WO2012114702A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2012114702A1
WO2012114702A1 PCT/JP2012/001089 JP2012001089W WO2012114702A1 WO 2012114702 A1 WO2012114702 A1 WO 2012114702A1 JP 2012001089 W JP2012001089 W JP 2012001089W WO 2012114702 A1 WO2012114702 A1 WO 2012114702A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control circuit
indoor unit
air conditioner
indoor
Prior art date
Application number
PCT/JP2012/001089
Other languages
English (en)
French (fr)
Inventor
松城 英夫
黒山 和宏
江口 修
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280009956.7A priority Critical patent/CN103384799B/zh
Publication of WO2012114702A1 publication Critical patent/WO2012114702A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving

Definitions

  • the present invention relates to an indoor / outdoor separate type air conditioner that receives AC power from a commercial power source in an indoor unit.
  • Fig. 10 shows a block diagram of a conventional air conditioner.
  • the indoor unit 100 receives AC power from a commercial power source via the power cord 12 by inserting the power plug 104 into an outlet embedded in the indoor wall.
  • an indoor fan motor 9 and a wind direction louver control motor 10 for controlling the wind direction are controlled by an indoor unit control circuit 7.
  • the outdoor unit control circuit 31 controls the outdoor fan motor 35 that blows air to the heat exchanger and the four-way valve 36 that switches the circulation direction of the refrigerant in the refrigeration cycle by cooling and heating.
  • the compressor motor 34 that compresses the refrigerant in the refrigeration cycle is driven while the compressor driving inverter 30 performs variable speed control.
  • the AC power from the commercial power source is once received by the indoor unit 100, converted from AC power to DC power by the rectifying and smoothing circuit 21 provided in the indoor unit 100, and sent to the indoor unit control circuit 7. It is also transported to the outdoor unit via an indoor / outdoor connection wiring 20 that electrically connects 100 and the outdoor unit 101.
  • AC power from the commercial power source is rectified by the diode bridge 50, and converted to DC power with the voltage ripple suppressed by the smoothing capacitor 51.
  • the indoor / outdoor connection wiring 20 carries power from the indoor unit 100 to the outdoor unit 101 and is used for transmission / reception of information data between the indoor unit 100 and the outdoor unit 101.
  • AC power from a commercial power source conveyed via the indoor / outdoor connection wiring 20 is output with a passive converter circuit 22 provided in the outdoor unit 101 and a function for improving the power factor of the input AC power. It is converted into DC power by a PFC converter circuit having a function of boosting the voltage of DC power.
  • the DC power is distributed to the compressor drive inverter 30 and the outdoor unit control circuit 31 that drive the compressor motor 34.
  • the passive converter circuit 22 includes a diode bridge 52 and smoothing capacitors 53a and 53b stacked in two stages to form a voltage doubler rectifier circuit, and a power factor improving reactor 54 is disposed on the input side thereof.
  • AC power is transferred from the indoor unit to the outdoor unit via the indoor / outdoor connection wiring.
  • the voltage value of the AC power is approximately 100 V or 200 V, and the current value is approximately 20 A at the maximum although it depends on the capability of the air conditioner.
  • the present invention solves the above-described problems, and is an air that can further reduce the cost while minimizing the power loss caused by power transfer between the indoor unit and the outdoor unit.
  • the purpose is to provide a harmony machine.
  • JP 11-287503 A JP-A-11-304217
  • the air conditioner of the present invention is composed of an indoor unit and an outdoor unit equipped with a compressor, and is a separate type that receives AC power from a commercial power source in the indoor unit. Then, AC power from a commercial power source is converted into DC power by an AC / DC power converter disposed in the indoor unit. Next, the DC power converted by the AC / DC power converter is supplied to the indoor unit control circuit, and this DC power is transmitted to the outdoor unit via the indoor / outdoor connection wiring that connects the indoor unit and the outdoor unit. The machine control circuit and the compressor driving inverter are operated.
  • FIG. 1 is a diagram showing a configuration of an air conditioner on the indoor unit side according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a configuration on the outdoor unit side of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a configuration in which the air conditioner according to Embodiment 1 of the present invention is connected to a power distribution system.
  • FIG. 4 is a diagram showing the configuration of the air conditioner according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram showing the power loss characteristics of the wiring of the air conditioner according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing a configuration of an air conditioner according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing a configuration of an air conditioner according to Embodiment 4 of the present invention.
  • FIG. 8 is a diagram showing a configuration of an air conditioner according to Embodiment 5 of the present invention.
  • FIG. 9 is a diagram showing a part of the control flow on the indoor unit side and outdoor unit side of the air conditioner according to Embodiment 6 of the present invention.
  • FIG. 10 is a diagram showing a configuration of an air conditioner according to the prior art.
  • FIG. 1 is a diagram showing a configuration of an air conditioner on the indoor unit side according to Embodiment 1 of the present invention.
  • the indoor unit 100 is connected with a power plug 104 via a power cord 12 that can be plugged into an outlet of an in-house power distribution carrying AC power.
  • the power cord 12 is connected to the AC / DC power converter 1 in the indoor unit 100, and the AC / DC power converter 1 converts AC power into DC power.
  • the AC / DC power converter 1 conveys DC power to the indoor unit control circuit 7 including the indoor communication circuit 8 through the positive wiring 2 and the negative wiring 3.
  • the indoor unit control circuit 7 controls the indoor fan motor 9 and the wind direction louver control motor 10 using DC power.
  • the AC / DC power conversion unit 1 is provided with a positive side wiring 4 and a negative side wiring 5 for conveying DC power separately from the positive side wiring 2 and the negative side wiring 3, and is connected to the connection terminals 11 a and 11 b, respectively. is doing.
  • the indoor unit control circuit 7 has an indoor communication circuit 8 that controls communication with the outdoor unit, and carries data by the communication wiring 6 connected to the connection terminal 11c.
  • FIG. 2 is a diagram showing a circuit configuration on the outdoor unit side of the air conditioner according to Embodiment 1 of the present invention.
  • the positive side wiring 4 connected to the connection terminal 33a is connected to the compressor driving inverter 30 and the outdoor unit control circuit 31 that convert DC power into three-phase AC power in the outdoor unit 101.
  • connection terminal 33b is also connected to the compressor driving inverter 30 and the outdoor unit control circuit 31 for converting the DC power into the three-phase AC power in the outdoor unit 101.
  • the output of the compressor drive inverter 30 is input to the compressor motor 34.
  • the outdoor unit control circuit 31 uses DC power to control the outdoor fan motor 35 that blows air to the heat exchanger and the four-way valve 36 that switches the circulation direction of the refrigerant in the refrigeration cycle by cooling and heating.
  • the outdoor unit control circuit 31 has an outdoor communication circuit 32 that controls communication with the indoor unit, and carries data by the communication wiring 6 connected to the connection terminal 33c.
  • FIG. 3 is a diagram showing a configuration in which the indoor unit 100 shown in FIG. 1 and the outdoor unit 101 shown in FIG. 2 are connected by the indoor / outdoor connection wiring 20 and further connected to the in-house power distribution system.
  • the distribution board 102 installed in the home is connected to the home wiring 13 that carries AC power from a commercial power source.
  • An outlet 103 is connected to the other end side of the home wiring 13 connected to the switchboard 102, and AC power having a voltage of about 100 V is supplied to the indoor unit 100 by inserting the power plug 104 into the outlet 103.
  • the AC power supplied to the indoor unit 100 is converted into a smooth rectified DC power having a voltage of 100 V or more by the AC / DC power conversion unit 1, and this DC power is supplied to the outdoor unit 101 via the indoor / outdoor connection wiring 20. Is done.
  • the voltage value is higher than the voltage value in the AC power transfer performed by the conventional configuration.
  • DC power transfer with voltage can be performed.
  • the current value flowing through the indoor / outdoor connection wiring decreases, and the power loss represented by the result of multiplying the resistance component and the square of the current value at this point is reduced. It becomes possible.
  • the rectifying / smoothing circuit 21 that outputs the DC power supplied to the indoor unit control circuit 7, and the outdoor unit 101
  • a passive converter circuit 22 that outputs supplied DC power is provided.
  • the diode bridge 50 rectifies AC power from the commercial power supply, and the smoothing capacitor 51 converts the DC power into DC power with suppressed voltage ripple.
  • the passive converter circuit 22 that outputs the DC power supplied to the outdoor unit 101 forms a voltage doubler rectifier circuit with the diode bridge 52 and the smoothing capacitors 53a and 53b stacked in two stages, and a power factor improving circuit is provided on the input side.
  • the reactor 54 is arranged.
  • DC power of about 280 V is output between the positive side wiring 4 and the negative side wiring 5, and this DC power is passed through the indoor / outdoor connection wiring 20. Input to the outdoor unit 101.
  • the indoor / outdoor connection wiring 20 Compare power loss.
  • the length of the indoor / outdoor connection wiring 20 connecting the indoor unit 100 and the outdoor unit 101 is 5 m
  • the total length of the positive wiring 4 and the negative wiring 5 is 10 m, which is used here.
  • the electric resistance per unit of the electric wire is 9 ⁇ / km
  • an electric resistance component of 90 m ⁇ exists in the indoor / outdoor connection wiring 20.
  • FIG. 5 shows a characteristic graph of an electric resistance of 90 m ⁇ with the current value on the horizontal axis and the power loss on the vertical axis.
  • the power loss is obtained from the relationship obtained by multiplying the square of the current value by the resistance value. It is what
  • the positive side wiring 4 and the negative side wiring 5 in the indoor / outdoor connection wiring 20 have an effective value of approximately 15 A.
  • Embodiment 2 of the present invention when the outdoor unit is operated at a power consumption of 1500 W, as compared with the conventional case where 100 V AC power is transferred from the indoor unit to the outdoor unit, it is about A power loss improvement of 17.7 W was achieved.
  • the passive converter circuit 22 that outputs DC power to be supplied to the indoor unit control circuit 7 and the outdoor unit 101 forms a voltage doubler rectifier circuit with a diode bridge 52 and smoothing capacitors 53a and 53b that are stacked in two stages.
  • a power factor improving reactor 54 is provided.
  • a rectifying / smoothing circuit 21 that outputs DC power supplied to the indoor unit control circuit 7, and AC power is output to the outdoor unit.
  • a PFC converter circuit 23 having both a function of improving the power factor of input AC power and a function of boosting the voltage of the output DC power when converting into DC power supplied to the machine 101 is provided.
  • the diode bridge 50 rectifies AC power from the commercial power supply, and the smoothing capacitor 51 converts the DC power into DC power with suppressed voltage ripple.
  • the PFC converter circuit 23 that outputs DC power supplied to the outdoor unit 101 includes a reactor 54, a diode bridge 52, and components provided in the passive converter circuit 22 shown in FIG.
  • a smoothing capacitor 53c is provided.
  • a second diode bridge 55 is connected between one side of the wiring that carries AC power and the negative side wiring 5 that carries DC power, and for example, an IGBT or the like is connected to both output ends of the second diode bridge 55.
  • a switching element 56 made of a MOSFET or the like is connected.
  • the PFC converter circuit 23 has a function of improving the power factor of AC power by the current flowing through the reactor 54 and the second diode bridge 55 when the switching element 56 is turned on, and the timing of turning on and off the switching element 56. By controlling, it has a function of boosting the voltage of the output DC power.
  • the DC power boosting function provided in the PFC converter circuit 23 outputs approximately 380 V DC power between the positive side wiring 4 and the negative side wiring 5 in response to the input of AC power having a voltage value of 100 V.
  • the signal is input to the outdoor unit 101 via the connection wiring 20.
  • Embodiment 4 of the present invention when the outdoor unit is operated at a power consumption of 1500 W, the power loss when the conventional 100 V AC power is transferred from the indoor unit to the outdoor unit is about 20.3 W, which is about 18.9W power loss improvement was achieved.
  • the PFC converter circuit 23 that outputs DC power to be supplied to the indoor unit control circuit 7 and the outdoor unit 101 has the power of AC power by the current flowing through the reactor 54 and the second diode bridge 55 when the switching element 56 is turned on.
  • a function for improving the rate and a function for boosting the voltage of the output DC power by controlling the on / off timing of the switching element 56 are provided.
  • the indoor unit control circuit 7 transmits / receives data to / from the outdoor unit control circuit 31.
  • An indoor communication circuit 8 is provided, and the outdoor unit control circuit 31 is provided with an outdoor communication circuit 32 that transmits and receives data to and from the indoor unit control circuit 7.
  • the outdoor communication circuit 32 transmits data relating to the driving state of the compressor to the indoor communication circuit 8, and the indoor unit control circuit 7 performs the boosting and stopping operations of the PFC converter circuit 23 based on the received data relating to the driving state of the compressor. I tried to control it.
  • FIG. 9 is a diagram showing a part of the control flow on the indoor unit side and outdoor unit side of the air conditioner according to Embodiment 6 of the present invention.
  • the instruction rotational speed of the compressor is calculated from the set temperature set by the remote controller or the temperature data of various temperature sensors, and the data is transmitted to the outdoor unit. To control the rotational speed of the compressor.
  • Step 5 the actual rotational speed and abnormal data related to the actual compressor drive state are transmitted from the outdoor unit side to the indoor unit side, and the indoor unit side receiving the data from Step 6 As shown in Step 8, the stop determination of the PFC converter circuit and the calculation of the boosted voltage value are performed to control the operation of the switching element.
  • the operation of the PFC converter circuit on the indoor unit side can be controlled according to the driving state of the compressor on the outdoor unit side, so that the optimum operation from the viewpoint of energy saving and safety is always performed.
  • the added air conditioner could be realized.
  • a first aspect of the present invention is a separate air conditioner that includes an indoor unit and an outdoor unit equipped with a compressor, and receives AC power from a commercial power source by the indoor unit. It is converted into DC power by an AC / DC power converter disposed in the machine. The DC power converted by the AC / DC power converter is supplied to the indoor unit control circuit, and the DC power is transmitted to the outdoor unit via the indoor / outdoor connection wiring that connects the indoor unit and the outdoor unit. And the compressor driving inverter is operated.
  • the AC / DC power conversion unit of the first aspect of the present invention converts the AC power from the commercial power source into DC power and supplies it to the indoor unit control circuit, and the commercial power source It is characterized by comprising a passive converter circuit that converts AC power into DC power and supplies it to an outdoor unit control circuit and a compressor driving inverter.
  • the AC / DC power conversion unit of the first aspect of the present invention converts AC power from a commercial power source into DC power to convert an indoor unit control circuit, an outdoor unit control circuit, and a compressor drive inverter. It is characterized by comprising a passive converter circuit to be supplied and operated.
  • the AC / DC power converter of the first aspect of the present invention converts the AC power from the commercial power source into DC power and supplies it to the indoor unit control circuit, and the commercial power source
  • the AC power is converted into DC power and supplied to the outdoor unit control circuit and the compressor driving inverter to be operated.
  • direct current power it is characterized by comprising a PFC converter circuit having a function of improving the power factor of input alternating current power and a function of boosting the voltage of output direct current power.
  • the AC / DC power conversion unit of the first aspect of the present invention converts AC power from a commercial power source into DC power to convert the indoor unit control circuit, the outdoor unit control circuit, and the compressor drive inverter.
  • a PFC converter circuit having both a function of improving the power factor of input AC power and a function of boosting the voltage of output DC power when converting to DC power
  • the indoor unit control circuit includes an indoor communication circuit that transmits and receives data to and from the outdoor unit control circuit
  • the outdoor unit control circuit Includes an outdoor communication circuit for transmitting and receiving data to and from the indoor unit control circuit. Then, data relating to the driving state of the compressor is transmitted from the outdoor communication circuit to the indoor communication circuit, and the boosting and stopping operations of the PFC converter circuit are controlled based on the data relating to the driving state of the compressor received by the indoor unit control circuit. It is characterized by this.
  • the operation of the PFC converter circuit on the indoor unit side can be controlled according to the driving state of the compressor on the outdoor unit side, so that the optimum operation from the viewpoint of energy saving and safety is always performed.
  • the added air conditioner can be realized.
  • the present invention is not limited to an air conditioner, and can be applied to all electrical devices that connect a device and a system that distributes AC power from a commercial power source to a house or building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

商用電源からの交流電力を室内機(100)で受電するセパレート型の空気調和機において、商用電源からの交流電力を室内機(100)の中に配置された交流直流電力変換部(1)によって直流電力に変換する。この直流電力を室内機制御回路(7)に供給するとともに、室内機(100)と室外機(101)とを接続する室内外接続配線(20)を介して室外機(101)の室外機制御回路(31)および圧縮機駆動用インバータ(30)に送電する。

Description

空気調和機
 本発明は、商用電源からの交流電力を室内機で受電する室内外セパレート型の空気調和機に関する。
 図10に従来技術による空気調和機の構成図を示す。
 一般家庭用の空気調和機に関しては、室内機100と室外機101によって構成されるセパレート型のものが普及している。セパレート型の空気調和機では、室内の壁に埋め込まれたコンセントに電源プラグ104を差し込んで商用電源の交流電力を、電源コード12を介して室内機100で受電するものが多い。
 室内機100には室内ファンモータ9や風向きをコントロールする風向ルーバ制御用モータ10が室内機制御回路7で制御されている。
 一方、室外機101においては、熱交換器への送風を行う室外ファンモータ35や、冷凍サイクル内の冷媒の循環方向を冷房と暖房によって切り替える四方弁36を室外機制御回路31が制御している。また、冷凍サイクル内の冷媒を圧縮する圧縮機モータ34を圧縮機駆動用インバータ30が可変速制御しながら駆動させている。
 商用電源からの交流電力は、一旦、室内機100で受電され、室内機100に設けられた整流平滑回路21などで交流電力から直流電力へ変換され室内機制御回路7へ送られるとともに、室内機100と室外機101を電気的に接続する室内外接続配線20を介して室外機へも搬送される。
 室内機制御回路7に供給される直流電力を出力する整流平滑回路21では、ダイオードブリッジ50で商用電源からの交流電力を整流し、平滑コンデンサ51で電圧リップルを抑制した直流電力に変換される。
 更に、室内外接続配線20は室内機100から室外機101へ電力搬送を行うとともに、室内機100と室外機101間における情報データの送受信に用いられる。
 室内外接続配線20を介して搬送された商用電源からの交流電力は、室外機101内に設けられたパッシブ型コンバータ回路22や、入力される交流電力の力率を改善する機能と、出力される直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路によって直流電力に変換される。そしてその直流電力は、圧縮機モータ34を駆動する圧縮機駆動用インバータ30や室外機制御回路31へ配電される。
 なお、パッシブ型コンバータ回路22は、ダイオードブリッジ52と二段積みした平滑コンデンサ53a,53bで倍電圧整流回路を構成し、その入力側に力率改善用のリアクタ54を配する。
 また、従来の空気調和機においては、室内機で受電した商用電源の交流電力を室内外接続配線により室外機に搬送した後に、室外機内の交流直流電力変換回路で低圧直流電力に変換し、再び室内機に搬送するといった構成がある(例えば、特許文献1および2参照)。
 しかしながら、上述したような構成のセパレート型の空気調和機では、いずれの場合においても室内機から室外機へ商用電源からの交流電力の搬送が室内外接続配線を介して行われている。そして、その交流電力の電圧値は概ね100Vまたは200Vであり、その電流値は空気調和機の能力にもよるが、最大で20A程度となる。
 室内機と室外機を電気的に接続する室内外接続配線においては電気的な抵抗成分が存在し、その影響で多くの電流が流れれば流れるほど電力損失が増大してしまう。室外機に配された圧縮機を駆動する電力が製品の消費電力の大半を占める空気調和機においては、上記従来の空気調和機の構成では室内外接続配線を大きな交流電流が流れることになり、この室内外接続配線における電力損失は無視できない問題である。
 家屋やその周囲環境によって、屋内に設置された室内機と屋外に設置された室外機との距離が遠くなれば、なおさらこの室内外接続配線における電力損失が家庭内のエネルギー消費に悪影響を及ぼしてしまうことになる。
 一方で、セパレート型ではなく室内機と室外機の機能や部品を一体化した空気調和機は、家屋への設置の自由度がなく、市場での需要は期待できず、空気調和機の各機器を配線接続する構成は、商品として成立させる上では避けられない要素である。
 本発明は、前述の問題点を解決するものであって、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制しつつ、更には低コスト化も実現可能な空気調和機を提供することを目的とする。
特開平11-287503号公報 特開平11-304217号公報
 前記従来の課題を解決するために、本発明の空気調和機は、室内機と、圧縮機を具備した室外機によって構成され、商用電源からの交流電力を室内機で受電するセパレート型のものであって、商用電源からの交流電力を前記室内機の中に配置された交流直流電力変換部によって直流電力に変換する。次に交流直流電力変換部で変換された直流電力を室内機制御回路に供給するとともに、この直流電力を室内機と室外機とを接続する室内外接続配線を介して室外機に送電し、室外機制御回路および圧縮機駆動用インバータを動作させることを特徴とする。
 これにより、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
図1は本発明の実施の形態1における空気調和機の室内機側の構成を示す図である。 図2は本発明の実施の形態1における空気調和機の室外機側の構成を示す図である。 図3は本発明の実施の形態1における空気調和機を配電システムに接続した構成を示す図である。 図4は本発明の実施の形態2における空気調和機の構成を示す図である。 図5は本発明の実施の形態2における空気調和機の配線の電力損失特性を示す図である。 図6は本発明の実施の形態3における空気調和機の構成を示す図である。 図7は本発明の実施の形態4における空気調和機の構成を示す図である。 図8は本発明の実施の形態5における空気調和機の構成を示す図である。 図9は本発明の実施の形態6における空気調和機の室内機側と室外機側の制御フローの一部を示す図である。 図10は従来技術による空気調和機の構成を示す図である。
 以下に図面を参照しながら本発明の実施の形態を説明する。
 なお、本実施の形態によって本発明が限定されるものではない。
 また、各実施の形態の説明において、同一構成並びに同一作用効果を奏するところには、同一符号を付して重複した説明を行わないものとする。
 (実施の形態1)
 図1は、本発明の実施の形態1における空気調和機の室内機側の構成を示す図である。
 室内機100には、交流電力が搬送されている宅内配電のコンセントに差込可能な電源プラグ104が、電源コード12を介して接続されている。
 電源コード12は、室内機100内において交流直流電力変換部1に接続され、交流直流電力変換部1では交流電力を直流電力に変換する。
 交流直流電力変換部1は正側配線2と負側配線3によって室内通信回路8を含んだ室内機制御回路7に直流電力を搬送する。
 室内機制御回路7は直流電力を利用して、室内ファンモータ9や風向ルーバ制御用モータ10を制御する。
 交流直流電力変換部1からは正側配線2と負側配線3とは別に直流電力を搬送するための正側配線4と負側配線5を配しており、それぞれ接続端子11a,11bに接続している。
 また、室内機制御回路7には室外機との通信を制御する室内通信回路8があり、接続端子11cに接続した通信用配線6によってデータ搬送を行う。
 図2は、本発明の実施の形態1における空気調和機の室外機側の回路構成を示す図である。
 接続端子33aに接続した正側配線4は、室外機101内において直流電力を三相交流電力に変換する圧縮機駆動用インバータ30と室外機制御回路31と接続している。
 また、接続端子33bに接続した負側配線5も、室外機101内において直流電力を三相交流電力に変換する圧縮機駆動用インバータ30と室外機制御回路31と接続している。
 圧縮機駆動用インバータ30の出力は圧縮機モータ34に入力される。
 室外機制御回路31は直流電力を利用して、熱交換器への送風を行う室外ファンモータ35や冷凍サイクル内の冷媒の循環方向を冷房暖房によって切り替える四方弁36を制御する。
 また、室外機制御回路31には室内機との通信を制御する室外通信回路32があり、接続端子33cに接続された通信用配線6によってデータ搬送を行う。
 図3は、図1に示す室内機100と図2に示す室外機101を室内外接続配線20によって接続し、更に宅内配電システムに接続した構成を示す図である。
 宅内に設置された配電盤102には、商用電源からの交流電力を搬送する宅内配線13を接続している。
 配電盤102に接続した宅内配線13の他端側にはコンセント103が接続されており、電源プラグ104をコンセント103に差し込むことによって概ね100V程度の電圧の交流電力が室内機100に供給される。室内機100に供給された交流電力は、交流直流電力変換部1が100V以上の電圧の平滑整流された直流電力に変換し、この直流電力は室内外接続配線20を介して室外機101に供給される。
 上述してきた構成によって、本実施の形態1においては、空気調和機における室内機と室外機間の電力搬送において、従来の構成によって行われていた交流電力の搬送での電圧値よりも高い値の電圧での直流電力搬送を行うことができる。そのことで室外機が同じ能力の運転をしていても室内外接続配線に流れる電流値が少なくなり、この箇所における抵抗成分と電流値の二乗を乗算した結果で表される電力損失を減少させることが可能となる。
 (実施の形態2)
 次に、本発明の実施の形態2について図面を参照して説明する。
 本実施の形態2では、図4に示すように、室内機100内の交流直流電力変換部1において、室内機制御回路7に供給する直流電力を出力する整流平滑回路21と、室外機101に供給される直流電力を出力するパッシブ型コンバータ回路22とを設ける構成とした。
 なお、室外機101の構成に関しては、実施の形態1で説明したものをそのまま利用しているため、説明を省略する。
 室内機制御回路7に供給する直流電力を出力する整流平滑回路21では、ダイオードブリッジ50が商用電源からの交流電力を整流し、平滑コンデンサ51が電圧リップルを抑制した直流電力に変換する。
 整流平滑回路21に100Vの電圧値の交流電力を入力すると、正側配線2と負側配線3間において概ね140V程度の直流電力が出力され、この直流電力は室内機制御回路7に入力される。
 一方、室外機101に供給する直流電力を出力するパッシブ型コンバータ回路22は、ダイオードブリッジ52と二段積みした平滑コンデンサ53a,53bで倍電圧整流回路を構成し、その入力側に力率改善用のリアクタ54を配する。
 パッシブ型コンバータ回路22に100Vの電圧値の交流電力を入力すると、正側配線4と負側配線5間において概ね280V程度の直流電力が出力され、この直流電力は室内外接続配線20を介して室外機101に入力される。
 ここで、従来例にも示した100Vの交流電力を室内機から室外機に搬送する場合と、パッシブ型コンバータ回路22によって変換された280Vの直流電力を搬送する場合における室内外接続配線20での電力損失について比較する。
 例えば、室内機100と室外機101間を接続する室内外接続配線20の長さを5mとすると、正側配線4と負側配線5とを合わせて10mの配線長となり、ここで使用される電線の単位あたりの電気抵抗が9Ω/kmとしたならば、室内外接続配線20において90mΩの電気抵抗成分が存在することになる。
 図5は、横軸を電流値、縦軸を電力損失とした90mΩの電気抵抗における特性グラフを示したものであり、電力損失は電流値の二乗に抵抗値を乗算した結果となる関係より得られるものである。
 100Vの交流電力を室内機から室外機に搬送し、室外機を消費電力1500Wで運転したとすると、室内外接続配線20において、正側配線4と負側配線5にはおおよそ実効値で15Aの電流が流れることになり、図5に示した特性グラフから約20.3Wの電力損失が発生することになる。
 しかしながら、280Vの直流電力を室内機から室外機に搬送し、同様に室外機を消費電力1500Wで運転したとすると、室内外接続配線20においては、正側配線4と負側配線5にはおおよそ5.36Aの電流が流れることになり、図5に示した特性グラフから約2.6Wの電力損失で抑制されることになる。
 本発明の実施の形態2では、室外機を消費電力1500Wで運転した場合、従来の100Vの交流電力を室内機から室外機に搬送する場合に比べ、上述した理論計算からも明らかなように約17.7Wの電力損失改善が達成できた。
 (実施の形態3)
 次に、本発明の実施の形態3について図面を参照して説明する。
 本実施の形態3では、図6に示すように、室内機100内の交流直流電力変換部1において、室内機制御回路7と室外機101に供給する直流電力を出力するパッシブ型コンバータ回路22のみを設ける構成とした。
 なお、室外機101の構成に関しては、実施の形態1で説明したものをそのまま利用しているため、説明を省略する。
 室内機制御回路7と室外機101に供給する直流電力を出力するパッシブ型コンバータ回路22は、ダイオードブリッジ52と二段積みした平滑コンデンサ53a,53bで倍電圧整流回路を構成し、その入力側に力率改善用のリアクタ54を配する。
 パッシブ型コンバータ回路22に100Vの電圧値の交流電力を入力すると、概ね280V程度の直流電力が出力され、この直流電力は正側配線2と負側配線3によって室内機制御回路7へ入力され、正側配線4と負側配線5によって室外機101に入力される。
 上述した構成によって、本実施の形態3においても、実施の形態2と同様の効果が得られる上に、交流直流電力変換部1における回路部品を最小限にとどめることによって機器の小型化、低コスト化が実現可能なものとなる。
 (実施の形態4)
 次に、本発明の実施の形態4について図面を参照して説明する。
 本実施の形態4では、図7に示すように、室内機100内の交流直流電力変換部1において、室内機制御回路7に供給する直流電力を出力する整流平滑回路21と、交流電力を室外機101に供給する直流電力に変換する際に、入力される交流電力の力率を改善する機能と出力する直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路23とを設ける。
 なお、室外機101の構成に関しては、実施の形態1で説明したものをそのまま利用しているため、説明を省略する。
 室内機制御回路7に供給する直流電力を出力する整流平滑回路21では、ダイオードブリッジ50が商用電源からの交流電力を整流し、平滑コンデンサ51が電圧リップルを抑制した直流電力に変換する。
 整流平滑回路21に100Vの電圧値の交流電力を入力すると、正側配線2と負側配線3間において概ね140V程度の直流電力が出力され、この直流電力は室内機制御回路7に入力される。
 一方、室外機101に供給される直流電力を出力するPFCコンバータ回路23には、実施の形態2を示す図4で示したパッシブ型コンバータ回路22に設けた部品であるリアクタ54、ダイオードブリッジ52および平滑コンデンサ53cを設けている。さらに、交流電力を搬送する配線の片側と直流電力を搬送する負側配線5との間に第2のダイオードブリッジ55を接続し、この第2のダイオードブリッジ55の両出力端には例えばIGBTやMOSFETなどからなるスイッチング素子56を接続している。
 PFCコンバータ回路23は、スイッチング素子56がオンした場合のリアクタ54及び第2のダイオードブリッジ55を介して流れる電流によって交流電力の力率を改善する機能と、スイッチング素子56のオンやオフのタイミングを制御することによって、出力する直流電力の電圧を昇圧する機能を備えている。
 PFCコンバータ回路23が備える出力する直流電力の昇圧機能によって、100Vの電圧値の交流電力の入力に対し、正側配線4と負側配線5間において概ね380V程度の直流電力を出力し、室内外接続配線20を介して室外機101に入力される。
 ここで、実施の形態2と同様の条件で、室内機と室外機間を接続する室内外接続配線20の長さを5m、90mΩの電気抵抗成分が存在するとした場合で、380Vの直流電力を室内機から室外機に搬送し、同様に室外機を消費電力1500Wで運転していたとすると、室内外接続配線20においては、正側配線4と負側配線5にはおおよそ3.95Aの電流が流れることになり、図5に示した特性グラフから約1.40Wの電力損失となる。
 本発明の実施の形態4では、室外機を消費電力1500Wで運転していた場合、従来の100Vの交流電力を室内機から室外機に搬送した場合の電力損失、約20.3Wに比べ、約18.9Wの電力損失改善を達成した。
 商用電源からより多くの有効電力を取り出し、多くの有効電力を負荷の機器に供給することにより機器の最大能力を増大することができる点や、近年問題となりつつある電源の高調波電流を低減でき、電源高調波規制を満足しながら、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 (実施の形態5)
 次に、本発明の実施の形態5について図面を参照して説明する。
 本実施の形態5では、図8に示すように、室内機100内の交流直流電力変換部1において、室内機制御回路7と室外機101に供給する直流電力を出力するPFCコンバータ回路23のみを設ける構成とした。
 なお、室外機101の構成に関しては、実施の形態1で説明したものをそのまま利用しているため、説明を省略する。
 室内機制御回路7と室外機101に供給する直流電力を出力するPFCコンバータ回路23は、スイッチング素子56がオンした場合のリアクタ54及び第2のダイオードブリッジ55を介して流れる電流によって交流電力の力率を改善する機能と、スイッチング素子56のオンやオフのタイミングを制御することによって、出力する直流電力の電圧を昇圧する機能を備えている。
 PFCコンバータ回路23に100Vの電圧値の交流電力を入力すると、概ね380V程度の直流電力が出力され、この直流電力は正側配線2と負側配線3によって室内機制御回路7へ入力され、正側配線4と負側配線5によって室外機101に入力される。
 上述した構成によって、本実施の形態5においても、実施の形態4と同様の効果が得られる上に、交流直流電力変換部1における回路部品を最小限にとどめることによって機器の小型化、低コスト化が実現可能なものとなっている。
 (実施の形態6)
 次に、本発明の実施の形態6について図面を参照して説明する。
 本実施の形態6では、実施の形態4を示す図7や実施の形態5を示す図8で示した構成の空気調和機において、室内機制御回路7には室外機制御回路31とのデータ送受信を行う室内通信回路8を設け、室外機制御回路31には室内機制御回路7とのデータ送受信を行う室外通信回路32を設けている。室外通信回路32は圧縮機の駆動状態に関するデータを室内通信回路8へ送信し、室内機制御回路7は受信した圧縮機の駆動状態に関するデータに基づいてPFCコンバータ回路23の昇圧や停止の動作を制御するようにした。
 図9は、本発明の実施の形態6における空気調和機の室内機側と室外機側の制御フローの一部を示す図である。
 通常、空気調和機ではStep1からStep4のフローにあるように、リモコンなどで設定する設定温度や、各種温度センサの温度データから圧縮機の指示回転数を演算し、そのデータを室外機へ送信して圧縮機の回転数制御を行う。
 更に本発明の実施の形態6においては、Step5で実際の圧縮機の駆動状態に関する実回転数や異常データを室外機側から室内機側へ送信し、そのデータを受信した室内機側においてStep6からStep8に示すようにPFCコンバータ回路の停止判断や昇圧電圧値の演算を行い、スイッチング素子の動作を制御している。
 これにより、室外機側の圧縮機の駆動状態に応じて室内機側のPFCコンバータ回路の動作を制御することができるので、省エネルギー性や安全性といった観点での最適運転が常時行われるという機能を付加した空気調和機を実現することができた。
 第1の本発明は、室内機と、圧縮機を具備した室外機によって構成され、商用電源からの交流電力を室内機で受電するセパレート型の空気調和機において、商用電源からの交流電力を室内機の中に配置された交流直流電力変換部によって直流電力に変換する。交流直流電力変換部で変換された直流電力を室内機制御回路に供給するとともに、直流電力を室内機と室外機とを接続する室内外接続配線を介して室外機に送電され、室外機制御回路および圧縮機駆動用インバータを動作させるように構成したことを特徴とする。
 これにより、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 第2の本発明は、特に第1の本発明の交流直流電力変換部が、商用電源からの交流電力を直流電力に変換して室内機制御回路に供給する平滑整流回路と、商用電源からの交流電力を直流電力に変換して室外機制御回路および圧縮機駆動用インバータに供給し動作させるパッシブ型コンバータ回路とで構成することを特徴とする。
 これにより、商用電源からの交流電力の力率を改善しつつ、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 第3の本発明は、特に第1の本発明の交流直流電力変換部が、商用電源からの交流電力を直流電力に変換して室内機制御回路と室外機制御回路と圧縮機駆動用インバータに供給し動作させるパッシブ型コンバータ回路で構成することを特徴とする。
 これにより、製品全体における、部品数削減や電子基板の小型化、コストダウンが図れ、商用電源からの交流電力の力率を改善しつつ、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 第4の本発明は、特に第1の本発明の交流直流電力変換部が、商用電源からの交流電力を直流電力に変換して室内機制御回路に供給する平滑整流回路と、商用電源からの交流電力を直流電力に変換して室外機制御回路および圧縮機駆動用インバータに供給し動作させる。さらに、直流電力に変換する際に、入力される交流電力の力率を改善する機能と出力される直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路とで構成することを特徴とする。
 これにより、商用電源からの交流電力の力率を改善し、製品への入力電流が大きくても電源高調波規制を満足しながら、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 第5の本発明は、特に第1の本発明の交流直流電力変換部が、商用電源からの交流電力を直流電力に変換して室内機制御回路と室外機制御回路と圧縮機駆動用インバータに供給し動作させるとともに、直流電力に変換する際に、入力される交流電力の力率を改善する機能と出力される直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路で構成することを特徴とする。
 これにより、製品全体における、部品数削減や電子基板の小型化、コストダウンが図れ、商用電源からの交流電力の力率を改善し、製品への入力電流が大きくても電源高調波規制を満足しながら、室内機と室外機との間における電力搬送で発生する電力損失を最大限に抑制した省エネルギー性の高い空気調和機を実現することができる。
 第6の本発明は、第4又は第5の本発明のうちいずれかの発明において、室内機制御回路には室外機制御回路とのデータ送受信を行う室内通信回路を具備し、室外機制御回路には室内機制御回路とのデータ送受信を行う室外通信回路を具備する。そして、圧縮機の駆動状態に関するデータを室外通信回路から室内通信回路へ送信し、室内機制御回路が受信した圧縮機の駆動状態に関するデータに基づいてPFCコンバータ回路の昇圧や停止の動作を制御することを特徴とするものである。
 これにより、室外機側の圧縮機の駆動状態に応じて室内機側のPFCコンバータ回路の動作を制御することができるので、省エネルギー性や安全性といった観点での最適運転が常時行われるという機能を付加した空気調和機を実現することができる。
 以上、本発明の各種実施形態を説明したが、本発明は前記実施形態において示された事項に限定されず、明細書の記載、並びに周知の技術に基づいて、当業者がその変更・応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 本発明は、空気調和機に限らず、商用電源からの交流電力を住宅やビル内に配電するシステムと機器を接続する電気機器全般に適用することが可能である。
 1  交流直流電力変換部
 2,4  正側配線
 3,5  負側配線
 6  通信用配線
 7  室内機制御回路
 8  室内通信回路
 9  室内ファンモータ
 11a,11b,11c,33a,33b,33c  接続端子
 12  電源コード
 13  宅内配線
 20  室内外接続配線
 21  整流平滑回路
 22  パッシブ型コンバータ回路
 23  PFCコンバータ回路
 30  圧縮機駆動用インバータ
 31  室外機制御回路
 32  室外通信回路
 34  圧縮機モータ
 35  室外ファンモータ
 36  四方弁
 50,52  ダイオードブリッジ
 51,53a,53b,53c  平滑コンデンサ
 54  リアクタ
 55  第2のダイオードブリッジ
 56  スイッチング素子
 100  室内機
 101  室外機
 102  配電盤
 103  コンセント
 104  電源プラグ

Claims (6)

  1. 室内機と、圧縮機を具備した室外機によって構成され、商用電源からの交流電力を室内機で受電するセパレート型の空気調和機において、
    商用電源からの交流電力を前記室内機の中に配置された交流直流電力変換部によって直流電力に変換し、
    前記交流直流電力変換部で変換された直流電力を室内機制御回路に供給するとともに、前記直流電力を前記室内機と前記室外機とを接続する室内外接続配線を介して前記室外機に送電し、室外機制御回路および圧縮機駆動用インバータを動作させることを特徴とした空気調和機。
  2. 請求項1に記載の空気調和機であって、
    前記交流直流電力変換部は、前記商用電源からの交流電力を直流電力に変換して前記室内機制御回路に供給する平滑整流回路と、
    前記商用電源からの交流電力を直流電力に変換して前記室外機制御回路および前記圧縮機駆動用インバータに供給し動作させるパッシブ型コンバータ回路とで構成されることを特徴とした空気調和機。
  3. 請求項1に記載の空気調和機であって、
    前記交流直流電力変換部は、前記商用電源からの交流電力を直流電力に変換して前記室内機制御回路と前記室外機制御回路と前記圧縮機駆動用インバータに供給し動作させるパッシブ型コンバータ回路で構成されることを特徴とした空気調和機。
  4. 請求項1に記載の空気調和機であって、
    前記交流直流電力変換部は、前記商用電源からの交流電力を直流電力に変換して前記室内機制御回路に供給する平滑整流回路と、
    前記商用電源からの交流電力を直流電力に変換して前記室外機制御回路および前記圧縮機駆動用インバータに供給し動作させるとともに、直流電力に変換する際に、入力される交流電力の力率を改善する機能と出力する直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路とで構成されることを特徴とした空気調和機。
  5. 請求項1に記載の空気調和機であって、
    前記交流直流電力変換部は、前記商用電源からの交流電力を直流電力に変換して前記室内機制御回路と前記室外機制御回路と前記圧縮機駆動用インバータに供給し動作させるとともに、直流電力に変換する際に、入力される交流電力の力率を改善する機能と出力される直流電力の電圧を昇圧する機能を併せもつPFCコンバータ回路で構成されることを特徴とした空気調和機。
  6. 請求項4又は5のいずれか1項に記載の空気調和機であって、
    前記室内機制御回路には前記室外機制御回路とのデータ送受信を行う室内通信回路を具備し、
    前記室外機制御回路には前記室内機制御回路とのデータ送受信を行う室外通信回路を具備し、
    前記圧縮機の駆動状態に関するデータを前記室外通信回路から前記室内通信回路へ送信し、前記室内機制御回路が受信した前記圧縮機の駆動状態に関するデータに基づいて前記PFCコンバータ回路の昇圧や停止の動作を制御することを特徴とした空気調和機。
PCT/JP2012/001089 2011-02-22 2012-02-20 空気調和機 WO2012114702A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280009956.7A CN103384799B (zh) 2011-02-22 2012-02-20 空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035655 2011-02-22
JP2011035655A JP2012172913A (ja) 2011-02-22 2011-02-22 空気調和機

Publications (1)

Publication Number Publication Date
WO2012114702A1 true WO2012114702A1 (ja) 2012-08-30

Family

ID=46720497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001089 WO2012114702A1 (ja) 2011-02-22 2012-02-20 空気調和機

Country Status (3)

Country Link
JP (1) JP2012172913A (ja)
CN (1) CN103384799B (ja)
WO (1) WO2012114702A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131862A (zh) * 2019-06-18 2019-08-16 浙江鲲悟科技有限公司 变频空调的电控系统及变频空调

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776568A (zh) * 2015-03-25 2015-07-15 广州视源电子科技股份有限公司 一种变频空调
JP6393287B2 (ja) * 2016-01-27 2018-09-19 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外機
WO2018179141A1 (ja) * 2017-03-29 2018-10-04 三菱電機株式会社 空気調和装置、熱源側ユニット及び利用側ユニット
CN110118422B (zh) * 2018-02-07 2021-07-13 台达电子工业股份有限公司 冷气空调系统及其操作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194346A (ja) * 1989-12-25 1991-08-26 Hitachi Ltd 空気調和機
JPH0936819A (ja) * 1995-07-24 1997-02-07 Hitachi Ltd 双方向信号伝送方式
JPH11289766A (ja) * 1998-04-03 1999-10-19 Toshiba Ave Co Ltd 電源装置
JP2002112550A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 空気調和機の電源装置
JP2002364769A (ja) * 2001-04-02 2002-12-18 Saginomiya Seisakusho Inc 流体制御弁の駆動装置及び空気調和機
JP2005295759A (ja) * 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd 空気調和機の電源装置
JP2010075003A (ja) * 2008-09-22 2010-04-02 Panasonic Corp 電源回路
WO2010116706A1 (ja) * 2009-04-08 2010-10-14 パナソニック株式会社 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687641B2 (ja) * 2002-10-01 2005-08-24 松下電器産業株式会社 インバ−タエアコン
KR20080035173A (ko) * 2006-10-18 2008-04-23 삼성전자주식회사 공기조화기 및 그 제어방법
CN201715661U (zh) * 2010-03-04 2011-01-19 广东美的电器股份有限公司 太阳能空调器的控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03194346A (ja) * 1989-12-25 1991-08-26 Hitachi Ltd 空気調和機
JPH0936819A (ja) * 1995-07-24 1997-02-07 Hitachi Ltd 双方向信号伝送方式
JPH11289766A (ja) * 1998-04-03 1999-10-19 Toshiba Ave Co Ltd 電源装置
JP2002112550A (ja) * 2000-09-29 2002-04-12 Matsushita Electric Ind Co Ltd 空気調和機の電源装置
JP2002364769A (ja) * 2001-04-02 2002-12-18 Saginomiya Seisakusho Inc 流体制御弁の駆動装置及び空気調和機
JP2005295759A (ja) * 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd 空気調和機の電源装置
JP2010075003A (ja) * 2008-09-22 2010-04-02 Panasonic Corp 電源回路
WO2010116706A1 (ja) * 2009-04-08 2010-10-14 パナソニック株式会社 直流電源装置およびインバータ駆動装置およびこれを用いた空気調和機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110131862A (zh) * 2019-06-18 2019-08-16 浙江鲲悟科技有限公司 变频空调的电控系统及变频空调

Also Published As

Publication number Publication date
CN103384799B (zh) 2015-12-23
JP2012172913A (ja) 2012-09-10
CN103384799A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
US9941807B2 (en) Power conversion apparatus and air conditioner including the same
US10344998B2 (en) Air conditioner
EP2779406B1 (en) Power converter and air conditioner having the same
WO2012114702A1 (ja) 空気調和機
KR20150141085A (ko) 모터 구동장치 및 이를 구비하는 공기조화기
US9543884B2 (en) Motor control device of air conditioner using distributed power supply
US10267526B2 (en) Power conversion apparatus and air conditioner including the same
JP3472522B2 (ja) 複数モータの制御装置、電力変換装置、インバータモジュール、コンバータモジュール
JP2011120330A (ja) インバーター装置及びそれを備えた空気調和機
JP2004364491A (ja) 電源システム及び空気調和装置
JP2003348892A (ja) 複数モータの制御装置、電力変換装置、インバータモジュール、コンバータモジュール
KR20170011611A (ko) 전력변환장치 및 이를 구비하는 공기조화기
CN108931041B (zh) 电控组件及空调器
KR20150074754A (ko) 모터 구동장치 및 이를 구비하는 공기조화기
WO2011095850A1 (ja) 直流配電システム
WO2015062126A1 (zh) 电子换相电机及其控制方法和hvac调试系统
JP6466023B2 (ja) 空気調和機
JP2012083063A (ja) 直流駆動エアコン
EP3121525B1 (en) Power conversion apparatus and air conditioner including the same
KR20160026529A (ko) 모터 구동장치 및 이를 구비하는 공기조화기
CN216693934U (zh) 一种无线空调器的控制装置
JP4821945B2 (ja) 空気調和機
KR20200015017A (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
KR20190116764A (ko) 전력 변환 장치 및 이를 구비하는 홈 어플라이언스
CN111295828B (zh) 电力变换装置和空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749952

Country of ref document: EP

Kind code of ref document: A1