CA2876639A1 - Curved movable beam stop array and cbct comprising thereof - Google Patents

Curved movable beam stop array and cbct comprising thereof Download PDF

Info

Publication number
CA2876639A1
CA2876639A1 CA2876639A CA2876639A CA2876639A1 CA 2876639 A1 CA2876639 A1 CA 2876639A1 CA 2876639 A CA2876639 A CA 2876639A CA 2876639 A CA2876639 A CA 2876639A CA 2876639 A1 CA2876639 A1 CA 2876639A1
Authority
CA
Canada
Prior art keywords
bsa
grid
generator
slits
cbct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2876639A
Other languages
French (fr)
Inventor
So Hyun Ahn
Kyu Chan Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Gachon University
Gil Medical Center
Original Assignee
Industry Academic Cooperation Foundation of Gachon University
Gil Medical Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140082669A external-priority patent/KR101609932B1/en
Application filed by Industry Academic Cooperation Foundation of Gachon University, Gil Medical Center filed Critical Industry Academic Cooperation Foundation of Gachon University
Publication of CA2876639A1 publication Critical patent/CA2876639A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Disclosed is a curved movable beam-stop array (BSA) which can be applied to accurately and efficiently improve the quality of images of a cone-beam CT
(CBCT) system, and particularly, can be applied to not only a simulation CBCT system necessary for radiotherapy and a CBCT system mounted in a radiotherapy apparatus but also to a wide range of fields including plastic surgery, maxillofacial surgery, dental surgery, and the like. The BSA comprises a generator, a curved grid and a controller. The generator generates radiation beams while rotating to a gantry angle. The curved grid is positioned in the radiation direction of the radiation beams generated from the generator. The controller controls operations of the grid. In the BSA, the grid comprises a plurality of slits spaced apart from each other at a predetermined distance, the plurality of slits allowing at least a portion of the radiation beams generated from the generator to pass through. The controller moves the slit by a predetermined distance d when the generator moves by a predefined angle a. Accordingly, it is possible to reduce the amount of radioactivity absorbed in an object to be examined and to decrease the time required to photograph through only a single scan. Further, it is possible to perform photographing in a wide area and simultaneously, to reduce the production of a penumbra. Further, it is possible to reduce errors in estimating a scattered degree of beams, thereby obtaining more precise and definite images. Further, the BSA is easily attached to a radiation planning CBCT system and a radiotherapy apparatus, to be used in identifying the position of a patient or tumor just before radiotherapy is performed.

Description

CA Application Blakes Ref: 11934/00001
2
3 BACKGROUND OF THE INVENTION
4 1. Field of the Invention The present invention relates to a curved movable beam-stop array (BSA), and more 6 particularly, to a curved movable BSA which can be applied to accurately and efficiently improve 7 the quality of images of a cone-beam CT (CBCT) system, and particularly, can be applied to not 8 only a simulation CBCT system necessary for radiotherapy and a CBCT
system mounted in a 9 radiotherapy apparatus but also a wide range of fields including plastic surgery, maxillofacial surgery, dental surgery, and the like.

12 2. Description of the Conventional Art 13 Unlike the existing computerized tomography (CT) apparatus, a cone-beam CT (CBCT) 14 system takes images while moving to a predefined angle about an object, so that the 3D and 4D
imaging of an object to be examined is possible, thereby obtaining three-dimensional 16 anatomical information. Further, unlike MRI, the CBCT system more easily takes images of hard 17 tissue such as bone rather than soft tissue such as muscular tissue. The CBCT system is 18 variously applied in medical treatment or convalescence as well as in the diagnosis of diseases.
19 However, since the X-ray beams of the CBCT system irradiate a wide area, photons of the X-ray beams that have a reduced energy of 100keV or less are scattered by the object to be 21 examined and so a low spatial frequency is obtained. Therefore, when the X-ray beam reaches 22 a sensing device, due to not being able to distinguish the scattered X-ray beam from the primary 23 X-ray beam in the original state, an image which is partially indefinite with considerably inferior 24 quality is obtained as a result.

22660395.1 CA Application Blakes Ref: 11934/00001 1 The photographing of images is accompanied by phenomena such as degradation of contrast, increase in noise and inaccuracy of CT values. Hence, a process of analyzing and correcting the degree of scatter (scatter correction) is required in order to obtain a definite 4 image.
Among several methods for scatter correction, beam-stop array (BSA) method is known as an effective method. A BSA partially intercepts scattered beams, so that it is possible 7 to estimate and correct the distribution of the scattered beams. However, several problems still 8 exist in the BSA.

Particularly, there is a problem in that conventionally, additional scans are required to correct the distribution of scattered beams, and therefore, increasing the amount of scattered beams absorbed in an object to be examined. In order to overcome this problem, Korean Patent Publication No. 10-2012-0138451 discloses a system and apparatus for circularly scanning an object to be examined using a scatter image correcting device, performing 1-dimensional scatter correction by detecting X-ray projection image data using a multi-line X-ray detector, obtaining a scatter correction projection image by removing estimation scatter image data obtained through 16 the 1-dimensional scatter correction, and restoring an image using a backprojection-filtration 17 method based on the obtained scatter correction projection image.

However, although the number of additional scans can be reduced using the system 19 and apparatus, generally, a penumbra is produced at the edges of strip lattices that intercept the beams. In this case, there still exist problems difficult to overcome using the backprojection-21 filtration method provided in the invention described above.
22 When radiation acts on an object, the penumbra is differentiated from the isodose area which evenly receives a certain amount of radioactivity, whereas the penumbra means an area 24 that receives only 20 to 80% of the radioactivity. Therefore, valid data that may be obtained from 22660395.1 CA Application Blakes Ref: 11934/00001 1 the empty space portion is contaminated. As a result, there remains a problem in that an 2 indefinite image is obtained. For this problem, the said invention provides a method of forming 3 the width of the strip lattices so as to be narrower than that of the empty space portions.
4 However, there is a limitation in suppressing the formation of a penumbra by forming the width of the strip lattices to be narrow. Particularly, when photographing is performed throughout a 6 wide area such as the chest and abdomen of a person, a penumbra still forms, and therefore, 7 loss of image information occurs in the area of the penumbra. As a result, the image obtained 8 differs from the actual object.
9 U.S. Patent No. 7,486,773 discloses a method of estimating the degree of scatter of beams irradiated using a plurality of cone-shaped members rather than strip lattices. As such, 11 the use of a plurality of members can reduce error during the process of estimating the degree 12 of scatter of beams even when photographing is performed throughout a wide area. However, 13 the degree of scatter is estimated using at least four images obtained by photographing four 14 times. Therefore, an increase in the amount of radioactivity absorbed in the object to be examined may occur, along with an increase in the time required to photograph.
16 [Prior Art Documents]
17 [ Patent Documents]
18 (Patent Document 1) KR10-2012-0138451 A
19 (Patent Document 2) US7486773 B2 [Non-Patent Documents]
21 (Non-Patent Document 1) So Hyun Ahn, Jinho Choi, Kyu Cahn Lee, Siyon Kim, Rena 22 Lee. Development of a Beam Stop Array System with Dual Scan Mode for Scatter Correction of 23 Cone-beam CT. Journal of the Korean Physical Society 2014; 64:1220-1229 22660395.1 CA Application Blakes Ref: 11934/00001 Therefore, an aspect of the detailed description is to provide a system which can reduce the amount of radioactivity absorbed by the object to be examined and decrease the 4 time required to take the images.
Another aspect of the detailed description is to provide a beam-stop array (BSA) that is 6 able to perform photographing of a wide area and at the same time lessen the penumbra effect.

Still another aspect of the detailed description is to provide a differentiated BSA for obtaining more precise and definite images by reducing the error in estimating the degree of 9 scatter.
To achieve these and other advantages and in accordance with the purpose of this specification, as embodied and broadly described herein, a BSA comprises a generator configured to generate radiation beams while rotating to a gantry angle; a curved grid positioned 13 in the direction of the radiation beams generated from the generator; and a controller configured 14 to control operations of the grid, wherein the grid comprises a plurality of slits spaced apart from each other at a predetermined distance, the plurality of slits allowing at least a portion of the radiation beams generated from the generator to pass therethrough, and wherein the controller moves the slits by a predetermined distance d when the generator moves by a predefined angle 18 a.
19 The BSA may further comprise a flat panel detector disposed facing the generator.
The grid may be positioned between the flat panel detector and the generator.
21 The generator and the grid may rotate about rotation axis A. The grid may be positioned between the generator and a table, and the slit may be positioned perpendicular to 23 the rotation axis A.
24 The grid may be curved convexly towards the table.

22660395.1 CA Application Blakes Ref: 11934/00001 1 The grid may further comprise a beam-stop unit which blocks radiation beams, being 2 alternately disposed with said slits.
3 The beam-stop unit may comprise a movable spaced unit.
4 The controller may further comprise a spacing control means configured to control the movement of the spaced unit.
6 The spaced unit may be formed with a plurality of spaced units to stop at least a portion 7 of respective said slits.
8 The ratio of the spacing of the slits to the thickness of the beam-stop unit may be 1Ø
9 To achieve these and other advantages and in accordance with the purpose of this specification, as embodied and broadly described herein, a cone-beam CT (CBCT) system 11 comprising the BSA is provided.
12 As described above, according to the present invention, a definite image can be obtained through just one scan, so it is possible to reduce the amount of radioactivity absorbed 14 in an object to be examined. Thus, it is possible to reduce radiation dose and to decrease the time required to take the images.

Further, the curved movable grid can perform taking images of a wide area and at the 17 same time lessen the penumbra effect.

Further, as X-ray beams are irradiated while rotating around an object, the grid moves 19 at a predetermined space, which in turn reduces the error in estimating scatter distribution of an image, and thereby more accurate and definite images may be obtained.

Further scope of applicability of the present application will become more apparent 22 from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within
5 22660395.1 CA Application Blakes Ref: 11934/00001 1 the spirit and scope of the invention will become apparent to those skilled in the art from the 2 detailed description.

The accompanying drawings, which are included to provide a further understanding of
6 the invention and are incorporated in and constitute a part of this specification, illustrate
7 exemplary embodiments and together with the description serve to explain the principles of the
8 invention.
9 In the drawings:
FIG. 1 is a perspective view illustrating a curved movable beam-stop array (BSA) 11 according to an embodiment of the present invention;
12 FIG. 2 is an entire schematic perspective view illustrating the curved movable BSA
13 according to the embodiment of the present invention;
14 FIG. 3 is a plan view of FIG. 2;
FIG. 4 is a sectional view illustrating a curved movable BSA according to the 16 embodiment of the present invention;
17 FIG. 5 is a sectional view illustrating a curved movable BSA according to a modification 18 of the present invention;
19 FIG. 6 shows images illustrating a process to which the curved movable BSA is applied according to the embodiment of the present invention; and 21 FIG. 7 shows images and graphs comparing and illustrating data respectively obtained 22 by applying a conventional grid and the curved movable BSA according to the embodiment of 23 the present invention.

22660395.1 CA Application Blakes Ref: 11934/00001 Hereinafter reference will now be made in detail to various embodiments of the present invention, examples of which are illustrated in the accompanying drawings and described below.

While the invention will be described in conjunction with exemplary embodiments, it will be understood that present description is not intended to limit the invention to those exemplary embodiments. On the contrary, the invention is intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended 9 claims.
In the present invention, a cone-beam CT (CBCT) system comprising a curved movable beam-stop array (BSA) will be described as an example. However, the same principle 12 can be applied to other systems except the CBCT system. Therefore, it will be obvious that the scope of the present invention defined by the appended claims can be applied to the other 14 systems having the BSA, to which the same principle is applied.
Components constituting the present invention, when necessary, may be used in a single body or be separated from one another to be used. Further, some components may be 17 omitted.

Exemplary embodiments of the curved movable BSA and the CBCT system comprising 19 the same according to the present invention will be described with reference to FIGS. 1 to 7. In the drawings, the thicknesses of lines, the sizes of components, or the like may be exaggerated 21 for clarity and convenience of explanation. The following terms are terms which are defined based on functionality in the present invention. Since the meanings of these terms may vary depending on a user or operator's intension or a custom, the definitions of these terms should 22660395.1 CA Application Blakes Ref: 11934/00001 1 be determined based on the entire content of the present specification that describes the 2 present invention.
3 Hereinafter, an embodiment of the entire configuration of the curved movable BSA
4 according to the present invention will be described with reference to FIGS. 1 to 3.
The BSA according to the embodiment of the present invention comprises a generator 6 100, a flat panel detector 200 disposed facing the generator 100, a curved grid 300 positioned 7 between the flat panel detector 200 and the generator 100, a table positioned between the grid 8 300 and the flat panel detector 200, and an object 500 positioned on the table 400. The BSA
9 may further comprise a controller (not shown) for controlling operations of the grid 300.
Generally, the term "gantry" is defined as a frame for accommodating the generator 11 100, the grid 300 and the flat panel detector 200, and here, the term "gantry angle" refers to an 12 angle that represents a degree where the gantry rotates about rotation axis A. The gantry angle 13 is preferably measured as an angle corresponding to the distance where a focus 110 moves in 14 an arc motion with respect to the rotation axis A.
The generator 100 generates radiation beams and rotates to a gantry angle about the 16 rotation axis A. The radiation beams irradiated from the generator 100 are irradiated as cone-17 shaped beams with the focus 110 of the generator 100 as a vertex. Such a cone beam passes 18 through the grid 300 and reaches the flat panel detector 200 via the object 500 on the table 400, 19 and thereby the three-dimensional anatomical information of the object 500 may be obtained.
The grid 300 comprises a plurality of slits 310 spaced out at a predetermined distance 21 from each other, and beam-stop units 320 that are alternately disposed with the slits 310, 22 thereby stopping the radiation beams. Here, the plurality of slits 310 allow at least a portion of 23 the radiation beams generated from the generator 100 to pass through.
Preferably, the beam-24 stop units 320 further comprise a movable spaced unit 321 capable of changing the position of 22660395.1 CA Application Blakes Ref: 11934/00001 1 the slit 310 or the distance between the slits 310. When the generator 100 moves by a 2 predefined angle a through the spaced unit 321, the controller may move the slit 310 by a 3 predetermined spaced corresponding to the slit 310 (see FIG. 5). The length of the spaced may 4 be variously applied according to situations in which the BSA is applied.
The table 400 positioned between the grid 300 and the flat panel detector 200 is 6 preferably one that can move in a sliding motion. Accordingly, the photographing part of the 7 object positioned on the table 400 can be more efficiently controlled.
8 The grid 300 will be described in detail with reference to FIGS. 4 to 7.
9 The grid 300 has a curved shape and comprises the movable beam-stop units 320, so that, unlike a conventional flat-shaped grid, the image data of a wider area may be obtained as 11 a more definite image. In a BSA system using the flat-shaped grid, as the size of the object onto 12 which radiation beams are irradiated, i.e., the subject, became larger, there was a limit in 13 obtaining the required image data through photographing just once. This is because as the size 14 of the subject increases, the degree of scattering of the radiation beams increases, and a penumbra forms, contaminating the image. In addition, as the photographing time increases, an 16 indefinite image is generated due to the slight movement of the subject.
17 Even when the irradiated radiation beams passing through the grid 300 are stopped by 18 the beam-stop units 320, an unnecessary penumbra is not formed, due to its curved shape 19 which is suitable for passing cone-beam-shaped radiation beams. In this state, the grid 300 is preferably formed to be curved convexly toward the table 400 so that the object 500 positioned 21 so as to occupy a wide area on the table 400 may also be photographed.
22 The grid 300 according to the present invention may also change the position of the slit 23 310, so that it is possible to obtain sufficient image data for scatter correction through just one 22660395.1 CA Application Blakes Ref: 11934/00001 1 radiation scan. First, a process of obtaining image data for scatter correction will be briefly 2 described with reference to FIG. 6.
3 The slits 310 and the beam-stop units 320 are preferably formed perpendicular to the 4 rotation axis A, and accordingly, images to be obtained are as shown in FIG. 6. Through the beam-stop units 320, only a portion of the irradiated radiation beams pass and may reach the 6 flat panel detector 200. The portion where the irradiated radiation beams were unable to pass 7 through the grid 300 appears dark in an image, so that the scattered radiation beams can be 8 distinguished from the primary radiation beams irradiated from the generator 100. After only a 9 portion of the object 500 is primarily photographed by the beam-stop unit 320, the slit 310 may be moved, and the object 500 may be secondarily photographed.
11 As the slits 310 move, images representing a plurality of different portions of the object 12 500 and the scattered parts on each image can be estimated. Thus, by finally combining the 13 estimated images and scattered parts, a more accurate scatter distribution of the images may 14 be obtained. When the scatter distribution is removed from the images, a definite image of the object 500 may be obtained.
16 The slit 310 is preferably controlled so that when the gantry moves by the predefined 17 angle a, a plurality of different portions of the object 500 can be photographed by moving the slit 18 310 by the predetermined distanced corresponding to the slit 310 until before the gantry moves 19 again. In this manner, it is possible to obtain a more definite image through a single scan.
Further, the photographing time is also reduced, so that it is possible to reduce errors in images, 21 caused by movement of the object 500.
22 There are several methods for changing the position of the slit 310, but two 23 embodiments will be described.
22660395.1 CA Application Blakes Ref: 11934/00001 1 In an embodiment according to FIG. 4, the beam-stop unit 320 further comprises the spaced unit 321 that forms a portion thereof. The spaced unit 321 vertically moves in the curved 3 grid 300 by the controller, thereby changing the position of the slit 310.

Here, when the gantry angle moves by the predefined angle a, the spaced unit moves upward or downward by the predetermined distance d, so that the position of the slit 310 6 can be moved by the predetermined distance d in a state in which the space between the slits is maintained. The predefined angle a and the predetermined distanced may be formed in various combinations. However, the predefined angle a and the predetermined distance d are preferably determined so that the entire image of the object 500 can be obtained through a single scan based on the gantry rotating once about the center axis A.
11 In another embodiment according to FIG. 5, as the spaced unit 321 remains stationary, 12 but the entire beam-stop unit 320 positioned inside the grid 300 moves vertically, and the position of the slit 310 moves together with the beam-stop unit 320, accordingly. However, like 14 the embodiment of FIG. 4, the predefined angle a and the predetermined distance d are preferably determined so that the entire image of the object 500 can be obtained through a 16 single scan.
17 As the gantry rotates, the beam-stop unit 320 positioned inside the grid 300 can be set 18 to move automatically. Preferably, the beam-stop unit 320 is vertically movable at a constant 19 speed.
In order to obtain accurate scatter distribution, the beam-stop unit 320 must have a function of being able to completely block the primary radiation beams. For such purposes, it is preferable that the grid 300 is formed of lead having a thickness of 5mm. In addition to the thickness, the width of the grid 300 acts as an important factor. In this case, in order to obtain 22660395.1 CA Application Blakes Ref: 11934/00001 1 more accurate data, the ratio of the thickness of the slit 310/the thickness of the beam-stop unit 2 320 is preferably 1Ø
3 The difference between the respective images obtained by the application of the conventional grid and by the application of the curved movable BSA according to the embodiment of the present invention will be described in detail with reference to FIG. 7.

Respectively, the upper left and right sides of FIG. 7 each represent images and a graph obtained through CBCT scanning to which a flat grid is applied. The lower left and right sides of 8 FIG.
7 respectively represent images and a graph, obtained by applying the curved grid 300 9 according to the present invention.
A phenomenon in which the penumbra area of the combination of the two images photographed using the flat grid gradually worsens with distance, is shown in the images on the upper left side of FIG.7. Further, in the graph at the upper right side of FIG.7, values corresponding to the gray values are drawn in an erratic form. Particularly, seeing that the change in gray value is miniscule in one section of the graph which corresponds to the middle point of the grid, it can be ascertained that a penumbra formed in this section, contaminating the 16 image..
17 On the other hand, the images and graph at the lower left and right sides of FIG.

18 show a result arising when two images photographed using the curved grid 300 are combined, 19 the penumbra area is constant without being influenced by distance.
As described above, the BSA according to the present invention is easily attached to a radiation planning CBCT system and a radiotherapy apparatus, to be used in identifying the position of a patient or tumor just before radiotherapy is performed. Further, the BSA according 23 to the present invention can be applied to various CBCT systems used in a wide range of fields 22660395.1 CA Application Blakes Ref: 11934/00001 1 including plastic surgery, maxillofacial surgery, dental surgery, and the like, thereby obtaining 2 high utilization of the BSA.
3 The foregoing embodiments and advantages are merely exemplary and are not to be 4 construed as limiting the present disclosure. The present teachings can be readily applied to other types of apparatuses. This description is intended to be illustrative, and not to limit the 6 scope of the claims. Many alternatives, modifications, and variations will be apparent to those 7 skilled in the art. The features, structures, methods, and other characteristics of the exemplary 8 embodiments described herein may be combined in various ways to obtain additional and/or 9 alternative exemplary embodiments.
As the present features may be embodied in several forms without departing from the 11 characteristics thereof, it should also be understood that the above-described embodiments are 12 not limited by any of the details of the foregoing description, unless otherwise specified, but 13 rather should be construed broadly within its scope as defined in the appended claims, and 14 therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalents of such metes and bounds are therefore intended to be embraced by the appended 16 claims.

22660395.1

Claims (10)

What is claimed is:
1. A beam-stop array (BSA), comprising:
a generator configured to generate radiation beams while rotating to a gantry angle;
a curved grid positioned in the radiation direction of the radiation beams generated from the generator; and a controller configured to control operations of the grid, wherein the grid comprises a plurality of slits that are spaced apart at a predetermined distance from each other, the plurality of slits allowing at least a portion of the radiation beams generated from the generator to pass through, and wherein the controller moves the slit by a predetermined distance d when the generator moves by a predefined angle .alpha..
2. The BSA of claim 1, further comprising a flat panel detector disposed facing the generator, wherein the grid is positioned between the flat panel detector and the generator.
3. The BSA of claim 2, wherein the generator and the grid rotate about rotation axis A, and wherein the grid is positioned between the generator and a table, and the slit is positioned perpendicular to the rotation axis A.
4. The BSA of claim 3, wherein the grid is curved convexly toward the table.
5. The BSA of claim 1, wherein the grid further comprises a beam-stop unit which blocks radiation beams, being alternately disposed with the slits..
6. The BSA of claim 5, wherein the beam-stop unit comprises a movable spaced unit.
7. The BSA of claim 6, wherein the controller further comprises a spacing control means configured to control the movement of the spaced unit.
8. The BSA of claim 6, wherein the spaced unit is formed with a plurality of spaced units to stop at least a portion of said plurality of slits.
9. The BSA of claim 1, wherein the ratio of the space between the slits to the thickness of the grid is 1Ø
10. A cone-beam CT (CBCT) system comprising the BSA of any one of claims 1 to 9.
CA2876639A 2014-07-02 2014-09-30 Curved movable beam stop array and cbct comprising thereof Abandoned CA2876639A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140082669A KR101609932B1 (en) 2014-07-02 2014-07-02 Curved movable beam stop array and CBCT comprising thereof
KR10-2014-0082669 2014-07-02
PCT/KR2014/009161 WO2016003016A1 (en) 2014-07-02 2014-09-30 Curved movable beam stop array and cbct including same

Publications (1)

Publication Number Publication Date
CA2876639A1 true CA2876639A1 (en) 2016-01-02

Family

ID=54978835

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2876639A Abandoned CA2876639A1 (en) 2014-07-02 2014-09-30 Curved movable beam stop array and cbct comprising thereof

Country Status (1)

Country Link
CA (1) CA2876639A1 (en)

Similar Documents

Publication Publication Date Title
US9980682B2 (en) Curved movable beam stop array and CBCT comprising thereof
JP2024100832A (en) Method and apparatus for improving scatter estimation and correction in imaging
US8483363B2 (en) Movable wedge for improved image quality in 3D X-ray imaging
US9784696B2 (en) Method for controlling X-ray exposure
EP2633293B1 (en) Real-time motion tracking using tomosynthesis
JP6797920B2 (en) Streak artifact prediction
JP6925779B2 (en) Small irradiation field X-ray imaging system and method
US20150003577A1 (en) Method for positioning a body region of interest in the isocentre of a ct imaging system
WO2013127005A1 (en) Reduced dose x-ray imaging
JP2022173271A (en) Device for imaging object
US8798228B2 (en) Method to reduce radiation dose delivered by imaging system
EP3142557B1 (en) Multi-focal spot imaging system
JP6301793B2 (en) DRR image creation method and DRR image creation apparatus
CN107997777B (en) Selection method and device of slice combination
JP2016059612A5 (en)
TWI597618B (en) Treatment planning apparatus
JP2016087458A (en) X-ray computer tomographic apparatus
JP6883800B2 (en) DRR image creation device
CA2876639A1 (en) Curved movable beam stop array and cbct comprising thereof
JP2015019863A (en) Radiation tomography apparatus and program
US20170065233A1 (en) Image Guided Small Animal Stereotactic Radiation Treatment System
JP2015150220A (en) X-ray CT apparatus and imaging method
Lim et al. Quantitative image quality evaluation for kV cone-beam CT-based IGRT
Keuschnigg et al. Flat-field correction pipeline for a cone-beam computed tomography imaging device with independently movable source and detector
AU2015213469B2 (en) Optimised 4D cone beam computed tomography projection allocation

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20180208