WO2015066839A1 - 一种单火线取电电路、风机盘管温度控制器及空调 - Google Patents

一种单火线取电电路、风机盘管温度控制器及空调 Download PDF

Info

Publication number
WO2015066839A1
WO2015066839A1 PCT/CN2013/086554 CN2013086554W WO2015066839A1 WO 2015066839 A1 WO2015066839 A1 WO 2015066839A1 CN 2013086554 W CN2013086554 W CN 2013086554W WO 2015066839 A1 WO2015066839 A1 WO 2015066839A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power take
winding coil
input end
switch
Prior art date
Application number
PCT/CN2013/086554
Other languages
English (en)
French (fr)
Inventor
游延筠
Original Assignee
深圳绿拓科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳绿拓科技有限公司 filed Critical 深圳绿拓科技有限公司
Priority to CN201380077863.2A priority Critical patent/CN105723604B/zh
Priority to PCT/CN2013/086554 priority patent/WO2015066839A1/zh
Publication of WO2015066839A1 publication Critical patent/WO2015066839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • H02P1/445Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor by using additional capacitors switched at start up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel

Definitions

  • the invention belongs to the field of heating and ventilation, and particularly relates to a single fire line power take-off circuit, a fan coil temperature controller and an air conditioner.
  • the fan coil unit mainly achieves temperature regulation through the fan coil temperature controller.
  • the early fan coil temperature controller is usually a mechanical fan coil temperature controller.
  • the structure of the fan coil coil is shown in Figure 1.
  • the mechanical fan coil temperature controller essence The use of mechanical contact cold, heat and high, medium and low speed switch control of fan speed, cooling and heating, etc., often do not need zero line.
  • the mechanical fan coil temperature controller has low intelligence, poor control precision, is not suitable for function expansion, and cannot communicate with sensors and other devices. Therefore, each room or area needs to have a single temperature control function.
  • the isolated control system achieves temperature control and consumes too much power to meet the energy-saving requirements of modern green buildings.
  • FIG. 2 shows a typical electronic fan coil temperature controller.
  • the electronic fan coil temperature controller uses MCU (micro control unit) chip, power supply through the power supply, temperature (wet) control through the operation panel or temperature (wet) sensor, temperature response speed, accurate measurement, The power consumption is also low, and the sensor can be communicated with the wired communication module or the wireless communication module through the infrared human body, the window magnetic (door magnetic) sensor, etc., and the room is automatically realized according to the real-time state such as the presence and absence of the room and the opening and closing of the door and window.
  • MCU micro control unit
  • Energy-saving control of temperature and humidity, as well as time-based automatic timing operations can even achieve some remote detection and control functions through the network, such as: centralized control management and system optimization through the host computer, temperature Joint control of humidity and adjustment and adjustment of energy consumption index detection and management.
  • the purpose of the embodiments of the present invention is to provide a single-fire line take-off circuit, which aims to solve the problem that the mechanical fan coil temperature controller is replaced with the electronic fan coil temperature controller.
  • the fan coil temperature controller is powered, and the construction cost is increased in order to add a neutral line.
  • the embodiment of the present invention is implemented as follows: a single-fire line power take-off circuit, the first input end of the single-fire line take-off circuit is connected to the live line, and the second input end of the single-fire line take-off circuit is connected to the electromagnetic winding coil
  • the single-fire line power take-off circuit includes:
  • the first input end of the parallel power take-off circuit is a first input end of the single-fire line take-off circuit
  • the second input end of the parallel power take-off circuit is a single fire line take-off circuit a second input end
  • the output end of the parallel power take-off circuit is an output end of the single-fire line take-off circuit, for taking power when the electromagnetic winding coil is powered off, and converting the alternating current into direct current
  • a series power take-off circuit a second input end of the series power take-off circuit is connected to a second input end of the parallel power take-off circuit, and an output end of the series power take-off circuit is connected to an output end of the parallel power take-off circuit , for taking power when the electromagnetic winding coil is powered, and converting the alternating current into direct current;
  • a switch unit wherein a conductive end of the switch unit is connected to a first input end of the parallel power take-off circuit, and another conductive end of the switch unit is connected to a first input end of the series power take-off circuit, Used to control the electromagnetic winding coil to be powered off or powered by switching on and off;
  • the electromagnetic winding coil is connected to the neutral wire.
  • Another object of the embodiments of the present invention is to provide a fan coil temperature controller using the above single fire line power take-off circuit.
  • Another object of an embodiment of the present invention is to provide an air conditioner using the above-described fan coil temperature controller.
  • the electromagnetic winding coil connected to the neutral line is used as a single fire take-up loop load, and the wind speed can be adjusted by switching the live line to different electromagnetic winding coils to ensure that the neutral line and the single-fire circuit are in any case. It has a certain current channel for power supply, realizes single-fire line power-off, and can make the electronic fan coil temperature controller control the temperature adjustment only by single-fire line power, which reduces the energy consumption and does not need to add another zero line. Reduced construction costs.
  • Figure 1 is a structural diagram of a mechanical fan coil temperature controller and its wiring diagram
  • FIG. 2 is a structural diagram of a wiring diagram of an electronic fan coil temperature controller and its equipment
  • FIG. 3 is a structural diagram of a single-fire line take-off circuit connected to a coil of an electromagnetic winding of a motor according to an embodiment of the present invention
  • FIG. 4 is an equivalent circuit diagram of a single fire line power take-off circuit in parallel power take-off according to an embodiment of the present invention
  • FIG. 5 is an equivalent circuit diagram of a single-fire line power take-off circuit in series power-off according to an embodiment of the present invention
  • FIG. 6 is a structural diagram of a single-fire line take-off circuit connected to an electromagnetic winding coil of a refrigerating valve or an electromagnetic winding coil of a heating valve according to an embodiment of the present invention.
  • Embodiments of the present invention operate as a single fire take-up loop load through an electromagnetic winding coil connected to the neutral line to ensure that there is a defined current path between the neutral and single fire circuits in any case to provide a DC voltage.
  • a single fire line power take-off circuit the first input end of the single fire line power take-off circuit is connected to the live line, and the second input end of the single fire line power take-off circuit is connected to the electromagnetic winding coil, and the single fire line power take-off circuit comprises:
  • Parallel power take-off circuit the first input end of the parallel power take-off circuit is the first input end of the single-fire line take-off circuit, and the second input end of the parallel power take-off circuit is the second input end of the single-fire line take-off circuit, and the parallel input takes power
  • the output end of the circuit is an output end of the single-fire line take-off circuit for taking power when the electromagnetic winding coil is powered off, and converting the alternating current into direct current;
  • the second input end of the series power take-off circuit is connected to the second input end of the parallel power take-off circuit, and the output end of the series power take-off circuit is connected to the output end of the parallel power take-off circuit for the electromagnetic winding
  • the coil takes power when it is powered on, and converts the alternating current into direct current
  • a switch unit a conductive end of the switch unit is connected to the first input end of the parallel power take-off circuit, and the other conductive end of the switch unit is connected to the first input end of the series power take-off circuit for on-off control of the switch
  • the electromagnetic winding coil is powered off or powered
  • the electromagnetic winding coil is connected to the neutral wire.
  • FIG. 3 shows the structure of a single-fire line take-off circuit connected to the electromagnetic winding of the motor according to an embodiment of the present invention. For the convenience of description, only parts related to the present invention are shown.
  • power can be taken from the electromagnetic winding coil of the motor, for example, the electromagnetic winding coil of the fan-coil three-speed fan motor is used as the load electromagnetic winding coil of the single-fire line taking circuit, and the single-fire line takes the electric circuit.
  • the three-speed fan motor generally has three speeds, and wind speed control is achieved by switching the live line to the different electromagnetic winding coils (first tap 1, second tap 2, and third tap 3) of the three-speed fan motor electromagnetic winding coil 201.
  • the single-line power take-off circuit further includes a second switch RL2 and a third switch RL3;
  • the first tap 1 of the electromagnetic winding coil 201 of the three-speed fan motor is connected to the first selective conducting end of the third switch RL3, and the second tap 2 of the electromagnetic winding coil 201 of the three-speed fan motor and the second selection of the third switch RL3 are selected.
  • the conduction end is connected, the fixed conduction end of the third switch RL3 is connected to the first selection conduction end of the second switch RL2, and the second selection of the third tap 3 and the second switch RL2 of the third speed fan motor electromagnetic winding coil 201
  • the conduction terminal is connected, and the fixed conduction end of the second switch RL2 is connected to the second input end of the single fire line power take-off circuit.
  • the second switch RL2 and the third switch RL3 can each adopt a single-channel double-throw relay.
  • the parallel power take-off circuit 11 includes:
  • the two input ends of the rectifier circuit 111 are respectively a first input end and a second input end of the parallel power take-off circuit 11.
  • the two output ends of the rectifier circuit 111 are connected to the two input ends of the DC-DC circuit 112, and the DC-DC circuit 112 The output is the output of the parallel power take-off circuit 11.
  • the series power take-off circuit 12 includes:
  • Diode D1 capacitor C1
  • controllable electronic switch K1 voltage sampling module 121, control module 122 and zero-crossing detection module 123;
  • the anode of the diode D1 is the first input end (node a) of the series power take-off circuit 12, and is connected to a conductive end of the controllable electronic switch K1, and the cathode of the diode D1 is the output end of the series power take-off circuit 12 (node b) Connected to the input end of the voltage sampling module 121, the output end of the voltage sampling module 121 is connected to the input end of the control module 122, the output end of the control module 122 is connected to the control end of the controllable electronic switch K1, and the controllable electronic switch K1 is further A conduction end is grounded to the second input end of the series power take-off circuit 12, one end of the capacitor C1 is connected to the cathode of the diode D1, the other end of the capacitor C1 is grounded, and the input end of the zero-cross detection module 123 is connected to the anode of the diode D1.
  • the output of the zero crossing detection module 123 is connected to the control terminal
  • the switching unit 13 can be realized by a controllable switch, such as a relay contact switch RL1 or a semiconductor switch.
  • the relay contact switch RL1 controls the start and stop of the three-speed fan motor.
  • the relay contact switch RL1 is turned off, the three-speed fan motor stops working, and the single-fire line take-off circuit passes through the parallel power take-off circuit 11 Taking power, the working principle thereof is shown in FIG. 4, and the opening and closing of the second switch RL2 and the third switch RL3 are controlled by the external driving control unit 202.
  • the second switch RL2 and the third switch RL3 are both closed, and the single fire line is taken.
  • the electric circuit is connected to the first tap 1 of the electromagnetic winding coil 201 of the three-speed fan motor; the second switch RL2 is closed, the third switch RL3 is disconnected, and the single-wire take-off circuit and the second tap of the electromagnetic winding coil 201 of the three-speed fan motor 2
  • the second switch RL2 and the third switch RL3 are both disconnected, and the single-fire line take-off circuit is connected to the third tap 3 of the electromagnetic winding coil 201 of the three-speed fan motor.
  • the neutral line voltage is introduced into the loop, and the parallel power take-off circuit 11 rectifies the AC voltage obtained by the rectifier circuit 111. Then, the DC-DC circuit 112 converts the DC voltage output to the electronic fan coil temperature controller power supply to complete the power take-off.
  • the zero-crossing detecting module 123 detects the zero-crossing point of the alternating current.
  • the positive half cycle start timing command control module 122 of each alternating current voltage turns off the controllable electronic switch K1, and the rising AC voltage begins to charge the storage capacitor C1 through the diode D1.
  • the voltage sampling circuit detects that the charging voltage reaches the set value, it outputs a signal to the control circuit 122, and the control circuit 122 immediately closes the controllable electronic switch K1, bypassing the current in the remaining phase of the sinusoidal cycle of the alternating current.
  • the external load, the signal waveform of each part is as shown. It can be seen that the series power take-off circuit "steals" a small portion of the electrical energy to the load storage capacitor C1 for direct current output to the load during each forward start cycle of the alternating current sine wave. In this way, the single-fire power-off circuit takes power from the parallel circuit and the series circuit in the load stop state and the load operation state, respectively, and reaches the purpose of uninterrupted DC output. In other words, if a single fire take-off circuit is required to provide an uninterrupted, stable DC output voltage, the external load connected in series in the power take-off loop must not be in an open state.
  • the wind speed is adjusted by using the fan coil fan motor electromagnetic winding coil as a single fire electric circuit load, and the wind speed is adjusted by switching the hot wire to different electromagnetic winding coils to ensure that there is a neutral line between the neutral line and the single fire circuit in any case.
  • a certain current channel is used for power supply, so that the electronic fan coil temperature controller can control the temperature adjustment only by single fire line, which reduces the energy consumption, and does not need to add another zero line, thereby reducing the construction cost.
  • Fig. 6 shows the structure of a single-fire line take-off circuit connected to the electromagnetic winding coil of the refrigerating valve or the electromagnetic winding coil of the heating valve according to an embodiment of the present invention. For the convenience of description, only the parts related to the present invention are shown.
  • the electromagnetic winding coil of the refrigeration valve or the electromagnetic winding coil of the heating valve can also be used as a single fire line to take electrical load.
  • One end of the refrigeration valve electromagnetic winding coil or the heating valve electromagnetic winding coil is connected to the neutral line, and the other end of the refrigeration valve electromagnetic winding coil or the heating valve electromagnetic winding coil is taken from the single fire line
  • the second input of the electrical circuit is connected.
  • the embodiment of the invention takes power through the cooling or heating electric valve winding coils, and adjusts the wind speed by switching the hot wire to different winding coils to ensure that a determined current channel is provided between the neutral line and the single-fire circuit in any case.
  • the electronic fan coil temperature controller only controls the temperature adjustment through single fire line to reduce the energy consumption, and there is no need to add additional zero line, which reduces the construction cost.
  • the single-fire temperature controller proposed by the invention enables the energy-saving retrofit of the HVAC to be completed within 10 minutes without additional wiring and changing the original line, and cooperates with human body induction and window magnetism to make the HVAC after the transformation.
  • the energy saving reaches more than 20%, and the effect is very fast, and the effect is very remarkable.
  • Another object of the embodiments of the present invention is to provide a fan coil temperature controller using the single-fire line power take-off circuit, the DC power input end of the fan coil temperature controller and the output of the single-fire line take-off circuit.
  • the first input end of the single-fire line take-off circuit is connected to the live line as the first AC input end of the fan coil temperature controller, and the second input end of the single-fire line take-off circuit is used as the fan
  • the second AC input of the coil temperature controller is coupled to the electromagnetic winding coil to enable the fan coil temperature controller to be powered by a single firewire.
  • Another object of an embodiment of the present invention is to provide an air conditioner using the above-described fan coil temperature controller.

Abstract

一种单火线取电电路、风机盘管温度控制器及空调,电路第一输入端与火线连接,第二输入端与电磁绕组线圈连接,包括:并联取电电路,用于在电磁绕组线圈断电时取电,并将交流电转换为直流电;串联取电电路,用于在电磁绕组线圈加电时取电,并将交流电转换为直流电;开关单元,用于通过开关的通断控制电磁绕组线圈断电或加电;电磁绕组线圈与零线连接。通过与零线连接的电磁绕组线圈作为单火线取电回路负载,并可以通过切换火线到不同电磁绕组线圈来调整风速,确保在任何情况下零线和单火线电路之间都具有一个确定的电流通道供取电用,无需另外增设零线。

Description

一种单火线取电电路、风机盘管温度控制器及空调 技术领域
本发明属于暖通领域,尤其涉及一种单火线取电电路、风机盘管温度控制器及空调。
背景技术
目前商用建筑普遍采用中央空调进行温度调节,而风机盘管机组作为空调温度调节的核心技术,通过调节风机速度来控制空调的制冷/制热的速率。
风机盘管机组主要通过风机盘管温度控制器实现温度调节,早期的风机盘管温度控制器通常为机械式风机盘管温度控制器,其结构参见图1,机械式风机盘管温度控制器本质上是使用机械触点冷、热以及高、中、低速对风扇速度、制冷制热等进行开关控制,往往不需要零线。但是,机械式风机盘管温度控制器智能化低、控制精度较差,不宜进行功能扩展,以及不能与传感器等设备通讯,因此使得每个房间或者区域均需要配备一个只具有单一调温控制功能的孤立控制系统实现温度控制,功耗过大,无法达到现代绿色楼宇对节能的要求。
由于机械式风机盘管温度控制器的诸多局限性,目前通常采用电子式风机盘管温度控制器来代替机械式风机盘管温度控制器,图2为一个典型的电子式风机盘管温度控制器原理示意图,电子式风机盘管温度控制器采用MCU(微控制单元)芯片,通过电源供电,通过操作面板或者温(湿)度传感器进行温(湿)度控制,温度响应速度快,测量准确,功耗也较低,还可以通过红外人体、窗磁(门磁)等传感器与有线通讯模块或无线通讯模块通讯,根据房间有人和无人,以及门窗的开启和关闭等实时状态自动实现对房间温湿度的节能控制,以及基于时间的自动定时操作(例如定时开、关机和温度设置),甚至可以通过网络实现一些远程检测和控制功能,例如:通过上位机实现集中控制管理和系统优化、温度和湿度的联合控制和调整能耗指数的检测和管理等。
然而,在既有建筑的节能和智能化改造中(把机械式风机盘管温度控制器替换成电子式风机盘管温度控制器),由于墙上已安装的机械式风机盘管温度控制器安装盒里通常没有交流零线,而电子式风机盘管温度控制器又必须通过电源供电,即需要接交流火线和零线,通过AC-DC变压器把交流市电转化为低压直流给电路供电。因此,在改造替换过程中需要额外拉一根零线买入墙中,大大增加了施工成本,也为业主带来诸多不便甚至造成一定的经济损失。
技术问题
本发明实施例的目的在于提供一种单火线取电电路,旨在解决目前将机械式风机盘管温度控制器替换成电子式风机盘管温度控制器的过程中,由于缺少零线无法为电子式风机盘管温度控制器供电,以及为了增设零线,导致施工成本增加的问题。
技术解决方案
本发明实施例是这样实现的,一种单火线取电电路,所述单火线取电电路的第一输入端与火线连接,所述单火线取电电路的第二输入端与电磁绕组线圈连接,所述单火线取电电路包括:
并联取电电路,所述并联取电电路的第一输入端为所述单火线取电电路的第一输入端,所述并联取电电路的第二输入端为所述单火线取电电路的第二输入端,所述并联取电电路的输出端为所述单火线取电电路的输出端,用于在所述电磁绕组线圈断电时取电,并将交流电转换为直流电;
串联取电电路,所述串联取电电路的第二输入端与所述并联取电电路的第二输入端连接,所述串联取电电路的输出端与所述并联取电电路的输出端连接,用于在所述电磁绕组线圈加电时取电,并将交流电转换为直流电;
开关单元,所述开关单元的一导通端与所述并联取电电路的第一输入端连接,所述开关单元的另一导通端与所述串联取电电路的第一输入端连接,用于通过开关的通断控制所述电磁绕组线圈断电或加电;
所述电磁绕组线圈与零线连接。
本发明实施例的另一目的在于提供一种采用上述单火线取电电路的风机盘管温度控制器。
本发明实施例的另一目的在于提供一种采用上述风机盘管温度控制器的空调。
有益效果
本发明实施例通过与零线连接的电磁绕组线圈作为单火取电回路负载,并且可以通过切换火线到不同电磁绕组线圈来调整风速,以确保在任何情况下零线和单火电路之间都具有一个确定的电流通道供取电用,实现单火线取电,并且可以使电子式风机盘管温度控制器仅通过单火线取电控制温度调节,降低了能耗,并且无需另外增设零线,降低了施工成本。
附图说明
图1为机械式风机盘管温度控制器及其和设备的接线图的结构图;
图2为电子式风机盘管温度控制器及其和设备的接线图的结构图;
图3为本发明一实施例提供的与电机电磁绕组线圈连接的单火线取电电路的结构图;
图4为本发明一实施例提供的单火线取电电路在并联取电时的等效电路图;
图5为本发明一实施例提供的单火线取电电路在串联取电时的等效电路图;
图6为本发明一实施例提供的与制冷阀门电磁绕组线圈或制热阀门电磁绕组线圈连接的单火线取电电路的结构图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例通过与零线连接的电磁绕组线圈作为单火取电回路负载,以确保在任何情况下零线和单火电路之间都具有一个确定的电流通道,以提供直流电压。
一种单火线取电电路,该单火线取电电路的第一输入端与火线连接,单火线取电电路的第二输入端与电磁绕组线圈连接,单火线取电电路包括:
并联取电电路,并联取电电路的第一输入端为单火线取电电路的第一输入端,并联取电电路的第二输入端为单火线取电电路的第二输入端,并联取电电路的输出端为单火线取电电路的输出端,用于在所述电磁绕组线圈断电时取电,并将交流电转换为直流电;
串联取电电路,串联取电电路的第二输入端与并联取电电路的第二输入端连接,串联取电电路的输出端与并联取电电路的输出端连接,用于在所述电磁绕组线圈加电时取电,并将交流电转换为直流电;
开关单元,开关单元的一导通端与并联取电电路的第一输入端连接,开关单元的另一导通端与串联取电电路的第一输入端连接,用于通过开关的通断控制所述电磁绕组线圈断电或加电;
该电磁绕组线圈与零线连接。
以下结合具体实施例对本发明的实现进行详细描述:
图3示出了本发明一实施例提供的与电机电磁绕组线圈连接的单火线取电电路的结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,可以从电机的电磁绕组线圈进行取电,例如利用风机盘管三速风扇电机的电磁绕组线圈为作为单火线取电电路的负载电磁绕组线圈,向单火线取电电路提供零线回路。三速风扇电机一般具有三个速度,通过将火线切换到三速风扇电机电磁绕组线圈201的不同电磁绕组线圈(第一抽头1、第二抽头2和第三抽头3)实现风速控制。
为了确保在任何情况下零线和单火线取电电路之间都具有一个确定的电流通道供取电用,该单火线取电电路还包括第二开关RL2和第三开关RL3;
该三速风扇电机电磁绕组线圈201的第一抽头1与第三开关RL3的第一选择导通端连接,三速风扇电机电磁绕组线圈201的第二抽头2与第三开关RL3的第二选择导通端连接,第三开关RL3的固定导通端与第二开关RL2的第一选择导通端连接,三速风扇电机电磁绕组线圈201的第三抽头3与第二开关RL2的第二选择导通端连接,第二开关RL2的固定导通端与单火线取电电路的第二输入端连接。
作为本发明一优选实施例,该第二开关RL2和第三开关RL3均可以采用单道双掷继电器。
作为本发明一优选实施例,参见图4,并联取电电路11包括:
整流电路111和DC-DC电路112;
整流电路111的两输入端分别为并联取电电路11的第一输入端和第二输入端,整流电路111的两输出端与DC-DC电路112的两输入端连接,DC-DC电路112的输出端为并联取电电路11的输出端。
由于整流电路111和DC-DC电路112均为本领域技术人员熟知的模型性电路,此处不再赘述其结构。
参见图5,串联取电电路12包括:
二极管D1、电容C1、可控电子开关K1、电压取样模块121、控制模块122和过零检测模块123;
二极管D1的阳极为串联取电电路12的第一输入端(节点a),与可控电子开关K1的一导通端连接,二极管D1的阴极为串联取电电路12的输出端(节点b)与电压取样模块121的输入端连接,电压取样模块121的输出端与控制模块122的输入端连接,控制模块122的输出端与可控电子开关K1的控制端连接,可控电子开关K1的另一导通端为串联取电电路12的第二输入端接地,电容C1的一端与二极管D1的阴极连接,电容C1的另一端接地,过零检测模块123的输入端与二极管D1的阳极连接,过零检测模块123的输出端与控制模块122的控制端连接。
开关单元13可以通过一个可控开关实现,例如继电器触点开关RL1或者半导体开关。
在本发明实施例中,继电器触点开关RL1控制三速风扇电机的启动和停止,当继电器触点开关RL1断开时,三速风扇电机停止工作,单火线取电电路通过并联取电电路11取电,其工作原理参见图4,通过外部的驱动控制单元202控制第二开关RL2和第三开关RL3的断开或闭合,例如:第二开关RL2、第三开关RL3均闭合,单火线取电电路与三速风扇电机电磁绕组线圈201的第一抽头1连接;第二开关RL2闭合、第三开关RL3断开,单火线取电电路与三速风扇电机电磁绕组线圈201的第二抽头2连接;第二开关RL2、第三开关RL3均断开,单火线取电电路与三速风扇电机电磁绕组线圈201的第三抽头3连接。
值得一提的是,无论第二开关RL2和第三开关RL3的触点处于什么位置,都保证有唯一一组电机绕组线圈被接通,这样无论对风扇速度怎样控制,或出现任何不确定状态,都可以保证单火线取电电路不会因为回路断开而掉电。
在三速风扇电机电磁绕组线圈201作为负载与单火线取电电路、火线形成回路后,零线电压则被引入到回路中,并联取电电路11将取到的交流电压通过整流电路111进行整流,再通过DC-DC电路112转换直流电压输出给电子式风机盘管温度控制器电源,完成取电。
当继电器触点开关RL1闭合时,三速风扇电机启动,单火线取电电路通过串联取电电路12取电,其工作原理参见图5,过零检测模块123对交流电的过零点进行检测,在每一个交流电电压的正半周开始时刻命令控制模块122把可控电子开关K1关断,上升中的交流电压开始通过二极管D1对储能电容C1充电。当电压取样电路检测到充电电压达到设定值时,其输出一个信号给控制电路122,控制电路122立刻把可控电子开关K1闭合,在交流电一个正弦周期余下的相位中,把电流旁路到外部负载,其各个部分的信号波形如图所示。由此可见,串联取电电路在交流电正弦波的每个正向起始周期“偷”很小一部分电能给负载储能电容器C1充电供直流输出到负载。这样,单火取电电路在负载停止状态和负载运行状态分别由并联电路和串联电路取电,到达直流输出不间断的目的。换句话说,如果要求单火取电电路提供不间断的稳定直流输出电压,串接在取电回路中的外部负载不能处于断路状态。
本发明实施例通过用风机盘管风扇电机电磁绕组线圈作为单火取电回路负载,通过切换火线到不同电磁绕组线圈来调整风速,以确保在任何情况下零线和单火电路之间都具有一个确定的电流通道供取电用,使电子式风机盘管温度控制器仅通过单火线取电控制温度调节,降低了能耗,并且无需另外增设零线,降低了施工成本。
图6示出了本发明一实施例提供的与制冷阀门电磁绕组线圈或制热阀门电磁绕组线圈连接的单火线取电电路的结构,为了便于说明,仅示出了与本发明相关的部分。
作为本发明一实施例,制冷阀门电磁绕组线圈或制热阀门电磁绕组线圈也可以作为单火线取电负载。
所述制冷阀门电磁绕组线圈或所述制热阀门电磁绕组线圈的一端与所述零线连接,所述制冷阀门电磁绕组线圈或所述制热阀门电磁绕组线圈的另一端与所述单火线取电电路的第二输入端连接。
本发明实施例通过制冷或制热电动阀门绕组线圈取电,通过切换火线到不同绕组线圈来调整风速,以确保在任何情况下零线和单火电路之间都具有一个确定的电流通道供取电用,使电子式风机盘管温度控制器仅通过单火线取电控制温度调节,降低了能耗,并且无需另外增设零线,降低了施工成本。
本发明提出的单火温控器使得暖通的节能改造在不需要额外布线和改变原有线路的情况下,10分钟之内即可完成,配合人体感应和窗磁,使改造后暖通的节能达到20%以上,见效快,效果十分显著。
本发明实施例的另一目的在于提供一种采用上述单火线取电电路的风机盘管温度控制器,所述风机盘管温度控制器的直流电源输入端与所述单火线取电电路的输出端连接,所述单火线取电电路的第一输入端作为所述风机盘管温度控制器的第一交流输入端与火线连接,所述单火线取电电路的第二输入端作为所述风机盘管温度控制器的第二交流输入端与电磁绕组线圈连接,以使所述风机盘管温度控制器实现单火线供电。
本发明实施例的另一目的在于提供一种采用上述风机盘管温度控制器的空调。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种单火线取电电路,其特征在于,所述单火线取电电路的第一输入端与火线连接,所述单火线取电电路的第二输入端与电磁绕组线圈连接,所述单火线取电电路包括:
    并联取电电路,所述并联取电电路的第一输入端为所述单火线取电电路的第一输入端,所述并联取电电路的第二输入端为所述单火线取电电路的第二输入端,所述并联取电电路的输出端为所述单火线取电电路的输出端,用于在所述电磁绕组线圈断电时取电,并将交流电转换为直流电;
    串联取电电路,所述串联取电电路的第二输入端与所述并联取电电路的第二输入端连接,所述串联取电电路的输出端与所述并联取电电路的输出端连接,用于在所述电磁绕组线圈加电时取电,并将交流电转换为直流电;
    开关单元,所述开关单元的一导通端与所述并联取电电路的第一输入端连接,所述开关单元的另一导通端与所述串联取电电路的第一输入端连接,用于通过开关的通断控制所述电磁绕组线圈断电或加电;
    所述电磁绕组线圈与零线连接。
  2. 如权利要求1所述的单火线取电电路,其特征在于,所述电磁绕组线圈为三速风扇电机电磁绕组线圈,所述单火线取电电路还包括第二开关和第三开关;
    所述电机电磁绕组线圈的第一抽头与所述第三开关的第一选择导通端连接,所述电机电磁绕组线圈的第二抽头与所述第三开关的第二选择导通端连接,所述第三开关的固定导通端与所述第二开关的第一选择导通端连接,所述电极电磁绕组线圈的第三抽头与所述第二开关的第二选择导通端连接,所述第二开关的固定导通端与所述单火线取电电路的第二输入端连接。
  3. 如权利要求2所述的单火线取电电路,其特征在于,所述第二开关和所述第三开关均为单刀双掷开关。
  4. 如权利要求1所述的单火线取电电路,其特征在于,所述电磁绕组线圈为制冷阀门电磁绕组线圈或制热阀门电磁绕组线圈,所述制冷阀门电磁绕组线圈或所述制热阀门电磁绕组线圈的一端与所述零线连接,所述制冷阀门电磁绕组线圈或所述制热阀门电磁绕组线圈的另一端与所述单火线取电电路的第二输入端连接。
  5. 如权利要求1所述的单火线取电电路,其特征在于,所述并联取电电路包括:
    整流电路和DC-DC电路;
    所述整流电路的两输入端分别为所述并联取电电路的第一输入端和第二输入端,所述整流电路的两输出端与所述DC-DC电路的两输入端连接,所述DC-DC电路的输出端为所述并联取电电路的输出端。
  6. 如权利要求1所述的单火线取电电路,其特征在于,所述串联取电电路包括:
    二极管D1、电容C1、可控电子开关K1、电压取样模块121、控制模块122和过零检测模块;
    所述二极管D1的阳极为所述串联取电电路的第一输入端与所述可控电子开关K1的一导通端连接,所述二极管D1的阴极为所述串联取电电路的输出端与所述电压取样模块的输入端连接,所述电压取样模块的输出端与所述控制模块的输入端连接,所述控制模块的输出端与所述可控电子开关K1的控制端连接,所述可控电子开关K1的另一导通端为所述串联取电电路的第二输入端接地,所述电容C1的一端与所述二极管D1的阴极连接,所述电容C1的另一端接地,所述过零检测模块的输入端与所述二极管D1的阳极连接,所述过零检测模块的输出端与所述控制模块的控制端连接。
  7. 如权利要求1所述的单火线取电电路,其特征在于,所述开关单元为继电器触点开关。
  8. 一种风机盘管温度控制器,其特征在于,所述风机盘管温度控制器包括如权利要求1至7任一项所述的单火线取电电路,所述风机盘管温度控制器的直流电源输入端与所述单火线取电电路的输出端连接,所述单火线取电电路的第一输入端作为所述风机盘管温度控制器的第一交流输入端与火线连接,所述单火线取电电路的第二输入端作为所述风机盘管温度控制器的第二交流输入端与电磁绕组线圈连接,以使所述风机盘管温度控制器实现单火线供电。
  9. 一种空调,其特征在于,所述空调包括如权利要求8所述的风机盘管温度控制器。
PCT/CN2013/086554 2013-11-05 2013-11-05 一种单火线取电电路、风机盘管温度控制器及空调 WO2015066839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380077863.2A CN105723604B (zh) 2013-11-05 2013-11-05 一种单火线取电电路、风机盘管温度控制器及空调
PCT/CN2013/086554 WO2015066839A1 (zh) 2013-11-05 2013-11-05 一种单火线取电电路、风机盘管温度控制器及空调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086554 WO2015066839A1 (zh) 2013-11-05 2013-11-05 一种单火线取电电路、风机盘管温度控制器及空调

Publications (1)

Publication Number Publication Date
WO2015066839A1 true WO2015066839A1 (zh) 2015-05-14

Family

ID=53040757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086554 WO2015066839A1 (zh) 2013-11-05 2013-11-05 一种单火线取电电路、风机盘管温度控制器及空调

Country Status (2)

Country Link
CN (1) CN105723604B (zh)
WO (1) WO2015066839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337162A (zh) * 2019-04-28 2019-10-15 天彩电子(深圳)有限公司 基于智能开关的单火线取电系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2877144Y (zh) * 2005-11-01 2007-03-07 孔祥明 单线进出的遥控开关
CN201450637U (zh) * 2009-06-17 2010-05-05 王武生 单线制遥控墙壁开关
CN201490688U (zh) * 2009-07-31 2010-05-26 珠海格力电器股份有限公司 相序转换器
CN102388528A (zh) * 2009-04-08 2012-03-21 松下电器产业株式会社 直流电源装置和逆变器驱动装置及使用其的空调机
JP2012107859A (ja) * 2012-02-14 2012-06-07 Mitsubishi Electric Corp 空気調和機
CN102705957A (zh) * 2012-06-07 2012-10-03 华南理工大学 办公建筑中央空调逐时冷负荷在线预测方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2877144Y (zh) * 2005-11-01 2007-03-07 孔祥明 单线进出的遥控开关
CN102388528A (zh) * 2009-04-08 2012-03-21 松下电器产业株式会社 直流电源装置和逆变器驱动装置及使用其的空调机
CN201450637U (zh) * 2009-06-17 2010-05-05 王武生 单线制遥控墙壁开关
CN201490688U (zh) * 2009-07-31 2010-05-26 珠海格力电器股份有限公司 相序转换器
JP2012107859A (ja) * 2012-02-14 2012-06-07 Mitsubishi Electric Corp 空気調和機
CN102705957A (zh) * 2012-06-07 2012-10-03 华南理工大学 办公建筑中央空调逐时冷负荷在线预测方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337162A (zh) * 2019-04-28 2019-10-15 天彩电子(深圳)有限公司 基于智能开关的单火线取电系统和方法
CN110337162B (zh) * 2019-04-28 2021-09-21 天彩电子(深圳)有限公司 基于智能开关的单火线取电系统和方法

Also Published As

Publication number Publication date
CN105723604A (zh) 2016-06-29
CN105723604B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
US9837928B1 (en) Single fire-wire phase-front dynamic AC power fetching module
CN102591241B (zh) 室内用电离家模式智能控制装置的控制方法
WO2020004963A1 (ko) 스마트 홈 구축을 위한 iot 조명 스위치 모듈
CN203258794U (zh) 一种低待机功耗的空调智能控制系统
WO2015066839A1 (zh) 一种单火线取电电路、风机盘管温度控制器及空调
CN104320874A (zh) 基于无线网络利用锂电池供电的单火线智能开关
CN203406513U (zh) 一种家庭节电配电箱
CN103135464A (zh) 一种待机用电设备节电控制系统及方法
CN108278743B (zh) 变频空调的通讯电路及通讯方法
CN106527307A (zh) 一种工业厂矿能耗监控系统
CN104902631A (zh) 智能家居延时触摸开关设备
CN202472320U (zh) 室内用电离家模式智能控制装置
CN202904335U (zh) 一种音视频互动的酒店客房智能控制系统
CN202734152U (zh) 分体式空调节能控制装置
CN113014082B (zh) 低功耗待机电源、电路、控制方法及智能产品
CN212543440U (zh) 一种综合能源管理终端
CN210118824U (zh) 供热控制装置
CN203632639U (zh) 一种单线制智能通讯开关
CN204118399U (zh) 一种具有wifi热点功能的节能插座
CN109951934A (zh) 一种基于BACnet通讯带计量的照明控制系统
CN213421400U (zh) 一种风机盘管智能温度控制器
CN207219126U (zh) 一种磁控式双控开关电路
CN202085365U (zh) 校园路灯节能控制器
CN206113227U (zh) 一种除湿装置电控系统
CN213178757U (zh) 一种教室空调智能控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13897120

Country of ref document: EP

Kind code of ref document: A1