイッチングモードとの何れかに短絡素子の制御パターンが限定される。従って、これらの従来技術は低負荷領域において直流出力電圧が昇圧し過ぎるのを避けるために短絡素子を動作させず、力率改善が行われない。そのため、低負荷領域では入力電流の波形歪みが大きく、高調波成分を多く含む電流がリアクトルを流れてしまい、リアクトル鉄損が増大し、これにより力率改善回路の交直変換効率が低下してしまう。
 また、上記特許文献1の従来技術において力率改善を行う際の短絡素子の短絡制御は、短絡開始時期および短絡時間をオープンループにて制御し、電源周期に対し一定区間だけ短絡動作を行う部分スイッチング方式であるため、力率改善および直流出力電圧の昇圧ができるものの、高調波発生量が多くなる高負荷側では効果が小さい。そのため、今後の高調波規制強化に伴い、従来技術にて充分な力率改善効果すなわち高調波抑制能力を得るためには、大きなインダクタンス値を有するリアクトルを必要とし、そのため、交直変換効率の低下、回路の大型化、コストアップを招くという問題が生じる。また、高調波発生量を一定レベルに抑制しつつ直流出力電圧を昇圧する場合、昇圧能力に限界があるため、高負荷側での運転が不安定になったり、高負荷側での安定運転を考えると負荷の選択幅が狭くなったりしてしまう。
 本発明は、上記に鑑みてなされたものであって、負荷の運転領域全体に渡り高効率化を図りながら、高昇圧性能と高調波規格を満たすことができる電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流電源からの交流電力を直流電力に変換する整流回路と、前記交流電源と前記整流回路との間に接続されたリアクタを介して前記交流電源を短絡する短絡部と、前記交流電源の半周期中に、前記短絡部を制御する複数のスイッチングパルスを生成する制御部と、を備え、前記制御部は、前記各スイッチングパルスのオン区間またはオフ区間で、前記交流電源の電源電流の値を制限する閾値を段階的に可変する。
 この発明によれば、閾値を段階的に可変することで交流電源の半周期中における電源電流のピークが抑制され、負荷の運転領域全体に渡り高効率化を図りながら、高昇圧性能と高調波規格を満たすことができる、という効果を奏する。
図1は、本発明の実施の形態1に係る電力変換装置の構成例を示す図である。 図2は、パルス制御用基準電圧生成回路の第1の構成図である。 図3は、パルス制御用基準電圧生成回路の第2の構成図である。 図4は、リアクタ、短絡部、整流回路、および平滑コンデンサから成る簡易回路を示す図である。 図5は、部分スイッチングパルスモードで交流電源の正極側半周期に短絡素子を1回スイッチングさせたときの電源電流の波形を示す図である。 図6は、パルス変換部でパルス変換が行われていない場合の動作の説明図である。 図7は、パルス変換部でパルス変換が行われている場合の動作の説明図である。 図8は、電流制御範囲を広げた状態を示す図である。 図9は、電流制御範囲を狭めた状態を示す図である。 図10は、駆動信号のオン期間よりも短い期間でパルス変換を行う場合の動作の説明図である。 図11は、電源電圧のゼロクロスからの経過時間に対応して基準電圧を可変する場合の動作の説明図である。 図12は、パルス変換部の構成例を示す図である。 図13は、図12に示されるパルス変換部を用いた場合の動作の説明図である。 図14は、電源電圧の半周期中に駆動信号が2回スイッチングしている場合の動作を説明するための図である。 図15は、本発明の実施の形態2に係る電力変換装置の構成例を示す図である。 図16は、本発明の実施の形態2に係る電力変換装置の動作を説明するための図である。
 以下に、本発明に係る電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る電力変換装置100の構成例を示す図である。図2は、パルス制御用基準電圧生成回路の第1の構成図である。図3は、パルス制御用基準電圧生成回路の第2の構成図である。図4は、リアクタ2、短絡部30、整流回路3、および平滑コンデンサ4から成る簡易回路を示す図である。図5は、部分スイッチングパルスモードで交流電源1の正極側半周期に短絡素子32を1回スイッチングさせたときの電源電流Isの波形を示す図である。図6は、パルス変換部22でパルス変換が行われていない場合の動作の説明図である。図7は、パルス変換部22でパルス変換が行われている場合の動作の説明図である。図8は、電流制御範囲を広げた状態を示す図である。図9は、電流制御範囲を狭めた状態を示す図である。図10は、駆動信号Saのオン期間tよりも短い期間でパルス変換を行う場合の動作の説明図である。図11は、電源電圧Vsのゼロクロスからの経過時間に対応して基準電圧Vrefを可変する場合の動作の説明図である。図12は、パルス変換部22の構成例を示す図である。図13は、図12に示されるパルス変換部22を用いた場合の動作の説明図である。図14は、電源電圧Vsの半周期中に駆動信号Saが2回スイッチングしている場合の動作の説明図である。
 図1に示す電力変換装置100は、交流電源1から供給される交流電圧に基づいて直流電圧を生成し、図3に示す直流負荷10に対して供給するものであり、リアクタ2、整流回路3、平滑コンデンサ4、直流電圧検出部5、電源電圧検出部6、電流検出手段9、制御部20、パルス伝達部24、および短絡部30を備える。
 リアクタ2は、整流回路3の一方の入力端と交流電源1との間に挿入されている。整流回路3はリアクタ2を介して交流電源1に接続されており、交流電源1の交流電圧を直流電圧に変換する。図示例の整流回路3は4つのダイオードを組み合わせたダイオードブリッジで構成されているが、これに限定されるものではなく、ダイオード接続された単方向導通素子である金属酸化膜半導体電界効果トランジスタを組み合わせて構成してもよい。
 整流回路3の出力端間には平滑コンデンサ4が接続されており、平滑コンデンサ4は整流回路3から出力された全波整流波形の電圧を平滑化する。平滑コンデンサ4の両端には直流負荷10が並列に接続されている。
 電流検出手段9は電流検出素子8および電流検出部7から成る。電流検出素子8はリアクタ2と整流回路3の間に接続され、接続位置における電流値を検出する。電流検出素子8には一例でカレントトランスまたはシャント抵抗が用いられる。電流検出部7は、増幅器あるいはレベルシフト回路で実現され、電流検出素子8で検出された電流に正比例した電圧を、制御部20が取り扱い可能な低圧範囲内の電流検出電圧Visに変換して出力する。直流電圧検出部5は、増幅器あるいはレベルシフト回路で実現され、平滑コンデンサ4の両端電圧を検出し、検出された電圧を制御部20が取り扱い可能な低圧範囲内の電圧検出値に変換して出力する。
 双方向スイッチである短絡部30は、リアクタ2を介して交流電源1に並列に接続されたダイオードブリッジ31と、ダイオードブリッジ31の両出力端に接続された短絡素子32とから構成される。短絡素子32が金属酸化膜半導体電界効果トランジスタである場合、短絡素子32のゲートはパルス伝達部24に接続され、パルス伝達部24からのゲート駆動信号である駆動信号Sa2によって短絡素子32がオンオフする構成であり、短絡素子32がオンされたとき、リアクタ2およびダイオードブリッジ31を介して交流電源1が短絡する。
 制御部20は、駆動信号生成部21、パルス変換部22、および基準電圧制御部23を有し、マイコンまたはセントラルプロセッシングユニットで構成される。
 駆動信号生成部21は、直流電圧検出部5で検出された直流出力電圧Vdcの値、および電源電圧検出部6で検出された電源電圧Vsの値に基づいて、短絡部30の短絡素子32を制御する複数のスイッチングパルスである駆動信号Saを生成する。
 また駆動信号生成部21は、交流電源1の電源電流Isの値を制限する閾値であるヒステリシス基準電圧を生成する。以下の説明ではヒステリシス基準電圧を基準電圧Vrefと称し、基準電圧Vrefは、交流電源1の電源電流Isの値を制限する閾値である。実施の形態1の駆動信号生成部21で生成される基準電圧Vrefは基準電圧VHA、基準電圧VHB、基準電圧VLA、基準電圧VLBである。基準電圧VHAおよび基準電圧VHBは正極側基準電圧VrefHであり、基準電圧VLAおよび基準電圧VLBは負極側基準電圧VrefLである。基準電圧VHBは、基準電圧VHAよりも高い値の基準電圧であり、基準電圧VLBは基準電圧VLAよりも高い値の基準電圧である。
 これらの基準電圧Vrefは、図2または図3に示される回路で生成される。図2の回路は、駆動信号生成部21のポート出力Sbであるパルス幅変調信号を、ローパスフィルタにより直流値に変換することによって、基準電圧Vrefを生成している。この場合、パルス幅変調信号のデューティ比を制御することにより、基準電圧Vrefの値をシームレスに可変することができ、この回路を用いて生成された基準電圧Vrefが、基準電圧VHA、基準電圧VHB、基準電圧VLA、基準電圧VLBとなる。
 図3の回路は、駆動信号生成部21のポート出力Sbで開閉器TRを駆動することにより、抵抗Rb、Rcの分圧比で基準電圧Vrefの値を段階的に可変することができ、この回路を用いて段階的に生成された基準電圧Vrefが、基準電圧VHA、基準電圧VHB、基準電圧VLA、基準電圧VLBとなる。なお、基準電圧Vrefを生成する回路は、これに限定されるものではなく、図2または図3に示す回路以外の既知の回路で生成してもよいし、制御部20の外部で生成されたこれらの基準電圧Vrefを用いてもよい。
 基準電圧制御部23は、駆動信号Saと、電源電圧検出部6で検出された電源電圧Vsと、駆動信号生成部21からの基準電圧Vrefとを入力し、電源電圧Vsの半周期に検出される複数の駆動信号Saのオン区間またはオフ区間で、基準電圧Vrefを段階的に可変する。基準電圧制御部23の詳細は後述する。
 パルス変換部22は、交流電源1の電源電流Isの目標制御範囲である電流制御範囲w内に、電源電流Isのピーク値を収めるスイッチングパルスを生成する。具体的には、パルス変換部22には、駆動信号生成部21からの基準電圧Vrefを中心値とする電流制御範囲wの上限閾値と下限閾値が設定されている。そして、パルス変換部22は、上限閾値と下限閾値との間に、駆動信号Saのオン期間tに検出される電源電流Isのピーク値を収めるため、駆動信号Saを複数のパルスに分割する。分割された駆動信号Saが駆動信号Sa1となる。なお、オン期間tは駆動信号Saがオンされてからオフされるまでの期間である。上限閾値は、短絡部30がオンとなったときに流れる短絡電流の上限を規制する閾値であり、下限閾値は、上限閾値より小さい値に設定された閾値である。パルス変換部22によるパルス分割動作は交流電源1の正極および負極で行われる。
 パルス伝達部24は、レベルシフト回路で構成され、ゲート駆動が行えるよう電圧レベルシフトを行い、駆動信号Sa1を駆動信号Sa2に変換して出力する。このようにして得られた駆動信号Sa2により、短絡部30の開閉動作が行われる。
 次に、実施の形態1の電力変換装置100の動作を説明する。まず、パルス変換部22がパルス変換を行っていないときの動作を説明する。なお、電流オープンループ制御において電源半周期に短絡部30を1回から複数回オンオフさせることを、部分スイッチングパルスモードと称する。
 図4には短絡部30のオンオフ時における電流経路が示されている。短絡部30がオンされたとき、交流電源1、リアクタ2、および短絡部30により閉回路が形成され、交流電源1がリアクタ2を介して短絡される。そのため、閉回路に電源電流Isが流れ、リアクタ2には(1/2)×LIで求められる磁気エネルギーが蓄積される。
 蓄積エネルギーは、短絡部30がオフされると同時に、直流負荷10側に放出されて整流回路3で整流されて平滑コンデンサ4に転送される。この一連の動作により、図5に示すような電源電流Isが流れ、力率改善無しのパッシブモードよりも電源電流Isの通電角を広げることができ、力率を改善できる。
 なお、部分スイッチングパルスモードでは、短絡部30の短絡開始時間と短絡継続時間を制御することで、リアクタ2に蓄積されるエネルギーを制御でき、直流出力電圧Vdcを無段階で昇圧させることができる。また、図5では、部分スイッチングパルスモードにおける動作の一例で、電源半周期中に短絡部30を1回スイッチングさせる場合のシングルパルスである駆動信号Sa1が示されているが、電源半周期中に短絡部30をスイッチングさせる回数は2回以上であってもよい。
 次に、パルス変換部22を動作させていないときの電源電流Isの波形と、パルス変換部22を動作させているときの電源電流Isの波形とを対比して説明する。
 図6には、駆動信号生成部21からのシングルパルスである駆動信号Saを複数のパルスに変換していないときの電源電流Isの波形が示されている。パルス変換部22でパルス変換が行われていない場合、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、駆動信号Saのオン期間tでは、駆動信号Sa1も駆動信号Saのオン期間tと等しい期間だけオンになる。従って、短絡素子32の短絡時間は、電源電圧Vsが昇圧する際に駆動信号Saのオン期間tに正比例して長くなり、図示例のように電源電流Isが増加する。そして電源電流Isが設定値に達したときに駆動信号Saがオフにされ、駆動信号Saがオフされたタイミングで駆動信号Sa1がオフとなる。
 このように短絡素子32の短絡時間を長くした場合、リアクタ2にはより多くのエネルギーを蓄積することができるものの、電源電流Isのピークが大きくなるため、力率の悪化、高調波成分の増加、回路損失の増加といった問題が生じる。
 図7には、駆動信号生成部21からのシングルパルスである駆動信号Saを複数のパルスに変換したときの電源電流Isの波形が示されている。パルス変換部22でパルス変換が行われている場合、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり電源電流Isが増加する。電源電流Isの増加に伴い、電流検出部7から出力される電流検出電圧Vis、すなわち電流検出部7で検出される電流検出値は上昇する。そして駆動信号Saがオンの期間中に電流検出値が上限閾値を超えたとき、パルス変換部22は駆動信号Sa1をオフにする。
 このことにより電源電流Isが低下して電流検出値が下降する。その後、駆動信号Saがオンの期間中に電流検出値が下限閾値を下回ったとき、パルス変換部22は再び駆動信号Sa1をオンにする。このことにより電源電流Isは再び増加して電流検出部7で検出される電流検出値が上昇する。
 このように、駆動信号Saのオン期間t内に、駆動信号Sa1のオンオフが繰り返される結果、駆動信号Saのオン期間t内の電源電流Isのピーク値は、電流制御範囲w内に制御される。従って、直流出力電圧Vdcを比較的高い値にまで昇圧させる場合でも、図7に示す駆動信号Saのオン期間t内の電源電流Isのピーク値は、駆動信号Sa1がオフされたときのピーク値よりも抑制される。
 なお、図8,9に示すように上限閾値と下限閾値を調整することにより、上述した駆動信号Saのオン期間t内における駆動信号Sa1のスイッチング回数が制御され、電源電流Isの波形を変化させることができる。図8に示す電流制御範囲w1は、図9に示す電流制御範囲w2よりも広く設定されている。このように上限閾値と下限閾値を調整することにより、リアクタ2、直流負荷10、および高調波規格に対応して性能を満たすことができる。
 ここまでの説明では、駆動信号Saのオン期間tと等しいパルス変換許可期間が設定されている例を説明したが、パルス変換許可期間は駆動信号Saのオン期間tと同じである必要性はなく、図10のように駆動信号Saのオン期間tよりも短い時間を、パルス変換許可期間t1に設定してもよい。
 図10の例によれば、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、このことにより電源電流Isが増加する。ただし、パルス変換許可期間t1に至る前の時点で電流検出値が上限閾値を超えた場合でもパルス変換部22ではパルス変換が行われず、パルス変換許可期間t1の開始を示すパルスがオンとなったとき、駆動信号Sa1がオフとなり電源電流Isが低下する。その後、パルス変換許可期間t1内において電流検出値が下限閾値を下回ったとき、パルス変換部22では駆動信号Sa1がオンされて電源電流Isが増加する。その後、パルス変換許可期間t1内において電流検出値が上限閾値を超えたとき、パルス変換部22では駆動信号Sa1がオフにされて再び電源電流Isが減少する。
 このように駆動信号Saのオン期間tよりも短いパルス変換許可期間t1が設定されている場合でも、パルス変換許可期間t1内における電源電流Isのピーク値は、電流制御範囲w内に制御される。その結果、駆動信号Saのオン期間tと等しいパルス変換許可期間が設定されている場合に比べて、駆動信号Sa1のスイッチング回数が低減され、素子の損失抑制による温度上昇の抑制とノイズの低減が可能である。
 ここまでの説明では基準電圧Vrefが電源半周期中で一定値となる構成例を説明したが、上限閾値および下限閾値は一定値である必要性はなく、図11のように、電源電圧Vsのゼロクロスからの経過時間に対応して基準電圧Vrefを可変させる構成でもよい。
 図11の構成例によれば、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、このことにより電源電流Isが増加する。そして、パルス変換部22ではゼロクロス時点から一定時間T1が経過するまでは、上限閾値1と下限閾値1とに従ってパルス変換が行われる。下限閾値1は上限閾値1よりも低い閾値である。その結果、一定時間T1の間では、電源電流Isのピーク値が電流制御範囲w1内に制御される。
 さらに、一定時間T1が経過した時点から一定時間T2が経過するまでの間では、電流制御範囲w1の基準電圧Vrefよりも高い基準電圧Vrefを中心とする上限閾値2と下限閾値2とに従ってパルス変換が行われる。上限閾値2は、上限閾値1よりも高い閾値であり、下限閾値2は、上限閾値2よりも低く、かつ、上限閾値1よりも高い閾値である。その結果、一定時間T2の間では、電源電流Isのピーク値が電流制御範囲w2内に制御される。
 さらに、一定時間T2が経過した時点から駆動信号Saがオフになる時点までの期間T3では、ゼロクロス時点から一定時間T1が経過するまでに設定された上限閾値および下限閾値と同じ値の上限閾値1および下限閾値1に従ってパルス変換が行われる。その結果、一定時間T3の間では、電源電流Isのピーク値が電流制御範囲w1内に制御される。
 このように構成することにより、特定次数の高調波成分が高調波規制値に対して多く発生している場合に、その大きさを低減することができる。
 次にパルス変換部22の構成例を説明する。図12に示すパルス変換部22は、正極側ヒステリシスコンパレータHCH、負極側ヒステリシスコンパレータHCL、および複数の論理ICで構成されている。
 正極側ヒステリシスコンパレータHCHには、電流検出部7の出力である電流検出電圧Visと、駆動信号生成部21からの正極側基準電圧VrefHとが入力される。負極側ヒステリシスコンパレータHCLには、電流検出電圧Visと、駆動信号生成部21からの負極側基準電圧VrefLとが入力される。
 なお、図1に示す電流検出部7は、電流検出素子8の出力段に設けられたレベルシフト回路および増幅器を有し、1/2Vd、すなわち低圧系電源Vdの半分の値を0アンペア相当とし、電流検出素子8で検出された交流の電流波形を電圧信号である電流検出電圧Visに変換して出力する。これにより図12のパルス変換部22では、電流極性によらず駆動信号Sa1を生成することが可能となる。
 次に図13を用いて、図12に示すパルス変換部22の動作を説明する。
 正極側ヒステリシスコンパレータHCHでは、(1)式で算出される正極側上限閾値VTHH(H)と、(2)式で算出される正極側下限閾値VTHH(L)と、正極側基準電圧VrefHとの関係により、正極側の電流制御範囲wに対応するヒステリシスΔが決まる。また、正極側ヒステリシスコンパレータHCHの出力は、NOT論理IC3で反転される。AND論理IC2’は、NOT論理IC3の出力と駆動信号SaとのANDをとり、正極側駆動信号SaHを出力する。なお、(1)式のVは低圧系電源を表し、(2)式のVOLはオペアンプの出力飽和電圧を表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 同様に、負極側ヒステリシスコンパレータHCLでは、(1)式で負極側上限閾値VTHL(H)が算出され、(2)式で負極側下限閾値VTHL(L)が算出される。
 負極側上限閾値VTHL(H)と負極側下限閾値VTHL(L)と負極側基準電圧VrefLとの関係により、負極側の電流制御範囲wに対応するヒステリシスΔが決まる。AND論理IC2では負極側ヒステリシスコンパレータHCLの出力と駆動信号SaとのAND論理がとられて負極側駆動信号SaLが出力される。そして、AND論理IC4では正極側駆動信号SaHと負極側駆動信号SaLのAND論理がとられ、AND論理の結果である駆動信号Sa1が出力される。
 図12のように複数のヒステリシスコンパレータを有するパルス変換部22を用いることにより、電流極性によらず駆動信号Sa1を生成することが可能となり、図13の電源電流Is、すなわち電流検出電圧Visの波形を制御することができる。従って短絡部30がオンとなったときに流れる短絡電流のピーク値を抑制しつつ、直流出力電圧Vdcを昇圧することが可能となる。
 また、図12のヒステリシスコンパレータは、抵抗R1,R2,R3の抵抗値を変化させることにより、ヒステリシスΔの幅を変更することができる。例えば抵抗R2または抵抗R2’に、スイッチと抵抗との直列回路を並列接続し、スイッチを開閉させることにより合成抵抗値を切替えることができる。
 次に、電源電圧Vsの半周期中に駆動信号Saが2回スイッチングしている場合の動作を説明する。
 図14には、電源電圧Vsの半周期中に駆動信号Saが2回スイッチングしたときの基準電圧、駆動信号Sa1、および電源電流Isの変化の様子が示されている。電源電圧Vsが正極のときの2つの駆動信号Saの内、1つ目の駆動信号Saがオンされてからオフされるまでの期間はオン期間t1であり、2つ目の駆動信号Saがオンされてからオフされるまでの期間はオン期間t2である。同様に、電源電圧Vsが負極のときに基準電圧制御部23で検出される2つの駆動信号Saのオン期間t1,t2も同様である。
 X1は、電源電圧Vsが負極から正極に変化するときの電源ゼロクロス点を表す。Y1は、電源電圧Vsが正極のときに検出される1つ目の駆動信号Saの立ち下がりエッジが検出された時点から一定時間経過した時点を表す。X2は、電源電圧Vsが正極から負極に変化するときの電源ゼロクロス点を表す。Y2は、電源電圧Vsが負極のときに検出される1つ目の駆動信号Saの立ち下がりエッジが検出された時点から一定時間経過した時点を表す。
 基準電圧制御部23が電源電圧Vsを正極と判定したときの動作を説明する。基準電圧制御部23は、電源電圧Vsが正極と判定したとき、Y1の時点までは基準電圧VHBを選択し、Y1の時点で基準電圧VHAを選択する。すなわち、基準電圧制御部23は、電源電圧Vsが正極のとき、1つ目の駆動信号Saの立ち下がりエッジを検出するまで、正極側基準電圧VrefHを高い値に維持する。また基準電圧制御部23は、1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間では、正極側基準電圧VrefHの値を下げる方向に変化させる。
 パルス変換部22は、基準電圧制御部23で変更された正極側基準電圧VrefHに対応して、駆動信号Sa1のスイッチング回数を制御する。そのため、基準電圧VHBが選択されているときの駆動信号Sa1は、1つ目の駆動信号Saのオン期間t1と等しい期間だけオンになる。
 一方、基準電圧VHAが選択された後の駆動信号Sa1は、電源電圧Vsが正極のときの2つ目の駆動信号Saを複数に分割した形の波形になる。具体的には1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間において、正極側基準電圧VrefHが下がる方向に変化したとき、2つ目の駆動信号Saが複数のスイッチングパルスに分割される。分割された複数のスイッチングパルス、すなわち複数の駆動信号Sa1はパルス伝達部24へ出力される。
 X1からY1までの期間では電源電流Isの値が小さいため、基準電圧制御部23が基準電圧VHAよりも高い値の基準電圧VHBを選択することにより、電源電流Isの値を制限する動作を、擬似的にオフにすることができる。また、基準電圧制御部23がY1の時点で基準電圧VHAを選択することにより、電源電流Isのピーク値を、基準電圧VHAを中心値とする電流制御範囲wに収めることができる。
 なお、電源電圧Vsが負極のときには、パルス変換部22では正極側基準電圧VrefHによるパルス分割動作は行われない。そのため、電源電圧Vsが正極のときに基準電圧VHAが選択された後、基準電圧VHBへ切り換えるタイミングは、X1のタイミングから1周期経過後の電源ゼロクロス点でもよいし、正極のときの1つ目の駆動信号Saが立ち上がったタイミングから1周期経過後のタイミングでもよい。
 次に、基準電圧制御部23が電源電圧Vsを負極と判定したときの動作を説明する。基準電圧制御部23は、電源電圧Vsが負極と判定したとき、X2からY2までの期間では基準電圧VLAを選択し、Y2の時点で基準電圧VLBを選択する。すなわち、基準電圧制御部23は、電源電圧Vsが負極のとき、1つ目の駆動信号Saの立ち下がりエッジを検出するまでは負極側基準電圧VrefLを低い値に維持する。また基準電圧制御部23は、1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間では、負極側基準電圧VrefLの値を上げる方向に変化させる。
 パルス変換部22は、基準電圧制御部23で制御された負極側基準電圧VrefLに対応して駆動信号Sa1のスイッチング回数を制御する。そのため、基準電圧VLAが選択されているときの駆動信号Sa1は、1つ目の駆動信号Saのオン期間t1と等しい期間だけオンになる。
 一方、基準電圧VLBが選択された後の駆動信号Sa1は、電源電圧Vsが負極のときに検出される2つ目の駆動信号Saを複数に分割した形の波形になる。具体的には1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間で負極側基準電圧VrefLが上がる方向に変化したとき、2つ目の駆動信号Saが複数のスイッチングパルス、すなわち複数の駆動信号Sa1に分割される。分割された複数の駆動信号Sa1はパルス伝達部24へ出力される。
 X2からY2までの期間では電源電流Isの絶対値が小さいため、基準電圧制御部23が基準電圧VLBよりも低い値の基準電圧VLAを選択することにより、電源電流Isの値を制限する動作を、擬似的にオフにすることができる。また、基準電圧制御部23がY2の時点で基準電圧VLBを選択することにより、電源電流Isのピーク値を、基準電圧VLBを中心値とする電流制御範囲wに収めることができる。
 なお、電源電圧Vsが正極のとき、パルス変換部22では負極側基準電圧VrefLによるパルス分割動作は行われない。そのため、電源電圧Vsが負極のときに基準電圧VLBが選択された後、基準電圧VLAへ切り換えるタイミングは、X2のタイミングから1周期経過後の電源ゼロクロス点でもよいし、負極のときの1つ目の駆動信号Saが立ち上がったタイミングから1周期経過後のタイミングでもよい。
実施の形態2.
 図15は、本発明の実施の形態2に係る電力変換装置100の構成例を示す図である。図16は、本発明の実施の形態2に係る電力変換装置100の動作を説明するための図である。実施の形態1と異なる点は、正極側基準電圧VrefHである異なる値の3つの基準電圧が用いられ、負極側基準電圧VrefLである異なる値の3つの基準電圧が用いられている点である。実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
 実施の形態2の駆動信号生成部21で生成される基準電圧Vrefは、基準電圧VHA、基準電圧VHB、基準電圧VHC、基準電圧VLA、基準電圧VLB、および基準電圧VLCである。
 基準電圧VHA、基準電圧VHB、および基準電圧VHCは正極側基準電圧VrefHであり、基準電圧VLA、基準電圧VLB、および基準電圧VLCは負極側基準電圧VrefLである。基準電圧VHCは、基準電圧VHAよりも高く、かつ、基準電圧VHBよりも低い値の基準電圧であり、基準電圧VLCは、基準電圧VLAよりも高く、かつ、基準電圧VLBよりも低い値の基準電圧である。これらの基準電圧Vrefは、図2または図3に示される回路で生成される。
 次に、電源電圧Vsの半周期中に駆動信号Saが2回スイッチングしている場合の動作を説明する。
 図16に記される符号X1,X2,Y1,Y2は実施の形態1で説明した通りである。Y3は、Y1の時点から、電源電圧Vsが正極のときに検出される2つ目のオン期間t2が経過するまでの時点を表す。Y4は、Y2の時点から、電源電圧Vsが負極のときに検出される2つ目のオン期間t2が経過するまでの時点を表す。
 基準電圧制御部23が電源電圧Vsを正極と判定したときの動作を説明する。基準電圧制御部23は、電源電圧Vsが正極と判定したとき、Y1の時点までは基準電圧VHBを選択し、Y1の時点で基準電圧VHAを選択し、Y3の時点で基準電圧VHCを選択する。すなわち、基準電圧制御部23は、電源電圧Vsが正極のとき、1つ目の駆動信号Saの立ち下がりエッジを検出するまでは正極側基準電圧VrefHを高い値に維持する。また基準電圧制御部23は、1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間では、正極側基準電圧VrefHの値を下げる方向に変化させる。さらに基準電圧制御部23は、2つ目のオン期間t2、すなわち駆動信号Saのオン区間では、正極側基準電圧VrefHの値を上げる方向に変化させる。
 パルス変換部22は、基準電圧制御部23で制御された正極側基準電圧VrefHに対応して駆動信号Sa1のスイッチング回数を制御する。そのため、基準電圧VHBが選択されているときの駆動信号Sa1は、1つ目の駆動信号Saのオン期間t1と等しい期間だけオンになる。
 一方、基準電圧VHAとVHCが選択された後の駆動信号Sa1は、電源電圧Vsが正極のときに検出される2つ目の駆動信号Saを複数に分割した形の波形になる。図16では、基準電圧VHCが選択されているときの駆動信号Sa1の幅が、基準電圧VHAが選択されているときの駆動信号Sa1の幅よりも広くなる。
 X1からY1までの期間では電源電流Isの値が小さいため、基準電圧制御部23が基準電圧VHAよりも高い値の基準電圧VHBを選択することにより、電源電流Isの値を制限する動作を、擬似的にオフにすることができる。また、基準電圧制御部23がY1の時点で基準電圧VHAを選択することにより、電源電流Isのピーク値を、基準電圧VHAを中心値とする電流制御範囲w1に収めることができる。さらに基準電圧制御部23がY3の時点で基準電圧VHCを選択することにより、電源電流Isのピーク値を、電流制御範囲w1の値よりも高い電流制御範囲w2に収めることができる。すなわち電源電流Isのピーク値を、基準電圧VHCを中心値とする電流制御範囲w2に収めることができる。その結果、正弦波に近い電源電流Isが得られ、正極の電源電圧Vsのピーク値付近の電源電流Isが流れやすくなる。
 なお、電源電圧Vsが負極のとき、パルス変換部22では正極側基準電圧VrefHによるパルス分割動作は行われない。そのため、電源電圧Vsが正極のときに基準電圧VHCが選択された後、基準電圧VHBへ切り換えるタイミングは、X1のタイミングから1周期経過後の電源ゼロクロス点でもよいし、正極のときの1つ目の駆動信号Saが立ち上がったタイミングから1周期経過後のタイミングでもよい。
 次に、基準電圧制御部23が電源電圧Vsを負極と判定したときの動作を説明する。基準電圧制御部23は、電源電圧Vsが負極と判定したとき、Y2の時点までは基準電圧VLAを選択し、Y2の時点で基準電圧VLBを選択する。さらに、基準電圧制御部23は、Y4の時点で基準電圧VLCを選択する。すなわち、基準電圧制御部23は、電源電圧Vsが負極のとき、1つ目の駆動信号Saの立ち下がりエッジを検出するまでは負極側基準電圧VrefLを低い値に維持する。また基準電圧制御部23は、1つ目の駆動信号Saと2つ目の駆動信号Saとの間のオフ区間では、負極側基準電圧VrefLの値を上げる方向に変化させる。さらに基準電圧制御部23は、2つ目のオン期間t2、すなわち駆動信号Saのオン区間では、負極側基準電圧VrefLの値を下げる方向に変化させる。
 パルス変換部22は、基準電圧制御部23で制御された負極側基準電圧VrefLに対応して駆動信号Sa1のスイッチング回数を制御する。そのため、基準電圧VLAが選択されているときの駆動信号Sa1は、1つ目の駆動信号Saのオン期間t1と等しい期間だけオンになる。
 一方、基準電圧VLBとVLCが選択された後の駆動信号Sa1は、電源電圧Vsが負極のときに検出される2つ目の駆動信号Saを複数に分割した形の波形になる。図16では、基準電圧VLCが選択されているときの駆動信号Sa1の幅は、基準電圧VLBが選択されているときの駆動信号Sa1の幅よりも広くなる。
 X2からY2までの期間では電源電流Isの絶対値が小さいため、基準電圧制御部23が基準電圧VLAよりも高い値の基準電圧VLBを選択することにより、電源電流Isの値を制限する動作を、擬似的にオフにすることができる。また、基準電圧制御部23がY2の時点で基準電圧VLBを選択することにより、電源電流Isのピーク値を、基準電圧VLBを中心値とする電流制御範囲w1に収めることができる。さらに基準電圧制御部23がY4の時点で基準電圧VLCを選択することにより、電源電流Isのピーク値を、電流制御範囲w1の絶対値よりも高い値の電流制御範囲w2に収めることができる。すなわち電源電流Isのピーク値を、基準電圧VLCを中心値とする電流制御範囲w2に収めることができる。その結果、正弦波に近い電源電流Isが得られ、負極の電源電圧Vsのピーク値付近の電源電流Isが流れやすくなる。
 なお、電源電圧Vsが正極のとき、パルス変換部22では負極側基準電圧VrefLによるパルス分割動作は行われない。そのため、電源電圧Vsが負極のときに基準電圧VLCが選択された後、基準電圧VHAへ切り換えるタイミングは、X2のタイミングから1周期経過後の電源ゼロクロス点でもよいし、負極のときの1つ目の駆動信号Saが立ち上がったタイミングから1周期経過後のタイミングでもよい。
 実施の形態2の電力変換装置100によれば、より正弦波に近い電源電流Isが得られる。そのため、正極または負極の電源電圧Vsのピーク値付近の電源電流Isが流れやすくなる。なお、実施の形態2では、基準電圧Vrefの可変数が3つの例を説明したが、基準電圧Vrefの可変数は3つに限定されるものではなく4つ以上であってもよい。具体的には、正極の電源電圧Vsが検出されているとき、基準電圧制御部23は、2つ目のオン期間t2において、Y3の時点で基準電圧VHCを選択した後、さらに基準電圧VHCより高く、かつ、基準電圧VHBより低い基準電圧を選択することで、より正弦波に近い正極の電源電流Isが得られる。また、負極の電源電圧Vsが検出されているとき、基準電圧制御部23は、2つ目のオン期間t2において、Y4の時点で基準電圧VLCを選択した後、さらに基準電圧VLCより低く、かつ、基準電圧VLAより高い基準電圧を選択することで、より正弦波に近い負極の電源電流Isが得られる。
 なお、実施の形態1,2では、交流電源1の半周期毎に、交流電源1の電源電流Isの値を制御する閾値である基準電圧Vrefを可変させる構成であるが、交流電源1の一方の極性、例えば正極のときのみ基準電圧Vrefを可変させる構成でもよい。
 また、実施の形態1,2では、電流検出部7で検出された電源電流Isを用いて短絡部30を制御する例を説明したが、これに限定されるものではない。事前の試験により、電源電流Isと複数のスイッチングパルスである駆動信号Sa1とが対応付けられ、その対応関係を外部入力あるいは制御部20に保持させることによって、電源電流Isを検出することなく短絡部30の制御が可能である。このように電源電流Isの検出の要否は、構築するシステム仕様によって選択すればよい。
 また、実施の形態1,2では、ハードウェアで構成したヒステリシスコンパレータで駆動信号Sa1が生成されているが、ヒステリシスコンパレータはソフトウェアで構成してもよい。ソフトウェアで構成した場合でも同様の効果が得られるが、ハードウェアで構成した場合に比べて制御部20の負荷が高くなるため、負荷軽減の観点よりヒステリシスコンパレータはハードウェアで構成することが望ましい。
 また、実施の形態1,2の電力変換装置100は、制御部20の外部に設けられた電流検出手段9で検出された電流検出値を用いて駆動信号Sa1を生成する構成であるが、電流検出部7を用いずに直接、制御部20で電源電流Isの値を検出して駆動信号Sa1を生成する構成でもよい。
 以上に説明したように、実施の形態1,2に係る電力変換装置100は、交流電源1からの交流電力を直流電力に変換する整流回路3と、交流電源1と整流回路3との間に接続されたリアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に、短絡部30を制御する複数のスイッチングパルスである駆動信号Saを生成する制御部20と、を備え、制御部20は、複数の駆動信号Saのオン区間またはオフ区間で、交流電源1の電源電流Isの値を制限する閾値である基準電圧Vrefを段階的に可変する。
 この構成により、従来の簡易スイッチングコンバータに比べて、電源電流Isのピークを抑えながら直流出力電圧Vdcを昇圧させることができる。また、電源電流Isのピークを抑制することができるため、短絡部30がオンとなったときの電源電流Isのひずみを抑制することができ、高調波成分を抑制することが可能である。また、電源電流Isのピークを抑制することができるため、電源電流Isの通流期間を拡張することができ、力率を向上させることが可能である。また、電源電流Isのピークを抑制することができるため、交流電源1を構成するフィルタ回路および他の部品の容量増加を抑制することができ、コストアップを抑制することが可能である。また、実施の形態1,2の電力変換装置100によれば、電源半周期で複数回スイッチングを実施させる場合にも、各スイッチングパルスの設定時間の設計が不要となり、正負極に対応する電流上限、下限での閾値設計が可能となるため、制御設計が比較的容易となる。また、実施の形態1,2の電力変換装置100によれば、負荷条件によらず好適なスイッチング回数およびパルスタイミングにて制御することができるため、設計負荷の低減が可能である。
 また、実施の形態1,2の電力変換装置100によれば、電源半周期中に基準電圧Vrefを変化させることができるため、基準電圧Vrefを変化させない場合に比べて、電源電流Isの制御の自由度を高めることができる。また、セントラルプロセッシングユニットの処理能力がそれほど高くない場合は、制御部20における処理の一部をヒステリシスコンパレータで行うことにより、制御部20における演算負荷が軽減され、過度に装置の発熱を伴うことなく安全な動作領域で信頼性高くシステムを駆動させることができる。一方、セントラルプロセッシングユニットの処理能力が高い場合は、ヒステリシスコンパレータを用いずに信頼性高くシステムを駆動させることができる。この場合、部品の実装面積は少なくて済む。以上より、使用するセントラルプロセッシングユニットの処理能力に応じた最適な電力変換装置100を制作することが可能である。また基準電圧Vrefを変化させることにより、スイッチングパルスの過度な増加を防ぐことができ、発生ノイズを抑制することができる。また基準電圧Vrefを変化させることで、特定の領域のみにパルス分割動作を規制することができる。そのため、スイッチング動作に起因する騒音を低減することができる。
 また、実施の形態1,2の制御部20は、閾値である基準電圧Vrefに基づいてスイッチングパルスである駆動信号Saを分割して出力する構成でもよく、この構成の場合、正弦波に近い電源電流Isが得られ、正極の電源電圧Vsのピーク値付近の電源電流Isが流れやすくなる。
 また、実施の形態1,2の制御部20は、各スイッチングパルスの内の、一のスイッチングパルスと他のスイッチングパルスとの間のオフ区間で、閾値を可変する構成でもよい。この構成により、電源電流Isの変動を抑制できると共に、オフ区間とオン区間の双方で閾値を可変する場合に比べて制御部20における演算負荷が軽減され、比較的安価なセントラルプロセッシングユニットで電力変換装置100を製作することが可能である。
 また、実施の形態1,2の制御部20は、各スイッチングパルスの内の、一のスイッチングパルスと他のスイッチングパルスとの間のオフ区間の後に発生するスイッチングパルスのオン区間で、閾値を可変する構成でもよい。この構成により、電源電流Isの変動を抑制できると共に、オフ区間とオン区間の双方で閾値を可変する場合に比べて制御部20における演算負荷が軽減され、比較的安価なセントラルプロセッシングユニットで電力変換装置100を製作することが可能である。
 また、実施の形態1,2の制御部20は、交流電源1の1周期毎に、閾値である基準電圧Vrefを可変する構成でもよい。この構成により、電源電流Isの変動を抑制できると共に、交流電源1の半周期毎に閾値を可変する場合に比べて制御部20における演算負荷が軽減され、比較的安価なセントラルプロセッシングユニットで電力変換装置100を製作することが可能である。
 また、実施の形態1,2の制御部20は、交流電源1が正極または負極のときのみ閾値である基準電圧Vrefを可変する構成でもよい。この構成により、交流電源1の半周期毎に閾値を可変する場合に比べて、制御部20における演算負荷が軽減される。
 以上のように、本発明は、交流電源を短絡する短絡部を備えた電力変換装置に有用である。
 1 交流電源、2 リアクタ、3 整流回路、4 平滑コンデンサ、5 直流電圧検出部、6 電源電圧検出部、7 電流検出部、8 電流検出素子、9 電流検出手段、10 直流負荷、20 制御部、21 駆動信号生成部、22 パルス変換部、23 基準電圧制御部、24 パルス伝達部、30 短絡部、31 ダイオードブリッジ、32 短絡素子、100 電力変換装置。

Claims (8)

  1.  交流電源からの交流電力を直流電力に変換する整流回路と、
     前記交流電源と前記整流回路との間に接続されたリアクタを介して前記交流電源を短絡する短絡部と、
     前記交流電源の半周期中に、前記短絡部を制御する複数のスイッチングパルスを生成する制御部と、
     を備え、
     前記制御部は、前記各スイッチングパルスのオン区間またはオフ区間で、前記交流電源の電源電流の値を制限する閾値を段階的に可変する電力変換装置。
  2.  前記制御部は、前記閾値に基づいて前記各スイッチングパルスを分割して出力する請求項1に記載の電力変換装置。
  3.  前記制御部は、前記各スイッチングパルスの内の、一のスイッチングパルスと他のスイッチングパルスとの間の前記オフ区間で前記閾値を可変する請求項1または2に記載の電力変換装置。
  4.  前記制御部は、前記オフ区間の後に発生するスイッチングパルスの前記オン区間で前記閾値を可変する請求項3に記載の電力変換装置。
  5.  前記制御部は、前記交流電源の1周期毎に、前記閾値を可変する請求項1から4の何れか1項に記載の電力変換装置。
  6.  前記制御部は、前記交流電源が正極または負極のときのみ、前記閾値を可変する請求項1から5の何れか1項に記載の電力変換装置。
  7.  前記制御部には、前記各スイッチングパルスと前記電源電流との対応関係が設定され、
     前記制御部は、前記対応関係を用いて前記短絡部を制御する請求項1から6の何れか1項に記載の電力変換装置。
  8.  前記制御部は、前記制御部の外部に設けられた電流検出手段で検出された電源電流を用いて前記短絡部を制御し、または、前記電流検出手段を用いずに直接前記電源電流を検出して前記短絡部を制御する請求項1から6の何れか1項に記載の電力変換装置。
PCT/JP2014/068235 2014-07-08 2014-07-08 電力変換装置 WO2016006045A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14897183.1A EP3168974B1 (en) 2014-07-08 2014-07-08 Power conversion device
JP2016532825A JP6279080B2 (ja) 2014-07-08 2014-07-08 電力変換装置
US15/129,112 US9941810B2 (en) 2014-07-08 2014-07-08 Power conversion device for converting AC power into DC power
PCT/JP2014/068235 WO2016006045A1 (ja) 2014-07-08 2014-07-08 電力変換装置
CN201480079357.1A CN106464150B (zh) 2014-07-08 2014-07-08 电力转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068235 WO2016006045A1 (ja) 2014-07-08 2014-07-08 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016006045A1 true WO2016006045A1 (ja) 2016-01-14

Family

ID=55063720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068235 WO2016006045A1 (ja) 2014-07-08 2014-07-08 電力変換装置

Country Status (5)

Country Link
US (1) US9941810B2 (ja)
EP (1) EP3168974B1 (ja)
JP (1) JP6279080B2 (ja)
CN (1) CN106464150B (ja)
WO (1) WO2016006045A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006045A1 (ja) * 2014-07-08 2017-04-27 三菱電機株式会社 電力変換装置
EP3410594A4 (en) * 2016-01-28 2019-01-23 Mitsubishi Electric Corporation ELECTRICAL CONVERTER
CN110474527A (zh) * 2019-08-15 2019-11-19 海信(山东)空调有限公司 三相电功率因素矫正的变频装置及其控制方法、空调器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002319A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 電力変換装置
JP6410832B2 (ja) * 2014-09-26 2018-10-24 三菱電機株式会社 電力変換装置
US9866140B2 (en) * 2014-09-30 2018-01-09 Mitsubishi Electric Corporation AC/DC power converting apparatus with AC source shortcircuiting for power factor correction and harmonic suppression
DE102017104994A1 (de) * 2017-03-09 2018-09-13 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines induktiven Leitfähigkeitsmessgeräts und diesbezügliches induktives Leitfähigkeitsmessgerät
CN108631579B (zh) * 2018-06-12 2019-12-20 漳州科华技术有限责任公司 一种ups及其直流母线电压调整方法、系统、设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153543A (ja) * 2001-11-07 2003-05-23 Mitsubishi Electric Corp 電力供給装置、電動機駆動装置、電力供給装置の制御方法
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置
JP2009100499A (ja) * 2007-10-15 2009-05-07 Sharp Corp 直流電源装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789743B2 (ja) 1983-04-26 1995-09-27 株式会社東芝 整流電源回路
JPH0447387U (ja) 1990-08-24 1992-04-22
JPH11206130A (ja) 1998-01-16 1999-07-30 Toshiba Corp 電源装置
EP1022844A3 (en) * 1999-01-19 2002-04-17 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
US7723964B2 (en) 2004-12-15 2010-05-25 Fujitsu General Limited Power supply device
JP4992225B2 (ja) * 2005-11-04 2012-08-08 株式会社富士通ゼネラル 電源装置
KR101497062B1 (ko) * 2008-07-25 2015-03-05 페어차일드코리아반도체 주식회사 스위치 제어 장치, 스위치 제어 방법, 및 이를 이용하는 컨버터
KR101532423B1 (ko) * 2008-10-31 2015-07-01 페어차일드코리아반도체 주식회사 역률 보상 회로 및 역률 보상 회로의 구동 방법
WO2010116706A1 (ja) 2009-04-08 2010-10-14 パナソニック株式会社 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機
JP5409152B2 (ja) 2009-07-14 2014-02-05 三菱重工業株式会社 電源装置
JP5316823B2 (ja) 2009-09-11 2013-10-16 株式会社村田製作所 Pfcコンバータ
JP5481165B2 (ja) 2009-11-06 2014-04-23 日立アプライアンス株式会社 直流電源装置およびこれを用いた空気調和機
CN103023299B (zh) * 2011-09-26 2015-05-20 南京博兰得电子科技有限公司 一种功率因数变换装置的控制方法
JP2013106455A (ja) 2011-11-15 2013-05-30 Hitachi Appliances Inc 直流電源装置およびこれを用いた空気調和機
CN103151912B (zh) * 2013-03-21 2015-05-06 成都芯源系统有限公司 一种功率因数校正电路及其控制电路和控制方法
JP6038293B2 (ja) * 2013-04-12 2016-12-07 三菱電機株式会社 電力変換装置
KR102129625B1 (ko) * 2013-08-30 2020-07-03 매그나칩 반도체 유한회사 기준 신호 생성 회로와 방법 및 이를 포함하는 역률 보상 회로
JP5868920B2 (ja) 2013-09-30 2016-02-24 三菱電機株式会社 電力変換装置
US20150318780A1 (en) * 2013-11-07 2015-11-05 Marco Antonio Davila Bridgeless PFC Using Single Sided High Frequency Switching
JP6147209B2 (ja) 2014-03-05 2017-06-14 三菱電機株式会社 電力変換装置
CN106464150B (zh) * 2014-07-08 2019-04-30 三菱电机株式会社 电力转换装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153543A (ja) * 2001-11-07 2003-05-23 Mitsubishi Electric Corp 電力供給装置、電動機駆動装置、電力供給装置の制御方法
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置
JP2009100499A (ja) * 2007-10-15 2009-05-07 Sharp Corp 直流電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168974A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006045A1 (ja) * 2014-07-08 2017-04-27 三菱電機株式会社 電力変換装置
EP3410594A4 (en) * 2016-01-28 2019-01-23 Mitsubishi Electric Corporation ELECTRICAL CONVERTER
CN110474527A (zh) * 2019-08-15 2019-11-19 海信(山东)空调有限公司 三相电功率因素矫正的变频装置及其控制方法、空调器

Also Published As

Publication number Publication date
EP3168974A4 (en) 2018-03-14
JPWO2016006045A1 (ja) 2017-04-27
US20170149352A1 (en) 2017-05-25
JP6279080B2 (ja) 2018-02-14
CN106464150B (zh) 2019-04-30
US9941810B2 (en) 2018-04-10
CN106464150A (zh) 2017-02-22
EP3168974A1 (en) 2017-05-17
EP3168974B1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
JP6279080B2 (ja) 電力変換装置
US9812975B2 (en) Resonant converter with capacitive mode control and associated control method
US10199819B2 (en) Resonant converter and driving method thereof
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP5868920B2 (ja) 電力変換装置
JP6147209B2 (ja) 電力変換装置
US20170054379A1 (en) Current resonant type dc voltage converter, control integrated circuit, and current resonant type dc voltage conversion method
JP6702010B2 (ja) スイッチング電源装置
EP3203626B1 (en) Power conversion device
JP2007104872A (ja) 電力変換器
JP2014082924A (ja) スイッチング電源装置
TW201005461A (en) Voltage regulator and control method thereof
JP6400103B2 (ja) 電力変換装置
CN108604867B (zh) 电力变换装置
JP2008193815A (ja) 電源装置
WO2017134794A1 (ja) 電力変換装置
JP6598874B2 (ja) 電力変換装置
JP6410832B2 (ja) 電力変換装置
JP2006101660A (ja) 電源装置およびこれを用いた空気調和機
WO2019064714A1 (ja) 電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897183

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014897183

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129112

Country of ref document: US

Ref document number: 2014897183

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016532825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE