WO2016003016A1 - 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct - Google Patents

굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct Download PDF

Info

Publication number
WO2016003016A1
WO2016003016A1 PCT/KR2014/009161 KR2014009161W WO2016003016A1 WO 2016003016 A1 WO2016003016 A1 WO 2016003016A1 KR 2014009161 W KR2014009161 W KR 2014009161W WO 2016003016 A1 WO2016003016 A1 WO 2016003016A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
generator
radiation
image
cbct
Prior art date
Application number
PCT/KR2014/009161
Other languages
English (en)
French (fr)
Inventor
안소현
이규찬
Original Assignee
(의료)길의료재단
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (의료)길의료재단, 가천대학교 산학협력단 filed Critical (의료)길의료재단
Priority to US14/411,880 priority Critical patent/US9980682B2/en
Priority to CA2876639A priority patent/CA2876639A1/en
Publication of WO2016003016A1 publication Critical patent/WO2016003016A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators

Definitions

  • the present invention relates to curved movable beam block arrays, and more particularly, can be applied to improve the image quality of a cone-beam CT system more accurately and efficiently, in particular radiation.
  • the present invention relates to a curved movable beam blocking array that can be applied to a simulation CBCT and CBCT mounted on a radiation therapy device, as well as applicable to a wide range of areas including plastic surgery, maxillofacial surgery, dentistry, and the like.
  • Cone-beam CT unlike the conventional CT imaging device, can move 3D and 4D imaging of a subject by taking an image and moving it at a predetermined angle with respect to an object, thereby obtaining three-dimensional anatomical information. Unlike MRI, it is easier to shoot hard tissue such as bone than soft tissue such as muscle tissue. Such cone beam tomography has been applied to a variety of applications from diagnosis to disease as well as treatment and prognosis.
  • BSA beam stop array
  • Korean Laid-Open Patent Publication No. 10-2012-0138451 performs a one-dimensional scattering correction by circularly scanning a subject with a scattering image correcting device and detecting X-ray transmitted image data with a multi-row X-ray detector.
  • a scattering correction transmission image is obtained by removing the estimated scattering image data obtained through this, and a system and an apparatus for image reconstruction using a reverse projection filtering method are presented.
  • the shadow is different from the space that receives a certain amount of radiation uniformly in the object to which radiation acts, and means a space that receives only 20 to 80% of the radiation. This contaminates the valid data that can be obtained from the empty spaces, and consequently the problem of obtaining an indefinite image remains.
  • the present invention refers to a method of forming the width of the strip flesh narrower than the width of the empty spaces. There is a limit to the suppression of shadows by forming a narrow strip of bread. In particular, when shooting over a wide area such as a human chest, shadows are still formed, which results in loss of image information in the shadow area, thereby obtaining a different image from the real world.
  • US Pat. No. 7,486,773 proposes a method of estimating the degree of scattering of an irradiated beam using multiple members in the form of cones rather than strips.
  • the error can be reduced even when shooting over a wide area in the process of estimating the scattered degree by using such a plurality of members, but the radioactivity in the subject by estimating the scattered degree using at least four images after four shots Problems such as increased absorption amount and photographing time may occur.
  • an object of the present invention for solving the above problems is to provide a system that can reduce the amount of radioactive absorption in the subject and also the time taken for imaging.
  • a beam blocking array configured to enable the shooting of a large area while reducing the occurrence of shadows.
  • One embodiment of the present invention for solving the above problems is a generator (100) rotatable at a gantry angle to generate radiation; A curved grid 300 positioned in the radiation radiation direction of the generator 100; And a control unit for controlling the operation of the grid (300);
  • the grid (300) comprises a plurality of slits (310) spaced at predetermined intervals through which at least a portion of the radiation generated from the generator (100) passes;
  • the controller provides a beam stop array for moving the slit 310 by a predetermined distance d when the generator 100 moves by a predetermined angle ⁇ .
  • the apparatus may further include a flat panel detector 200 disposed to face the generator 100, wherein the grid 300 is located between the panel detector 200 and the generator 100. desirable.
  • the generator 100 and the grid 300 is rotated about a rotation axis (A), the grid 300 is located between the generator 100 and the table 400, the slit 310 ) Is preferably located perpendicular to the rotation axis (A).
  • the grid 300 is preferably curved to be convex toward the table 400.
  • the grid 300 may further include a blocking part 320 disposed alternately with the slit 310 to block radiation.
  • the blocking unit 320 preferably includes a movable spacer 321.
  • control unit preferably further comprises interval control means for controlling the movement of the spacer 321.
  • the spacer 321 may be formed in plural numbers to block at least a portion of each of the plurality of slits 310.
  • the ratio of the interval between the slits 310 and the thickness of the grid 300 is 1.0.
  • cone-beam CT system including a beam block array according to an embodiment of the present invention.
  • the present invention can obtain a clear image by taking only one scan, thereby reducing the amount of radiation absorbed in the subject, thereby reducing the dose of radiation and reducing the time taken for the shot.
  • the curved shape of the grid can be used to capture a large area while reducing the occurrence of shadows.
  • the grid is moved at predetermined intervals, thereby reducing errors in estimating the scattering distribution of the images, thereby obtaining more precise and clear images.
  • FIG. 1 is a perspective view illustrating a curved movable beam blocking array according to an embodiment of the present invention.
  • FIG. 2 is an overall schematic perspective view for explaining a curved movable beam blocking array according to an embodiment of the present invention.
  • FIG. 3 is a plan view of FIG. 2.
  • FIG. 4 is a cross-sectional view illustrating a curved movable beam blocking array according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a curved movable beam blocking array according to a modification of the present invention.
  • FIG. 6 is an image for explaining a process of applying the flexible movable beam blocking array according to an embodiment of the present invention.
  • FIG. 7 is an image and a graph for comparing and comparing data obtained by applying each of the grid of the prior art and the curved movable beam blocking array according to the embodiment of the present invention.
  • the cone-beam CT system including the curved movable beam block array of the present invention will be described as an example. However, the same principle can be applied to systems other than the cone beam computed tomography system. Therefore, it will be apparent that the scope of the present invention is in accordance with the appended claims to other systems equipped with a beam block array to which the same principle is applied.
  • Components constituting the present invention can be used integrally or separately separated as needed. In addition, some components may be omitted depending on the form of use.
  • FIGS. 1-10 A preferred embodiment of a curved movable beam blocking array and a cone beam computed tomography system comprising the same according to the present invention will be described with reference to FIGS.
  • the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description.
  • terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, definitions of these terms should be described based on the contents throughout the specification.
  • Beam blocking array is the generator 100 and the panel detector (flat panel detector 200) facing the arrangement, the curved form located between the panel detector 200 and the generator 100
  • the grid 300 includes a table 400 positioned between the grid 300 and the panel detector 200, and an object 500 positioned on the table 400.
  • the beam blocking array may further include a controller (not shown) for controlling the operation of the grid 300.
  • the gantry is defined as a frame that accommodates the generator 100, the grid 300, and the panel detector 200, where the gantry angle is an angle representing the degree of rotation of the gantry about the axis of rotation A.
  • the gantry angle is preferably measured at an angle corresponding to the distance that the focal point 110 moves in an arc shape with respect to the rotation axis A.
  • the generator 100 generates radiation and rotates the gantry angle about the rotation axis A.
  • the radiation emitted from the generator 100 is irradiated with a cone-shaped beam having the focal point 110 of the generator 100 as a vertex.
  • the cone beam passes through the grid 300 and reaches the panel detector 200 via the object 500 in the table 400 to obtain three-dimensional anatomical information of the object 500.
  • the grid 300 includes a plurality of slits 310 spaced apart at predetermined intervals through which at least a portion of the radiation generated from the generator 100 passes, and a block 320 disposed alternately to block the radiation.
  • Blocker 320 preferably further includes a movable spacer 321 that can change the position or spacing of slits 310.
  • the controller may move the slit 310 by a predetermined distance d corresponding thereto when the generator 100 moves by the predetermined angle ⁇ through the gap 321 (see FIG. 5). .
  • the length of the interval d may be variously applied depending on the situation in which the beam blocking array is applied.
  • the table 400 positioned between the grid 300 and the panel detector 200 is preferably slidable, thereby enabling more efficient control of the photographing portion of the object 500 positioned on the table 400. do.
  • the grid 300 will be described in detail with reference to FIGS. 4 to 7.
  • the grid 300 has a curved shape and includes a movable blocking part 320, so that the image data of a wider area can be obtained as a clearer image, unlike a conventional flat type grid.
  • the object to which radiation is irradiated that is, the larger the subject
  • the grid 300 is preferably formed to be curved so as to be convex with respect to the table 400 to be positioned on the table 400 and to photograph the object 500 occupying a wide area.
  • the grid 300 according to the present invention can also change the position of the slit 310, sufficient image data for scattering correction can be obtained through one radiation scan.
  • a process of obtaining image data for scattering correction will be briefly described with reference to FIG. 6.
  • the slit 310 and the blocking part 320 are formed to be perpendicular to the rotation axis A, and thus the images obtained are as shown in FIG. 6. Only a portion of the radiation irradiated by the blocking unit 320 may pass through to reach the panel detector 200. The portions that do not pass are displayed in dark in the image to distinguish the scattered radiation from the initial radiation emitted from the initial generator 100. After only a part of the object 500 is photographed primarily by the blocking unit 320, the slit 310 may be moved and secondary imaging may be performed. Here, the photographing may be performed several times depending on the degree of movement of the slit 310.
  • images representing multiple different portions of the object 500 and scattered portions on each image can be estimated to finally combine them to obtain a more accurate scatter distribution of the image.
  • a clear image of the object 500 can be obtained.
  • the slit 310 moves by the predetermined angle ⁇ , the slit 310 moves the slit 310 by a predetermined distance d corresponding to the point before the gantry moves to the next time. It is desirable to be controlled so that different parts can be taken. In this way, a clearer image can be obtained through a single scan, and the shooting time can be shortened to reduce an error on the image due to the movement of the object 500.
  • the spacer part 321 forming a part of the blocking part 320 is further included.
  • the spacer 321 may move up and down in the curved grid 300 to change the position of the slit 310.
  • the gap 321 moves upward or downward by a predetermined distance d when the gantry angle is moved by a predetermined angle ⁇ to maintain the distance of the slit 310 while maintaining the position of the slit 310 by a predetermined distance d.
  • the predetermined angle ⁇ and the predetermined distance d may be formed in various combinations, but the whole of the object 500 may be formed through one scan based on one rotation of the gantry about the central axis A. It is preferable that an angle ⁇ and a predetermined distance d are determined so that an image can be obtained.
  • FIG. 5 Another embodiment according to FIG. 5 is formed such that the positions of the slits 310 move together while the entirety of the blocking part 320 located inside the grid 300 moves up and down instead of moving the gap part 321.
  • the angle ⁇ and the predetermined distance d are determined to obtain the entire image of the object 500 through one scan.
  • the blocking unit 320 located in the grid 300 may be controlled to move automatically, and the blocking unit 320 may be moved up and down at a constant speed.
  • the blocking unit 320 In order to obtain an accurate scattering distribution, the blocking unit 320 must have a function of completely preventing initial radiation.
  • the grid 300 is preferably formed of lead of 5mm thickness.
  • the width of the grid 300 also acts as an important factor.
  • the ratio of the thickness of the slit 310 to the thickness of the shield 320 is preferably 1.0.
  • FIG. 7 is an image and a graph obtained through a CBCT scan to which a flat grid is applied, respectively, and an image and a graph obtained by applying a curved grid 300 according to the present invention, respectively.
  • the shadow area is gradually increased with distance, as illustrated in the upper left image of FIG. 7.
  • the values corresponding to the gray values are drawn in a non-uniform form in the upper right graph, especially since the change of gray values is insufficient in one section of the graph corresponding to the middle point of the grid. It can be seen from the figure that shadows have formed and contaminated the image.
  • the lower image and the graph of FIG. 7 shows that the shadow area is constant without being influenced by distance when combining two images photographed using the curved grid 300.
  • the beam blocking array according to the present invention can be easily attached to a treatment planning image (Radiation Planning CBCT, RT plan CT) and a treatment device so that a clearer image can be obtained. It can also be used for positioning. In addition, it can be applied to various CBCT systems used in a wide range of areas including plastic surgery, maxillofacial surgery, dentistry, and the like, and thus have high utility.
  • a treatment planning image Radiation Planning CBCT, RT plan CT
  • a treatment device so that a clearer image can be obtained. It can also be used for positioning.
  • CBCT systems used in a wide range of areas including plastic surgery, maxillofacial surgery, dentistry, and the like, and thus have high utility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명은 보다 정확하고 효율적으로 콘빔 전산화 단층촬영 시스템(cone-beam CT system)에 적용될 수 있으며, 특히 방사선 치료에 필요한 시뮬레이션 CBCT 및 방사선치료기에 장착되는 CBCT에 적용될 수 있을 뿐만 아니라 성형외과, 악안면외과, 치과 등을 포함하는 광범위한 영역에 적용 가능한 굴곡진 가동성 빔 차단 어레이에 관한 것으로, 갠트리 각으로 회전가능하며 방사선을 생성하는 생성기(100); 상기 생성기(100)의 방사선 방사 방향에 위치하는 굴곡진 형태의 그리드(300); 및 상기 그리드(300)의 작동을 제어하는 제어부를 포함하며; 상기 그리드(300)는 상기 생성기(100)로부터 생성되는 방사선의 적어도 일부가 통과하는 다수 개의 미리 정해진 간격으로 이격된 슬릿(310)을 포함하며; 상기 제어부는 상기 생성기(100)가 미리 정해진 각도(α)만큼 이동한 경우에 상기 슬릿(310)을 소정의 간격(d)만큼 이동시키는 빔 차단 어레이(beam stop array)가 제공된다. 이를 통하여 한 번의 스캔만을 통해 피검체 내에 방사능의 흡수량을 줄이며 촬영하는 데에 걸리는 시간도 감소시키며, 넓은 영역의 촬영이 가능한 동시에 그림자의 발생을 감소시킬 수 있고, 이미지의 산란 분포를 추정하는 데에 오차를 줄여 더욱 정밀하고 명확한 이미지를 얻을 수 있다. 또한, 이는 방사선 치료를 위한 설계용 영상(Radiation Planning CBCT, RT plan CT) 및 치료기에 부착되어 방사선 치료 직전에 환자 및 종양 위치 확인에 사용될 수 있다.

Description

굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 CBCT
본 발명은 굴곡진 가동성 빔 차단 어레이에 관한 것으로서, 더 상세하게는, 보다 정확하고 효율적으로 콘빔 전산화 단층촬영 시스템(cone-beam CT system)의 영상의 질을 향상시키는 데에 적용될 수 있으며, 특히 방사선 치료에 필요한 시뮬레이션 CBCT 및 방사선치료기에 장착되는 CBCT에 적용될 수 있을 뿐만 아니라 성형외과, 악안면외과, 치과 등을 포함하는 광범위한 영역에 적용 가능한 굴곡진 가동성 빔 차단 어레이에 관한 것이다.
콘빔 전산화 단층촬영(cone-beam CT)는 기존의 CT촬영 장치와 달리 대상을 중심으로 소정의 각도로 움직이며 촬영하여 피검체의 3D, 4D 이미징이 가능하여 3차원적 해부학적 정보를 획득할 수 있으며, MRI와는 달리 근육 조직과 같은 연질의 조직보다는 뼈와 같은 단단한 조직 촬영에 더 용이하다. 이러한 콘빔 단층촬영은 질병의 진단뿐만 아니라 치료나 예후에 이르기까지 다양하게 응용되고 있다.
그러나 콘빔 전산화 단층촬영의 X선 빔은 넓은 영역을 조사하기 때문에 에너지가 100keV 이하로 떨어진 X선의 광자(photon)는 피검체에 의하여 산란(scatter)되어서 낮은 공간적 빈도(low spatial frequency)를 갖게 된다. 이로 인하여 X선이 감지장치에 도달할 때쯤이면, 산란된 X선(scattered x-ray)과 원상태의 초기 X선(primary x-ray)과의 구별이 안됨으로써, 결과적으로는 부분적으로 불명확하고 품질이 크게 떨어진 이미지를 얻게 된다.
촬영과 함께 영상 대조도의 저하, 노이즈의 증가 및 CT 값의 부정확 등의 현상이 발생하기 때문에 명확한 이미지를 얻기 위해서는 산란된 정도를 분석하여 보정하는 과정(scatter correction)이 필요하다.
이러한 산란 보정 과정을 위한 여러 가지 방법 중에 효과적인 방법으로 알려진 빔 차단 어레이(beam stop array, BSA) 방법이 있다. 빔 차단 어레이는 산란빔을 부분적으로 막아줌으로써 산란되는 빔의 분포를 추정하여 보정이 가능해진다. 그러나 빔 차단 어레이에 있어서도 몇 가지 문제들이 여전히 존재한다.
특히, 산란되는 빔의 분포를 보정하기 위하여 종래에는 대개 추가 스캔이 필요하여 피검체 내에 흡수량이 증가되는 문제점이 있다. 국내공개특허 제10-2012-0138451호는 이러한 문제를 극복하기 위하여 산란영상 보정장치로 피검체를 원형 스캔하고, 다열 X선 검출기로 X선 투과영상 데이터를 검출하여 1차원적인 산란보정을 수행하고, 이를 통해 획득된 추정산란영상 데이터를 제거하여 산란보정 투과영상을 획득하고, 이를 기반으로 역투영 필터링 방법을 이용하여 영상재건을 하는 시스템 및 장치를 제시한다.
그러나 이런 시스템 및 장치로 추가 스캔을 줄일 수 있지만 일반적으로 빔을 차단하는 스트립 살 가장자리에서 그림자(penumbra)가 발생하게 되는데 상기 발명에서 제시하는 역투영 필터링 방법으로는 극복이 어려운 문제들이 여전히 존재한다.
그림자는 방사선이 작용하는 대상에 있어서 일정량의 방사능을 균일하게 받는 공간(isodose)과는 차별되며, 방사능의 20~80%만을 받게 되는 공간을 의미한다. 이로 인해 빈 공간부로부터 얻을 수 있는 유효한 데이터가 오염되므로 결론적으로는 불명확한 이미지를 얻게 되는 문제가 남는데, 이에 대하여 상기 발명은 스트립 살의 너비를 빈 공간부의 너비보다 좁게 형성하는 방법을 언급하고 있으나, 스트립 살의 너비를 좁게 형성함으로써 그림자가 형성되는 것을 억제하는 데에는 한계가 있다. 특히, 사람의 흉복부 등과 같은 넓은 영역을 거쳐 촬영을 하게 되는 경우에서는 여전히 그림자가 형성되어 이로 인해 그림자 영역에서 영상 정보의 손실이 발생하여 실제와 다른 영상을 얻게 된다.
미국등록특허 제7,486,773호는 스트립 살이 아닌 콘 형태의 다수 개의 부재를 사용하여 조사되는 빔의 산란된 정도를 추정하는 방법을 제안한다. 이러한 다수 개의 부재들을 사용함으로써 산란된 정도를 추정하는 과정에서의 넓은 영역에 걸친 촬영에서도 오차는 줄일 수 있으나, 네 번의 촬영을 거쳐 적어도 네 개의 이미지를 사용하여 산란된 정도를 추정함으로써 피검체 내에 방사능의 흡수량 및 촬영하는 시간 증가 등의 문제가 발생할 수 있다.
따라서 상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 피검체 내에 방사능의 흡수량을 줄일 수 있으며 촬영하는 데에 걸리는 시간도 감소시키는 시스템을 제공하는 것이다.
또한, 넓은 영역의 촬영이 가능한 동시에 그림자의 발생을 감소시킬 수 있도록 구성된 빔 차단 어레이를 제공하는 것이다.
또한, 산란된 정도를 추정하는 데에 오차를 줄여 더욱 정밀하고 명확한 이미지를 얻기 위한 차별화된 빔 차단 어레이를 제공하는 것이다.
상기와 같은 문제점을 해결하기 위한 본 발명의 일 실시예는 갠트리 각으로 회전가능하며 방사선을 생성하는 생성기(100); 상기 생성기(100)의 방사선 방사 방향에 위치하는 굴곡진 형태의 그리드(300); 및 상기 그리드(300)의 작동을 제어하는 제어부를 포함하며; 상기 그리드(300)는 상기 생성기(100)로부터 생성되는 방사선의 적어도 일부가 통과하는 다수 개의 미리 정해진 간격으로 이격된 슬릿(310)을 포함하며; 상기 제어부는 상기 생성기(100)가 미리 정해진 각도(α)만큼 이동한 경우에 상기 슬릿(310)을 소정의 간격(d)만큼 이동시키는 빔 차단 어레이(beam stop array)를 제공한다.
또한, 상기 생성기(100)와 대향하며 배치되는 판넬 감지기(flat panel detector)(200)를 더 포함하며, 상기 그리드(300)는 상기 판넬 감지기(200)와 상기 생성기(100) 사이에 위치하는 것이 바람직하다.
또한, 상기 생성기(100) 및 상기 그리드(300)는 회전축(A)을 중심으로 회전운동하며, 상기 그리드(300)는 상기 생성기(100)와 테이블(400) 사이에 위치하며, 상기 슬릿(310)은 상기 회전 축(A)에 대하여 수직하게 위치하는 것이 바람직하다.
또한, 상기 그리드(300)는 상기 테이블(400)를 향하여 볼록하도록 굴곡진 것이 바람직하다.
또한, 상기 그리드(300)는 상기 슬릿(310)과 교대로 배치되어 방사선을 차단하는 차단부(320)를 더 포함하는 것이 바람직하다.
또한, 상기 차단부(320)는 이동 가능한 간격부(321)를 포함하는 것이 바람직하다.
또한, 상기 제어부는 상기 간격부(321)의 이동을 제어하는 간격제어 수단을 더 포함하는 것이 바람직하다.
또한, 상기 간격부(321)는 다수 개로 형성되어 상기 다수 개의 슬릿(310) 각각의 적어도 일부를 차단하는 것이 바람직하다.
또한, 상기 슬릿(310)의 간격과 상기 그리드(300)의 두께의 비율이 1.0인 것이 바람직하다.
본 발명의 일 실시예에 따른 빔 차단 어레이를 포함하는 콘빔 전산화 단층 촬영(cone-beam CT) 시스템을 제공한다.
상기한 바와 같은 본 발명은 한 번의 스캔만을 통한 촬영으로 명확한 이미지를 얻을 수 있어 피검체 내에 방사능의 흡수량을 줄이며 따라서 피폭선량을 줄일 수 있으며 촬영하는 데에 걸리는 시간도 감소시킬 수 있다.
또한, 굴곡진 가동성의 그리드 형태에 의하여 넓은 영역의 촬영이 가능한 동시에 그림자의 발생을 감소시킬 수 있다.
또한, 대상을 기준으로 회전하며 X선이 조사됨에 따라 그리드가 소정의 간격으로 이동함으로써 이미지의 산란 분포를 추정하는 데에 오차를 줄여 더욱 정밀하고 명확한 이미지를 얻을 수 있다.
도 1은 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이를 설명하기 위한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이를 설명하기 위한 전체 개략 사시도이다.
도 3은 도 2의 평면도이다.
도 4는 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이를 설명하기 위한 단면도이다.
도 5는 본 발명의 변형예에 따른 굴곡진 가동성 빔 차단 어레이를 설명하기 위한 단면도이다.
도 6은 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이를 적용한 과정을 설명하기 위한 이미지이다.
도 7은 종래 기술의 그리드 및 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이 각각을 적용하여 얻은 데이터를 비교하여 설명하기 위한 이미지 및 그래프이다.
본 발명의 굴곡진 가동성 빔 차단 어레이를 포함하는 콘빔 전산화 단층 촬영(cone-beam CT) 시스템을 예로 들어 설명한다. 그러나 동일한 원리가 콘빔 전산화 단층 촬영 시스템 이외의 시스템에도 적용될 수 있다. 따라서, 동일한 원리가 적용된 빔 차단 어레이가 구비된 다른 시스템에도 첨부되는 청구범위에 따라 본 발명의 권리범위가 미침은 자명할 것이다.
본 발명을 이루는 구성요소들은 필요에 따라 일체형으로 사용되거나 각각 분리되어 사용될 수 있다. 또한, 사용 형태에 따라 일부 구성요소를 생략하여 사용가능하다.
본 발명에 따른 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 콘빔 전산화 단층 촬영 시스템의 바람직한 실시예를 도 1 내지 도 7을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 기술되어야 할 것이다.
이하, 본 발명에 따른 굴곡진 가동성 빔 차단 어레이의 실시예들을 첨부된 도면을 참조하여 설명한다.
먼저, 도 1 내지 도 3을 참조하여 굴곡진 가동성 빔 차단 어레이의 전체 구성을 설명한다.
본 발명의 일 실시예에 따른 빔 차단 어레이는 생성기(100)와 이에 대향하며 배치되는 판넬 감지기(flat panel detector)(200), 판넬 감지기(200)와 생성기(100) 사이에 위치하는 굴곡진 형태의 그리드(300), 그리드(300)와 판넬 감지기(200) 사이에 위치하는 테이블(400) 및 테이블(400) 상에 위치하게 되는 대상(500)을 포함한다. 빔 차단 어레이는 그리드(300)의 작동을 제어하는 제어부(미도시)를 더 포함할 수 있다.
일반적으로 갠트리는 생성기(100), 그리드(300) 및 판넬 감지기(200)를 수용하는 프레임으로 규정되며, 여기서 갠트리 각이라 함은 이러한 갠트리가 회전축(A)을 중심으로 회전하는 정도를 나타내는 각을 지칭한다. 갠트리 각은 회전축(A)에 대하여 초점(110)이 호형으로 이동한 거리에 대응되는 각으로 측정되는 것이 바람직하다.
생성기(100)는 방사선을 생성하여 회전축(A)을 중심으로 갠트리 각으로 회전하며 생성기(100)로부터 조사되는 방사선은 생성기(100)의 초점(110)을 꼭지점으로 하는 콘 형태의 빔으로 조사된다. 이러한 콘 빔은 그리드(300)를 지나 테이블(400)에 있는 대상(500)을 거쳐 판넬 감지기(200)에 도달하여 대상(500)의 3차원적 해부학적 정보가 획득될 수 있다.
그리드(300)는 생성기(100)로부터 생성되는 방사선의 적어도 일부가 통과하는 다수 개의 미리 정해진 간격으로 이격된 슬릿(310) 및 이와 교대로 배치되어 방사선을 차단하는 차단부(320)를 포함한다. 차단부(320)는 슬릿(310)의 위치 또는 간격을 변화시킬 수 있는 이동 가능한 간격부(321)를 더 포함하는 것이 바람직하다. 제어부는 이러한 간격부(321)를 통하여 생성기(100)가 미리 정해진 각도(α)만큼 이동한 경우에 슬릿(310)을 이에 대응하는 소정의 간격(d)만큼 이동시킬 수 있다(도 5 참조). 간격(d)의 길이는 빔 차단 어레이가 적용되는 상황에 따라 다양하게 적용될 수 있다.
그리드(300)와 판넬 감지기(200) 사이에 위치하는 테이블(400)은 슬라이딩 가능한 것이 바람직하며, 이를 통하여 테이블(400) 상에 위치하게 되는 대상(500)의 촬영 부위를 더 효율적으로 조절할 수 있게 된다.
도 4 내지 도 7을 더 참조하여 그리드(300)를 자세히 설명한다.
그리드(300)는 굴곡진 형태를 갖고 이동가능한 차단부(320)를 포함함으로써 종래의 평평한 형태의 그리드와는 달리 더 넓은 영역의 이미지 데이터를 더 명확한 이미지로 얻을 수 있다. 평평한 형태의 그리드를 사용한 빔 차단 어레이 시스템에서는 방사선이 조사되는 대상, 즉, 피사체가 클수록 한 번의 촬영으로는 필요한 이미지 데이터를 얻을 수 없는 한계가 있었다. 이는 피사체의 크기가 커질수록 방사선의 산란 정도가 심해지고, 이미지를 오염시키는 그림자가 형성되었으며, 또한 촬영 시간이 길어질수록 피사체의 미세한 움직임에 의한 부정확한 이미지가 생성되었기 때문이다.
그리드(300)를 통과하며 조사되는 방사선이 차단부(320)에 의하여 차단되어도 콘 빔 형태의 방사선을 통과시키기에 적합한 굴곡진 형태에 의하여 불필요한 그림자가 형성되지 않는다. 이때 그리드(300)는 테이블(400)에 대하여 볼록하도록 굴곡져서 테이블(400)상에 위치하여 넓은 영역을 차지하는 대상(500)도 촬영할 수 있도록 형성되는 것이 바람직하다.
본 발명에 따른 그리드(300)는 또한 슬릿(310)의 위치에 변화를 줄 수 있기 때문에 한 번의 방사선 스캔을 통하여 산란보정을 위한 충분한 이미지 데이터를 얻을 수 있다. 먼저, 도 6을 참조하여 산란보정을 위한 이미지 데이터를 얻는 과정을 간략하게 설명한다.
슬릿(310) 및 차단부(320)는 회전축(A)에 대하여 수직하도록 형성된 것이 바람직하며, 이에 따라 얻게 되는 이미지들은 도 6에 도시된 바와 같다. 차단부(320)에 의하여 조사되는 방사선 일부만이 통과되어 판넬 감지기(200)에 도달할 수 있다. 통과하지 못한 부분은 이미지에서 어둡게 표시되어 나타나게 되면서 산란된 방사선과 초기 생성기(100)로부터 조사된 초기 방사선을 구분할 수 있게 된다. 차단부(320)에 의하여 대상(500)의 일부만이 1차로 촬영된 후, 슬릿(310)이 이동되고 2차 촬영이 이루어질 수 있다. 여기서 슬릿(310)의 움직이는 정도에 따라 여러 차례의 촬영이 이루어질 수 있다.
슬릿(310)의 움직임에 따라 대상(500)의 다수 개의 상이한 일부를 나타내는 이미지들과 각 이미지상에서의 산란된 부분들이 추정가능하여 최종적으로 이들을 조합함으로써 이미지의 더 정확한 산란 분포를 얻을 수 있다. 이러한 산란 분포를 이미지들로부터 제거하면 대상(500)의 명확한 이미지를 얻을 수 있다.
슬릿(310)은 갠트리가 미리 정해진 각도(α)만큼 이동한 경우에 갠트리가 다음 이동하기 전 시점까지 슬릿(310)을 이에 대응하는 소정의 간격(d)만큼 이동하여 대상(500)의 다수 개의 상이한 일부를 촬영할 수 있도록 제어되는 것이 바람직하다. 이러한 방식으로 한 번의 스캔을 통하여 더 명확한 이미지를 얻을 수 있으며, 또한 촬영 시간도 단축되어 대상(500)의 움직임에 의한 이미지상에서의 오차를 감소시킬 수 있다.
슬릿(310)의 위치에 변화를 줄 수 있는 방법에는 여러 가지가 있겠으나, 크게 두 개의 실시예를 들어 설명한다.
도 4에 따른 일 실시예는 차단부(320)의 일부를 형성하는 간격부(321)가 더 포함된다. 간격부(321) 제어부에 의하여 굴곡진 그리드(300) 내에서 상하로 이동함으로써 슬릿(310)의 위치에 변화를 줄 수 있다.
여기서 간격부(321)는 갠트리 각이 미리 정해진 각도(α)만큼 이동한 경우에 소정의 간격(d)만큼 상측 또는 하측으로 이동하여 슬릿(310)의 간격은 유지하되 위치를 소정의 간격(d)만큼 이동시킬 수 있다. 미리 정해진 각도(α)와 소정의 간격(d)은 다양한 조합으로 형성될 수 있으나, 중심축(A)을 중심으로 갠트리가 1회 회전하는 것이 기준인 한 번의 스캔을 통하여 대상(500)의 전체 이미지를 얻을 수 있도록 각도(α)와 소정의 간격(d)이 정해지는 것이 바람직하다.
도 5에 따른 다른 실시예는 간격부(321)가 이동하는 것이 아닌 그리드(300)내부에 위치하는 차단부(320) 전체가 상하로 이동하면서 슬릿(310)의 위치가 함께 이동하도록 형성된다. 그러나 이는 도 4의 일 실시예와 마찬가지로 한 번의 스캔을 통하여 대상(500)의 전체 이미지를 얻을 수 있도록 각도(α)와 소정의 간격(d)이 정해지는 것이 바람직하다.
갠트리가 회전하면서 그리드(300) 내에 위치하는 차단부(320)는 자동적으로 이동하도록 제어될 수 있으며, 차단부(320)는 일정한 속도로 상하 이동이 가능한 것이 바람직하다.
정확한 산란 분포를 얻기 위해서 차단부(320)는 초기 방사선을 완전히 막을 수 있는 기능을 가질 수 있어야 한다. 이를 위해 그리드(300)는 5mm 두께의 납으로 형성되는 것이 바람직하다. 두께뿐만 아니라, 그리드(300)의 너비도 중요한 요소로 작용하는데, 더 정확한 데이더를 얻을 수 있도록 슬릿(310)의 두께/차단부(320) 두께의 비율이 1.0인 것이 바람직하다.
도 7을 참조하여 종래 기술의 그리드와 본 발명의 일 실시예에 따른 굴곡진 가동성 빔 차단 어레이 각각이 적용되었을 때에 얻는 이미지의 차이점을 더 상세하게 설명한다. 도 7의 상부 좌측 및 우측은 각각 평평한 그리드가 적용된 CBCT 스캔을 통해 얻은 이미지 및 그래프이며, 하부 좌측 및 우측은 각각 본원 발명에 따른 굴곡진 그리드(300)를 적용하여 얻은 이미지 및 그래프이다.
평평한 그리드를 이용하여 촬영한 두 영상을 결합했을 때 그림자 영역이 거리에 따라 점점 심해지는 현상이 도 7의 상부 좌측 이미지를 통해 도시된다. 또한, 상부 우측 그래프에서 회색 값(gray value)에 해당되는 값들이 일정하지 않은 형태로 그려지며, 특히 그리드의 중간 지점에 해당하는 그래프의 한 구간에서 회색 값의 변화가 미비하다는 것으로부터, 이 구간에서 그림자가 형성되어 이미지를 오염시켰음을 알 수 있다.
반면에, 도 7의 하부 이미지 및 그래프는 굴곡진 그리드(300)를 이용하여 촬영한 두 영상을 결합했을 때 그림자 영역이 거리에 따라 영향을 받지 않고 일정하다는 결과를 보여준다.
상술된 바와 같이 본 발명에 따른 빔 차단 어레이는 보다 명확한 이미지를 얻을 수 있도록 하여 방사선 치료를 위한 설계용 영상(Radiation Planning CBCT, RT plan CT) 및 치료기에 용이하게 부착되어 방사선 치료 직전에 환자 및 종양 위치 확인에 사용될 수도 있다. 또한, 이외에도 성형외과, 악안면외과, 치과 등을 포함하는 광범위한 영역에서 사용되는 다양한 CBCT 시스템에 적용될 수 있어 활용도가 높다.

Claims (10)

  1. 갠트리 각으로 회전가능하며 방사선을 생성하는 생성기(100);
    상기 생성기(100)의 방사선 방사 방향에 위치하는 굴곡진 형태의 그리드(300); 및
    상기 그리드(300)의 작동을 제어하는 제어부를 포함하며;
    상기 그리드(300)는 상기 생성기(100)로부터 생성되는 방사선의 적어도 일부가 통과하는 다수 개의 미리 정해진 간격으로 이격된 슬릿(310)을 포함하며;
    상기 제어부는 상기 생성기(100)가 미리 정해진 각도(α)만큼 이동한 경우에 상기 슬릿(310)을 소정의 간격(d)만큼 이동시키는,
    빔 차단 어레이(beam stop array).
  2. 제 1 항에 있어서,
    상기 생성기(100)와 대향하며 배치되는 판넬 감지기(flat panel detector)(200)를 더 포함하며,
    상기 그리드(300)는 상기 판넬 감지기(200)와 상기 생성기(100) 사이에 위치하는,
    빔 차단 어레이.
  3. 제 2 항에 있어서,
    상기 생성기(100) 및 상기 그리드(300)는 회전축(A)을 중심으로 회전운동하며,
    상기 그리드(300)는 상기 생성기(100)와 테이블(400) 사이에 위치하며, 상기 슬릿(310)은 상기 회전 축(A)에 대하여 수직하게 위치하는,
    빔 차단 어레이.
  4. 제 3 항에 있어서,
    상기 그리드(300)는 상기 테이블(400)를 향하여 볼록하도록 굴곡진,
    빔 차단 어레이.
  5. 제 1 항에 있어서,
    상기 그리드(300)는 상기 슬릿(310)과 교대로 배치되어 방사선을 차단하는 차단부(320)를 더 포함하는,
    빔 차단 어레이.
  6. 제 5 항에 있어서,
    상기 차단부(320)는 이동 가능한 간격부(321)를 포함하는,
    빔 차단 어레이.
  7. 제 6 항에 있어서,
    상기 제어부는 상기 간격부(321)의 이동을 제어하는 간격제어 수단을 더 포함하는,
    빔 차단 어레이.
  8. 제 6 항에 있어서,
    상기 간격부(321)는 다수 개로 형성되어 상기 다수 개의 슬릿(310) 각각의 적어도 일부를 차단하는,
    빔 차단 어레이.
  9. 제 1 항에 있어서,
    상기 슬릿(310)의 간격과 상기 그리드(300)의 두께의 비율이 1.0인,
    빔 차단 어레이.
  10. 제 1 항 내지 제 9 항 중 어느 한 항을 따르는 빔 차단 어레이를 포함하는 콘빔 전산화 단층 촬영(cone-beam CT) 시스템.
PCT/KR2014/009161 2014-07-02 2014-09-30 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct WO2016003016A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/411,880 US9980682B2 (en) 2014-07-02 2014-09-30 Curved movable beam stop array and CBCT comprising thereof
CA2876639A CA2876639A1 (en) 2014-07-02 2014-09-30 Curved movable beam stop array and cbct comprising thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0082669 2014-07-02
KR1020140082669A KR101609932B1 (ko) 2014-07-02 2014-07-02 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct

Publications (1)

Publication Number Publication Date
WO2016003016A1 true WO2016003016A1 (ko) 2016-01-07

Family

ID=55019526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009161 WO2016003016A1 (ko) 2014-07-02 2014-09-30 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct

Country Status (3)

Country Link
US (1) US9980682B2 (ko)
KR (1) KR101609932B1 (ko)
WO (1) WO2016003016A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714227B2 (en) * 2016-06-06 2020-07-14 Georgetown Rail Equipment Company Rotating radiation shutter collimator
WO2018082088A1 (zh) * 2016-11-07 2018-05-11 深圳先进技术研究院 一种用于锥束ct图像散射修正的阻挡光栅优化方法及装置
KR102137764B1 (ko) * 2018-06-12 2020-07-24 연세대학교 산학협력단 이진 이동 변조 차단기를 이용하여 듀얼 에너지 방식으로 동작하는 단일 소스 콘빔 전산화 단층 촬영 시스템
US11071507B2 (en) * 2018-12-27 2021-07-27 Medtronic Navigation, Inc. System and method for imaging a subject
US10881371B2 (en) 2018-12-27 2021-01-05 Medtronic Navigation, Inc. System and method for imaging a subject
KR102357455B1 (ko) * 2020-03-05 2022-02-04 한국과학기술원 X선 필터, x선 영상 촬영 시스템 및 x선 영상 촬영 방법
KR102577452B1 (ko) * 2021-07-21 2023-09-12 국립암센터 대상체의 병변을 치료하기 위한 치료빔을 변환시키는 변환장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189410A (ja) * 1998-12-25 2000-07-11 Fuji Photo Film Co Ltd 透過放射線画像デ―タ取得方法および装置
JP2010042119A (ja) * 2008-08-12 2010-02-25 Yoshida Dental Mfg Co Ltd X線断層撮影方法および装置
JP2012112882A (ja) * 2010-11-26 2012-06-14 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
KR20130118509A (ko) * 2012-04-20 2013-10-30 한국과학기술원 X-선 단층촬영 시스템 및 방법
KR20140039353A (ko) * 2012-09-19 2014-04-02 고려대학교 산학협력단 컬리메이터 장치

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550886A (en) * 1994-11-22 1996-08-27 Analogic Corporation X-Ray focal spot movement compensation system
US5608776A (en) * 1995-10-10 1997-03-04 General Electric Company Methods and apparatus for twin beam computed tomography
JP3732568B2 (ja) * 1996-04-03 2006-01-05 株式会社東芝 X線コンピュータ断層撮影装置
US5949811A (en) * 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
DE69826872T2 (de) * 1997-03-12 2006-03-09 Hitachi Medical Corp. Rechnergestützter röntgentomograph mit den bestrahlungsbereichs eines röntgenfächerstrahls begrenzendem kollimator
US5999587A (en) * 1997-07-03 1999-12-07 University Of Rochester Method of and system for cone-beam tomography reconstruction
US6125167A (en) * 1998-11-25 2000-09-26 Picker International, Inc. Rotating anode x-ray tube with multiple simultaneously emitting focal spots
US6229870B1 (en) * 1998-11-25 2001-05-08 Picker International, Inc. Multiple fan beam computed tomography system
WO2001082309A1 (en) * 2000-04-19 2001-11-01 Analogic Corporation Backlash-resistant drive assembly for collimator in a ct scanner
US6396902B2 (en) * 2000-07-31 2002-05-28 Analogic Corporation X-ray collimator
US7583775B2 (en) * 2002-08-14 2009-09-01 Kabushiki Kaisha Toshiba Concentrated irradiation type radiotherapy apparatus
DE10242920B4 (de) * 2002-09-16 2013-08-22 Siemens Aktiengesellschaft Verfahren zum Betrieb eines Computertomographiegerätes und eine Vorrichtung zur Durchführung des Verfahrens
JP2004180715A (ja) * 2002-11-29 2004-07-02 Toshiba Corp X線コンピュータ断層撮影装置
JP2004313657A (ja) * 2003-04-21 2004-11-11 Ge Medical Systems Global Technology Co Llc 放射線計算断層画像装置
JP3942178B2 (ja) * 2003-07-29 2007-07-11 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ctシステム
JP3999179B2 (ja) * 2003-09-09 2007-10-31 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置
DE10348796B4 (de) * 2003-10-21 2007-09-27 Siemens Ag Vorrichtung zur räumlichen Modulation eines Röntgenstrahlbündels und Röntgenbildsystem
JP2006051233A (ja) * 2004-08-13 2006-02-23 Ge Medical Systems Global Technology Co Llc コリメータ制御方法およびx線ct装置
JP4319109B2 (ja) * 2004-08-13 2009-08-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー スキャン制御方法およびx線ct装置
US7194061B2 (en) * 2004-09-14 2007-03-20 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
US7260171B1 (en) 2004-10-25 2007-08-21 General Electric Company Apparatus for acquisition of CT data with penumbra attenuation calibration
US7957507B2 (en) * 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
JP4629519B2 (ja) * 2005-07-12 2011-02-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線撮影装置およびスキャン条件設定装置
WO2007046372A1 (ja) * 2005-10-17 2007-04-26 J. Morita Manufacturing Corporation 医療用デジタルx線撮影装置及び医療用デジタルx線センサ
US7486773B2 (en) 2006-05-09 2009-02-03 Siemens Medical Solutions Usa, Inc. Megavoltage scatter radiation measurement using beam stop array
US7723690B2 (en) 2007-03-30 2010-05-25 General Electric Company Adjustable slit collimators method and system
DE102007028902B4 (de) 2007-06-22 2009-04-16 Siemens Ag Strahlerblende, Verfahren zu deren Steuerung und Röntgen-CT-Vorrichtung mit derartiger Strahlerblende
JP5269358B2 (ja) * 2007-07-18 2013-08-21 株式会社東芝 X線ct装置
WO2009083850A1 (en) 2007-12-21 2009-07-09 Koninklijke Philips Electronics, N.V. Dynamic collimation in cone beam computed tomography to reduce patient exposure
US8009794B2 (en) * 2008-01-30 2011-08-30 Varian Medical Systems, Inc. Methods, apparatus, and computer-program products for increasing accuracy in cone-beam computed tomography
US8571172B2 (en) * 2008-04-14 2013-10-29 Arineta Ltd. CT cone beam scanner
EP2271263B1 (en) * 2008-05-01 2011-11-30 Koninklijke Philips Electronics N.V. Source and/or detector positioning system
US8897413B2 (en) * 2008-05-21 2014-11-25 Koninklijke Philips N.V. Dynamic adjustable source collimation during fly-by scanning
JP2010082428A (ja) * 2008-09-04 2010-04-15 Toshiba Corp X線コンピュータ断層撮影装置
DE102008055921B4 (de) * 2008-11-05 2010-11-11 Siemens Aktiengesellschaft Modulierbarer Strahlenkollimator
DE102009016770A1 (de) 2009-04-07 2010-10-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Erzeugen von Projektionen vom Inneren eines Untersuchungsobjekts
US8712138B2 (en) * 2009-10-13 2014-04-29 Koninklijke Philips N.V. Device and method for generating soft tissue contrast images
CN202013751U (zh) * 2010-09-14 2011-10-19 上海西门子医疗器械有限公司 一种准直器和一种包括该准直器的ct设备
WO2012165450A1 (ja) * 2011-05-31 2012-12-06 株式会社 日立メディコ X線絞り機構及びx線ct装置
KR101255224B1 (ko) 2011-06-15 2013-04-17 한국과학기술원 X선 단층촬영 시스템 및 이를 이용한 산란 보정 방법
US9295434B2 (en) * 2011-07-15 2016-03-29 Koninklijke Philips N.V. Dynamic collimation
US9121809B2 (en) * 2011-11-18 2015-09-01 Visuum, Llc Multi-linear X-ray scanning systems and methods for X-ray scanning
US8989348B2 (en) * 2011-11-18 2015-03-24 Visuum, Llc Multi-linear X-ray scanning systems and methods for X-ray scanning
JP6076822B2 (ja) * 2012-05-02 2017-02-08 株式会社モリタ製作所 X線ct撮影装置
US9332946B2 (en) * 2012-06-22 2016-05-10 University Of Utah Research Foundation Adaptive control of sampling frequency for computed tomography
US9125572B2 (en) * 2012-06-22 2015-09-08 University Of Utah Research Foundation Grated collimation system for computed tomography
US9460823B2 (en) 2012-09-10 2016-10-04 Telesecurity Sciences, Inc. Dynamic beam aperture control to reduce radiation dose using collimator
KR20140055318A (ko) * 2012-10-31 2014-05-09 삼성전자주식회사 콜리메이터 모듈, 콜리메이터 모듈을 포함하는 방사선 검출 장치, 콜리메이터 모듈을 포함하는 방사선 촬영 장치 및 방사선 촬영 장치의 제어 방법
JP5709820B2 (ja) * 2012-11-08 2015-04-30 株式会社モリタ製作所 X線撮影装置
JP5756790B2 (ja) * 2012-11-08 2015-07-29 株式会社モリタ製作所 X線撮影装置
EP2920791B1 (en) * 2012-11-16 2023-12-27 NeuroLogica Corporation Multi-slit rotatable collimator
US9144408B2 (en) * 2012-11-20 2015-09-29 General Electric Company Collimators for scan of radiation sources and methods of scanning
CN103839603B (zh) * 2012-11-27 2017-12-22 Ge医疗系统环球技术有限公司 Ct准直仪和包含该ct准直仪的ct系统
CN103829963B (zh) * 2012-11-27 2018-02-23 Ge医疗系统环球技术有限公司 准直仪及包含该准直仪的ct系统
US20140270091A1 (en) * 2013-03-14 2014-09-18 Lee L. Nemeth Rotating drum collimator
US9204852B2 (en) * 2013-12-31 2015-12-08 General Electric Company Systems and methods for increased energy separation in multi-energy X-ray imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189410A (ja) * 1998-12-25 2000-07-11 Fuji Photo Film Co Ltd 透過放射線画像デ―タ取得方法および装置
JP2010042119A (ja) * 2008-08-12 2010-02-25 Yoshida Dental Mfg Co Ltd X線断層撮影方法および装置
JP2012112882A (ja) * 2010-11-26 2012-06-14 Fujifilm Corp 放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システム
KR20130118509A (ko) * 2012-04-20 2013-10-30 한국과학기술원 X-선 단층촬영 시스템 및 방법
KR20140039353A (ko) * 2012-09-19 2014-04-02 고려대학교 산학협력단 컬리메이터 장치

Also Published As

Publication number Publication date
US20170105684A1 (en) 2017-04-20
US9980682B2 (en) 2018-05-29
KR101609932B1 (ko) 2016-04-06
KR20160004145A (ko) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2016003016A1 (ko) 굴곡진 가동성 빔 차단 어레이 및 이를 포함하는 cbct
US9216302B2 (en) Radiotherapy system and radiotherapy planning apparatus
US9604077B2 (en) Visualizing radiation therapy beam in real-time in the context of patient's anatomy
US11380025B2 (en) Scatter correction method and apparatus for dental cone-beam CT
US9968321B2 (en) Method and imaging system for determining a reference radiograph for a later use in radiation therapy
TW201318663A (zh) 帶電粒子線照射系統及帶電粒子線照射計劃方法
CN107811647B (zh) Ct设备、参考探测装置及射线源的射线探测方法
US10674973B2 (en) Radiation therapy system and methods of use thereof
WO2015026163A1 (ko) 엑스선 영상 장치
KR20130011822A (ko) 엑스선 촬영 장치 및 방법
EP3993706B1 (en) Narrow beam ct using a 3d fluence modulation and scatter shield system
Tomic et al. Image quality for radiotherapy CT simulators with different scanner bore size
JP6750310B2 (ja) タルボ撮影装置
US8798228B2 (en) Method to reduce radiation dose delivered by imaging system
US11517273B2 (en) Dual energy X-ray imaging apparatus
WO2017073996A1 (ko) 엑스선 ct 촬영장치 및 그 촬영방법
US6542571B2 (en) Method of reducing artifacts in object images
WO2021071306A1 (ko) 세기 조절 방사선 치료를 위한 방사선 치료 계획 수립 장치 및 방법
JP2007044496A (ja) X線ct装置
WO2017003223A1 (ko) 영상 획득 장치 및 방법
TWI645836B (zh) 粒子線治療裝置及數位重組放射線攝影影像作成方法
Mettivier et al. Scatter correction in cone-beam breast computed tomography: simulations and experiments
JP2000116638A (ja) 透過型ct装置
Simões et al. Monitoring tumor lung irradiation with megavoltage patient-scattered radiation: a full system simulation study
Djordjevic Evaluation of geometric accuracy and image quality of an on-board imager (OBI)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14411880

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2876639

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014280988

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896704

Country of ref document: EP

Kind code of ref document: A1