WO2010116706A1 - 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機 - Google Patents

直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機 Download PDF

Info

Publication number
WO2010116706A1
WO2010116706A1 PCT/JP2010/002472 JP2010002472W WO2010116706A1 WO 2010116706 A1 WO2010116706 A1 WO 2010116706A1 JP 2010002472 W JP2010002472 W JP 2010002472W WO 2010116706 A1 WO2010116706 A1 WO 2010116706A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
current waveform
inverter
voltage
Prior art date
Application number
PCT/JP2010/002472
Other languages
English (en)
French (fr)
Inventor
京極章弘
土山吉朗
吉田泉
川崎智広
前田志朗
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080015686.1A priority Critical patent/CN102388528B/zh
Publication of WO2010116706A1 publication Critical patent/WO2010116706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention provides a DC power supply device that short-circuits / opens the AC power supply by a switching means via a reactor when an AC voltage from the AC power supply is converted into a DC voltage, and an inverter including the DC power supply device is driven.
  • the present invention relates to an inverter drive device and an air conditioner using the same.
  • a ripple current corresponding to the output voltage ripple flows through the smoothing capacitor, and this ripple current causes heat generation of the smoothing capacitor.
  • this ripple current In order to suppress this heat generation, it is necessary to suppress the ripple current flowing through the smoothing capacitor to an allowable value or less.
  • a DC power supply device capable of reducing the ripple current flowing in a smoothing capacitor without increasing the size of the capacitor is disclosed in, for example, Patent Document 1 (see FIG. 11).
  • This DC power supply apparatus chops the reactor 2 to which the AC power supply 1 is input, the rectifier circuit 5 that rectifies the output of the reactor 2, the smoothing capacitor 6 that smoothes the output of the rectifier circuit 5, and the output of the rectifier circuit 5.
  • a step-up chopper circuit including a switching element (switching means) 4 and a diode 8.
  • This DC power supply device adds an input voltage waveform of the AC power supply 1 (FIG. 12 (a)) and a voltage waveform (FIG. 12 (b)) set in advance by the function generator 21a or the like.
  • the boost chopper circuit is driven by the drive signal (FIG. 12 (c)) obtained by the addition by 21b, and an input current having a waveform as shown in FIG. 12 (d) is obtained.
  • the input current has a waveform as shown in FIG. 12D, the ripple current of the smoothing capacitor 6 can be reduced.
  • the above-described conventional DC power supply device includes many harmonic components in the input current.
  • a device whose power factor cannot be controlled to 1 and whose maximum output is limited by the current capacity of the outlet (or breaker) (hereinafter referred to as outlet capacity) is limited to such a DC power supply device.
  • outlet capacity the current capacity of the outlet (or breaker)
  • the chopper circuit is driven by a drive signal generated based on a waveform obtained by adding a predetermined voltage waveform to the voltage waveform of the AC power supply.
  • the ratio of the harmonic current included in the input current waveform changes.
  • the distortion rate of the input current becomes relatively large.
  • the present invention suppresses the average value of the ripple current flowing through the smoothing capacitor during the entire operation period without reducing the maximum output of the DC power supply device, and the power supply regardless of the AC power supply voltage.
  • An object of the present invention is to provide a direct current power supply device capable of keeping the content of harmonics below a certain value. Moreover, it aims at providing the inverter drive device which comprises this DC power supply device and drives an inverter, and an air conditioner using the same.
  • the direct-current power supply device which converts the alternating voltage from alternating current power supply into direct-current voltage is provided.
  • This DC power supply device includes a switching means for short-circuiting / opening the AC power supply via a reactor, a first current waveform pattern having a substantially sinusoidal shape, and a waveform pattern having a recess in a phase where the voltage of the AC power supply peaks.
  • a current waveform in which a plurality of current waveform patterns are stored including a second current waveform pattern having any of the characteristics of a waveform pattern in which a portion corresponding to a phase at which the voltage of the AC power supply reaches a peak is flattened
  • a storage unit a current waveform selection unit that selects one current waveform pattern from the current waveform storage unit according to a load; and the switching unit, wherein the current waveform of the input current from the AC power source is the current waveform selection unit.
  • a control unit that controls the current waveform to have a current waveform having an amplitude proportional to the selected current waveform pattern.
  • an inverter drive device in a second aspect, includes the DC power supply device according to the first aspect in which the load is an inverter load, and an inverter control unit that controls the inverter load.
  • an inverter drive device In a third aspect, an inverter drive device is provided.
  • the load is an inverter load
  • the DC power supply device according to the first aspect
  • an input current from the AC power source is equal to or less than a current limit value determined in advance according to the operating state of the inverter load
  • an inverter control unit for controlling the inverter.
  • the current waveform selection unit selects the first current waveform pattern when the current limit value determined according to the operation state of the inverter load is larger than a predetermined current threshold value, and sets the operation state of the inverter load. If the current limit value determined accordingly is smaller than the predetermined current threshold, the second current waveform pattern is selected.
  • an inverter drive device includes the DC power supply device according to the first aspect in which the load is an inverter load, and an inverter control unit that controls the inverter load.
  • the current waveform selection unit selects the first current waveform pattern when the drive frequency in the inverter control unit is higher than a predetermined frequency, and is determined according to the operating state of the inverter load. When the current limit value is smaller than the predetermined current threshold value, the second current waveform pattern is selected.
  • an air conditioner in the fifth aspect, includes the DC power supply device described in the first aspect.
  • an air conditioner in the sixth aspect, includes the inverter driving device described in the second aspect.
  • the substantially sinusoidal first current waveform pattern and the waveform pattern having a recess in the phase where the voltage of the AC power supply peaks, or the phase where the voltage of the AC power supply peaks are equivalent.
  • One current waveform pattern is selected from among a plurality of current waveform patterns including a second current waveform pattern having any of the characteristics of the waveform pattern having a flattened portion in accordance with the load.
  • the switching means is controlled so that the current waveform of the input current from the AC power source becomes a current waveform having an amplitude proportional to the current waveform pattern selected by the current waveform selection unit.
  • the power factor can be controlled to approximately 1 by adopting the first current waveform pattern having a substantially sinusoidal input current waveform.
  • the first current waveform pattern is sinusoidal, and the content of power supply harmonics is very small. Therefore, the maximum output of the DC power supply device can be increased to the outlet capacity limit.
  • the maximum power consumption value of the DC power supply device, and hence the mounted device can be designed low.
  • the input current waveform is a waveform pattern having a recess in the phase where the voltage of the AC power supply peaks, or the voltage of the AC power supply reaches a peak.
  • the ripple current of the smoothing capacitor can be reduced by adopting the second current waveform pattern having any of the characteristics of the waveform pattern in which the portion corresponding to the phase becomes flat.
  • the operation state with a sufficient input current occupies most of the entire operation period, but in the DC power supply device of this aspect, The ripple current of the smoothing capacitor can be reduced and the heat generation of the smoothing capacitor can be suppressed.
  • the switching means is controlled so that the current waveform of the input current from the AC power source becomes a current waveform having an amplitude proportional to the current waveform pattern selected by the current waveform selection unit. Power harmonic content does not change.
  • the average value of the ripple current flowing in the smoothing capacitor during the entire operation period is kept low without reducing the maximum output of the DC power supply device, and the AC power supply voltage Therefore, it becomes possible to keep the content of power harmonics below a certain value.
  • FIG. 1 is a diagram showing a circuit configuration of a DC power supply device according to Embodiment 1.
  • FIG. It is a figure (at the time of the 1st current waveform pattern selection) which shows the input current and DC voltage of the DC power unit concerning Embodiment 1, and the voltage of AC power supply. It is a figure which shows the input current and DC voltage of the DC power supply device which concern on Embodiment 1, and the voltage of AC power supply (at the time of the 2nd current waveform pattern selection). It is a figure which shows the input current and DC voltage of the DC power supply device which concern on Embodiment 1, and the voltage of AC power supply (another example at the time of a 2nd current waveform pattern selection).
  • FIG. 3 shows a method of selecting a current waveform pattern in the DC power supply device according to the first embodiment. It is a figure which shows another example of the selection method of the current waveform pattern in the DC power supply device which concerns on Embodiment 1.
  • FIG. It is a figure (except a control part) which shows the 1st another example about the circuit structure of the DC power supply device which concerns on Embodiment 1.
  • FIG. It is a figure which shows the 2nd another example about the circuit structure of the DC power supply device which concerns on Embodiment 1 (except a control part). It is a figure (except a control part) which shows the 3rd another example about the circuit structure of the DC power supply device which concerns on Embodiment 1.
  • FIG. 1 shows the structure of the inverter drive device which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the air conditioner provided with the inverter drive device which concerns on Embodiment 2.
  • FIG. It is a figure which shows the 1st example of the alternating voltage phase detection circuit 9 of the direct-current power supply device (inverter drive device) which concerns on Embodiment 3.
  • FIG. It is a figure which shows the output waveform from the circuit of the 1st example of the alternating voltage phase detection circuit 9 of the direct-current power supply device (inverter drive device) which concerns on Embodiment 3.
  • FIG. It is a figure which shows the 2nd example of the alternating voltage phase detection circuit 9 of the direct-current power supply device (inverter drive device) which concerns on Embodiment 3.
  • FIG. It is a figure which shows the output waveform from the circuit of the 2nd example of the alternating voltage phase detection circuit 9 of the direct-current power supply device (inverter drive device) which concerns on Embodiment 3.
  • FIG. It is a figure which shows the estimation method of the alternating voltage phase in the direct-current power supply device (inverter drive device) which concerns on Embodiment 3.
  • FIG. It is a figure which shows the circuit structure of the conventional DC power supply device. It is a figure which shows the waveform of each part in the conventional DC power supply device. Specifically, (a) shows the waveform of the input voltage of the AC power supply, (b) shows the waveform of the voltage to be added, (c) shows the waveform of the drive signal, and (d) shows the waveform of the input current. Indicates.
  • FIG. 1 is a diagram illustrating a circuit configuration of a DC power supply device according to Embodiment 1.
  • the DC power supply device includes a reactor 2, an input current detection unit 3, a switching unit 4, a rectifier circuit 5, and a smoothing capacitor 6, and supplies a DC voltage to a load 7. .
  • the reactor 2 is connected to one end of the AC power source 1.
  • the input current detector 3 detects the current flowing through the reactor 2.
  • Switching means 4 short-circuits / opens AC power supply 1 via reactor 2.
  • the switching means 4 only needs to be bidirectional, and is composed of, for example, a combination circuit of one diode bridge and one IGBT, or two power MOSFETs connected in opposite directions.
  • the AC input end of the rectifier circuit 5 is connected to both ends of the switching means 4.
  • the smoothing capacitor 6 is connected between the DC output terminals of the rectifier circuit 5.
  • the DC power supply device of the present embodiment includes a control unit 8 constituted by a microcomputer or the like, and a zero cross detection circuit (AC voltage phase detection circuit 9) connected between both lines of the AC power supply 1.
  • a control unit 8 constituted by a microcomputer or the like
  • a zero cross detection circuit AC voltage phase detection circuit 9
  • the control unit 8 includes a voltage phase calculation unit 8a, a voltage control unit 8b, a current waveform storage unit 8c, a current waveform selection unit 8d, and a current detection unit 8i.
  • the voltage phase calculation unit 8a estimates and calculates the voltage phase of the AC power source 1 from the zero cross point of the AC power source 1 obtained from the AC voltage phase detection circuit 9 and the power cycle.
  • the voltage controller 8b performs a proportional integral compensation calculation so that the DC voltage of the smoothing capacitor 6 becomes a DC voltage command value.
  • the current waveform storage unit 8c stores two types of current waveform patterns.
  • the current detector 8i detects the peak value or effective value of the input current or the magnitude of the input current according to the peak hold process or the low-pass filter process on the signal from the input current detector 3.
  • the current waveform selection unit 8d selects one current waveform pattern from the current waveform storage unit 8c based on the magnitude of the input current detected by the current detection unit 8i.
  • the control unit 8 further includes a current command generation unit 8e, a current control unit 8f, a carrier wave generation unit 8g, and a PWM signal generation unit 8h, and performs on / off control of the switching means 4.
  • the current command generator 8e obtains the AC voltage phase obtained by the voltage phase calculator 8a, the current amplitude value calculated from the current waveform pattern selected by the current waveform selector 8d, and the output from the voltage controller 8b.
  • a current command value is generated by multiplication.
  • the current control unit 8f performs proportional-integral compensation so that the instantaneous value of the input current obtained from the input current detection unit 3 becomes the current command value.
  • the carrier wave generation unit 8g generates a carrier wave.
  • the PWM signal generation unit 8h compares the output of the current control unit 8f with the carrier wave from the carrier wave generation unit 8g to generate a PWM drive signal for the switching means 4.
  • FIG. 2 3A and 3B are diagrams showing the input current and the DC voltage of the DC power supply according to Embodiment 1.
  • FIG. 2 3A and 3B are diagrams showing the input current and the DC voltage of the DC power supply according to Embodiment 1.
  • the same current waveform pattern as the input current waveform shown in FIGS. 2, 3A and 3B is stored.
  • FIG. 2 is a diagram showing an input current and a DC voltage, and a voltage of the AC power supply 1 when the first current waveform pattern is selected by the current waveform selection unit 8d in the DC power supply device of the first embodiment.
  • the first current waveform pattern is a sinusoidal waveform having the same frequency and the same phase as the AC power supply 1, and is generally the same as the current waveform pattern used in a power factor improving DC power supply device.
  • FIG. 3A is a diagram illustrating an example of an input current and a DC voltage and a voltage of the AC power supply 1 when the second current waveform pattern is selected in the DC power supply device of the first embodiment.
  • the second current waveform pattern has a shape having a recess in the peak phase of the voltage of the AC power supply 1. That is, the absolute values of the currents near 90 degrees and 270 degrees corresponding to the voltage peak phase of the AC power source 1 are lower than the absolute values of the current peak phases (P1, P2 and P3, P4 in the figure) before and after that. Has characteristics.
  • the pulsation is smaller than in the case of the first current waveform pattern shown in FIG.
  • the ripple voltage of the smoothing capacitor 6 and thus the ripple current can be suppressed by selecting the second current waveform pattern.
  • the second current waveform pattern may be a waveform having a plurality of recesses, and the peak phase of the voltage of the AC power supply 1 only needs to be included in the range of the recesses.
  • FIG. 3B shows an example of the input current and the DC voltage and the voltage of the AC power source 1 when the waveform pattern different from FIG. 3A is applied as the second current waveform pattern in the DC power supply device of the first embodiment.
  • FIG. 3B shows an example of the input current and the DC voltage and the voltage of the AC power source 1 when the waveform pattern different from FIG. 3A is applied as the second current waveform pattern in the DC power supply device of the first embodiment.
  • FIG. 3B shows an example of the input current and the DC voltage and the voltage of the AC power source 1 when the waveform pattern different from FIG. 3A is applied as the second current waveform pattern in the DC power supply device of the first embodiment.
  • FIG. 3B shows an example of the input current and the DC voltage and the voltage of the AC power source 1 when the waveform pattern different from FIG. 3A is applied as the second current waveform pattern in the DC power supply device of the first embodiment.
  • FIG. 4A is a diagram illustrating a method of selecting a current waveform pattern in the current waveform selection unit 8d of the DC power supply device according to the first embodiment.
  • the current waveform selection unit 8d selects the first current waveform pattern when the magnitude of the input current detected by the current detection unit 8i is larger than the threshold value 1 of the input current shown in FIG. 4A.
  • the power factor can be maintained at approximately 1.
  • the first current waveform pattern is maintained until the input current threshold 2 shown in FIG. 4A is reached.
  • the second current waveform is maintained.
  • a pattern is selected.
  • hysteresis is provided in the threshold value of the input current, but this hysteresis is set to a value larger than the change in the input current value accompanying the power factor change.
  • the input current is a waveform having a recess in the voltage peak phase of the AC power supply 1 as shown in FIG. 3A, or the voltage peak phase portion of the AC power supply 1 as shown in FIG. 3B. Is controlled to a flat waveform.
  • variation of an input electric current and instantaneous electric power can be restrained small in the voltage peak phase of AC power supply 1, and the period before and behind that. Therefore, it is possible to control the ripple of the DC voltage to be smaller than when operating with the first current waveform pattern at the same load (FIG. 2).
  • the power factor is lower when the second current waveform pattern is selected than when the first current waveform pattern is selected, so the input current during the same load operation increases.
  • the DC power supply device according to the present embodiment since a larger hysteresis is provided in the input current threshold than the change in the input current value due to the power factor change as described above, the occurrence of hunting at the time of switching the current waveform pattern Can be reliably prevented.
  • the DC power supply according to the present embodiment stores a plurality of current waveform patterns, and in a load state where the input current is large and the maximum output is limited by the input current, a sine wave current Control to be a waveform. Thereby, the operation
  • the input current is a current waveform having a recess in the voltage peak phase of the AC power supply 1 or a current obtained by flattening the portion corresponding to the phase where the voltage of the AC power supply peaks. Controlled by waveform. Thereby, the voltage ripple of the smoothing capacitor 6 can be reduced.
  • a current waveform pattern in which only the third harmonic is superimposed on the sine wave may be employed as the second current waveform pattern.
  • the third harmonic has a higher limit value of the power supply harmonic regulation than other harmonics, so that a current value with a sufficient margin may be superimposed on the IEC harmonic regulation value. it can.
  • the current waveform pattern which produces the effect of this Embodiment as shown to FIG. 3A or FIG. 3B can be comprised.
  • the input current basically does not include fifth-order and seventh-order harmonic current components that are considered to have a large influence on the power system. Therefore, the influence on the power system can be reduced as compared with the case where the input current waveform is controlled to a waveform such as a trapezoidal wave.
  • the current waveform pattern storage method may be a method of storing the reference amplitude data for each phase in the current waveform storage unit 8c.
  • the second current waveform pattern is composed of only the fundamental wave and the third harmonic, as in the DC power supply device of the present embodiment, two SIN calculations are performed for the fundamental wave and the third harmonic. It can also be calculated by sum.
  • FIG. 4B is a diagram illustrating another example of a method of selecting a current waveform pattern in the DC power supply device according to the first embodiment.
  • the DC power supply device further includes a temperature detection unit 31 for detecting the ambient temperature, as shown in FIG.
  • the predetermined reference current value is set to a higher current value as the ambient temperature becomes higher.
  • the second current waveform pattern that can reduce the ripple current of the smoothing capacitor 6 is preferentially selected in a state where the ambient temperature at which the influence on the life of the smoothing capacitor 6 is large is high. Thereby, the life of the smoothing capacitor 6 can be further extended.
  • FIG. 6 is a diagram illustrating the configuration of the inverter drive apparatus according to the second embodiment.
  • the inverter drive device includes a DC power supply device having the same configuration as the DC power supply device according to the first embodiment shown in FIG. It has the inverter 11 which drives the motor 10, and the inverter control part 12 which drives the inverter 11 as a load.
  • the direct-current power supply in the inverter drive device of the second embodiment has the same configuration as the direct-current power supply according to the first embodiment, and therefore the description thereof is omitted, and the difference from the direct-current power supply of the first embodiment is omitted. Only will be described.
  • the inverter drive device further includes a current limit value storage unit 13, a current limit value selection unit 14, and a comparison unit 15.
  • the current limit value storage unit 13 stores a plurality of input current limit values.
  • the current limit value selection unit 14 selects a current limit value of the input current based on a condition determined in advance according to the magnitude of the motor load and the operation state.
  • the comparison unit 15 instructs the inverter control unit 12 to reduce the rotation speed of the motor 10. Do.
  • the inverter driving apparatus selects the first current waveform pattern shown in FIG. 2 so that the input current from the AC power supply 1 becomes a sinusoidal current.
  • the operation state to be controlled and the second current waveform pattern shown in FIG. 3A are selected, and the input current from the AC power source 1 has a bimodal input current waveform having a recess in the peak phase of the AC power source 1 (first 2 (current waveform pattern) can be controlled.
  • the current waveform selection unit 8d determines this based on the current limit value of the input current selected by the current limit value selection unit 14.
  • the current waveform selection unit 8d emphasizes the power factor. A first current waveform pattern is selected.
  • the current waveform selection unit 8d reduces the ripple current of the smoothing capacitor 6 during the operation in which the current limit value of the input current is smaller than the outlet capacity and a large input current cannot flow. Select the current waveform pattern.
  • the speed of changing the current limit value is set to be sufficiently slower than the change of the input current. This reduces the possibility of hunting occurring when switching between the first current waveform pattern and the second current waveform pattern. Therefore, it is not necessary to provide hysteresis for the current threshold value of the current limit value that is a reference when switching the current waveform pattern.
  • the inverter driving apparatus is a sine capable of controlling the power factor to 1 when the inverter 11 is in an operating state in which the maximum output of the inverter 11 is restricted by the outlet or the breaker capacity. Performs wavy input current control. Thereby, an inverter drive device can be operated, without reducing the maximum output of the inverter 11.
  • the current limit value of the input current is lower than the outlet capacity, the ripple current of the smoothing capacitor 6 is reduced. This makes it possible to extend the life and size of the smoothing capacitor 6 and thus the inverter drive device.
  • an air conditioner can be configured by including the inverter drive device according to the second embodiment.
  • FIG. 7 shows a configuration example of an air conditioner using the above inverter control device.
  • the air conditioner uses the inverter drive device (100) described above, and in addition to the electric compressor 41, a refrigeration cycle comprising an indoor unit 52, an outdoor unit 55, and a four-way valve 51. It has.
  • the indoor unit 52 includes an indoor fan 53 and an indoor heat exchanger 54
  • the outdoor unit 55 includes an outdoor heat exchanger 56, an outdoor fan 57, and an expansion valve 58.
  • the electric compressor 41 is driven by the motor 10, and the motor 10 is driven by the inverter driving device 100.
  • a refrigerant that is a heat medium circulates.
  • the refrigerant is compressed by the electric compressor 41, and heat is exchanged with outdoor air by blowing from the outdoor blower 57 in the outdoor heat exchanger 56, and indoor air is blown from the indoor blower 53 in the indoor heat exchanger 54. And heat exchange.
  • the input current becomes the maximum current up to the outlet capacity at the time of heating operation at the time of low outside temperature or at the time of startup.
  • the air conditioner has a high percentage of time that it is operated with an input current lower than the outlet capacity, such as when the room temperature is stable.
  • the thermal load of the smoothing capacitor 6 is large even in an operating situation where the input current is slightly low, such as when the outdoor temperature (atmosphere temperature) is high. Therefore, the inverter drive device according to Embodiment 2 has a very large effect.
  • the third current waveform pattern that can further reduce the ripple current flowing through the smoothing capacitor 6 than the second current waveform pattern is provided.
  • the third current waveform pattern may be selected when a load condition is set such that the input current is lower than the predetermined reference current value. Thereby, the life of the smoothing capacitor 6 can be further extended.
  • the current is limited for the input current from the AC power supply 1, but the current is limited by providing a current limit value for the current flowing through the motor 10 or the inverter 11. Also good. In this case, the same effect can be obtained.
  • the inverter driving apparatus also includes the temperature detection unit 31 that detects the ambient temperature as in the first embodiment, and switches between the first current waveform pattern and the second current waveform pattern.
  • the threshold value of the input current limit value may be set so as to monotonously increase with respect to the ambient temperature. This makes it easier to select the second current waveform pattern capable of reducing the ripple current of the smoothing capacitor 6 when the ambient temperature at which the influence on the life of the smoothing capacitor 6 is large is high. Therefore, the life of the smoothing capacitor 6 and thus the inverter drive device can be further extended.
  • control system of the switching means 4 of the DC power supply device and the control system of the inverter 11 are configured by the same control unit 8, but different control means each configured by a microcomputer, a DSP, or the like. You may comprise. In this case, the same effect can be obtained.
  • FIGS. 8A and 9A are diagrams illustrating a configuration example of the AC voltage phase detection circuit 9 in the DC power supply device (inverter driving device) according to the third embodiment.
  • the AC voltage phase detection circuit 9 and the voltage phase calculation unit 8a described later constitute a voltage phase detection unit of the AC power supply 1.
  • FIG. 8A is a diagram illustrating an example of a circuit configuration capable of distinguishing between positive and negative voltage phases of the AC power supply 1.
  • FIG. 9A is a diagram illustrating an example of a circuit configuration that does not distinguish between positive and negative voltage phases of the AC power supply 1.
  • the value of the output signal (binary signal) of the AC voltage phase detection circuit 9 changes at the time when the absolute value of the voltage peak value of the AC power supply 1 becomes equal to the predetermined voltage V2 (> 0). .
  • the voltage phase between 0 and 180 degrees can be estimated for each half wave of the AC power supply 1. That is, the voltage phase can be estimated in either the positive or negative voltage phase of the AC power supply 1. Thereby, the voltage abnormality of AC power supply 1, such as a power failure, can be promptly detected by the change in the value of the binary signal.
  • This circuit can be suitably applied to a power supply circuit configuration that does not require a distinction between positive and negative voltage phases of the AC power supply 1. Further, the switching means 4 can be controlled every half wave.
  • the central time between two successive change points (edges) of the output signal in the AC voltage phase detection circuit 9 is the phase of the true zero cross point of the AC power supply 1. Is defined as 0 degree, and the phase after the elapse of time corresponding to the power supply cycle is defined as 360 degrees, this corresponds to one of 0, 90, 180, and 270 degrees.
  • the center between the falling edge and the rising edge always corresponds to a voltage phase of 90 degrees, and in the circuit of FIG. 9A, it corresponds to 90 degrees or 270 degrees.
  • the voltage phase of the AC power supply 1 can be estimated by obtaining the central time between the edges and the power cycle T of the AC power supply 1 (details will be described later).
  • the voltage phase detection circuit 9 can be configured at low cost.
  • FIG. 10 is a diagram illustrating an example of a method for estimating the phase of the AC voltage in the DC power supply device or the inverter drive device according to the present embodiment.
  • a case where the above-described response delay time can be ignored, such as when a high-speed IC output type photocoupler is used, will be described as an example.
  • the DC power supply device (inverter driving device) according to the present embodiment includes an AC voltage phase detection circuit shown in FIG. 8A.
  • the voltage phase calculation unit 8a (see FIG. 1) in the control unit 8 constituted by a microcomputer or the like is a time corresponding to two cycles (A1, B1 and each power cycle) in the time when the voltage of the AC power source 1 is equal to V1.
  • the voltage phase calculation of the AC power supply 1 is performed based on A2, B2) which will be described later.
  • the voltage phase calculation unit 8a obtains the power cycle T of the AC power source 1 by detecting the time between time A1 and A2 (or between B1 and B2) at time B2.
  • the falling edge time An (n is an integer) or the rising edge time Bn (n) output from the AC voltage phase detection circuit 9 for each period of the AC power supply 1.
  • the timer is started when the edge of the edge time An or Bn output from the voltage phase detection circuit 9 is detected every power cycle, and the start is started at the edge time An + 1 or Bn + 1 detected after about one power cycle. What is necessary is just to obtain
  • the voltage phase calculation unit 8a calculates a time P2 corresponding to the center between the time A2 and the time B2 as a time having a voltage phase of 90 degrees.
  • the voltage phase calculation unit 8a regards the time P3 that is one power cycle T elapsed after the obtained time P2 as the time of the next voltage phase of 90 degrees. Then, the voltage phase calculation unit 8a regards the time obtained by dividing the time between the time P2 and the time P3 (that is, the power cycle T) equally as 360 time, so that any time until the time B3 is reached.
  • the times P1 and P2 are always always 90 degrees in voltage phase (in the case of using the circuit of FIG. 9A) regardless of the power supply frequency and power supply voltage of the AC power supply 1. , Equivalent to 90 degrees or 270 degrees). Therefore, even if the power supply frequency and the power supply voltage fluctuate, the position of the center of the first or second current waveform pattern that is the target (command current) of current feedback is 90 degrees at which the voltage of the AC power supply 1 peaks or There is no deviation from the 270 degree phase. Therefore, a high power factor can always be obtained when the first current waveform pattern is selected, and the ripple current of the capacitor can always be kept low when the second current waveform pattern is selected.
  • the cycle T of the AC power supply may be obtained by taking the average of the falling edge interval (time between A1 and A2) and the rising edge interval (time between B1 and B2). Or, it is obtained by taking the average of the falling edge intervals for n consecutive cycles, that is, the time between A1 and A2, the time between A2 and A3, ..., the time between An-1 and An. Also good. Alternatively, it may be obtained by taking the average of rising edge intervals for successive n cycles, that is, the time between B1 and B2, the time between B2 and B3,..., The time between Bn-1 and Bn. Good. Or you may obtain
  • an air conditioner can be configured as in the second embodiment by using the DC power supply device (inverter drive device) of the third embodiment.
  • the inverter drive device includes the DC power supply device according to the first or third embodiment and inverter control means for driving the load to the inverter, and the load is driven not by the input current but by the drive frequency of the inverter. Determine the approximate size.
  • the current waveform pattern is selected, the current waveform pattern is switched depending on the magnitude relationship with a predetermined inverter frequency.
  • the current waveform selection unit 8d of the inverter drive device selects the first current waveform pattern when the drive frequency in the inverter control unit 12 is higher than a predetermined frequency, and sets the inverter load.
  • the current limit value determined according to the operation state is smaller than the predetermined current threshold value, the second current waveform pattern is selected.
  • the inverter driving apparatus when switching between the first current waveform pattern and the second current waveform pattern, the input current changes due to the difference between the selected current waveform patterns, and the power factor changes.
  • the frequency (electric frequency) in the inverter drive hardly changes. For this reason, it is not necessary to provide hysteresis for the frequency threshold value for selecting and switching the current waveform pattern, and the design of the parameter (predetermined frequency) for defining the switching condition becomes easier.
  • an air conditioner can be configured as in the second embodiment by using the DC power supply device (inverter drive device) of the fourth embodiment.
  • a DC power supply apparatus in which the AC power supply 1 is short-circuited / opened by the switching means 4 via the reactor 2 when the AC voltage from the AC power supply 1 is converted into a DC voltage.
  • This DC power supply device corresponds to a substantially sinusoidal first current waveform pattern, a waveform pattern having a recess in a phase where the voltage of the AC power supply 1 peaks, or a phase where the voltage of the AC power supply 1 peaks.
  • a current waveform storage unit 8c that stores a plurality of current waveform patterns including a second current waveform pattern having any of the characteristics of a waveform pattern with a flattened portion, and a current waveform storage unit 8c to 1 depending on the load
  • the current waveform selection unit 8d for selecting one current waveform pattern and the switching means 4 are arranged such that the current waveform of the input current from the AC power source 1 has an amplitude proportional to the current waveform pattern selected by the current waveform selection unit 8d.
  • the current waveform pattern to be used can be switched according to the load 7. For example, when priority is given to the power factor, the power factor can be controlled to approximately 1 by selecting the first current waveform pattern. On the other hand, when priority is given to reducing the ripple current of the smoothing capacitor 6, the ripple current flowing through the smoothing capacitor 6 can be reduced by selecting the second current waveform pattern. Accordingly, the maximum output of the DC power supply device is not lowered, and the content of the power supply harmonics can be kept below a certain value regardless of the level of the AC power supply voltage. Further, the life of the smoothing capacitor 6 can be extended and the size can be reduced.
  • the DC power supply device includes a voltage phase detector that detects the voltage phase of the AC power source 1 (corresponding to the voltage phase detector in claim 2, the AC voltage phase detector 9 and the voltage phase calculator 8 a. And a control unit (corresponding to the control unit in claim 2), a current command generation unit 8e, a current control unit 8f, a PWM signal generation unit 8h, a carrier wave generation unit 8g, and a voltage control unit 8 Is configured to synchronize the period and voltage phase of the first and second current waveform patterns with the period and voltage phase of the AC power supply 1 detected by the voltage phase detector.
  • a voltage phase detector that detects the voltage phase of the AC power source 1 (corresponding to the voltage phase detector in claim 2, the AC voltage phase detector 9 and the voltage phase calculator 8 a.
  • a control unit (corresponding to the control unit in claim 2), a current command generation unit 8e, a current control unit 8f, a PWM signal generation unit 8h, a carrier wave generation unit 8g, and a voltage control unit 8 Is configured to
  • the voltage of the AC power supply 1 and the phase of the input current waveform can be synchronized following an arbitrary power supply frequency. Therefore, even if the power supply frequency of the AC power supply 1 fluctuates, a high power factor can always be maintained, and the ripple current of the smoothing capacitor 6 can always be kept low.
  • the voltage phase detection unit (corresponding to the voltage phase detection unit in claim 3, the AC voltage phase detection circuit 9 and the voltage phase calculation unit 8 a Is configured to generate a binary signal by comparing the voltage of the AC power supply 1 or its absolute value with a predetermined value, and the interval between the rising edges and the falling edges of the generated binary signal, Alternatively, the cycle of the AC power supply is obtained using the average value of the rising edge interval and the falling edge interval.
  • the voltage phase detection unit uses the central time between the rising and falling edges of the continuous binary signal and the obtained cycle of the AC power supply 1. The voltage phase of the AC power supply 1 is estimated by calculation.
  • the estimation result of the voltage phase of the AC power supply 1 and the calculation result of the period are not affected by the magnitude of the voltage of the AC power supply 1, so that even if the power supply voltage fluctuates, the voltage estimation phase shifts. Therefore, the ripple current of the smoothing capacitor 6 can be kept low.
  • the voltage phase detection unit (the voltage phase detection circuit 9 and the voltage phase calculation unit 8a) is configured by a circuit using a photocoupler 9d.
  • insulation between the AC power supply 1 and the control unit 8 can be performed with a simple circuit configuration. Therefore, it can be set as an inexpensive structure.
  • the second current waveform pattern includes a sine wave having the same frequency as that of the AC power supply 1 and a synthesized wave of the third harmonic thereof.
  • the fifth and seventh harmonics which have a large burden on the power system, and the odd harmonic components of the higher order are basically not generated, and the power supply harmonics are restricted. A sufficient design margin can be secured.
  • the current waveform selection unit 8d displays the first current waveform pattern when the input current is large, and the second current when the input current is small. Select a waveform pattern.
  • hysteresis is provided for the threshold value of the input current for switching between the first current waveform pattern and the second current waveform pattern.
  • the DC power supply device further includes a temperature detection unit 31 that detects the ambient temperature, and switches between the first current waveform pattern and the second current waveform pattern.
  • the threshold value of the input current is set to a larger value as the ambient temperature becomes higher.
  • the inverter drive apparatus that controls the load 7 with the inverter includes the DC power supply device according to the first embodiment or the second embodiment as one embodiment.
  • the inverter load has a large load fluctuation range, but the second current waveform pattern is adopted when the load does not require a high power factor. Thereby, the ripple current of the smoothing capacitor 6 can be reduced and the life of the smoothing capacitor 6 can be extended.
  • the inverter drive apparatus that performs inverter control of the load 7 includes the DC power supply apparatus of the sixth embodiment as one embodiment.
  • the inverter load has a large load fluctuation range, but the first current waveform pattern is adopted at a heavy load with a large input current. Thereby, a high power factor can be obtained and the maximum current in the inverter drive device can be kept low.
  • the second current waveform pattern is employed during light load to medium load with a slightly low input current. Thereby, the ripple current of the smoothing capacitor 6 can be suppressed and the life of the smoothing capacitor 6 can be extended.
  • An inverter drive device is provided that includes an inverter control unit 12 that controls the inverter 11 so as to be equal to or lower than the value.
  • the current waveform selection unit 8d of the inverter drive device selects the first current waveform pattern when the current limit value determined in accordance with the operation state of the inverter load is larger than a predetermined current threshold, and operates the inverter load. When the current limit value determined according to the state is smaller than a predetermined current threshold, the second current waveform pattern is selected.
  • the first current waveform pattern is selected.
  • the input current waveform can be made substantially sinusoidal and the power factor can be controlled to 1.
  • the second current waveform pattern is selected, the current waveform stored in advance is used so that the pulsation of the input power is reduced without using the voltage waveform information of the AC power supply, as in the first mode. Thereby, the ripple current of the smoothing capacitor 6 can be reduced.
  • an inverter drive device that includes the DC power supply device of the first or second embodiment in which the load is an inverter load and the inverter control unit 12 that controls the inverter load.
  • the current waveform selection unit 8d of the inverter drive device selects the first current waveform pattern when the drive frequency in the inverter control unit 12 is higher than a predetermined frequency, and depends on the operation state of the inverter load. If the current limit value determined in this way is smaller than a predetermined current threshold value, the second current waveform pattern is selected.
  • the drive frequency of the inverter control unit 12 does not change even if the power factor changes when the current waveform pattern is switched. Therefore, there is no need to worry about hunting between current waveform patterns, and it is easy to design a frequency for switching current waveform patterns.
  • an air conditioner including the DC power supply device according to the first or second embodiment is provided.
  • the input current during operation is lower than the outlet capacity except for heating operation at low outside air temperature and at the start of operation, and during the entire operation time of the air conditioner, Thus, the proportion of the period in which the input current is not so high is large. For this reason, it is possible to set a longer period of operation with the second current waveform pattern than other devices. Therefore, the heat generation of the smoothing capacitor 6 can be further effectively reduced. In addition, the product can have a longer life.
  • an air conditioner including the inverter drive device according to the eighth embodiment having the DC power supply devices according to the first and second embodiments is provided.
  • an air conditioner including the inverter drive device according to the eighth embodiment having the DC power supply device according to the sixth embodiment.
  • the current waveform pattern is switched based on the actual input current during operation.
  • the maximum capacity of the product is limited by the outlet capacity, and the first current waveform pattern can be applied to an input current condition that requires a high power factor. Therefore, the life of the smoothing capacitor 6 and the product can be further extended.
  • an air conditioner including the inverter drive device according to the ninth embodiment is provided.
  • the first waveform pattern is employed only when the limit value of the input current determined in advance by the load condition is large and a large input current may flow.
  • an air conditioner including the inverter drive device according to the tenth embodiment is provided.
  • the first current waveform pattern is used only when the drive frequency of the inverter 11 in which the input current becomes large is high. Thereby, like the twelfth embodiment provided with the inverter drive device according to the ninth embodiment, there is no need to worry about hunting due to the power factor change at the time of switching the current waveform pattern. Therefore, the life of the smoothing capacitor 6 and thus the product can be extended by simple switching control.
  • the power factor at the maximum load is kept at 1.
  • the ripple current of the smoothing capacitor can be reduced without lowering the maximum output supplied to the load during medium to light loads, which occupies most of the operating time. Therefore, it can be applied to almost all electric appliances such as refrigerators, washing machines, heat pump water heaters, etc., which once convert an AC voltage from an AC power source into a DC voltage and supply power to a load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

交流電源1からの交流電圧を直流電圧に変換する直流電源装置は、交流電源1をリアクタ2を介して短絡・開放するスイッチング手段4と、略正弦波状の第1の電流波形パターンと、交流電源1の電圧がピークとなる位相において凹部を有する第2の電流波形パターンを含む、複数の電流波形パターンが記憶された電流波形記憶部8cと、負荷に応じて電流波形記憶部8cから1つの電流波形パターンを選択する電流波形選択部8dと、スイッチング手段4を、交流電源1からの入力電流の電流波形が電流波形選択部8dで選択された電流波形パターンに比例した振幅を有する電流波形となるように制御する制御部とを備える。

Description

直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機
 本発明は、交流電源からの交流電圧を直流電圧に変換する際、前記交流電源をリアクタを介してスイッチング手段により短絡・開放する直流電源装置、およびこの直流電源装置を具備してインバータを駆動するインバータ駆動装置およびこれを用いた空気調和機に関する。
 従来、交流電源からの交流電圧を直流電圧に変換する際、前記交流電源をリアクタを介してスイッチング手段により短絡・開放する直流電源装置が存在している。このような直流電源装置では、一般に、その直流出力端に出力電圧のリプルを低減するための平滑コンデンサが接続される。
 平滑コンデンサには、一般に、出力電圧リプルに応じたリプル電流が流れ、このリプル電流は平滑コンデンサの発熱の原因となる。この発熱を抑制するには、平滑コンデンサに流れるリプル電流を許容値以下に抑える必要がある。しかし、リプル電流を許容値以下に抑えるには、平滑コンデンサの容量を大きくする必要がある。そして、これは直流電源装置の小型化を阻害する要因となっている。
 従来、コンデンサの大型化を伴わずに、平滑コンデンサに流れるリプル電流を低減可能な直流電源装置が、例えば、特許文献1に開示されている(図11参照)。この直流電源装置は、交流電源1が入力されるリアクタ2と、リアクタ2の出力を整流する整流回路5と、整流回路5の出力を平滑する平滑コンデンサ6と、整流回路5の出力をチョッピングするスイッチング素子(スイッチング手段)4およびダイオード8からなる昇圧チョッパ回路とを備える。そして、この直流電源装置は、入力される交流電源1の電圧波形(図12(a))と、予め関数発生器21a等にて設定された電圧波形(図12(b))とを加算器21bにより加算し、加算することによって得られた駆動信号(図12(c))により昇圧チョッパ回路を駆動し、図12(d)に示すような波形の入力電流を得る。入力電流が図12(d)に示すような波形となることにより、平滑コンデンサ6のリプル電流を低減することができる。
特許第2590134号公報
 しかしながら、上記従来の直流電源装置は、入力電流に高調波成分を多く含む。つまり、力率を1に制御することができず、このような直流電源装置を、コンセント(もしくはブレーカ)の電流容量(以下、コンセント容量と記載する)によってその最大出力が制限されるような機器で用いる場合、機器の最大出力が低下する。
 さらに、上記従来の直流電源装置では、交流電源の電圧波形に所定の電圧波形を加算して得られる波形をもとに生成される駆動信号によってチョッパ回路を駆動するので、交流電源電圧の大きさにより入力電流波形に含まれる高調波電流の割合が変化する。そして、電源電圧が低い場合、入力電流の歪み率が相対的に大きくなる。
 本発明は、上記従来の課題を解決するため、直流電源装置の最大出力を低下させることなく、全運転期間における平滑コンデンサに流れるリプル電流の平均値を低く抑えるとともに、交流電源電圧によらず電源高調波の含有率を一定値以下に保つことが可能な直流電源装置を提供することを目的とする。また、この直流電源装置を具備してインバータを駆動するインバータ駆動装置およびこれを用いた空気調和機を提供することを目的とする。
 第1の態様において、交流電源からの交流電圧を直流電圧に変換する直流電源装置が提供される。この直流電源装置は、前記交流電源をリアクタを介して短絡・開放するスイッチング手段と、略正弦波状の第1の電流波形パターンと、前記交流電源の電圧がピークとなる位相において凹部を有する波形パターン、もしくは、前記交流電源の電圧がピークとなる位相に相当する部分を平坦にした波形パターンのいずれかの特徴を有する第2の電流波形パターンを含む、複数の電流波形パターンが記憶された電流波形記憶部と、負荷に応じて前記電流波形記憶部から1つの電流波形パターンを選択する電流波形選択部と、前記スイッチング手段を、前記交流電源からの入力電流の電流波形が前記電流波形選択部で選択された電流波形パターンに比例した振幅を有する電流波形となるように制御する制御部とを備える。
 第2の態様において、インバータ駆動装置が提供される。このインバータ駆動装置は、負荷がインバータ負荷である第1の態様に記載の直流電源装置と、前記インバータ負荷を制御するインバータ制御部と、を備える。
 第3の態様において、インバータ駆動装置が提供される。このインバータ駆動装置は、 負荷がインバータ負荷である第1の態様に記載の直流電源装置と、前記交流電源からの入力電流が、前記インバータ負荷の運転状態に応じて予め決められた電流制限値以下となるように、インバータを制御するインバータ制御部とを備える。電流波形選択部は、前記インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも大きい場合は、前記第1の電流波形パターンを選択し、前記インバータ負荷の運転状態に応じて決定される前記電流制限値が前記所定の電流閾値よりも小さい場合は、前記第2の電流波形パターンを選択する。
 第4の態様において、インバータ駆動装置が提供される。このインバータ駆動装置は、負荷がインバータ負荷である第1の態様に記載の直流電源装置と、前記インバータ負荷を制御するインバータ制御部とを備える。電流波形選択部は、前記インバータ制御部における駆動周波数が予め定められた所定の周波数よりも大きい場合は、前記第1の電流波形パターンを選択し、前記インバータ負荷の運転状態に応じて決定される電流制限値が前記所定の電流閾値よりも小さい場合は、前記第2の電流波形パターンを選択する。
 第5の態様において、空気調和機が提供される。この空気調和機は、第1の態様に記載の直流電源装置を備える。
 第6の態様において、空気調和機が提供される。この空気調和機は、第2の態様に記載のインバータ駆動装置を備える。
 上記各態様によれば、略正弦波状の第1の電流波形パターンと、前記交流電源の電圧がピークとなる位相において凹部を有する波形パターン、もしくは、交流電源の電圧がピークとなる位相に相当する部分を平坦にした波形パターンのいずれかの特徴を有する第2の電流波形パターンを含む、複数の電流波形パターンの中から1つの電流波形パターンが、負荷に応じて選択される。そして、スイッチング手段は、交流電源からの入力電流の電流波形が前記電流波形選択部で選択された電流波形パターンに比例した振幅を有する電流波形となるように制御される。
 例えば入力電流がコンセント容量に近い電流値で動作する重負荷時には、入力電流波形を略正弦波状の第1の電流波形パターンを採用することにより力率をほぼ1に制御することができる。第1の電流波形パターンは、正弦波状であり、電源高調波の含有率は非常に少ない。したがって、直流電源装置の最大出力をコンセント容量限界まで高くすることができる。言い換えると、本態様によれば、同じ最大出力を負荷へ供給するにあたり、直流電源装置、ひいては搭載される機器の最大消費電流値を低く設計することができる。
 これに対し、入力電流がコンセント容量に対して余裕がある場合には、入力電流波形を、前記交流電源の電圧がピークとなる位相において凹部を有する波形パターン、もしくは、交流電源の電圧がピークとなる位相に相当する部分を平坦にした波形パターンのいずれかの特徴を有する第2の電流波形パターンを採用することにより、平滑コンデンサのリプル電流を低減することができる。一般に、インバータ駆動装置や空気調和機などの機器においては、全運転期間においては入力電流に余裕のある運転状態が大部分を占めるが、本態様の直流電源装置では、このような状態のときに、平滑コンデンサのリプル電流を低減させて、平滑コンデンサの発熱を抑制することができる。
 またスイッチング手段は、交流電源からの入力電流の電流波形が前記電流波形選択部で選択された電流波形パターンに比例した振幅を有する電流波形となるように制御されるので、交流電源電圧によらず電源高調波の含有率が変化しない。
 以上のように、本態様の直流電源装置によれば、直流電源装置の最大出力を低下させることなく、全運転期間における平滑コンデンサに流れるリプル電流の平均値を低く抑えるとともに、交流電源電圧によらず電源高調波の含有率を一定値以下に保つことが可能となる。
実施の形態1に係る直流電源装置の回路構成を示す図である。 実施の形態1に係る直流電源装置の入力電流および直流電圧、ならびに交流電源の電圧を示す図(第1の電流波形パターン選択時)である。 実施の形態1に係る直流電源装置の入力電流および直流電圧、ならびに交流電源の電圧を示す図である(第2の電流波形パターン選択時)。 実施の形態1に係る直流電源装置の入力電流および直流電圧、ならびに交流電源の電圧を示す図である(第2の電流波形パターン選択時の別の例)。 実施の形態1に係る直流電源装置における電流波形パターンの選択方法を示すである。 実施の形態1に係る直流電源装置における電流波形パターンの選択方法の別の例を示す図である。 実施の形態1に係る直流電源装置の回路構成についての第1の別の例を示す図(制御部を除く)である。 実施の形態1に係る直流電源装置の回路構成についての第2の別の例を示す図(制御部を除く)である。 実施の形態1に係る直流電源装置の回路構成についての第3の別の例を示す図(制御部を除く)である。 実施の形態2に係るインバータ駆動装置の構成を示す図である。 実施の形態2に係るインバータ駆動装置を備えた空気調和機の構成を示す図である。 実施の形態3に係る直流電源装置(インバータ駆動装置)の交流電圧位相検出回路9の第1の例を示す図である。 実施の形態3に係る直流電源装置(インバータ駆動装置)の交流電圧位相検出回路9の第1の例の回路からの出力波形を示す図である。 実施の形態3に係る直流電源装置(インバータ駆動装置)の交流電圧位相検出回路9の第2の例を示す図である。 実施の形態3に係る直流電源装置(インバータ駆動装置)の交流電圧位相検出回路9の第2の例の回路からの出力波形を示す図である。 実施の形態3に係る直流電源装置(インバータ駆動装置)における交流電圧位相の推定方法を示す図である。 従来の直流電源装置の回路構成を示す図である。 従来の直流電源装置における各部の波形を示す図である。具体的には、(a)は交流電源の入力電圧の波形を示し、(b)は加算する電圧の波形を示し、(c)は駆動信号の波形を示し、(d)は入力電流の波形を示す。
 以下、実施の形態について、図面を参照しながら説明する。なお、実施の形態によって請求の範囲に記載した技術思想が限定されるものではない。
(実施の形態1)
1.構成
 図1は、実施の形態1に係る直流電源装置の回路構成を示す図である。
 図1に示すように、実施の形態1に係る直流電源装置は、リアクタ2、入力電流検出部3、スイッチング手段4、整流回路5、平滑コンデンサ6を具備し、直流電圧を負荷7へ供給する。
 リアクタ2は、交流電源1の一端に接続されている。
 入力電流検出部3は、リアクタ2に流れる電流を検出する。
 スイッチング手段4は、リアクタ2を介して交流電源1を短絡・開放する。スイッチング手段4は、双方向性のものであればよく、例えば、1個のダイオードブリッジと1個のIGBTの組み合わせ回路や、互いに逆方向に接続された2個のパワーMOSFET等で構成される。
 整流回路5は、スイッチング手段4の両端にその交流入力端が接続されている。
 平滑コンデンサ6は、整流回路5の直流出力端間に接続されている。
 さらに、本実施の形態の直流電源装置は、マイクロコンピュータなどから構成される制御部8と、交流電源1の両ライン間に接続されたゼロクロス検出回路(交流電圧位相検出回路9)を備える。
 制御部8は、電圧位相演算部8a、電圧制御部8b、電流波形記憶部8c、電流波形選択部8d及び電流検出部8iを備える。
 電圧位相演算部8aは、交流電圧位相検出回路9から得られる交流電源1のゼロクロス点と電源周期から、交流電源1の電圧位相を推定演算する。
 電圧制御部8bは、平滑コンデンサ6の直流電圧が直流電圧指令値となるように比例積分補償演算を行う。
 電流波形記憶部8cは、2種類の電流波形パターンを記憶する。
 電流検出部8iは、入力電流検出部3からの信号に対してピークホールド処理やローパスフィルタ処理等を行うことにより、入力電流のピーク値や実効値もしくはそれに準ずる入力電流の大きさを検出する。
 電流波形選択部8dは、電流検出部8iで検出された入力電流の大きさに基づいて、電流波形記憶部8cの中から1つの電流波形パターンを選択する。
 制御部8は、さらに、電流指令生成部8e、電流制御部8f、搬送波生成部8g、及びPWM信号生成部8hを備え、スイッチング手段4のオン・オフ制御を行う。
 電流指令生成部8eは、電圧位相演算部8aによって得られる交流電圧位相と、電流波形選択部8dによって選択される電流波形パターンから算出される電流振幅値と、電圧制御部8bからの出力とを乗算することによって、電流指令値を生成する。
 電流制御部8fは、入力電流検出部3から得られる入力電流の瞬時値が電流指令値となるように比例積分補償演算を行う。
 搬送波生成部8gは、搬送波を生成する。
 PWM信号生成部8hは、電流制御部8fの出力を搬送波生成部8gからの搬送波と比較してスイッチング手段4のPWM駆動信号を生成する。
 なお、図中、制御部8内において、A/D変換回路等で構成させる直流電圧および入力電流の検出部分については、簡単のため表記を省略している。
 図2、図3Aおよび図3Bは、実施の形態1に係る直流電源装置の入力電流および直流電圧を示す図である。
 電流波形記憶部8cには、図2、図3Aおよび図3Bに示す入力電流波形と同じ電流波形パターンが記憶されている。
 図2は、実施の形態1の直流電源装置において、電流波形選択部8dにより第1の電流波形パターンを選択した場合の入力電流および直流電圧、並びに交流電源1の電圧を示す図である。第1の電流波形パターンは、交流電源1と同一周波数・同一位相の正弦波状の波形であり、一般に力率改善型の直流電源装置で用いられる電流波形パターンと同様のものである。
 図3Aは、実施の形態1の直流電源装置において、第2の電流波形パターンを選択した場合の入力電流および直流電圧、並びに交流電源1の電圧の一例を示す図である。図3Aに示すように、第2の電流波形パターンは、交流電源1の電圧のピーク位相において凹部を有する形状を備えている。すなわち、交流電源1の電圧ピーク位相にあたる90度および270度付近の電流の絶対値がその前後にある電流のピーク位相(図のP1,P2およびP3,P4)の電流の絶対値よりも低いという特徴を有する。このため、第2の電流波形パターンで動作している場合には、交流電源1の電圧の波高値と入力電流の波高値との積で表される瞬時電力(=電源電圧×入力電流)の脈動が、図2に示した第1の電流波形パターンの場合に比べて小さくなる。
 一般に、平滑コンデンサ6の電圧リプルは、整流回路5から平滑コンデンサ6へ流れ込む電流(=入力電流×交流電源1の電圧/直流電圧で表される)と、平滑コンデンサ6から負荷7へ供給される直流電流との差の振幅が大きくなるほど大きくなる。本実施の形態の直流電源装置では、第2の電流波形パターンを選択することによって、平滑コンデンサ6のリプル電圧ひいてはリプル電流を抑制することが可能となる。
 なお、第2の電流波形パターンは、凹部を複数個持つ波形であってもよく、交流電源1の電圧のピーク位相が当該凹部の範囲に含まれていればよい。
 また、図3Bは、実施の形態1の直流電源装置において、第2の電流波形パターンとして図3Aとは異なる波形パターンを適用した場合における、入力電流および直流電圧、並びに交流電源1の電圧の例を示した図である。本実施の形態の直流電源装置において、図3Bに示した電流波形パターンを第2の電流波形パターンとして選択した場合においても、図3Aに比べてやや効果は減少するものの、瞬時電力(=電源電圧×入力電流)の脈動を、図2に示した第1の電流波形パターンを選択した場合と比べて抑制することができる。このため、図3Bに示した電流波形パターンの選択時においても、図3Aの電流波形パターンの選択時と同様に平滑コンデンサ6のリプル電流を低減する効果を奏することができる。
2.電流波形パターンの選択
 図4Aは、本実施の形態1の直流電源装置の電流波形選択部8dにおける電流波形パターンの選択方法を示す図である。
 電流波形選択部8dは、電流検出部8iで検出された入力電流の大きさが図4Aに示す入力電流の閾値1よりも大きくなった場合には、第1の電流波形パターンを選択する。
 第1の電流波形パターン選択時においては、図2に示すように、交流電源1からの入力電流は、正弦波となるようにフィードバック制御される。そのため、力率をほぼ1に保つことが可能となる。
 また、入力電流が低下した場合、図4Aに示す入力電流の閾値2に到達するまでは第1の電流波形パターンが維持され、入力電流の閾値2を下回った場合には、第2の電流波形パターンが選択される。このように、入力電流の閾値にはヒステリシスが設けられているが、このヒステリシスは、力率変化に伴う入力電流値の変化よりも大きな値に設定されている。
 第2の電流波形パターン選択時においては、入力電流を、図3Aに示すように、交流電源1の電圧ピーク位相において凹部を有する波形、もしくは図3Bに示すように交流電源1の電圧ピーク位相部分を平坦にした波形に制御する。これにより、交流電源1の電圧ピーク位相およびその前後の期間において入力電流及び瞬時電力の変動を小さく抑えることができる。そのため、同一負荷時において第1の電流波形パターンで動作した場合(図2)に比べて、直流電圧のリプルを小さく制御することができる。
 本実施の形態の直流電源装置では、第2の電流波形パターン選択時に、第1の電流波形パターン選択時に比べて力率が低くなるため、同一負荷運転時における入力電流が増加する。しかし、本実施の形態の直流電源装置では、上記のように入力電流の閾値に力率変化に伴う入力電流値の変化よりも大きなヒステリシスを設けているので、電流波形パターン切替時におけるハンチングの発生を確実に防止することができる。
3.まとめ
 以上のように、本実施の形態の直流電源装置は、複数の電流波形パターンを記憶し、入力電流が大きく、最大出力が入力電流で制限されるような負荷状態においては、正弦波状の電流波形となるように制御する。これにより、力率を1に保つ動作が実現される。一方、入力電流の比較的小さな負荷状態においては、入力電流が、交流電源1の電圧ピーク位相において凹部を有する電流波形、もしくは交流電源の電圧がピークとなる位相に相当する部分を平坦にした電流波形に制御される。これによって、平滑コンデンサ6の電圧リプルを低減することができる。
 なお、本実施の形態1に係る直流電源装置において、第2の電流波形パターンとして正弦波に第3次高調波のみを重畳させた電流波形パターンを採用してもよい。
 第3次高調波は、他の次数の高調波に比べて電源高調波規制の限度値が高いので、IECの高調波規制値に対しても十分に余裕をもった電流値を重畳することができる。これにより、図3Aまたは図3Bに示すような、本実施の形態の効果を生じる電流波形パターンを構成することができる。
 加えて、本実施の形態1に係る直流電源装置では、その入力電流に、電力系統への影響が大きいとされる5次および7次の高調波電流成分が基本的に含まれない。そのため、入力電流波形を台形波などの波形に制御する場合に比べ、電力系統への影響を小さくすることができる。
 なお、電流波形パターンの記憶方法は、電流波形記憶部8cに、位相毎の基準振幅データを記憶させる方法であってもよい。本実施の形態の直流電源装置のように、第2の電流波形パターンを基本波と第3次高調波のみで構成する場合においては、基本波と第3次高調波における2回のSIN演算の和によって求めることもできる。
4.他の例
 図4Bは、本実施の形態1の直流電源装置における電流波形パターンの選択方法の別の例を示す図である。
 この例では、直流電源装置は、図1に示すように、さらに、周囲温度を検出する温度検出部31を備えている。この方法では、図4Bに示すように、所定の基準電流値は、周囲温度が高くなるほど高い電流値に設定する。具体的には、平滑コンデンサ6の寿命への影響が大きくなる周囲温度が高い状態においては、平滑コンデンサ6のリプル電流低減が可能な第2の電流波形パターンを優先して選択する。これにより、平滑コンデンサ6をさらに長寿命化させることができる。
 本実施形態では、直流電源装置の回路構成として、整流回路5の交流入力側でリアクタ2を介して交流電源1を短絡する図1に示す回路構成の場合について説明を行ったが、図5A~5Cに示すようにリアクタ2やスイッチング手段4の配設位置が異なる回路構成の場合でも同様の効果を奏することができる。
(実施の形態2)
 図6は、第2の実施の形態に係るインバータ駆動装置の構成を示す図である。
 図6に示すように、第2の実施の形態に係るインバータ駆動装置は、図1に示した実施の形態1に係る直流電源装置と同様の構成の直流電源装置を備えるとともに、モータ10と、モータ10を駆動するインバータ11と、インバータ11を負荷として駆動するインバータ制御部12を有する。
 なお、実施の形態2のインバータ駆動装置における直流電源装置については、実施の形態1に係る直流電源装置と構成が同様であるためその説明を省略し、実施の形態1の直流電源装置と異なる部分についてのみ説明する。
 実施の形態2のインバータ駆動装置は、さらに、電流制限値記憶部13、電流制限値選択部14、及び比較部15を備える。
 電流制限値記憶部13は、入力電流の電流制限値を複数記憶する。
 電流制限値選択部14は、モータ負荷の大きさや運転状態に応じて予め決められた条件に基づいて入力電流の電流制限値を選択する。
 比較部15は、電流検出部8iで検出された入力電流が電流制限値選択部14によって選択された電流制限値を超える可能性がある場合、インバータ制御部12へモータ10の回転速度低下指示を行う。
 実施の形態2のインバータ駆動装置は、実施の形態1と同様に、図2に示した第1の電流波形パターンを選択して、交流電源1からの入力電流が正弦波状の電流となるように制御する動作状態と、図3Aに示した第2の電流波形パターンを選択して、交流電源1からの入力電流が、交流電源1のピーク位相において凹部を有する双峰性の入力電流波形(第2の電流波形パターン)となるように制御する動作状態とをとり得る。本実施の形態においては、電流波形選択部8dは、電流制限値選択部14で選択された入力電流の電流制限値に基づいてこれを決定する。
 電流波形選択部8dは、入力電流の電流制限値がコンセント容量限界に近く、当該コンセント容量限界まで入力電流を必要とする可能性のある運転状態の場合には、力率を重視するために、第1の電流波形パターンを選択する。
 逆に、入力電流の電流制限値がコンセント容量に比べて小さく、大きな入力電流が流れ得ない運転時においては、電流波形選択部8dは、平滑コンデンサ6のリプル電流を低減させるため、第2の電流波形パターンを選択する。
 なお、本実施の形態2に係るインバータ駆動装置においては、電流制限値の変更の速度は、入力電流の変化に比べて十分遅い速度となるように設定されている。これにより、第1の電流波形パターンと第2の電流波形パターンとの切替に際してハンチングが生じる可能性が低くなる。そのため、電流波形パターンを切り替える際の基準となる電流制限値の電流閾値については、特にヒステリシスを設けなくてもよい。
 以上のように、実施の形態2に係るインバータ駆動装置は、インバータ11の最大出力がコンセントまたはブレーカ容量で制約されるような運転状態の場合には、力率を1に制御することができる正弦波状の入力電流制御を行う。これにより、インバータ駆動装置を、インバータ11の最大出力を低下させることなく動作させることができる。一方、入力電流の電流制限値がコンセント容量よりも低い運転状態の場合には、平滑コンデンサ6のリプル電流を低減させる。これにより、平滑コンデンサ6ひいてはインバータ駆動装置の長寿命化や小型化が可能となる。
 なお、実施の形態2に係るインバータ駆動装置を具備して空気調和機を構成することができる。
 図7に、上記のインバータ制御装置を利用した空気調和機の構成例を示す。同図に示すように、空気調和機は、上記のインバータ駆動装置(100)を用いており、さらに、電動圧縮機41に加えて、室内ユニット52、室外ユニット55及び四方弁51からなる冷凍サイクルを備えている。室内ユニット52は室内送風機53と室内熱交換器54とから構成され、また室外ユニット55は室外熱交換器56、室外送風機57及び膨張弁58より構成される。
 電動圧縮機41はモータ10により駆動され、モータ10はインバータ駆動装置100により駆動される。冷凍サイクル中は熱媒体である冷媒が循環する。冷媒は電動圧縮機41により圧縮され、室外熱交換器56にて室外送風機57からの送風により室外の空気と熱交換され、また室内熱交換器54にて室内送風機53からの送風により室内の空気と熱交換される。
 この空気調和機においては、低外気温時の暖房運転や立ち上がり時において、入力電流がコンセント容量まで最大限の電流となる。しかし、空気調和機は、全運転期間を考慮すると、室温が安定している状態のときなど、コンセント容量よりも低い入力電流で運転している時間の割合が多い。また、室外の気温(雰囲気温度)が高い場合など、入力電流がやや低い運転状況であっても平滑コンデンサ6の熱的負荷が大きな運転状況が比較的多い。そのため、実施の形態2に係るインバータ駆動装置は非常に大きな効果を奏する。
 なお、全運転期間中において、入力電流が低い運転状態の割合が多い場合には、第2の電流波形パターンよりも平滑コンデンサ6に流れるリプル電流の低減がさらに可能な第3の電流波形パターンを設定し、前記所定の基準電流値よりもさらに入力電流の低い負荷条件のときに第3の電流波形パターンを選択するようにしてもよい。これにより、平滑コンデンサ6をさらに長寿命化することができる。
 また、実施の形態2に係るインバータ駆動装置においては、交流電源1からの入力電流について電流制限を行っているが、モータ10またはインバータ11に流れる電流について電流制限値を設けて電流制限を行ってもよい。この場合においても同様の効果を得ることができる。
 また、実施の形態2に係るインバータ駆動装置においても、実施の形態1と同様に、雰囲気温度を検出する温度検出部31を備え、第1の電流波形パターンと第2の電流波形パターンとを切り替える入力電流制限値の閾値を、周囲温度に対して単調増加するように設定してもよい。これにより、平滑コンデンサ6の寿命への影響が大きくなる周囲温度が高い状態のときに、平滑コンデンサ6のリプル電流低減が可能な第2の電流波形パターンが選択されやすくなる。したがって、平滑コンデンサ6ひいてはインバータ駆動装置をさらに長寿命化することが可能となる。
 なお、実施の形態2おいては、直流電源装置のスイッチング手段4の制御系とインバータ11の制御系を同一の制御部8により構成したが、それぞれマイクロコンピュータやDSP等で構成した別の制御手段で構成してもよい。この場合においても同様の効果が得られる。
(実施の形態3)
 図8Aおよび図9Aは、実施の形態3の直流電源装置(インバータ駆動装置)における交流電圧位相検出回路9の構成例を示す図である。これらの交流電圧位相検出回路9と、後述する電圧位相演算部8aとによって交流電源1の電圧位相検出部を構成する。
 図8Aは、交流電源1の正負の電圧位相の区別が可能な回路の構成の一例を示す図である。この回路構成では、図8Bに示すように、交流電源1の電圧波高値が所定の電圧V1に等しくなった時刻に、交流電圧位相検出回路9が生成する出力信号(二値信号)の値が変化する。つまり、交流電源1の半波側の位相時のみ二値信号の値が変化する。これにより、交流電源1の電圧の正負(0~180度と180~360度)を判別することが可能となる。
 図9Aは、交流電源1の正負の電圧位相の区別をしない回路の構成の一例を示す図である。この回路構成では、交流電源1の電圧波高値の絶対値が所定の電圧V2(>0)に等しくなった時刻に、交流電圧位相検出回路9の出力信号(二値信号)の値が変化する。
 この回路では、交流電源1の半波毎に0から180度間の電圧位相を推定することができる。つまり、交流電源1の正負いずれの電圧位相においても電圧位相を推定することができる。これにより、二値信号の値の変化により停電等の交流電源1の電圧異常をすみやかに検知することができる。この回路は、交流電源1の正負の電圧位相の区別が不要な電源回路構成に好適に適用可能である。また、半波毎にスイッチング手段4の制御を行うことができる。
 図8A、図9Aのいずれの回路においても、連続する2個の、交流電圧位相検出回路9における出力信号の変化点(エッジ)間の中央の時刻は、交流電源1の真のゼロクロス点の位相を0度とし、電源周期に相当する時間経過後の位相を360度と定義すると、0,90,180,270度のいずれかの位相に相当する。具体的には、図8Aの回路では、立ち下がりエッジ-立ち上がりエッジ間の中央が常に電圧位相90度に相当し、図9Aの回路では、90度または270度に相当する。
 よって、上記のエッジ間の中央の時刻と、交流電源1の電源周期Tを求めることにより、交流電源1の電圧位相を推定することが可能となる(詳細については後述する)。
 また、交流電源1の電源ラインと、マイクロコンピュータ等で構成される制御部8との間には電位差が存在するが、図8Aや図9Aに示すようにフォトカプラ9dを用いた回路で両者間の絶縁を取ることによって、電圧位相検出回路9を安価に構成することができる。
 なお、安価な汎用のトランジスタ出力タイプのフォトカプラを用いる場合、数十マイクロ秒オーダーの応答遅れが発生する。この場合、連続する2個のエッジ時刻間の中央の時刻を演算によって求める際、上記応答遅れ時間に相当する時間だけ手前側に演算結果を補正すればよい。これにより、交流電源1の電圧位相の推定精度を高めることが可能となる。
 次に、本実施の形態に係る直流電源装置(インバータ駆動装置)における交流電圧の位相推定方法について説明する。図10は、本実施の形態に係る直流電源装置またはインバータ駆動装置における交流電圧の位相推定方法の一例を示す図である。なお、以下の説明にあたっては、説明を簡単にするため、高速のIC出力タイプのフォトカプラを用いた場合など、上記の応答遅れ時間が無視できる場合を例にとって説明する。
 本実施の形態に係る直流電源装置(インバータ駆動装置)は、図8Aに示す交流電圧位相検出回路を備えている。マイクロコンピュータ等で構成される制御部8内の電圧位相演算部8a(図1参照)は、交流電源1の電圧がV1に等しい時刻の中の2周期分の時刻(A1、B1及び各電源周期後にあたるA2、B2)をもとに交流電源1の電圧位相演算を行う。
 以下、具体的な動作について説明する。
 まず初めに、電圧位相演算部8aは、時刻B2において、時刻A1-A2間(もしくはB1-B2間)の時間を検出することにより交流電源1の電源周期Tを求める。
 A1-A2間(B1-B2間)の時間検出にあたっては、交流電源1の周期ごとに交流電圧位相検出回路9より出力される立ち下がりエッジ時刻An(nは整数)もしくは立ち上がりエッジ時刻Bn(nは整数)をマイクロコンピュータ内のRAMに記憶しておいて差分計算を行えばよい。あるいは、電源周期ごとに電圧位相検出回路9より出力される上記エッジ時刻AnもしくはBnのエッジ検出時にタイマを開始動作させておき、約一電源周期後に検出されるエッジ時刻An+1もしくはBn+1に、上記開始動作させておいたタイマのカウント値を利用して求めればよい。
 次に、電圧位相演算部8aは、時刻A2と時刻B2間の中央にあたる時刻P2を、電圧位相90度の時刻として演算によって求める。
 さらに、電圧位相演算部8aは、求められた時刻P2から一電源周期T経過後にあたる時刻P3を、次の電圧位相90度の時刻とみなす。そして、電圧位相演算部8aは、時刻P2と時刻P3間の時間(すなわち電源周期T)を360等分した時間を1度あたりの時間とみなすことによって、以下時刻B3に達するまでの任意の時刻Rにおける電圧位相X(度)を次式(式1)にて推定する、という動作を電源周期毎に繰り返す。
 (式1) X=90+(R-P2)/360
 (上記推定式において、電圧位相Xが360を超える場合には、360を減じた値とみなす。)
 実施の形態3における電圧位相の検出方法では、交流電源1の電源周波数や電源電圧によらず、常に時刻P1,P2が、原理的に常に電圧位相90度(図9Aの回路を用いた場合は、90度または270度に相当)に等しくなる。そのため、電源周波数や電源電圧が変動しても、電流フィードバックの目標(指令電流)である第1または第2の電流波形パターンの中央の位置が、交流電源1の電圧がピークとなる90度または270度の位相からずれない。したがって、第1の電流波形パターン選択時に常に高力率を得ることができるとともに、第2の電流波形パターン選択時にコンデンサのリプル電流を常に低く抑制することができる。
 なお、交流電源の周期Tは、立ち下りエッジの間隔(A1-A2間の時間)と立ち上りエッジの間隔(B1-B2間の時間)の平均をとることにより求めてもよい。または、連続するn周期分についての立ち下りエッジの間隔の平均、すなわちA1-A2間の時間,A2-A3間の時間,…,An-1-An間の時間の平均をとることにより求めてもよい。あるいは、連続するn周期分についての立ち上りエッジの間隔の平均、すなわちB1-B2間の時間,B2-B3間の時間,…,Bn-1-Bn間の時間の平均をとることにより求めてもよい。あるいは、連続するn周期分についての立ち下りエッジの間隔の平均と、連続するn周期分についての立ち上りエッジの間隔の平均との平均をとることにより求めてもよい。
 なお、実施の形態3の直流電源装置(インバータ駆動装置)を利用して、実施の形態2同様、空気調和機を構成することができる。
(実施の形態4)
 実施の形態4に係るインバータ駆動装置は、実施の形態1または3に記載の直流電源装置と、負荷をインバータ駆動するインバータ制御手段とを備え、入力電流によってではなく、インバータの駆動周波数によって負荷の概略の大きさを判断する。そして、電流波形パターンの選択を行う際、所定のインバータ周波数との大小関係によって切り替える。具体的には、インバータ駆動装置の電流波形選択部8dは、インバータ制御部12における駆動周波数が予め定められた所定の周波数よりも大きい場合は、第1の電流波形パターンを選択し、インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも小さい場合は、第2の電流波形パターンを選択する。
 実施の形態4に係るインバータ駆動装置では、第1の電流波形パターンと第2の電流波形パターン間の切替に際して、選択された電流波形パターンの違いによって入力電流が変化し、力率が変化する。しかし、インバータ駆動における周波数(電気周波数)はほとんど変化しない。そのため、電流波形パターンの選択・切替を行う周波数のしきい値にヒステリシスを設ける必要がなく、切替条件を定めるパラメータの設計(所定の周波数)がより簡単になる。
 なお、実施の形態4の直流電源装置(インバータ駆動装置)を利用して、実施の形態2同様、空気調和機を構成することができる。
(まとめ)
 第1の実施態様において、交流電源1からの交流電圧を直流電圧に変換する際、交流電源1をリアクタ2を介してスイッチング手段4により短絡・開放する直流電源装置が提供される。この直流電源装置は、略正弦波状の第1の電流波形パターンと、交流電源1の電圧がピークとなる位相において凹部を有する波形パターン、もしくは、交流電源1の電圧がピークとなる位相に相当する部分を平坦にした波形パターンのいずれかの特徴を有する第2の電流波形パターンを含む、複数の電流波形パターンが記憶された電流波形記憶部8cと、負荷に応じて電流波形記憶部8cから1つの電流波形パターンを選択する電流波形選択部8dと、スイッチング手段4を、交流電源1からの入力電流の電流波形が電流波形選択部8dで選択された電流波形パターンに比例した振幅を有する電流波形となるように制御する制御部(請求項1における制御部に対応し、電流指令生成部8e、電流制御部8f、PWM信号生成部8h、搬送波生成部8g、及び電圧制御部8bで構成される)とを備える。
 本実施態様によれば、負荷7に応じて、利用する電流波形パターンを切り替えることができる。例えば、力率を優先したい場合には、第1の電流波形パターンを選択することにより、力率をほぼ1に制御にすることができる。これに対し、平滑コンデンサ6のリプル電流低減を優先したい場合には、第2の電流波形パターンを選択することにより、平滑コンデンサ6に流れるリプル電流を低減することができる。したがって、直流電源装置の最大出力を低下させず、かつ交流電源電圧の高低によらず電源高調波の含有率を一定値以下に保つことができる。さらに、平滑コンデンサ6の長寿命化や小型化が可能となる。
 第2の実施態様では、直流電源装置は、交流電源1の電圧位相を検出する電圧位相検出部(請求項2における電圧位相検出部に対応し、交流電圧位相検出回路9及び電圧位相演算部8aで構成される)をさらに備え、制御部(請求項2における制御部に対応し、電流指令生成部8e、電流制御部8f、PWM信号生成部8h、搬送波生成部8g、及び電圧制御部8で構成される)は、第1および第2の電流波形パターンの周期および電圧位相を、電圧位相検出部によって検出された交流電源1の周期および電圧位相に同期させる。
 本実施態様によれば、任意の電源周波数に追従して交流電源1の電圧と入力電流波形の位相を同期させることができる。したがって、交流電源1の電源周波数が変動しても常に高い力率を保てるとともに、平滑コンデンサ6のリプル電流を常に低い状態に保つことができる。
 第3の実施態様では、第1の実施態様または第2の実施態様において、電圧位相検出部(請求項3における電圧位相検出部に対応し、交流電圧位相検出回路9及び電圧位相演算部8aで構成される)は、交流電源1の電圧もしくはその絶対値と所定の値とを比較して二値信号を生成し、生成された前記二値信号の立ち上がりエッジの間隔、立ち下がりエッジの間隔、あるいは立ち上がりエッジの間隔と立ち下がりエッジの間隔との平均値を用いて交流電源の周期を求める。また、電圧位相検出部(電圧位相検出回路9と電圧位相演算部8a)は、連続した二値信号の立ち上がりエッジと立ち下がりエッジ間の中央時刻と求められた交流電源1の周期とを用いた演算によって、交流電源1の電圧位相を推定する。
 本実施態様においては、交流電源1の電圧位相の推定および周期の演算結果が、交流電源1の電圧の大きさによって影響を受けないことから、電源電圧が変動しても、電圧推定位相がずれることなく、平滑コンデンサ6のリプル電流を低く保つことができる。
 第4の実施態様では、第3の実施態様において、電圧位相検出部(電圧位相検出回路9と電圧位相演算部8a)は、フォトカプラ9dを用いた回路で構成される。
 本実施態様によれば、簡単な回路構成で交流電源1と制御部8間の絶縁を行うことができる。そのため、安価な構成とすることができる。
 第5の実施態様は、第1または第2の実施態様において、第2の電流波形パターンは、交流電源1と同一周波数の正弦波およびその第3次高調波の合成波よりなる。
 本実施態様によれば、特に電力系統への負担が大きな5次、および7次高調波を始め、それ以上の次数の奇数次高調波成分を基本的に出さず、電源高調波規制に対しても十分な設計マージンを確保することができる。
 第6の実施態様では、第1または第2の実施態様において、電流波形選択部8dは、入力電流が大きい場合には第1の電流波形パターンを、入力電流が小さい場合には第2の電流波形パターンを選択する。また、第1の電流波形パターンと第2の電流波形パターンとの切替を行う入力電流の閾値に関してヒステリシスが設けられている。
 本実施態様によれば、簡単な制御で、電流波形パターンの切替時の力率差に起因するハンチングを確実に防止することができる。
 第7の実施態様では、第6の実施態様において、直流電源装置は、周囲温度を検出する温度検出部31をさらに備え、第1の電流波形パターンと第2の電流波形パターンとの切替を行う入力電流の閾値は、周囲温度が高くなるほど大きな値に設定されている。
 本実施態様によれば、平滑コンデンサ6の温度上昇による寿命への影響が大きい高温動作時に、平滑コンデンサ6のリプル電流低減を優先することができ、平滑コンデンサ6をさらに長寿命化することができる。
 第8の実施態様では、負荷7をインバータ制御するインバータ駆動装置において、一実施態様として、第1の実施態様または第2の実施態様の直流電源装置を備える。
 一般にインバータ負荷は負荷変動範囲が大きいが、それほど高力率を必要としない負荷時に、第2の電流波形パターンを採用する。これにより、平滑コンデンサ6のリプル電流を低減し、平滑コンデンサ6を長寿命化することが可能となる。
 あるいは、第8の実施態様では、負荷7をインバータ制御するインバータ駆動装置において、一実施態様として、第6の実施態様の直流電源装置を備える。
 一般にインバータ負荷は負荷変動範囲が大きいが、入力電流が大きい重負荷時に第1の電流波形パターンを採用する。これにより、高い力率を得ることができ、インバータ駆動装置における最大電流を低く抑えることができる。一方、やや入力電流の低い軽負荷から中負荷時には、第2の電流波形パターンを採用する。これにより、平滑コンデンサ6のリプル電流を抑制し、平滑コンデンサ6を長寿命化することができる。
 第9の実施態様では、負荷がインバータ負荷である第1または第2の実施態様の直流電源装置と、交流電源1からの入力電流が、インバータ負荷の運転状態に応じて予め決められた電流制限値以下となるように、インバータ11を制御するインバータ制御部12とを備えたインバータ駆動装置が提供される。インバータ駆動装置の電流波形選択部8dは、インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも大きい場合は、第1の電流波形パターンを選択し、インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも小さい場合は、第2の電流波形パターンを選択する。
 本実施態様によれば、入力電流の電流制限値が大きく、運転中に大きな入力電流が流れ得る場合には、第1の電流波形パターンが選択される。これにより、入力電流波形を略正弦波とし、力率を1に制御することができる。一方、第2の電流波形パターン選択時においては、第1の態様と同様に、交流電源の電圧波形情報を用いずに、入力電力の脈動が少なくなるように予め記憶された電流波形を用いる。これにより、平滑コンデンサ6のリプル電流を低減することが可能となる。また、交流電源電圧の高低によらず電源高調波の含有率を一定値以下に保ちつつ、直流電源装置の最大出力の低下を防止することができるとともに、平滑コンデンサ6に流れるリプル電流を低く抑えることができる。
 第10の実施態様では、負荷がインバータ負荷である第1または第2の実施態様の直流電源装置と、インバータ負荷を制御するインバータ制御部12とを備えたインバータ駆動装置が提供される。このインバータ駆動装置の電流波形選択部8dは、インバータ制御部12における駆動周波数が予め定められた所定の周波数よりも大きい場合は、第1の電流波形パターンを選択し、インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも小さい場合は、第2の電流波形パターンを選択する。
 本実施態様によれば、電流波形パターンの切替時に力率が変化してもインバータ制御部12の駆動周波数は変化しない。したがって、電流波形パターン間のハンチングを懸念する必要がなくなり、電流波形パターンを切り替える周波数の設計が容易となる。
 第11の実施態様では、第1または第2の実施態様に係る直流電源装置を備えた空気調和機が提供される。
 一般に、空気調和機においては、低外気温時における暖房運転や、運転の立ち上がり時を除くと、運転時の入力電流がコンセント容量に比べて低く、また、空気調和機の全運転時間において、このように入力電流がさほど高くない期間が占める割合が大きい。そのため、第2の電流波形パターンで運転する期間を他の機器に比べて長く設定することが可能となる。したがって、平滑コンデンサ6の発熱をさらに効果的に低減することができる。また、製品をより長寿命化することができる。
 第12の実施態様では、一態様として、第1、第2の実施態様に係る直流電源装置を有する第8の実施態様に係るインバータ駆動装置を備えた空気調和機が提供される。
 本実施態様によれば、第11の実施態様同様に、第2の電流波形パターンで運転する期間を他の機器に比べて長く設定することができる。したがって、平滑コンデンサ6ひいては製品をより長寿命化することができる。
 第12の実施態様では、一態様として、第6の実施態様に係る直流電源装置を有する第8の実施態様に係るインバータ駆動装置を備えた空気調和機が提供される。本実施態様においては、電流波形パターンを、運転時の実際の入力電流の大きさで判断して切り替える。
 本実施態様によれば、コンセント容量によって製品の最大能力が制限され、高力率が必要となる入力電流条件に絞って第1の電流波形パターンを適用することができる。したがって、より平滑コンデンサ6ひいては製品をより長寿命化することができる。
 第12の実施態様では、一態様として、第9の実施態様に係るインバータ駆動装置を備えた空気調和機が提供される。そして、負荷条件によって予め定められた入力電流の制限値が大きく、大きな入力電流が流れる可能性のある場合にのみ第1波形パターンを採用する。
 本実施態様によれば、電流波形パターン切り替え時の力率変化によるハンチングを懸念する必要がなくなる。そのため、簡単な切替制御で平滑コンデンサ6ひいては製品の長寿命化を行うことができる。
 第12の実施態様では、一態様として、第10の実施態様に係るインバータ駆動装置を備えた空気調和機が提供される。
 一般に入力電流が大きくなるインバータ11の駆動周波数が高い場合にのみ第1の電流波形パターンを用いる。これにより、第9の実施態様に係るインバータ駆動装置を備えた第12の実施態様同様に、電流波形パターン切り替え時の力率変化によるハンチングを懸念する必要がなくなる。そのため、簡単な切替制御で平滑コンデンサ6ひいては製品の長寿命化を行うことができる。
 以上のように、本実施の形態にかかる直流電源装置では、最大負荷時の力率を1に保つ。これにより、その動作時間の大半の期間を占める中~軽負荷時において、負荷へ供給する最大出力を低下させることなく、平滑コンデンサのリプル電流を低減することができる。そのため、冷蔵庫、洗濯機、ヒートポンプ給湯機など、交流電源からの交流電圧をいったん直流電圧に変換して負荷へ電力供給するほぼすべての電化製品への用途に適用できる。
 1 交流電源
 2 リアクタ
 4 スイッチング手段
 6 平滑コンデンサ
 7 負荷
 8a 電圧位相演算部検出部
 8c 電流波形記憶部
 8d 電流波形選択部
 9 交流電圧位相検出回路検出部
 11 インバータ
 12 インバータ制御部

Claims (12)

  1.  交流電源からの交流電圧を直流電圧に変換する直流電源装置であって、
     前記交流電源をリアクタを介して短絡・開放するスイッチング手段と、
     略正弦波状の第1の電流波形パターンと、前記交流電源の電圧がピークとなる位相において凹部を有する波形パターン、もしくは、前記交流電源の電圧がピークとなる位相に相当する部分を平坦にした波形パターンのいずれかの特徴を有する第2の電流波形パターンを含む、複数の電流波形パターンが記憶された電流波形記憶部と、
     負荷に応じて前記電流波形記憶部から1つの電流波形パターンを選択する電流波形選択部と、
     前記スイッチング手段を、前記交流電源からの入力電流の電流波形が前記電流波形選択部で選択された電流波形パターンに比例した振幅を有する電流波形となるように制御する制御部とを備えることを特徴とする直流電源装置。
  2.  前記交流電源の電圧位相を検出する電圧位相検出部をさらに備え、
     前記制御部は、前記第1および第2の電流波形パターンの周期および電圧位相を、前記電圧位相検出部によって検出された交流電源の周期および電圧位相に同期させることを特徴とする請求項1に記載の直流電源装置。
  3.  前記電圧位相検出部は、前記交流電源の電圧もしくはその絶対値と所定の値とを比較して二値信号を生成し、
     生成された前記二値信号の立ち上がりエッジの間隔、立ち下がりエッジの間隔、あるいは立ち上がりエッジの間隔と立ち下がりエッジの間隔との平均値を用いて交流電源の周期を求め、
     連続した二値信号の立ち上がりエッジと立ち下がりエッジ間の中央時刻と、求められた前記交流電源の周期とを用いた演算によって、交流電源の電圧位相を推定することを特徴とする請求項1または2に記載の直流電源装置。
  4.  前記電圧位相検出部は、フォトカプラを用いた回路で構成されることを特徴とする請求項3に記載の直流電源装置。
  5.  前記第2の電流波形パターンは、前記交流電源と同一周波数の正弦波およびその第3次高調波の合成波よりなることを特徴とする請求項1または2に記載の直流電源装置。
  6.  前記電流波形選択部は、入力電流が大きい場合には前記第1の電流波形パターンを、入力電流が小さい場合には前記第2の電流波形パターンを選択し、
     前記第1の電流波形パターンと前記第2の電流波形パターンとの切替を行う入力電流の閾値に関してヒステリシスが設けられていることを特徴とする請求項1または2に記載の直流電源装置。
  7.  周囲温度を検出する温度検出手段をさらに備え、
     前記入力電流の閾値は、周囲温度が高くなるほど大きな値に設定されていることを特徴とする請求項6に記載の直流電源装置。
  8.  負荷がインバータ負荷である請求項1、2、6のいずれか1項に記載の直流電源装置と、
     前記インバータ負荷を制御するインバータ制御部と、
    を備えたインバータ駆動装置。
  9.  負荷がインバータ負荷である請求項1または2に記載の直流電源装置と、前記交流電源からの入力電流が、前記インバータ負荷の運転状態に応じて予め決められた電流制限値以下となるように、インバータを制御するインバータ制御部とを備えたインバータ駆動装置であって、
     前記電流波形選択部は、前記インバータ負荷の運転状態に応じて決定される電流制限値が所定の電流閾値よりも大きい場合は、前記第1の電流波形パターンを選択し、前記インバータ負荷の運転状態に応じて決定される前記電流制限値が前記所定の電流閾値よりも小さい場合は、前記第2の電流波形パターンを選択することを特徴とするインバータ駆動装置。
  10.  負荷がインバータ負荷である請求項1または2に記載の直流電源装置と、前記インバータ負荷を制御するインバータ制御部とを備えたインバータ駆動装置であって、
     前記電流波形選択部は、前記インバータ制御部における駆動周波数が予め定められた所定の周波数よりも大きい場合は、前記第1の電流波形パターンを選択し、前記インバータ負荷の運転状態に応じて決定される電流制限値が前記所定の電流閾値よりも小さい場合は、前記第2の電流波形パターンを選択することを特徴とするインバータ駆動装置。
  11.  前記請求項1または2に記載の直流電源装置を備えた空気調和機。
  12.  前記請求項8~10のいずれか1項に記載のインバータ駆動装置を備えた空気調和機。
PCT/JP2010/002472 2009-04-08 2010-04-05 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機 WO2010116706A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080015686.1A CN102388528B (zh) 2009-04-08 2010-04-05 直流电源装置和逆变器驱动装置及使用其的空调机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009093839 2009-04-08
JP2009-093839 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116706A1 true WO2010116706A1 (ja) 2010-10-14

Family

ID=42936002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002472 WO2010116706A1 (ja) 2009-04-08 2010-04-05 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機

Country Status (3)

Country Link
JP (1) JP5520119B2 (ja)
CN (1) CN102388528B (ja)
WO (1) WO2010116706A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114702A1 (ja) * 2011-02-22 2012-08-30 パナソニック株式会社 空気調和機
CN103229407A (zh) * 2010-11-24 2013-07-31 松下电器产业株式会社 直流电源装置
CN103229406A (zh) * 2010-11-24 2013-07-31 松下电器产业株式会社 直流电源装置
WO2017013390A1 (en) * 2015-07-21 2017-01-26 Dyson Technology Limited Battery charger
EP3101798A3 (en) * 2011-12-14 2017-04-26 Panasonic Corporation Rectifier device and method for controlling same
JP2018520632A (ja) * 2015-07-21 2018-07-26 ダイソン・テクノロジー・リミテッド バッテリ充電器
EP3767811A1 (en) * 2019-07-15 2021-01-20 Tridonic GmbH & Co. KG Switched power converter

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668442B2 (ja) * 2010-12-07 2015-02-12 三菱電機株式会社 単相交流直流変換装置及び単相交流直流変換装置を用いた空気調和機
JP5920055B2 (ja) * 2012-06-27 2016-05-18 三菱電機株式会社 交直電力変換装置、及びこの交直電力変換装置を備えた無停電電源装置
EP2892142B1 (en) * 2012-08-30 2020-05-20 Panasonic Intellectual Property Management Co., Ltd. Rectifier circuit device
KR101677784B1 (ko) * 2012-09-05 2016-11-18 엘에스산전 주식회사 회생형 인버터 장치 및 단위 전력 셀을 이용한 인버터 장치
US8937447B2 (en) * 2012-11-28 2015-01-20 GM Global Technology Operations LLC Methods and systems for controlling a boost converter
JP2015035897A (ja) 2013-08-09 2015-02-19 トヨタ自動車株式会社 電動機制御装置
KR101720643B1 (ko) 2013-08-21 2017-03-28 도요타 지도샤(주) 전동기 제어 장치
JP6065790B2 (ja) 2013-09-11 2017-01-25 トヨタ自動車株式会社 電動機制御装置
JP5997677B2 (ja) 2013-10-16 2016-09-28 ダイキン工業株式会社 電力変換装置及び空気調和装置
WO2015066839A1 (zh) * 2013-11-05 2015-05-14 深圳绿拓科技有限公司 一种单火线取电电路、风机盘管温度控制器及空调
JP2015173529A (ja) * 2014-03-11 2015-10-01 Necプラットフォームズ株式会社 力率改善回路、電源装置および力率改善方法
WO2016006045A1 (ja) 2014-07-08 2016-01-14 三菱電機株式会社 電力変換装置
EP3200336B1 (en) * 2014-09-26 2023-10-04 Mitsubishi Electric Corporation Power conversion device
CN106026649B (zh) * 2016-07-02 2019-02-12 深圳市华星光电技术有限公司 直流-直流转换电路
JP6958387B2 (ja) * 2018-01-26 2021-11-02 株式会社明電舎 直流電源装置および直流電源装置の制御方法
CN109019782A (zh) * 2018-06-27 2018-12-18 世碧德环境科技(上海)有限公司 电解供电装置、银粒子水生成设备及供水系统
WO2020235197A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 インバータ溶接機
CN115051624B (zh) * 2022-08-15 2022-11-11 杭州海康威视数字技术股份有限公司 信号采集电路及摄像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051840A (ja) * 1991-06-21 1993-01-08 Fujitsu General Ltd 空気調和機の制御方法
JPH0956162A (ja) * 1995-08-21 1997-02-25 Hitachi Ltd コンバータのpwm制御装置
JPH09201043A (ja) * 1996-01-12 1997-07-31 Canon Inc 電源装置
JP2001045763A (ja) * 1999-05-26 2001-02-16 Matsushita Electric Ind Co Ltd コンバータ回路
JP2002272116A (ja) * 2001-03-07 2002-09-20 Meidensha Corp 電力変換装置
JP2005218167A (ja) * 2004-01-27 2005-08-11 New Japan Radio Co Ltd 昇圧型スイッチングレギュレータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763479B2 (ja) * 1992-08-06 1998-06-11 三菱電機株式会社 直流電源装置
JP3459143B2 (ja) * 1995-08-09 2003-10-20 ソニー株式会社 スイッチングコンバータにおける過負荷保護方法
JP4157619B2 (ja) * 1997-09-24 2008-10-01 東芝キヤリア株式会社 空気調和機
JP4033628B2 (ja) * 2000-12-08 2008-01-16 松下電器産業株式会社 電源装置及びその電源装置を用いた空気調和機
JP4792849B2 (ja) * 2005-07-15 2011-10-12 パナソニック株式会社 空気調和機の直流電源装置
JP4757663B2 (ja) * 2006-03-07 2011-08-24 株式会社荏原電産 電圧形電流制御インバータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051840A (ja) * 1991-06-21 1993-01-08 Fujitsu General Ltd 空気調和機の制御方法
JPH0956162A (ja) * 1995-08-21 1997-02-25 Hitachi Ltd コンバータのpwm制御装置
JPH09201043A (ja) * 1996-01-12 1997-07-31 Canon Inc 電源装置
JP2001045763A (ja) * 1999-05-26 2001-02-16 Matsushita Electric Ind Co Ltd コンバータ回路
JP2002272116A (ja) * 2001-03-07 2002-09-20 Meidensha Corp 電力変換装置
JP2005218167A (ja) * 2004-01-27 2005-08-11 New Japan Radio Co Ltd 昇圧型スイッチングレギュレータ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229407A (zh) * 2010-11-24 2013-07-31 松下电器产业株式会社 直流电源装置
CN103229406A (zh) * 2010-11-24 2013-07-31 松下电器产业株式会社 直流电源装置
WO2012114702A1 (ja) * 2011-02-22 2012-08-30 パナソニック株式会社 空気調和機
CN103384799A (zh) * 2011-02-22 2013-11-06 松下电器产业株式会社 空气调节机
CN103384799B (zh) * 2011-02-22 2015-12-23 松下电器产业株式会社 空气调节机
EP3101798A3 (en) * 2011-12-14 2017-04-26 Panasonic Corporation Rectifier device and method for controlling same
WO2017013390A1 (en) * 2015-07-21 2017-01-26 Dyson Technology Limited Battery charger
US20180205313A1 (en) * 2015-07-21 2018-07-19 Dyson Technology Limited Battery charger
JP2018520633A (ja) * 2015-07-21 2018-07-26 ダイソン・テクノロジー・リミテッド バッテリ充電器
JP2018520632A (ja) * 2015-07-21 2018-07-26 ダイソン・テクノロジー・リミテッド バッテリ充電器
EP3767811A1 (en) * 2019-07-15 2021-01-20 Tridonic GmbH & Co. KG Switched power converter
WO2021009243A1 (en) * 2019-07-15 2021-01-21 Tridonic Gmbh & Co Kg Switched power converter system
US11711011B2 (en) 2019-07-15 2023-07-25 Tridonic Gmbh & Co Kg Switched power converter system

Also Published As

Publication number Publication date
CN102388528A (zh) 2012-03-21
JP5520119B2 (ja) 2014-06-11
CN102388528B (zh) 2014-09-03
JP2010263775A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5520119B2 (ja) 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機
US9240737B2 (en) Control device for switching power supply circuit, and heat pump unit
EP2779406B1 (en) Power converter and air conditioner having the same
JP5599450B2 (ja) コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、冷蔵庫、及び誘導加熱調理器
JP4784207B2 (ja) 直流電源装置
JP5997677B2 (ja) 電力変換装置及び空気調和装置
US20150180384A1 (en) Motor driving device and air conditioner including the same
JP4033628B2 (ja) 電源装置及びその電源装置を用いた空気調和機
KR20150141086A (ko) 모터 구동장치 및 이를 구비하는 공기조화기
JPWO2014192696A1 (ja) 電力変換装置、その電力変換装置を備えたモータ駆動制御装置、そのモータ駆動制御装置を備えた圧縮機および送風機、ならびに、その圧縮機あるいは送風機を備えた空気調和機
JP6758515B2 (ja) 電力変換装置、圧縮機、送風機、および空気調和装置
JP2009261212A (ja) インバータ装置およびインバータシステム
KR20140112297A (ko) 전력변환장치, 및 이를 구비하는 공기조화기
KR20210101946A (ko) 전력변환장치, 및 이를 구비하는 공기조화기
KR102370444B1 (ko) 전력변환장치 및 이를 구비하는 공기조화기
KR102014257B1 (ko) 전력변환장치 및 이를 포함하는 공기조화기
JP5063570B2 (ja) ファン駆動装置及びこれを搭載した空気調和機
JP4889694B2 (ja) 直流電源装置、それを備えたインバータ装置、及びそのインバータ装置を備えた空気調和機、洗濯機並びに洗濯乾燥機
KR20190130763A (ko) 공기조화기의 제어 방법
KR20160026529A (ko) 모터 구동장치 및 이를 구비하는 공기조화기
JP2018029457A (ja) 電源装置及びこれを搭載した空気調和機
WO2022172417A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
KR101990444B1 (ko) 모터 구동 장치 및 이를 구비하는 공기조화기
KR102343260B1 (ko) 전력변환장치, 및 이를 구비하는 공기조화기
KR20160058437A (ko) 전력변환장치, 및 이를 구비하는 공기조화기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015686.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761410

Country of ref document: EP

Kind code of ref document: A1