WO2016002762A1 - 新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法 - Google Patents

新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法 Download PDF

Info

Publication number
WO2016002762A1
WO2016002762A1 PCT/JP2015/068796 JP2015068796W WO2016002762A1 WO 2016002762 A1 WO2016002762 A1 WO 2016002762A1 JP 2015068796 W JP2015068796 W JP 2015068796W WO 2016002762 A1 WO2016002762 A1 WO 2016002762A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
substituent
same
general formula
Prior art date
Application number
PCT/JP2015/068796
Other languages
English (en)
French (fr)
Inventor
藤田 健一
良平 山口
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2016531386A priority Critical patent/JPWO2016002762A1/ja
Publication of WO2016002762A1 publication Critical patent/WO2016002762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/29Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/39Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of an unsaturated carbon skeleton
    • C07C211/41Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of an unsaturated carbon skeleton containing condensed ring systems
    • C07C211/42Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of an unsaturated carbon skeleton containing condensed ring systems with six-membered aromatic rings being part of the condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/56Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms
    • C07C217/58Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains not further substituted by singly-bound oxygen atoms with amino groups and the six-membered aromatic ring, or the condensed ring system containing that ring, bound to the same carbon atom of the carbon chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table

Definitions

  • the present invention relates to a novel iridium compound, a production method thereof, a catalyst using the same, and a production method of a primary amine compound using the same.
  • Non-Patent Documents 1 to 7 In recent years, multialkylation reactions and N-alkylation reactions using iridium complex catalysts having nitrogen-containing heterocyclic carbene ligands have been reported (Non-Patent Documents 1 to 7).
  • Non-patent Document 8 a multialkylation reaction in which ammonia and alcohol are reacted to produce tertiary and secondary amines has been reported.
  • the primary amine has a problem that it cannot be produced using the iridium-triammine complex (A).
  • Primary amines are extremely important raw materials for the production of pharmaceuticals and the like, and it is particularly desired to develop a catalyst for selectively producing primary amines.
  • An object of the present invention is to provide a novel iridium compound (catalyst).
  • Another object of the present invention is to provide a method for producing the iridium compound.
  • Another object of the present invention is to provide a method for producing a primary amine compound by reacting an alcohol compound with ammonia in the presence of the iridium compound.
  • the present inventor has conducted intensive research in view of the above problems. As a result, by reacting an alcohol compound and ammonia in the presence of a novel iridium compound having a nitrogen-containing heterocyclic carbene ligand, a cyclopentadienyl ligand, and an ammine ligand, it is simple and high. It has been found that primary amine compounds can be selectively obtained with atomic efficiency. As a result of further research based on this knowledge, the present invention has been completed.
  • the present invention provides a novel iridium compound, a method for producing the compound, a catalyst containing the compound, and an alcohol compound and ammonia reacted in the presence of the compound to produce a primary amine compound.
  • a manufacturing method and the like are provided.
  • Item 1 An iridium compound containing a nitrogen-containing heterocyclic carbene ligand, a cyclopentadienyl ligand, and an ammine ligand.
  • Item 2. General formula (1):
  • R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • a good aryl group is indicated.
  • R 3 and R 4 may be the same or different and each may have a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • An aryl group is shown.
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group, and the hydrocarbon group may have a substituent.
  • R 5 , R 6 , R 7 , R 8 , and R 9 are the same or different and are a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, Or the aryl group which may have a substituent is shown.
  • R 1 , R 2 , R 3 , and R 4 and any one of R 5 , R 6 , R 7 , R 8 , and R 9 are bonded to each other to form a divalent hydrocarbon Group may be formed, and the hydrocarbon group may have a substituent.
  • the bond represented by represents a single bond or a double bond.
  • X represents an atom or atomic group capable of forming a counter anion with the iridium cation.
  • Item 2. The iridium compound according to item 1, represented by: Item 3.
  • Item 3. A catalyst comprising the iridium compound according to Item 1 or 2.
  • Item 4. The catalyst according to Item 3, for producing a primary amine compound from an alcohol compound.
  • Item 3. A method for producing an iridium compound according to Item 1 or 2, General formula (2):
  • the bond represented by is the same as described above.
  • Two Xa's are the same or different and represent a halogen atom.
  • the manufacturing method including the process of making the compound and ammonia which are represented by these react.
  • Item 6. A method for producing a primary amine compound, which comprises a step of reacting an alcohol compound and ammonia in the presence of the iridium compound according to Item 1 or 2 or the catalyst according to Item 3 or 4. Method.
  • Item 7. A method for producing a primary amine compound, which is represented by the general formula (2):
  • R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • a good aryl group is indicated.
  • R 3 and R 4 may be the same or different and each may have a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • An aryl group is shown.
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group, and the hydrocarbon group may have a substituent.
  • R 5 , R 6 , R 7 , R 8 , and R 9 are the same or different and are a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, Or the aryl group which may have a substituent is shown.
  • R 1 , R 2 , R 3 , and R 4 and any one of R 5 , R 6 , R 7 , R 8 , and R 9 are bonded to each other to form a divalent hydrocarbon Group may be formed, and the hydrocarbon group may have a substituent.
  • the bond represented by represents a single bond or a double bond.
  • Two Xa's are the same or different and represent a halogen atom.
  • the manufacturing method including the process of making an alcohol compound and ammonia react in presence of the compound represented by these.
  • the iridium compound of the present invention is a novel compound having a nitrogen-containing heterocyclic carbene ligand, a cyclopentadienyl ligand, and an ammine ligand.
  • a primary amine compound can be selectively produced simply and with high atomic efficiency.
  • FIG. 2 is a result (ORTEP diagram) of an X-ray single crystal structure analysis of a cation moiety of compound 1a used in Example 1.
  • FIG. It is a result (ORTEP figure) of the X-ray single crystal structure analysis of the cation part of the compound 1b used in Example 2.
  • FIG. It is a result (ORTEP figure) of the X-ray single-crystal structure analysis of compound 2c-2.
  • Reaction mechanism in the method for producing a primary amine compound of the present invention in the figure, L represents a nitrogen-containing heterocyclic carbene ligand. [Ir] represents an iridium complex.
  • R 10 and R 11 represent the specifications. It is as defined in the book.)
  • novel iridium compound of the present invention a method for producing the compound, a catalyst containing the compound, and a method for producing a primary amine compound by reacting an alcohol compound and ammonia in the presence of the compound are described in detail below. Explained.
  • the iridium compound of the present invention is a complex containing a nitrogen-containing heterocyclic carbene ligand, a cyclopentadienyl ligand (Cp * ) and an ammine ligand (NH 3 ).
  • the iridium compound can be used as a catalyst for a reaction in which a hydroxy group (OH) in an alcohol compound is aminated (converted to NH 2 ).
  • the nitrogen-containing heterocyclic carbene ligand is not particularly limited and may be any heterocyclic carbene ligand containing nitrogen (hereinafter sometimes referred to as “carbene ligand”). Specifically, as the nitrogen-containing heterocyclic carbene ligand,
  • the nitrogen-containing heterocyclic carbene ligand having a structure represented by the formula is not particularly limited, and examples thereof include monocyclic, bicyclic, and tricyclic nitrogen-containing heterocyclic carbene ligands.
  • the number of nitrogen atoms in the nitrogen-containing heterocyclic carbene ligand is preferably 2 to 6, more preferably 2 to 4, and further preferably 2 and 3.
  • the ring in the nitrogen-containing heterocyclic carbene ligand is preferably monocyclic or bicyclic, and more preferably monocyclic.
  • the number of members of each ring in the nitrogen heterocycle is preferably a 5- to 10-membered ring, more preferably a 5- to 7-membered ring, and further preferably 5- and 6-membered rings.
  • examples of the nitrogen-containing heterocyclic carbene ligand include a ligand represented by the following general formula (B).
  • the bond represented by is the same as described above.
  • carbene ligands such as the following (B-1) and (B-2) are preferable.
  • R 1 , R 2 , R 3 and R 4 are the same as described above.
  • carbene ligands represented by the following (B-1-1), (B-2-1), and (B-2-2) are more preferable.
  • Iridium compound represented by general formula (1) examples of the iridium compound of the present invention include, for example, general formula (1):
  • R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • a good aryl group is indicated.
  • R 3 and R 4 may be the same or different and each may have a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • An aryl group is shown.
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group, and the hydrocarbon group may have a substituent.
  • R 5 , R 6 , R 7 , R 8 , and R 9 are the same or different and are a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, Or the aryl group which may have a substituent is shown.
  • R 1 , R 2 , R 3 , and R 4 and any one of R 5 , R 6 , R 7 , R 8 , and R 9 are bonded to each other to form a divalent hydrocarbon Group may be formed, and the hydrocarbon group may have a substituent.
  • the bond represented by represents a single bond or a double bond.
  • X represents an atom or atomic group capable of forming a counter anion with the iridium cation.
  • an iridium compound represented by the formula hereinafter also referred to as “compound of general formula (1)”.
  • the alkyl group include a chain or branched alkyl group having 1 to 10 carbon atoms. Specifically, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t -Butyl, pentyl, hexyl, heptyl, octyl, nonyl group and the like.
  • alkyl groups having 1 to 6 carbon atoms Preferred are alkyl groups having 1 to 6 carbon atoms, more preferred are alkyl groups having 1 to 4 carbon atoms, and particularly preferred are methyl, ethyl and isopropyl groups.
  • the alkyl group has, for example, 1 to 5 substituents selected from the group consisting of halogen atoms (eg, fluorine, chlorine, bromine, etc.), aryl groups (eg, phenyl group, naphthyl group, etc.), carboxyl groups and the like. You may do it.
  • Examples of the cycloalkyl group in the cycloalkyl group optionally having a substituent represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 include A cycloalkyl group having 3 to 10 carbon atoms, specifically, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
  • a cycloalkyl group having 3 to 7 carbon atoms more preferred is a cycloalkyl group having 5 to 7 carbon atoms, and particularly preferred is a cyclohexyl group.
  • the cycloalkyl group includes, for example, a halogen atom (eg, fluorine, chlorine, bromine, etc.), an alkyl group (alkyl group having 1 to 6 carbon atoms), an aryl group (eg, phenyl group, naphthyl group, etc.), a carboxyl group, etc. 1 to 5 substituents selected from the group consisting of:
  • aryl group in the aryl group which may have a substituent represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 , for example,
  • Examples include cyclic or bicyclic or higher aryl groups, and specific examples include phenyl, naphthyl, anthranyl, and phenanthryl groups.
  • a monocyclic or bicyclic aryl group is preferable, and a phenyl group is more preferable.
  • the aryl group has, for example, 1 to 5 substituents selected from the group consisting of a halogen atom (eg, fluorine, chlorine, bromine, etc.), an alkyl group (alkyl group having 1 to 6 carbon atoms), a carboxyl group, and the like. You may do it.
  • a halogen atom eg, fluorine, chlorine, bromine, etc.
  • an alkyl group alkyl group having 1 to 6 carbon atoms
  • a carboxyl group and the like. You may do it.
  • the groups represented by R 1 to 9 may be the same or different.
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group, and the hydrocarbon group may have a substituent.
  • the divalent hydrocarbon group includes, for example, — (CH 2 ) q — (q is an integer of 1 to 5). ), — (CH ⁇ CH) r — (r is 1, 2 or 3), —CH ⁇ CH— (CH 2 ) s — (s is an integer of 1 to 3), and the like.
  • the divalent hydrocarbon group may have a substituent.
  • substituents include an alkyl group (eg, an alkyl group having 1 to 6 carbon atoms), an aryl group (eg, phenyl group, naphthyl group), an oxo group ( ⁇ O), a halogen atom (eg, fluorine atom, chlorine). Atom, bromine atom, iodine atom) and the like.
  • the divalent hydrocarbon group may have 1 to 5 substituents selected from the group consisting of these.
  • any one of R 1 to R 4 and any one of R 5 , R 6 , R 7 , R 8 , and R 9 are bonded to each other to form a divalent carbon
  • a hydrogen group may be formed, and the hydrocarbon group may have a substituent.
  • divalent hydrocarbon group examples include — (CH 2 ) t — (t is an integer of 1 to 5), — (CH ⁇ CH) u — (u is 1, 2 or 3). , —CH ⁇ CH— (CH 2 ) v — (v is an integer of 1 to 3), and the like.
  • the divalent hydrocarbon group may have a substituent.
  • substituents include an alkyl group (for example, an alkyl group having 1 to 6 carbon atoms), an aryl group (for example, a phenyl group, a naphthyl group), an oxo group ( ⁇ O), a halogen atom (for example, a fluorine atom, Chlorine atom, bromine atom, iodine atom) and the like.
  • the divalent hydrocarbon group may have 1 to 5 substituents selected from the group consisting of these.
  • X is an atom or atomic group that can form a counter anion with the iridium cation, and is not particularly limited as long as it is such an atom or atomic group.
  • the atom or atomic group include a halogen atom, an optionally substituted alkyl sulfonate, an optionally substituted aryl sulfonate, perchlorate (ClO 4 ), tetrafluoroborate (BF 4 ), hexafluoro Examples include phosphate (PF 6 ).
  • X is preferably a halogen atom, an alkyl sulfonate having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, a haloalkyl sulfonate having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, 6 to 20 carbon atoms,
  • halogen atom or halo examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the oxidation number of iridium (Ir) is not particularly limited, and is, for example, 3 to 5, preferably 3.
  • R 1 and R 2 are the same or different and are an alkyl group which may have a substituent
  • R 3 and R 4 are the same or different and are a hydrogen atom or an alkyl group which may have a substituent
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group, and the hydrocarbon group may have a substituent
  • R 5 , R 6 , R 7 , R 8 , and R 9 are the same or different and are a hydrogen atom or an optionally substituted alkyl group
  • R 1 and R 2 are the same or different and are an alkyl group which may have a substituent
  • R 3 and R 4 are the same or different and each represents a hydrogen atom or an alkyl group
  • R 3 and R 4 may be bonded to each other to form a divalent hydrocarbon group
  • R 5 , R 6 , R 7 , R 8 , and R 9 are the same or different and are the same or different and are
  • R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms); R 3 and R 4 are the same or different and are hydrogen atoms; R 5 , R 6 , R 7 , R 8 , and R 9 are all methyl groups, A compound in which X is a halogen atom.
  • Specific examples of the compound represented by the general formula (1) of the present invention include the following (1-X1) to (1-X8).
  • X Represents a 1,2,3,4,5-pentamethylcyclopentadienyl (Cp * ) ligand.
  • X is the same as above. ) Among these, (1-X1), (1-X2), (1-X3), (1-X4) and the like are preferable, and (1-X1), (1-X2) and the like are more preferable.
  • the iridium compound of the present invention can be used as a catalyst, and in particular, can be used as a catalyst for producing a primary amine compound by reacting an alcohol compound with ammonia.
  • the iridium compound of the present invention may be a water-soluble compound.
  • the method for producing an iridium compound of the present invention includes a step of reacting an iridium compound containing a nitrogen-containing heterocyclic carbene ligand, a cyclopentadienyl ligand and a halogen ligand with ammonia. It is characterized by that.
  • the method for producing an iridium compound represented by the general formula (1) of the present invention comprises a step of reacting a compound represented by the general formula (2) with ammonia (step of the following reaction formula [1-1] 1).
  • the iridium compound (1A) in which X is a halogen atom is obtained by reacting the compound represented by the general formula (2) with ammonia. It can be produced by converting the two Xa groups (halogen ligands) in (2) into NH 3 groups (ammine ligands) (step 1).
  • the counter anion in the compound represented by the general formula (1A) thus obtained is Xa (halogen atom).
  • the iridium compound (1B) in which X is an atomic group capable of forming a counter anion with an iridium cation other than the halogen atom is represented by the general formula (1A).
  • the halogen atom of Xa is converted into an atom or atomic group capable of forming a counter anion with an iridium cation other than the halogen atom. It can be produced by conversion (anion exchange) (step 2).
  • the compound represented by the general formula (1B) thus obtained is an iridium compound in which Xa is an atomic group capable of forming a counter anion with an iridium cation other than a halogen atom.
  • two Xa represent a halogen atom.
  • Xb represents an atomic group capable of forming a counter anion with an iridium cation other than a halogen atom.
  • the bond represented by is the same as above.
  • the iridium compound represented by the general formula (1) of the present invention includes the compound represented by the general formula (1A) and the iridium compound represented by the general formula (1B).
  • Step 1 is a step of producing the compound represented by the general formula (1A) by reacting the compound represented by the general formula (2) with ammonia.
  • the compound represented by General formula (2) can be manufactured by the method mentioned later.
  • the bond represented by is the same as the definition of the iridium compound represented by the general formula (1), and two Xa represent a halogen atom.
  • the oxidation number of iridium (Ir) is 3.
  • the bonds between iridium (Ir) and the ligand are all shown by solid lines, but the solid lines include any of covalent bonds, ionic bonds, and coordination bonds.
  • the ammonia used in step 1 may be in any form.
  • it may be a gas or a liquid, and may be contained in water, an organic solvent, and a mixed solvent thereof.
  • the organic solvent is not particularly limited and includes 1,4-dioxane, methanol and the like.
  • ammonia water From the viewpoint of safety, inexpensiveness and simplicity, it is preferable to use ammonia water.
  • the amount of ammonia used in the present invention may be appropriately adjusted. For example, it is generally 3 to 500 moles, preferably 10 to 300 moles, more preferably 1 mole relative to 1 mole of the compound represented by the general formula (2). 50 to 200 mol.
  • the concentration of ammonia used in the present invention is usually 5 to 30% by weight, preferably 20 to 30% by weight, and more preferably 28 to 30% by weight.
  • Step 1 may be performed in a sealed container.
  • a sealed container There is no restriction
  • Step 1 is carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include alcohols (eg, methanol, ethanol), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene) , Toluene, xylene, etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether, etc.), esters (ethyl acetate, etc.), halogenated hydrocarbons (methylene chloride, chloroform, 1,2-dichloroethylene, etc.) Etc.
  • a solvent can be used individually or in combination of 2 or more types. Of these solvents, methanol, THF, 1,4-dioxane
  • the amount of the solvent used may be adjusted as appropriate, for example, generally 0 to 20 liters, preferably 0 to 5 liters per 1 mol of the compound represented by the general formula (2).
  • Step 1 may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C., more preferably 20 to 50 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 50 hours, more preferably 1 to 4 hours.
  • step 2 the compound represented by general formula (1A) obtained in step 1 is reacted with at least one salt selected from the group consisting of alkali metal salts, alkaline earth metal salts, and silver salts. And a step of producing a compound represented by the general formula (1B).
  • alkali metal salts include lithium salts, sodium salts, and potassium salts.
  • the alkali metal salt is preferably a lithium salt, a sodium salt or a potassium salt, more preferably a sodium salt.
  • alkaline earth metal salts examples include calcium salts and magnesium salts.
  • Examples of at least one salt selected from the group consisting of alkali metal salts, alkaline earth metal salts, and silver salts include LiCH 3 SO 3 , NaCH 3 SO 3 , KCH 3 SO 3 , LiCF 3 SO 3 , and NaCF 3 SO.
  • a salt selected from the group consisting of an alkali metal salt, an alkaline earth metal salt and a silver salt may be used alone or in combination.
  • the amount of salt selected from the group consisting of alkali metal salts, alkaline earth metal salts and silver salts used in the present invention may be adjusted as appropriate.
  • 1 mol of the compound represented by the general formula (1A) On the other hand, it is generally 0.5 to 50 mol, preferably 1 to 10 mol, more preferably 1.5 to 3 mol.
  • Step 2 is carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the reaction.
  • the solvent used include alcohols (eg, methanol, ethanol), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene) , Toluene, xylene, etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether, etc.), esters (ethyl acetate, etc.), halogenated hydrocarbons (methylene chloride, chloroform, 1,2-dichloroethylene, etc.) Etc. Among these, it can use individually or in combination of 2 or more types. Of these, methanol, THF, 1,4-dioxane and
  • the amount of the solvent used may be adjusted as appropriate. For example, it is generally 0 to 20 liters, preferably 0 to 5 liters, relative to 1 mol of the compound represented by the general formula (1B). is there.
  • Step 2 may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C., more preferably 20 to 50 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 50 hours, more preferably 1 to 24 hours.
  • reaction solvent unreacted raw material compounds and the like are removed from the resulting reaction mixture by a conventional separation method such as distillation, filtration, and centrifugation, and the target compound represented by the general formula (1B) Can be taken out.
  • the method for producing a primary amine compound in the present invention is the presence of an iridium compound (compound of general formula (1)) containing the above nitrogen-containing heterocyclic carbene ligand, cyclopentadienyl ligand and ammine ligand. Below, the process of making an alcohol compound and ammonia react is included.
  • an iridium compound containing the nitrogen-containing heterocyclic carbene ligand, the cyclopentadienyl ligand and the halogen ligand (hereinafter referred to as the following) A step of reacting an alcohol compound with ammonia in the presence of “a compound of the general formula (2)”.
  • the alcohol compound used in the present invention is not particularly limited as long as it is an organic compound having a hydroxy group (—OH).
  • the number of hydroxy groups in the alcohol compound may be 1 or 2 or more.
  • the primary alcohol compound means an alcohol having a hydroxy group (OH group) bonded to a primary carbon, and the carbon atom to which the hydroxy group is bonded is an alcohol having two hydrogen atoms.
  • the secondary alcohol compound means an alcohol having a hydroxy group (OH group) bonded to a secondary carbon, and the carbon atom to which the hydroxy group is bonded is an alcohol having one hydrogen atom.
  • R 10 and R 11 each independently have a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cycloalkyl group, or a substituent.
  • An optionally substituted aryl group or an optionally substituted heteroaryl group, R 10 and R 11 may be bonded to each other to form a ring together with their linking carbon atoms; The ring may further have a substituent.
  • Examples of the alkyl group of the alkyl group which may have a substituent represented by R 10 and R 11 include a chain or branched alkyl group having 1 to 10 carbon atoms, specifically, methyl , Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl group and the like.
  • An alkyl group having 1 to 6 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, an ethyl group, and an isopropyl group are particularly preferable.
  • Examples of the cycloalkyl group in the cycloalkyl group optionally having a substituent represented by R 10 and R 11 include a cycloalkyl group having 3 to 10 carbon atoms, specifically, cyclopropyl, Examples include cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups.
  • Preferred is a cycloalkyl group having 3 to 7 carbon atoms, more preferred is a cycloalkyl group having 5 to 7 carbon atoms, and particularly preferred is a cyclohexyl group.
  • Examples of the aryl group in the aryl group which may have a substituent represented by R 10 and R 11 include a monocyclic or bicyclic or more aryl group, specifically, a phenyl group, a naphthyl group, Anthryl group, phenanthryl group and the like can be mentioned. Of these, a phenyl group which may have a substituent is preferable.
  • the heteroaryl group in the heteroaryl group which may have a substituent represented by R 10 and R 11 is, for example, a heteroaryl group containing an oxygen, nitrogen and / or sulfur atom in the ring. 1 to 3 nitrogen atoms as ring constituent atoms such as furyl, thienyl, imidazolyl, pyrazolyl, isoxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, quinolyl, isoquinolyl, thiazolyl And 5- to 6-membered heteroaryl groups having an atom, 0 to 1 oxygen atom, and 0 to 1 sulfur atom.
  • the alkyl group, cycloalkyl group, aryl group or heteroaryl group includes an alkyl group (for example, an alkyl group having 1 to 6 carbon atoms), a halogen atom (for example, fluorine, chlorine, bromine, etc.), a carboxyl group, and an ester group. In addition, it may have 1 to 5 substituents such as an amide group and an optionally protected hydroxyl group.
  • R 10 and R 11 are bonded to form a ring together with their bonded carbon atoms include, for example, cyclopentanol, cyclohexanol, tetralin-1-ol, tetralin-2-ol, etc. Is mentioned.
  • the primary or secondary alcohol used in the present invention include methanol, ethanol, propanol, isopropanol, butanol, s-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 1- Hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-dodecanol, stearyl alcohol, 2-hexyl-1-decanol, 2-octyl-1-decanol, 2 -Dodecyl-1-tetradecanol, 1-diethylaminopentan-4-ol, cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, benzyl alcohol, 2-methoxybenzyl alcohol, 3-methoxybenzyl alcohol, 4 Methoxybenzyl alcohol,
  • n- means normal, “s-” means secondary (sec-), and “t-” means tertiary (tert-).
  • the primary amine compounds obtained include methylamine, ethylamine, propylamine, isopropylamine, butylamine, s-butylamine, 1-pentylamine, 2-pentylamine, 3-pentylamine, 1-hexylamine.
  • the method for producing a primary amine compound of the present invention comprises the above-mentioned nitrogen-containing heterocyclic carbene ligand, cyclopentadienyl ligand and ammine ligand as a catalyst.
  • a primary or secondary alcohol compound represented by the general formula (3) and ammonia are reacted to form a primary amine represented by the general formula (4).
  • Examples thereof include a method for producing a compound (reaction formula [1-2]).
  • the amount of the iridium compound of the present invention may be a catalytic amount, and is usually 0 with respect to 1 mol of the alcohol compound as the raw material (substrate). About 0.0001 to 0.1 mol, preferably about 0.001 to 0.05 mol, and more preferably about 0.005 to 0.04 mol.
  • the amount of the iridium compound of the present invention may be multiplied by the number of hydroxy groups in the alcohol compound to increase the amount of the iridium compound of the present invention.
  • the ammonia used in the present invention may be in any form.
  • it may be a gas or a liquid, and may be contained in water, an organic solvent, and a mixed solvent thereof.
  • the organic solvent is not particularly limited and includes 1,4-dioxane, methanol and the like.
  • ammonia water it is preferable to use ammonia water from the viewpoint of safety, low cost, and simplicity.
  • the amount of ammonia used may be adjusted as appropriate. For example, it is generally 5 to 800 mol, preferably 10 to 400 mol, more preferably 15 to 1 mol with respect to 1 mol of the alcohol compound represented by the general formula (3). 80 moles.
  • the concentration of ammonia is usually 5-30%, preferably 20-30%, more preferably 28-30%.
  • the production method of the present invention may be performed in an airtight container.
  • an airtight container There is no restriction
  • the production method of the present invention is carried out in the absence of a solvent or in a solvent, and the reaction is usually carried out in a sealed container under the condition of no solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • solvent used examples include ethers (eg, diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4-dioxane, etc.), aromatic hydrocarbons (eg, benzene, toluene, xylene, etc.), aliphatic Hydrocarbons (eg, pentane, hexane, cyclohexane, petroleum ether, etc.), esters (eg, ethyl acetate, etc.), halogenated hydrocarbons (eg, methylene chloride, chloroform, 1,2-dichloroethylene, etc.), etc. Can be mentioned. Among these, it can use individually or in combination of 2 or more types. Of these, THF, 1,4-dioxane, and toluene are preferable, and THF is particularly preferable.
  • ethers eg, diethyl ether, diisopropyl ether, tetrahydro
  • the amount of the solvent used may be appropriately adjusted. For example, it is generally 0 to 10 liters, preferably 0 to 3 liters per 1 mol of the alcohol compound.
  • the production method of the present invention may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure in the production method of the present invention is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction is carried out in a sealed container, it is under pressurized conditions.
  • the reaction temperature is usually 120 to 200 ° C., preferably 130 to 170 ° C., more preferably 150 to 170 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 1 to 100 hours, more preferably 20 to 100 hours.
  • excess ammonia, unreacted alcohol compound, catalyst, etc. can be removed from the resulting reaction mixture by a conventional separation method such as distillation, filtration, centrifugation, etc., and the desired primary amine
  • the compound can be removed.
  • the separation of the catalyst is preferably carried out so that the catalyst does not come into contact with oxygen.
  • the separated catalyst can be reused (recycled) in the reaction between the alcohol compound and aqueous ammonia as it is or after being treated with aqueous ammonia.
  • the iridium compound represented by the general formula (1) of the present invention is a trivalent Ir complex, and the iridium compound (1) reacts with the alcohol compound represented by the general formula (3) to produce an ammonium halide. Is eliminated to produce a compound represented by the general formula (7): [Ir] -O—CH (R 10 ) R 11 .
  • An Ir complex (9) having a ketone compound represented by the general formula (8) and a hydride ligand is produced from the produced compound (7).
  • the produced ketone compound (8) reacts with ammonia to produce an imine compound (11) and water via the hemiaminal compound (10).
  • the imine compound (11) is added with the Ir complex (9) and passed through the compound represented by the general formula (12) to produce the target primary amine compound (4).
  • the primary amine selectivity which is one of the important effects of the present invention, is expressed in the present invention.
  • Step a is a step in which an imidazolium halide salt represented by the general formula (5) is reacted with primary silver oxide to produce an intermediate represented by the general formula (6).
  • the amount of silver oxide used may be adjusted as appropriate. For example, it is generally 0.1 to 2 mol, preferably 0.1 mol, per mol of the imidazolium halide salt represented by the general formula (5). The amount is 4 to 0.6 mol, more preferably 0.45 to 0.55 mol.
  • the reaction in step a is carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the reaction.
  • the solvent used include ketones (eg, acetone, 2-butanone, etc.), alcohols (eg, methanol, ethanol, etc.), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4- Dioxane etc.), aromatic hydrocarbons (eg benzene, toluene, xylene etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether etc.), esters (ethyl acetate etc.), halogenated hydrocarbons (Dichloromethane, chloroform, 1,2-dichloroethylene, etc.). Among these, it can use individually or in combination of 2 or more types. Of these, dichloromethane
  • the amount of the solvent used may be adjusted as appropriate, and is generally 0 to 100 liters, preferably 0 to 20 liters, per 1 mol of the imidazolium halide salt represented by the general formula (5).
  • the reaction in step a may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C., more preferably 20 to 50 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 50 hours, more preferably 1 to 6 hours.
  • the mixture after the reaction can be used as it is in the step b (one-pot synthesis) through a known purification and isolation step such as distillation, filtration, and centrifugation, or without a purification and isolation step.
  • Step b is a step of reacting the intermediate obtained in step a with (cyclopentadienyl) iridium (III) dihalide dimer ([Cp * IrXa 2 ] 2 ).
  • [Cp * IrXa 2 ] 2 used in step b is not particularly limited as long as it has a cyclopentadienyl ligand of the iridium compound represented by the general formula (1) and a halogen atom (Xa). .
  • the amount of [Cp * IrXa 2 ] 2 may be appropriately adjusted.
  • it is generally 0.1 to 2 mol, preferably 0.4 mol, relative to 1 mol of the compound represented by the general formula (5). It is ⁇ 0.6 mol, more preferably 0.45 to 0.55 mol.
  • the reaction in step b is carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include ketones (eg, acetone, 2-butanone, etc.), alcohols (eg, methanol, ethanol, etc.), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4- Dioxane etc.), aromatic hydrocarbons (eg benzene, toluene, xylene etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether etc.), esters (ethyl acetate etc.), halogenated hydrocarbons (Methylene chloride, chloroform, 1,2-dichloroethylene, etc.).
  • the solvent in step a can be used as it is as the solvent in step b.
  • the amount of the solvent used may be adjusted as appropriate. For example, it is generally 0.1 to 100 liters, preferably 5 to 20 with respect to 1 mol of the compound represented by the general formula (5). Liters.
  • the reaction in step b may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C., more preferably 20 to 50 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 50 hours, more preferably 1 to 4 hours.
  • the target compound represented by the general formula (2) can be taken out through known purification and isolation steps such as distillation, filtration, and centrifugation.
  • the compound represented by the general formula (2Xa ′) is a compound represented by the following general formula (Organometallics, 2007, 26, p.4618-4626) obtained according to a known method (Organometallics, 2007, 26, p. 2Cl) and the alkali metal halide or alkaline earth metal halide can be reacted (reaction formula [1-4]).
  • Xa ′ represents a bromine atom or an iodine atom.
  • alkali metal halides include alkali metal bromides and iodides. Specific examples of the alkali metal bromides include sodium bromide, potassium bromide, lithium bromide, cesium bromide, and the like. Specific examples of the iodide include sodium iodide, potassium iodide, lithium iodide, cesium iodide and the like.
  • alkaline earth metal halides examples include alkaline earth metal bromides and iodides, and specific examples of alkaline earth metal bromides include magnesium bromide and calcium bromide. Specific examples of the metal iodide include magnesium iodide, calcium iodide and the like.
  • the amount of the alkali metal halide or alkaline earth metal halide used may be adjusted as appropriate. For example, it is generally 2 to 200 mol, preferably 3 to 1 mol of the compound represented by the general formula (2Cl). ⁇ 100 mol, more preferably 5 ⁇ 15 mol.
  • the above route 2 reaction is carried out in the absence of a solvent or in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not adversely affect the present reaction.
  • the solvent used include ketones (eg, acetone, 2-butanone, etc.), alcohols (eg, methanol, ethanol, etc.), ethers (diethyl ether, diisopropyl ether, tetrahydrofuran (THF), 1,4- Dioxane etc.), aromatic hydrocarbons (eg benzene, toluene, xylene etc.), aliphatic hydrocarbons (pentane, hexane, cyclohexane, petroleum ether etc.), esters (ethyl acetate etc.), halogenated hydrocarbons (Methylene chloride, chloroform, 1,2-dichloroethylene, etc.). Among these, it can use individually or in combination of 2 or more types. Of these, acetone, 2-butan
  • the amount of the solvent used may be adjusted as appropriate. For example, it is generally 1 to 300 liters, preferably 20 to 50 liters per 1 mol of the compound represented by the general formula (2Cl). is there.
  • the reaction of route 2 may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction pressure is not particularly limited, and the reaction may be performed at normal pressure or the reaction may be performed under pressure.
  • the reaction temperature is usually 0 to 100 ° C., preferably 10 to 80 ° C., more preferably 20 to 70 ° C.
  • the reaction time is usually 0.1 to 100 hours, preferably 0.5 to 50 hours, more preferably 1 to 4 hours.
  • the target compound represented by the general formula (2Xa ′) can be taken out through known purification and isolation steps such as distillation, filtration, and centrifugation.
  • Example 1 Synthesis of primary amine compound
  • compound 1a 2.0 mol%, 28% aqueous ammonia (20 mmol), 1- (p-tolyl) ethanol 3a (1.0 mmol) were added as a catalyst to a stainless steel sealed container (internal volume 5 mL). And stirred at 150 ° C. for 20 hours. After cooling the reaction solution, the contents were transferred to a test tube, and the product 1- (p-tolyl) ethylamine 4a was extracted with dichloromethane (15 mL). The yield of the product was calculated from the results of gas chromatography analysis using biphenyl as an internal standard. The results are shown in Table 1.
  • Examples 2 to 5 effect of ligand
  • the reaction was conducted in the same manner as in Example 1 except that the compound 1a of the catalyst used in Example 1 was replaced with the compounds 1b to 1e.
  • the results are shown in Table 1.
  • Examples 6 to 11 (examination of various reaction conditions) The reaction was carried out in the same manner as in Example 1 except that the reaction conditions described in Table 1 (amount of catalyst, amount of ammonia, reaction time and reaction temperature) were adopted. The results are shown in Table 1.
  • Comparative Example 1 (conventional catalyst A) The reaction was performed in the same manner as in Example 1 except that the compound 1a of the catalyst used in Example 1 was replaced with the conventional catalyst A described below. The results are shown in Table 1.
  • the primary amine compound 4a is selectively produced by using the iridium compound of the present invention used in Examples 1 to 11 as a catalyst in the reaction between the alcohol compound and ammonia. I was able to.
  • Example 12 Production of primary amine compound from various alcohol compounds
  • compound 1a (4.0 mol%), 28% aqueous ammonia (20 mmol), and 1- (p-tolyl) ethanol 3a (1.0 mmol) were added as a catalyst to a stainless steel sealed container (internal volume 5 mL). And stirred at 150 ° C. for 40 hours. After cooling the reaction solution, the contents were transferred to a test tube, and the product 1-phenylethylamine 4b was extracted with dichloromethane (15 mL).
  • Examples 13 to 22 (Production of primary amine compounds from various alcohol compounds) The reaction was performed in the same manner as in Example 12 except that the type of the alcohol compound as the raw material (substrate) was changed. The results are shown in Table 2.
  • Example 23 Under an argon atmosphere, a compound 1c (2.0 mol%), 28% aqueous ammonia (40 mmol), and benzyl alcohol 3-1a (0.5 mmol) were added as catalysts to a stainless steel sealed container (internal volume 5 mL) at 170 ° C. Stir for 100 hours. After cooling the reaction solution, the contents were transferred to a test tube, and the product benzylamine 4-1a was extracted with dichloromethane (15 mL). The crude product obtained by distilling off the solvent was purified by silica gel chromatography (eluent: hexane / ethyl acetate mixed solvent) to obtain benzylamine 4-1a. The yield of the product was calculated from the results of gas chromatography analysis using biphenyl as an internal standard. The results are shown in Table 3.
  • Example 31 Under an argon atmosphere, a compound 1c (4.0 mol%), 28% aqueous ammonia (40 mmol) and phenylpropyl alcohol 3-2a (0.5 mmol) were added as catalysts to a stainless steel sealed container (internal volume 5 mL) at 170 ° C. For 100 hours. After cooling the reaction solution, the contents were transferred to a test tube, and the product phenylpropylamine 4-2a was extracted with dichloromethane (15 mL). The crude product obtained by distilling off the solvent was purified by silica gel chromatography (eluent: hexane / ethyl acetate mixed solvent) to obtain phenylpropylamine 4-2a. The yield of the product was calculated from the results of gas chromatography analysis using biphenyl as an internal standard. The results are shown in Table 4.
  • Example 34 Under argon atmosphere, compound 2a (2.0 mol%), 28% aqueous ammonia (20 mmol), 1- (p-tolyl) ethanol 3a (1.0 mmol) were added as a catalyst to a stainless steel sealed container (internal volume 5 mL). And stirred at 150 ° C. for 20 hours. After cooling the reaction solution, the contents were transferred to a test tube, and the product 1- (p-tolyl) ethylamine 4a was extracted with dichloromethane (15 mL). The yield of the product was calculated from the results of gas chromatography analysis using biphenyl as an internal standard. The results are shown in Table 4.
  • Example 35 The reaction was conducted in the same manner as in Example 34 except that the type of catalyst was changed to the compound (2e) shown in Table 5. The results are shown in Table 5.
  • a primary amine compound can be selectively produced from ammonia and an alcohol compound easily and with high atomic efficiency. Therefore, it can be an extremely effective tool for precise synthesis of physiologically active substances, pharmaceuticals, chemical products and the like from an economic viewpoint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、新規なイリジウム化合物、当該化合物の製造方法、当該化合物を含む触媒、及び当該化合物の存在下に、アルコール化合物とアンモニアとを反応させて、第一級アミン化合物を製造する方法を提供する。 含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びアンミン配位子を含むイリジウム化合物。

Description

新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法
 本発明は、新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法に関する。
 アンモニアは、入手が容易でかつ安価であることから、アンモニアを窒素源として用いる有機合成反応の開発は、現代化学における重要な課題のひとつである。特に、有機アミン化合物は、医薬品又は化成品の基本骨格として重要であることから、アンモニアから高原子効率で有機アミン化合物を製造する触媒反応は、経済的観点からも魅力的であり、その開発が強く望まれている。
 近年では、含窒素複素環カルベン配位子を有するイリジウム錯体触媒を用いたマルチアルキル化反応及びN-アルキル化反応が報告されている(非特許文献1~7)。
 本発明者らも、これまでに、下記式(A):
Figure JPOXMLDOC01-appb-C000007
 
で表される水溶性のイリジウム-トリアンミン錯体の存在下に、アンモニアとアルコールとを反応させて、第三級及び第二級アミンを製造するマルチアルキル化反応を報告した(非特許文献8)。しかしながら、第一級アミンは、上記イリジウム-トリアンミン錯体(A)を用いて製造することができないという問題があった。
 第一級アミンは、医薬品等の製造に極めて重要な原料であり、第一級アミンを選択的に製造するための触媒の開発が特に望まれている。
Org. Lett., 2011, Vol.13, No.15, p.3892-3895. Synthesis, 2013, 45, p.2093-2100. Chem. Eur. J., 2008, 14, p.11474-11479. Chem. Commun., 2009, p.2308-2310. Organometallics, 2009, 28, p.321-325. Organometallics, 2008, 27, p.1305-1309. Dalton Trans.,2009,p.6960-6966. J. Am. Chem. Soc.,2010, 132, p.15108-15111.
 本発明は、新規なイリジウム化合物(触媒)を提供することを目的とする。
 また、本発明は、該イリジウム化合物を製造する方法を提供することも目的とする。
 さらに、本発明は、該イリジウム化合物の存在下に、アルコール化合物とアンモニアとを反応させて、第一級アミン化合物を製造する方法を提供することも目的とする。
 本発明者は、上記の課題に鑑みて鋭意研究を行った。その結果、含窒素複素環カルベン配位子、シクロペンタジエニル配位子、及びアンミン配位子を有する新規なイリジウム化合物の存在下に、アルコール化合物とアンモニアとを反応させることで、簡便かつ高い原子効率で第一級アミン化合物が選択的に得られることを見出した。かかる知見に基づき、さらに研究を重ねた結果、本発明を完成するに至った。
 即ち、本発明は、以下に示す新規なイリジウム化合物、当該化合物の製造方法、当該化合物を含む触媒、及び当該化合物の存在下に、アルコール化合物とアンモニアとを反応させて、第一級アミン化合物を製造する方法等を提供する。
項1.
含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びアンミン配位子を含むイリジウム化合物。
項2.
一般式(1):
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは、同一又は異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
、R、R、R、及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000009
で表される結合は、単結合又は二重結合を示す。
Xは、イリジウムカチオンと対アニオンを形成しうる原子又は原子団を示す。)
で表される項1に記載のイリジウム化合物。
項3.
項1又は2に記載のイリジウム化合物を含む触媒。
項4.
アルコール化合物から第一級アミン化合物を製造するための項3に記載の触媒。
項5.
項1又は2に記載のイリジウム化合物の製造方法であって、
一般式(2):
Figure JPOXMLDOC01-appb-C000010
 
(式中、R、R、R、R、R、R、R、R、R及び
Figure JPOXMLDOC01-appb-C000011
 
で表される結合は、前記と同じ。2つのXaは、同一又は異なって、ハロゲン原子を示す。)
で表される化合物とアンモニアとを反応させる工程を含む、製造方法。
項6.
第一級アミン化合物の製造方法であって、項1若しくは2に記載のイリジウム化合物、又は項3又は4に記載の触媒の存在下に、アルコール化合物と、アンモニアとを反応させる工程を含む、製造方法。
項7.
第一級アミン化合物の製造方法であって、一般式(2):
Figure JPOXMLDOC01-appb-C000012
 
(式中、R及びRは、同一又は異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
、R、R、R、及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000013
 
で表される結合は、単結合又は二重結合を示す。
2つのXaは、同一又は異なって、ハロゲン原子を示す。)
で表される化合物の存在下に、アルコール化合物と、アンモニアとを反応させる工程を含む、製造方法。
 本発明のイリジウム化合物は、含窒素複素環カルベン配位子、シクロペンタジエニル配位子、及びアンミン配位子を有する新規な化合物である。
 本発明のイリジウム化合物の存在下に、アルコール化合物とアンモニアとを反応させると、簡便かつ高い原子効率で第一級アミン化合物を選択的に製造することができる。
実施例1で用いた化合物1aのカチオン部分のX線単結晶構造解析の結果(ORTEP図)である。 実施例2で用いた化合物1bのカチオン部分のX線単結晶構造解析の結果(ORTEP図)である。 化合物2c-2のX線単結晶構造解析の結果(ORTEP図)である。 本発明の第一級アミン化合物の製造方法における反応メカニズム(図中、Lは、含窒素複素環カルベン配位子を示す。[Ir]は、イリジウム錯体を示す。R10及びR11は、明細書に定義するとおりである。)を説明する図である。
 本発明の新規なイリジウム化合物、当該化合物の製造方法、当該化合物を含む触媒、及び当該化合物の存在下に、アルコール化合物とアンモニアとを反応させて、第一級アミン化合物を製造する方法を以下詳細に説明する。
 本明細書中において、「含む」なる表現については、「含む」、「実質的にのみからなる」及び「のみからなる」という概念を含む。
 1.イリジウム化合物(触媒)
 本発明のイリジウム化合物は、含窒素複素環カルベン配位子、シクロペンタジエニル配位子(Cp)及びアンミン配位子(NH)を含む錯体である。該イリジウム化合物は、アルコール化合物におけるヒドロキシ基(OH)をアミノ化(NHへ変換)する反応の触媒として用いることができる。
 含窒素複素環カルベン配位子としては、特に制限はなく、窒素を含む複素環カルベン配位子(以下、「カルベン配位子」ということもある。)であればよい。具体的に、該含窒素複素環カルベン配位子としては、
Figure JPOXMLDOC01-appb-C000014
 
で表される構造を有する含窒素複素環カルベン配位子であれば特に限定はなく、例えば、単環、2環、3環等の含窒素複素環カルベン配位子が挙げられる。含窒素複素環カルベン配位子における窒素原子の数としては、好ましくは2~6個であり、より好ましくは2~4個であり、さらに好ましくは2及び3個である。含窒素複素環カルベン配位子における環としては、好ましくは単環及び2環であり、より好ましくは単環である。該窒素複素環における各環の員数としては、好ましくは5~10員環であり、より好ましくは5~7員環であり、さらに好ましくは5及び6員環である。具体的に、含窒素複素環カルベン配位子としては、例えば、下記一般式(B)で表される配位子等を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 
(式中、R、R、R、及びR及び
Figure JPOXMLDOC01-appb-C000016
 
で表される結合は、前記と同じ。)
 これらの中でも、下記(B-1)、(B-2)等のカルベン配位子が好ましい。
Figure JPOXMLDOC01-appb-C000017
 
(式中、R、R、R、及びRは、前記と同じ。)
 さらに、下記(B-1-1)、(B-2-1)、及び(B-2-2)で表されるカルベン配位子がより好ましい。
Figure JPOXMLDOC01-appb-C000018
 
(式中、R及びRは、前記と同じ。)
 シクロペンタジエニル配位子(Cp)としては、例えば、一般式(C):
Figure JPOXMLDOC01-appb-C000019
 
(式中、R、R、R、R、及びRは、前記と同じ。)
で表される配位子を挙げることができる。
 1-1.一般式(1)で表されるイリジウム化合物
 本発明のイリジウム化合物としては、例えば、一般式(1):
Figure JPOXMLDOC01-appb-C000020
 
(式中、R及びRは、同一又は異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
、R、R、R、及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000021
で表される結合は、単結合又は二重結合を示す。
Xは、イリジウムカチオンと対アニオンを形成しうる原子又は原子団を示す。)
で表されるイリジウム化合物(以下、「一般式(1)の化合物」ということもある。)が挙げられる。
 上記一般式(1)において、R、R、R、R、R、R、R、R、及びRで示される置換基を有していてもよいアルキル基におけるアルキル基としては、例えば、鎖状又は分岐状の炭素数1~10アルキル基が挙げられ、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル基等が挙げられる。好ましくは炭素数1~6アルキル基であり、より好ましくは炭素数1~4アルキル基であり、特に好ましくはメチル、エチル、及びイソプロピル基である。該アルキル基は、例えば、ハロゲン原子(例えば、フッ素、塩素、臭素等)、アリール基(例えば、フェニル基、ナフチル基等)、カルボキシル基等からなる群より選ばれる置換基を1~5個有していてもよい。
 R、R、R、R、R、R、R、R、及びRで示される置換基を有していてもよいシクロアルキル基におけるシクロアルキル基としては、例えば、炭素数3~10のシクロアルキル基が挙げられ、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。好ましくは炭素数3~7シクロアルキル基であり、より好ましくは炭素数5~7シクロアルキル基であり、特に好ましくはシクロヘキシル基である。該シクロアルキル基は、例えば、ハロゲン原子(例えば、フッ素、塩素、臭素等)、アルキル基(炭素数1~6のアルキル基)、アリール基(例えば、フェニル基、ナフチル基等)、カルボキシル基等からなる群より選ばれる置換基を1~5個有していてもよい。
 R、R、R、R、R、R、R、R、及びRで示される置換基を有していてもよいアリール基におけるアリール基としては、例えば、単環式又は二環式以上のアリール基が挙げられ、具体的には、フェニル、ナフチル、アンスラニル、フェナンスリル基等が挙げられる。好ましくは単環式又は二環式のアリール基であり、より好ましくはフェニル基である。該アリール基は、例えば、ハロゲン原子(例えば、フッ素、塩素、臭素等)、アルキル基(炭素数1~6のアルキル基)、カルボキシル基等からなる群より選ばれる置換基を1~5個有していてもよい。
 上記一般式(1)において、R1~9に示す各基は、同一又は異なっていてもよい。
 上記一般式(1)において、R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。R及びRが、互いに結合して2価の炭化水素基を形成する場合、該2価の炭化水素基としては、例えば、-(CH-(qは、1~5の整数)、-(CH=CH)-(rは、1、2又は3である)、-CH=CH-(CH-(sは、1~3の整数)等が挙げられる。
 該2価の炭化水素基は、置換基を有していてもよい。該置換基としては、例えば、アルキル基(例えば、炭素数1~6アルキル基)、アリール基(例えば、フェニル基、ナフチル基)、オキソ基(=O)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。2価の炭化水素基上には、これらからなる群より選ばれる1~5個の置換基を有していてもよい。
 上記一般式(1)において、R~Rのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
 R~Rのうちいずれか1つと、R、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成する場合、該2価の炭化水素基としては、例えば、-(CH-(tは、1~5の整数)、-(CH=CH)-(uは、1、2又は3である)、-CH=CH-(CH-(vは、1~3の整数)等が挙げられる。
 該2価の炭化水素基は、置換基を有していてもよい。該置換基としては、例えば、アルキル基(例えば、炭素数1~6のアルキル基)、アリール基(例えば、フェニル基、ナフチル基)、オキソ基(=O)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。2価の炭化水素基上に、これらからなる群より選ばれる1~5個の置換基を有していてもよい。
 上記一般式(1)において、Xは、イリジウムカチオンと対アニオンを形成しうる原子又は原子団であり、このような原子又は原子団であれば特に限定されない。該原子又は原子団としては、例えば、ハロゲン原子、置換されていてもよいアルキルスルホナート、置換されていてもよいアリールスルホナート、ペルクロラート(ClO4)、テトラフルオロボラート(BF4)、ヘキサフルオロホスフェート(PF6)等が挙げられる。
 Xとして好ましくは、ハロゲン原子、炭素数1~10、好ましくは炭素数1~6のアルキルスルホナート、炭素数1~20、好ましくは炭素数1~6のハロアルキルスルホナート、炭素数6~20、好ましくは炭素数6~10のアリールスルホナート、炭素数7~26、好ましくは炭素数7~11のアルキルアリールスルホナート(該アルキルの炭素数が1~6であり、該アリール基の炭素数が6~20である)、テトラフルオロボラート、ヘキサフルオロホスフェートであり、さらに好ましくは、塩素原子、臭素原子、ヨウ素原子、トリフラート(CF3SO3)、メシラート(CH3SO3)、トシラート(4-CH3PhSO3)、ベンゼンスルホナート(PhSO3)、ペルクロラート(ClO4)、テトラフルオロボラート(BF4)、又はヘキサフルオロホスフェート(PF6)である。
 上記ハロゲン原子又はハロとしては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 一般式(1)において、イリジウム(Ir)の酸化数は、特に限定はなく、例えば、3~5であり、好ましくは3である。
 なお、一般式(1)において、イリジウム(Ir)と配位子との結合は全て実線で示しているが、該実線は、共有結合、イオン結合及び配位結合のいずれをも包含する。
 本発明の一般式(1)で表される化合物(触媒)として好ましくは、
及びRが、同一又は異なって、置換基を有していてもよいアルキル基であり、
及びRが、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基であり、
及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよく、
、R、R、R、及びRが、同一又は異なって、水素原子又は置換基を有していてもよいアルキル基である化合物であり;
 より好ましくは、
及びRが、同一又は異なって、置換基を有していてもよいアルキル基であり、
及びRが、同一又は異なって、水素原子又はアルキル基であり、
及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、
、R、R、R、及びRが、同一又は異なって、置換基を有していてもよいアルキル基であり、
、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基はフェニル基又はメチル基を有していてもよい化合物であり;
 さらに好ましくは、
及びRが、同一又は異なって、フェニル基で置換されていてもよいアルキル基であり、
及びRが、同一又は異なって、水素原子又はアルキル基であり、
及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、
、R、R、R、及びRが、何れもメチル基であり、
Xが、ハロゲン原子である化合物である。
 特に好ましい化合物としては、
及びRが、同一又は異なって、炭素数1~6(好ましくは炭素数1~4)のアルキル基であり、
及びRが、同一又は異なって、水素原子であり、
、R、R、R、及びRが、何れもメチル基であり、
Xが、ハロゲン原子である化合物である。
 このような本発明の一般式(1)で表される化合物として具体的には、下記(1-X1)~(1-X8)等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 
(式中、
Figure JPOXMLDOC01-appb-C000023
 
は、1,2,3,4,5-ペンタメチルシクロペンタジエニル(Cp*)配位子を表す。Xは前記と同じ。)
 これらの中でも、(1-X1)、(1-X2)、(1-X3)、(1-X4)等が好ましく、(1-X1)、(1-X2)等がより好ましい。
 本発明のイリジウム化合物は、触媒として使用でき、特に、アルコール化合物とアンモニアとを反応させて、第一級アミン化合物を製造するための触媒として使用できる。
 本発明のイリジウム化合物は、水溶性の化合物であってもよい。
 2.イリジウム化合物の製造方法
 本発明のイリジウム化合物の製造方法は、含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びハロゲン配位子を含むイリジウム化合物と、アンモニアとを反応させる工程を含むことを特徴とする。
 特に、本発明の上記一般式(1)で表されるイリジウム化合物の製造方法は、一般式(2)で表される化合物とアンモニアとを反応させる工程(下記反応式[1-1]の工程1)を含むことを特徴とする。
 一般式(1)で表されるイリジウム化合物のうち、例えば、Xがハロゲン原子であるイリジウム化合物(1A)は、一般式(2)で表される化合物とアンモニアとを反応させることにより、該化合物(2)中の2つのXa基(ハロゲン配位子)を、それぞれNH基(アンミン配位子)に変換させることで製造することができる(工程1)。このようにして得られた一般式(1A)で表される化合物中の対アニオンは、Xa(ハロゲン原子)となる。
 また、一般式(1)で表されるイリジウム化合物のうち、Xが上記ハロゲン原子以外のイリジウムカチオンと対アニオンを形成しうる原子団であるイリジウム化合物(1B)は、上記一般式(1A)で表される化合物(Xaがハロゲン原子を示す。)と、式:M(Xb)z(式中、zは1又は2を示す。)で表されるハロゲン原子以外の対アニオンを有するアルカリ金属塩、アルカリ土類金属塩及び銀塩からなる群より選ばれる少なくとも一種の塩とを反応させることにより、Xaのハロゲン原子を、ハロゲン原子以外のイリジウムカチオンと対アニオンを形成しうる原子又は原子団に変換(アニオン交換)することで製造することができる(工程2)。このようにして得られた一般式(1B)で表される化合物は、Xaがハロゲン原子以外のイリジウムカチオンと対アニオンを形成しうる原子団であるイリジウム化合物である。
Figure JPOXMLDOC01-appb-C000024
 
(式中、2つのXaはハロゲン原子を示す。Xbはハロゲン原子以外のイリジウムカチオンと対アニオンを形成しうる原子団を示す。R、R、R、R、R、R、R、R、及びR及び
Figure JPOXMLDOC01-appb-C000025
 
で表される結合は前記と同じ。)
 即ち、本発明の一般式(1)で表されるイリジウム化合物には、上記一般式(1A)で表される化合物と一般式(1B)で表されるイリジウム化合物が包含されている。
 [工程1]
 工程1は、一般式(2)で表される化合物とアンモニアとを反応させることにより、一般式(1A)で表される化合物を製造する工程である。
 一般式(2)で表される化合物は、後述する方法により製造することができる。一般式(2)において、R、R、R、R、R、R、R、R、及びR及び
Figure JPOXMLDOC01-appb-C000026
 
で表される結合は、一般式(1)で表されるイリジウム化合物の定義と同じであり、2つのXaは、ハロゲン原子を示す。一般式(2)において、イリジウム(Ir)の酸化数は、3である。
 なお、一般式(2)において、イリジウム(Ir)と配位子との結合は全て実線で示しているが、該実線は、共有結合、イオン結合及び配位結合のいずれをも包含する。
 工程1で用いられるアンモニアは、どのような形態であってもよい。例えば、気体又は液体であってもよく、水、有機溶媒及びこれらの混合溶媒中に含むものであってもよい。該有機溶媒としては、特に制限なく、1,4-ジオキサン、メタノール等が挙げられる。
 安全、安価かつ簡便である観点から、アンモニア水を用いることが好ましい。
 本発明のアンモニアの使用量としては、適宜調節すればよく、例えば、一般式(2)で表される化合物1モルに対して、一般に3~500モル、好ましくは10~300モル、より好ましくは50~200モルである。
 本発明で用いられるアンモニアの濃度は、通常、5~30重量%であり、好ましくは20~30重量%であり、より好ましくは28~30重量%である。
 工程1は、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。
 工程1は、無溶媒又は溶媒の存在下で実施され、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。溶媒は、単独又は2種以上を組み合わせて用いることができる。これら溶媒のうち、メタノール、THF、1,4-ジオキサン、トルエンが好ましく、特にメタノールが好ましい。
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2)で表される化合物1モルに対して、一般に0~20リットル、好ましくは0~5リットルである。
 工程1は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。
 反応温度は、通常0~100℃であり、好ましくは10~80℃であり、より好ましくは20~50℃である。
 反応時間は、通常0.1~100時間であり、好ましくは0.5~50時間であり、より好ましくは1~4時間である。
 反応終了後、得られる反応混合物から、過剰のアンモニア、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1A)で表されるイリジウム化合物を取り出すことができる。
 [工程2]
 工程2は、工程1で得られた一般式(1A)で表される化合物と、アルカリ金属塩、アルカリ土類金属塩及び銀塩からなる群より選ばれる少なくとも一種の塩とを反応させることにより、一般式(1B)で表される化合物を製造する工程である。
 アルカリ金属塩としては、リチウム塩、ナトリウム塩、カリウム塩が挙げられる。アルカリ金属塩として好ましくは、リチウム塩、ナトリウム塩又はカリウム塩であり、より好ましくはナトリウム塩である。
 アルカリ土類金属塩としては、カルシウム塩、マグネシウム塩が挙げられる。
 アルカリ金属塩、アルカリ土類金属塩及び銀塩からなる群より選ばれる少なくとも一種の塩としては、例えば、LiCHSO、NaCHSO、KCHSO、LiCFSO、NaCFSO、KCFSO等の置換基を有していてもよいアルキルスルホン酸のアルカリ金属塩;LiPhSO、NaPhSO、KPhSO等の置換基を有していてもよいアリールスルホン酸のアルカリ金属塩;LiClO、NaClO等の過塩素酸のアルカリ金属塩;LiBF、NaBF等のテトラフルオロ硼酸アルカリ金属塩;LiPF、NaPF、KPF等のヘキサフルオロリン酸のアルカリ金属塩;AgBF、AgSbF、AgPF等の銀塩などが挙げられる。これらの中でも、NaBF、NaPFが好ましい。アルカリ金属塩、アルカリ土類金属塩及び銀塩からなる群より選ばれる塩は、1種又は2種以上混合して使用してもよい。
 本発明で用いられるアルカリ金属塩、アルカリ土類金属塩及び銀塩からなる群より選ばれる塩の使用量としては、適宜調節すればよく、例えば、一般式(1A)で表される化合物1モルに対して、一般に0.5~50モル、好ましくは1~10モル、より好ましくは1.5~3モルである。
 上記工程2は、無溶媒又は溶媒の存在下で実施され、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、メタノール、THF、1,4-ジオキサン、トルエンが好ましく、特にメタノールが好ましい。
 溶媒を使用する場合、溶媒の使用量としては、適宜調節すればよく、例えば、一般式(1B)で表される化合物1モルに対して、一般に0~20リットル、好ましくは0~5リットルである。
 工程2は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。
 反応温度は、通常0~100℃であり、好ましくは10~80℃であり、より好ましくは20~50℃である。
 反応時間は、通常0.1~100時間であり、好ましくは0.5~50時間であり、より好ましくは1~24時間である。
 反応終了後、得られる反応混合物から、反応溶媒、未反応の原料化合物等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去し、目的とする一般式(1B)で表される化合物を取り出すことができる。
 3.第一級アミン化合物の製造方法(アミノ化反応)
 本発明における第一級アミン化合物の製造方法は、上記含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びアンミン配位子を含むイリジウム化合物(一般式(1)の化合物)の存在下に、アルコール化合物とアンモニアとを反応させる工程を含む。
 さらに、本発明の第一級アミン化合物の製造方法のもう一つの態様としては、上記含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びハロゲン配位子を含むイリジウム化合物(以下、「一般式(2)の化合物」という。)の存在下に、アルコール化合物とアンモニアとを反応させる工程を含む。
 (3-1)アルコール化合物
 本発明に用いるアルコール化合物は、ヒドロキシ基(-OH)を有している有機化合物であれば、特に制限はない。アルコール化合物中のヒドロキシ基の数は、1又は2以上であってもよい。
 上記アルコール化合物の中でも、特に、第一級又は第二級アルコール化合物を用いることが好ましい。
 第一級アルコール化合物は、ヒドロキシ基(OH基)が第1級炭素に結合したアルコールを意味し、ヒドロキシ基の結合している炭素原子は、2つの水素原子を有しているアルコールである。
 第二級アルコール化合物は、ヒドロキシ基(OH基)が第2級炭素に結合したアルコールを意味し、ヒドロキシ基の結合している炭素原子は、1つの水素原子を有しているアルコールである。
 第一級又は第二級アルコール化合物としては、例えば、一般式(3):
Figure JPOXMLDOC01-appb-C000027
 
(式中、R10及びR11は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を示す。R10及びR11は、これらが互いに結合して、それらの結合炭素原子と共に環を形成してもよく、該環はさらに置換基を有していてもよい。)で表されるアルコール化合物が挙げられる。
 R10及びR11で示される置換基を有していてもよいアルキル基のアルキル基としては、例えば、鎖状又は分岐状の炭素数1~10アルキル基が挙げられ、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル基等が挙げられる。好ましくは炭素数1~6アルキル基であり、より好ましくは炭素数1~4アルキル基であり、特に好ましくはメチル基、エチル基、及びイソプロピル基である。
 R10及びR11で示される置換基を有していてもよいシクロアルキル基におけるシクロアルキル基としては、例えば、炭素数3~10のシクロアルキル基が挙げられ、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等が挙げられる。好ましくは炭素数3~7シクロアルキル基であり、より好ましくは炭素数5~7シクロアルキル基であり、特に好ましくはシクロヘキシル基である。
 R10及びR11で示される置換基を有していてもよいアリール基におけるアリール基としては、例えば、単環又は2環以上のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アンスリル基、フェナンスリル基等が挙げられる。このうち好ましくは置換基を有していてもよいフェニル基である。
 R10及びR11で示される置換基を有していてもよいヘテロアリール基におけるヘテロアリール基としては、例えば、酸素、窒素及び/又は硫黄原子を環内に含むヘテロアリール基であり、例えば、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、イソキサゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、キノリル基、イソキノリル基、チアゾリル基等の環構成原子として1~3個の窒素原子、0~1個の酸素原子及び0~1個の硫黄原子を有する5~6員環のヘテロアリール基が挙げられる。
 上記アルキル基、シクロアルキル基、アリール基又はヘテロアリール基には、アルキル基(例えば、炭素数1~6アルキル基等)、ハロゲン原子(例えば、フッ素、塩素、臭素等)、カルボキシル基、エステル基、アミド基、保護されていてもよい水酸基等の置換基を1~5個有していてもよい。
 また、R10とR11とが結合して、それらの結合炭素原子と共に環を形成している場合としては、例えば、シクロペンタノール、シクロヘキサノール、テトラリン-1-オール、テトラリン-2-オール等が挙げられる。
 本発明で用いられる第一級又は第二級アルコールとして具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、s-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ドデカノール、ステアリルアルコール、2-ヘキシル-1-デカノール、2-オクチル-1-デカノール、2-ドデシル-1-テトラデカノール、1-ジエチルアミノペンタン-4-オール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロオクタノール、ベンジルアルコール、2-メトキシベンジルアルコール、3-メトキシベンジルアルコール、4-メトキシベンジルアルコール、4-tブトキシベンジルアルコール、2-クロロベンジルアルコール、3-クロロベンジルアルコール、4-クロロベンジルアルコール、2-ブロモベンジルアルコール、3-ブロモベンジルアルコール、3-ブロモベンジルアルコール、2-フェニルエタノール、1-フェニル-1-エタノール、1-(p-トリル)エタノール、1-(m-トリル)エタノール、1-(o-トリル)エタノール、1-(p-メトキシフェニル)エタノール、1-(m-メトキシフェニル)エタノール、1-(o-メトキシフェニル)エタノール、1-(p-トリフルオロメチルフェニル)エタノール、1-(m-トリフルオロメチルフェニル)エタノール、1-(o-トリフルオロメチルフェニル)エタノール、1-(p-クロロフェニル)エタノール、1-(m-クロロフェニル)エタノール、1-(o-クロロフェニル)エタノール、3-フェニルプロパノール、4-フェニルブタノール、テトラリン-1-オール、テトラリン-2-オール、4-フェニル-2-ブタノール、2-ピリジルメタノール、2-クロロ-3-チアゾリルメタノール等が挙げられる。
 なお、本明細書において、「n-」はnormal、「s-」はsecondary(sec-)、及び「t-」はtertiary(tert-)を意味する。
 (3-2)第一級アミン化合物
 本発明の製造方法において、原料のアルコール化合物として、例えば、上記一般式(3)で示されるアルコールを用いる場合、得られるアミン化合物としては、一般式(2):
Figure JPOXMLDOC01-appb-C000028
 
(式中、R10及びR11は前記と同じ。)
で示される一級アミン化合物が得られる。
 具体的に、得られる第一級アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、s-ブチルアミン、1-ペンチルアミン、2-ペンチルアミン、3-ペンチルアミン、1-ヘキシルアミン、2-ヘキシルアミン、3-ヘキシルアミン、1-ヘプチルアミン、1-オクチルアミン、1-ノニルアミン、1-デシルアミン、1-ドデシルアミン、ステアリルアミン、2-ヘキシル-1-デシルアミン、2-オクチル-1-デシルアミン、2-ドデシル-1-テトラデシルアミン、1-ジエチルアミノペンチル-4-アミン、シクロペンチルアミン、シクロヘキシルアミン、シクロヘプチルアミン、シクロオクチルアミン、ベンジルアミン、2-メトキシベンジルアミン、3-メトキシベンジルアミン、4-メトキシベンジルアミン、4-tブトキシベンジルアミン、2-クロロベンジルアミン、3-クロロベンジルアミン、4-クロロベンジルアミン、2-ブロモベンジルアミン、3-ブロモベンジルアミン、3-ブロモベンジルアミン、2-フェニルエチルアミン、1-フェニルエチルアミン、1-(p-トリル)エチルアミン、1-(m-トリル)エチルアミン、1-(o-トリル)エチルアミン、1-(p-メトキシフェニル)エチルアミン、1-(m-メトキシフェニル)エチルアミン、1-(o-メトキシフェニル)エチルアミン、1-(p-トリフルオロメチルフェニル)エチルアミン、1-(m-トリフルオロメチルフェニル)エチルアミン、1-(o-トリフルオロメチルフェニル)エチルアミン、1-(p-クロロフェニル)エチルアミン、1-(m-クロロフェニル)エチルアミン、1-(o-クロロフェニル)エチルアミン、3-フェニルプロピルアミン、4-フェニルブチルアミン、1-アミノテトラリン、2-アミノテトラリン、4-フェニルブタン-2-アミン、2-ピリジルメチルアミン、2-クロロ-3-チアゾリルメチルアミン等が挙げられる。
 (3-3)第一級アミン化合物の製造方法
 本発明の第一級アミン化合物の製造方法は、触媒として上記含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びアンミン配位子を含むイリジウム化合物(一般式(1)の化合物)の存在下に、アルコール化合物とアンモニアとを反応させる工程、又は、触媒として上記含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びハロゲン配位子を含むイリジウム化合物(一般式(2)の化合物)の存在下に、アルコール化合物とアンモニアとを反応させる工程を含む。
 例えば、本発明のイリジウム化合物の存在下、一般式(3)で表される第一級又は第二級アルコール化合物とアンモニアとを反応させて、一般式(4)で表される第一級アミン化合物を製造する方法(反応式[1-2])が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 
(式中、R10及びR11は前記と同じ。)
 触媒として、上記一般式(2)の化合物を使用する場合は、反応系中で、一般式(2)の化合物のハロゲン配位子がアンミン配位子に変換され、アンミン配位子含有イリジウム化合物が生成すると考えられる。
 本発明のイリジウム化合物(一般式(1)の化合物又は一般式(2)の化合物)の使用量は、触媒量であればよく、原料(基質)であるアルコール化合物1モルに対し、通常、0.0001~0.1モル程度、好ましくは0.001~0.05モル程度、より好ましくは0.005~0.04モル程度である。アルコール化合物が2つ以上のヒドロキシ基(OH)を有する場合、本発明のイリジウム化合物の使用量は、アルコール化合物におけるヒドロキシ基の数に乗じて、本発明のイリジウム化合物の使用量を増やせばよい。
 本発明で用いられるアンモニアは、どのような形態であってもよい。例えば、気体又は液体であってもよく、水、有機溶媒及びこれらの混合溶媒中に含むものであってもよい。該有機溶媒としては、特に制限なく、1,4-ジオキサン、メタノール等が挙げられる。
 特に、安全、安価かつ簡便である観点から、アンモニア水を用いることが好ましい。
 アンモニアの使用量としては、適宜調節すればよく、例えば、一般式(3)で表されるアルコール化合物1モルに対して、一般に5~800モル、好ましくは10~400モル、より好ましくは15~80モルである。
 アンモニアの濃度は、通常、5~30%であり、好ましくは20~30%であり、より好ましくは28~30%である。
 本発明の製造方法は、密閉容器中で行ってもよい。その容器としては、特に制限はなく、ステンレス製密閉容器、耐圧仕様のガラス製密閉容器等が挙げられる。
 本発明の製造方法は、無溶媒又は溶媒の存在下で実施され、通常、密閉容器中で無溶媒の条件で反応が行われる。溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、エーテル類(例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(例えは、ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(例えば、酢酸エチル等)、ハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、THF、1,4-ジオキサン、トルエンが好ましく、特にTHFが好ましい。
 溶媒の使用量としては、適宜調節すればよく、例えば、アルコール化合物1モルに対して、一般に0~10リットル、好ましくは0~3リットルである。
 本発明の製造方法は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 本発明の製造方法における反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。密閉容器中で反応を行う場合は加圧条件下になっている。
 反応温度は、通常120~200℃であり、好ましくは130~170℃であり、より好ましくは150~170℃である。
 反応時間は、通常0.1~100時間であり、好ましくは1~100時間であり、より好ましくは20~100時間である。
 反応終了後、得られる反応混合物から、過剰のアンモニア、未反応のアルコール化合物、触媒等を、蒸留、ろ過、遠心分離等の通常の分離方法により除去することができ、目的とする第一級アミン化合物を取り出すことができる。触媒の分離は、触媒が酸素と接触しないように実施することが好ましい。分離した触媒は、そのまま又はアンモニア水で処理を施した後、アルコール化合物とアンモニア水との反応に再使用(リサイクル)することができる。
 本反応における反応メカニズムは、図4に示すような触媒サイクルが考えられる。本発明の一般式(1)で表されるイリジウム化合物は、3価のIr錯体であり、該イリジウム化合物(1)が、一般式(3)で表されるアルコール化合物と反応し、ハロゲン化アンモニウムが脱離することで、一般式(7):[Ir]-O-CH(R10)R11で表される化合物が生成する。生成した化合物(7)から一般式(8)で表されるケトン化合物とヒドリド配位子を有するIr錯体(9)が生成する。生成したケトン化合物(8)とアンモニアとが反応し、ヘミアミナール化合物(10)を経由し、イミン化合物(11)と水が生成する。該イミン化合物(11)がIr錯体(9)と付加し、一般式(12)で表される化合物を経由することで、目的とする第一級アミン化合物(4)が製造される。このような触媒サイクルにより、本発明では、本発明の重要な効果の一つである第一級アミン選択性が発現したものと考えられる。
 4.一般式(2)で表される化合物の製造方法
 一般式(2)で表される化合物は、例えば、下記の2つのルートで製造することができる。
 (4-1)ルート1
 一般式(2)で表される化合物は、一般式(5)で表されるハロゲン化イミダゾリウム塩と酸化第一銀とを反応させて、一般式(6)で表される中間体を生成する工程(工程a)、次いで、該中間体と(ペンタメチルシクロペンタジエニル)イリジウム(III)ジハライドダイマーとを反応させる工程(工程b)により製造することができる(反応式[1-3])。
Figure JPOXMLDOC01-appb-C000030
 
(式中、R、R、R、R、R、R、R、R、及びR、Xa及び
Figure JPOXMLDOC01-appb-C000031
 
で表される結合は、前記と同じ。)
 [工程a]
 工程aは、一般式(5)で表されるハロゲン化イミダゾリウム塩と酸化第一銀とを反応させて、一般式(6)で表される中間体を生成する工程である。
 上記ハロゲン化イミダゾリウム塩及び酸化第一銀は、市販品を使用することができる。
 酸化第一銀の使用量としては、適宜調節すればよく、例えば、一般式(5)で表されるハロゲン化イミダゾリウム塩1モルに対して、一般に0.1~2モル、好ましくは0.4~0.6モル、より好ましくは0.45~0.55モルである。
 工程aの反応は、無溶媒又は溶媒の存在下で実施され、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン等)、アルコール類(例えば、メタノール、エタノール等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(ジクロロメタン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、ジクロロメタン、クロロホルムが好ましく、特にジクロロメタンが好ましい。
 溶媒の使用量としては、適宜調節すればよく、例えば、一般式(5)で表されるハロゲン化イミダゾリウム塩1モルに対して、一般に0~100リットル、好ましくは0~20リットルである。
 工程aの反応は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。
 反応温度は、通常0~100℃であり、好ましくは10~80℃であり、より好ましくは20~50℃である。
 反応時間は、通常0.1~100時間であり、好ましくは0.5~50時間であり、より好ましくは1~6時間である。
 反応終了後、蒸留、ろ過、遠心分離等の公知の精製及び単離工程を経て、又は精製及び単離工程を経ず、反応後の混合物をそのまま工程bに用いることができる(ワンポット合成)。
 [工程b]
 工程bは、工程aで得られた中間体と(シクロペンタジエニル)イリジウム(III)ジハライドダイマー([Cp*IrXa2]2)とを反応させる工程である。
 工程bで用いる [Cp*IrXa2]2としては、上記一般式(1)で表されるイリジウム化合物のシクロペンタジエニル配位子とハロゲン原子(Xa)を有していれば特に制限はない。
 [Cp*IrXa2]2の使用量としては、適宜調節すればよく、例えば、一般式(5)で表される化合物1モルに対して、一般に0.1~2モル、好ましくは0.4~0.6モル、より好ましくは0.45~0.55モルである。
 工程bの反応は、無溶媒又は溶媒の存在下で実施され、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン等)、アルコール類(例えば、メタノール、エタノール等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、塩化メチレン、クロロホルムが好ましく、特に塩化メチレンが好ましい。ワンポット合成する場合は、工程aの溶媒をそのまま工程bの溶媒として使用できる。
 溶媒を使用する場合、溶媒の使用量としては、適宜調節すればよく、例えば、一般式(5)で表される化合物1モルに対して、一般に0.1~100リットル、好ましくは5~20リットルである。
 工程bの反応は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。
 反応温度は、通常0~100℃であり、好ましくは10~80℃であり、より好ましくは20~50℃である。
 反応時間は、通常0.1~100時間であり、好ましくは0.5~50時間であり、より好ましくは1~4時間である。
 反応終了後、蒸留、ろ過、遠心分離等の公知の精製及び単離工程を経て、目的とする一般式(2)で表される化合物を取り出すことができる。
 (4-2)ルート2
 一般式(2)で表される化合物のうち、一般式(2Xa’)で表される化合物は、既知の方法(Organometallics, 2007, 26, p.4618-4626)に従って得られた下記一般式(2Cl)で表される化合物とアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物とを反応させることにより製造することができる(反応式[1-4])。
 即ち、一般式(2Cl)で表される化合物にアルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物を作用させることで、該化合物(2Cl)中の2つの塩素原子を、それぞれ2つの臭素原子又は2つのヨウ素原子に変換させることができる。
Figure JPOXMLDOC01-appb-C000032
 
(式中、R、R、R、R、R、R、R、R、及びR及び
Figure JPOXMLDOC01-appb-C000033
 
で表される結合は前記と同じ。Xa’は臭素原子又はヨウ素原子を示す。)
 前記アルカリ金属ハロゲン化物としては、アルカリ金属の臭化物、ヨウ化物等が挙げられ、アルカリ金属臭化物としては、具体的には臭化ナトリウム、臭化カリウム、臭化リチウム、臭化セシウム等を、アルカリ金属ヨウ化物としては、具体的にはヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リチウム、ヨウ化セシウム等をそれぞれ挙げることができる。
 また、前記アルカリ土類金属ハロゲン化物としては、アルカリ土類金属の臭化物、ヨウ化物等が挙げられ、アルカリ土類金属臭化物としては、具体的には臭化マグネシウム、臭化カルシウム等を、アルカリ土類金属ヨウ化物としては、具体的にはヨウ化マグネシウム、ヨウ化カルシウム等を、それぞれ挙げることができる。
 アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物の使用量としては、適宜調節すればよく、例えば、一般式(2Cl)で表される化合物1モルに対して、一般に2~200モル、好ましくは3~100モル、より好ましくは5~15モルである。
 上記ルート2の反応は、無溶媒又は溶媒の存在下で実施され、溶媒を用いる場合、その溶媒としては、本反応に悪影響を与えない溶媒であれば特に限定はない。用いられる溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン等)、アルコール類(例えば、メタノール、エタノール等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、脂肪族炭化水素類(ペンタン、ヘキサン、シクロヘキサン、石油エーテル等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、1,2-ジクロロエチレン等)等が挙げられる。これらのうち、単独又は2種以上を組み合わせて用いることができる。このうち、アセトン、2-ブタノンが好ましく、特にアセトンが好ましい。
 溶媒を使用する場合、溶媒の使用量としては、適宜調節すればよく、例えば、一般式(2Cl)で表される化合物1モルに対して、一般に1~300リットル、好ましくは20~50リットルである。
 ルート2の反応は、窒素、アルゴン等の不活性ガスの雰囲気下で行なってもよい。
 反応圧力は、特に制限はなく、常圧で反応を実施してもよいし、加圧下で反応を行ってもよい。
 反応温度は、通常0~100℃であり、好ましくは10~80℃であり、より好ましくは20~70℃である。
 反応時間は、通常0.1~100時間であり、好ましくは0.5~50時間であり、より好ましくは1~4時間である。
 反応終了後、蒸留、ろ過、遠心分離等の公知の精製及び単離工程を経て、目的とする一般式(2Xa’)で表される化合物を取り出すことができる。
 以下の実施例を挙げて本発明について説明するが、本発明は以下の実施例に限定されるものではない。
 製造例1(化合物1aの合成)
 下記の化合物1aを、下記反応式のように合成した。
Figure JPOXMLDOC01-appb-C000034
 
(式中、
Figure JPOXMLDOC01-appb-C000035
 
は、1,2,3,4,5-ペンタメチルシクロペンタジエニル(Cp*)配位子を表す。以下同じ。)
 化合物2aの製造
 アルゴン雰囲気下、フラスコに1,3-ジメチルイミダゾリウムヨージド5a(79.6 mg, 0.355 mmol)、酸化第一銀(41.4 mg, 0.179 mmol)、ジクロロメタン(2.5 mL)を加え、室温で4時間撹拌した。この混合物に対して、(ペンタメチルシクロペンタジエニル)イリジウム(III)ジヨージド (ダイマー)(以下、[Cp*IrI2]2 と記載する。)(202.1 mg, 0.174 mmol)を加え、室温で4時間撹拌した。ガラスフィルターにより濾過した後、濾液を溶媒留去することにより、化合物2aを得た(148.3 mg, 0.219 mmol, 収率63%)。
 1H NMR (500 MHz, CDCl3):6.95 (s, 2H), 3.98 (s, 6H), 1.84 (s, 15H).
 13C NMR (125.65 MHz, CDCl3):151.1, 123.3, 89.8, 43.3, 10.5.
 化合物1aの製造
 アルゴン雰囲気下、合成した化合物2a(50.1 mg, 0.0740 mmol)、アンモニア水(28%, 0.4 mL, 5.9 mmol)、メタノール(5 mL)をフラスコに秤量し、室温で2時間撹拌した。反応液中の溶媒を留去後、真空乾燥によって化合物1aを得た(32.5 mg, 0.0457 mmol, 収率62%)。
 1H NMR (500 MHz, CD3OD):7.38 (s, 2H), 3.71 (s, 6H), 1.78 (s, 15H).
 13C NMR (125.65 MHz, CD3OD):153.4, 125.7, 90.9, 38.2, 9.2.
 なお、化合物1aのX線単結晶構造解析の結果(ORTEP)を図1に示す。
 製造例2(化合物1bの合成)
 下記の化合物1bを、下記反応式のように合成した。
Figure JPOXMLDOC01-appb-C000036
 
 化合物2b-2の製造
 アルゴン雰囲気下、既報(Organometallics, 2007, 26, p.4618-4626)にしたがって合成した化合物2b-1(107.9 mg, 0.206 mmol)、ヨウ化ナトリウム(193.5 mg, 1.29 mmol)、アセトン(8 mL)をフラスコに加え、還流条件下で3時間撹拌した。得られた混合物を濾過することで、生成物をガラスフィルター上に集め、水(5 mL)、アセトン(2 mL)、ジエチルエーテル(5 mL)で洗浄した。真空乾燥後のNMR分析により化合物2b-2が生成していることを確認した。
 1H NMR (500 MHz, CDCl3): 4.80 (m, 2H), 3.91 (m, 2H), 1.80 (s, 15H), 1.47 (t, J= 7 Hz, 6H).
 13C NMR (125.65 MHz, CDCl3): 150.7, 121.1, 89.8, 48.8, 16.8, 10.4.
 化合物1bの製造
 上記の手順により得た錯体2b-2を含むアルゴン雰囲気下のフラスコへ、アンモニア水(28%, 2 mL, 29.6 mmol)、メタノール(8 mL)を加え、室温で2時間撹拌した。溶媒留去後、真空乾燥によって化合物1bを得た(60.1 mg, 0.0813 mmol, 収率39%)。
 1H NMR (500 MHz, CD3OD): 4.04 (m, 2H), 3.91 (m, 2H), 1.76 (s, 15H), 1.54 (t, J= 7 Hz, 6H).
 なお、化合物1bのX線単結晶構造解析の結果(ORTEP)を図2に示す。
 製造例3(錯体1cの合成)
 下記の化合物1cを、下記に示した反応式のように製造した。
Figure JPOXMLDOC01-appb-C000037
 
 化合物2c-2の製造
 アルゴン雰囲気下、フラスコに1,3-ジイソプロピルイミダゾリウムヨージド5c(226.5 mg, 0.808 mmol)、酸化第一銀(87.2 mg, 0.376 mmol)、ジクロロメタン(12 mL)をとり、室温で4時間撹拌した。この混合物に対して[Cp*IrCl2]2(316.9 mg, 0.398 mmol)を加え、室温で20時間撹拌した。ガラスフィルターにより濾過した後、濾液を溶媒留去して赤褐色粉末の化合物2c-1を得た。この赤褐色粉末に対し、ヨウ化ナトリウム(765.9 mg, 5.11 mmol)、アセトン(32 mL)を加え、還流条件下で3時間撹拌した。濾過によって生成物をガラスフィルター上に集め、水(25 mL)、アセトン(3 mL)、ジエチルエーテル(8 mL)で洗浄した。その後、真空乾燥により化合物2c-2を得た(317.7 mg, 0.433 mmol, 収率54%)。
 1H NMR (500 MHz, CDCl3):7.01 (s, 2H), 5.36 (m, 2H), 1.84 (s, 15H), 1.55 (d, J = 7 Hz, 6H), 1.41 (d, J = 7 Hz, 6H).
 13C NMR (125.65 MHz, CDCl3):147.4, 119.0, 89.8, 53.6, 25.7, 25.0, 10.6.
 なお、化合物(2c-2)のX線単結晶構造解析の結果(ORTEP)を図3に示す。
 化合物1cの製造
 アルゴン雰囲気下、フラスコに合成した化合物2c-2(147.7 mg, 0.201 mmol)、アンモニア水(28%, 2 mL, 29.6 mmol)、メタノール(8 mL)をとり、室温で3時間撹拌した。溶媒留去後、真空乾燥によって化合物1cを得た(131.2 mg, 0.171 mmol, 収率85%)。
 1H NMR (400 MHz, CD3OD):7.66 (s, 2H), 4.31 (m, 2H), 1.77 (s, 15H), 1.56 (d, J = 7 Hz, 6H), 1.53 (d, J = 7 Hz, 6H).
 製造例4(錯体1dの合成)
 下記の化合物1dを、下記反応式のように合成した。
Figure JPOXMLDOC01-appb-C000038
 
 化合物2d-2の製造
 アルゴン雰囲気下、既報(Organometallics, 2005, 24, p.3422-3433)にしたがって合成した化合物2d-1(378.2 mg, 0.762 mmol)、ヨウ化ナトリウム(1140 mg, 7.61 mmol)、アセトン(20 mL)をフラスコにとり、還流条件下で3時間撹拌した。濾過によって生成物をガラスフィルター上に集め、水(10 mL)、アセトン(2 mL)、ジエチルエーテル(6 mL)で洗浄した。その後、真空乾燥により錯体2d-2を得た(283.2 mg, 0.417 mmol, 収率55%)。
 1H NMR (500 MHz, CDCl3):3.73 (m, 4H), 3.33 (s, 6H), 1.86 (s, 15H).
 13C NMR (125.65 MHz, CDCl3):183.3, 90.0, 51.8, 43.9, 10.5.
 化合物1dの製造
 アルゴン雰囲気下、フラスコに合成した化合物2d-2(146.8 mg, 0.216 mmol)、アンモニア水(28%, 2 mL, 29.6 mmol)、メタノール(8 mL)をとり、室温で1時間撹拌した。溶媒留去後、真空乾燥によって化合物1dを得た(147.2 mg, 0.206 mmol, 収率95%)。
 1H NMR (500 MHz, CD3OD): 3.82 (m, 4H), 3.06 (s, 6H), 1.81 (s, 15H).
 13C NMR (125.65 MHz, CD3OD): 183.9, 91.0, 52.9, 37.9, 9.3.
 製造例5(錯体1eの合成)
 下記の化合物1eを、下記反応式のように合成した。
Figure JPOXMLDOC01-appb-C000039
 
 化合物1eの製造
 アルゴン雰囲気下、既報(J. Organomet. Chem., 2008, 693, p.3363-3368)に従って合成した化合物2e(200.6 mg, 0.406 mmol)、アンモニア水(28%, 1.6 mL, 23.7 mmol)、メタノール(20 mL)をフラスコにとり、室温で2.5時間撹拌した。溶媒留去後、真空乾燥によって錯体1eを得た(203.0 mg, 0.384 mmol, 収率95%)。
 1H NMR (500 MHz, CD3OD):7.37 (s, 2H), 3.70 (s, 6H), 1.77 (s, 15H).
 13C NMR (125.65 MHz, CD3OD):153.6, 125.7, 90.8, 38.0, 9.0.
 実施例1(第一級アミン化合物の合成)
 アルゴン雰囲気下、ステンレス製密閉容器(内容積5 mL)に、触媒として化合物1a(2.0 mol%)、28%アンモニア水(20 mmol)、1-(p-トリル)エタノール3a(1.0 mmol)を加え、150 ℃で20時間撹拌した。反応液を冷却後、内容物を試験管に移し、生成物である1-(p-トリル)エチルアミン4aをジクロロメタン(15 mL)で抽出した。生成物の収率は、ビフェニルを内部標準に用いるガスクロマトグラフィー分析の結果から算出した。その結果を表1に示す。
 実施例2~5(配位子の効果)
 実施例1で用いた触媒の化合物1aを、化合物1b~1eに代えた以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
 実施例6~11(各種反応条件の検討)
 表1に記載された反応条件(触媒の量、アンモニアの量、反応時間及び反応温度)を採用すること以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
 比較例1(従来の触媒A)
 実施例1で用いた触媒の化合物1aを、従来の下記触媒Aに代えた以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-T000042
 
 上記表1の結果のとおり、アルコール化合物とアンモニアとの反応において、触媒として実施例1~11で使用した本発明のイリジウム化合物を用いることで、選択的に第一級アミン化合物4aを製造することができた。
 一方、比較例1で使用した従来の触媒Aでは、第一級アミン化合物4aをほとんど得ることができなかった。
 実施例12(各種アルコール化合物から第一級アミン化合物の製造)
 アルゴン雰囲気下、ステンレス製密閉容器(内容積5 mL)に、触媒として化合物1a(4.0 mol%)、28%アンモニア水(20 mmol)、1-(p-トリル)エタノール3a(1.0 mmol)を加え、150 ℃で40時間撹拌した。反応液を冷却後、内容物を試験管に移し、生成物である1-フェニルエチルアミン4bをジクロロメタン(15 mL)で抽出した。溶媒を留去して得られた粗生成物をシリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル混合溶媒)により精製し、1-フェニルエチルアミン4bを得た(収率83%)。その結果を表2に示す。
 実施例13~22(各種アルコール化合物から第一級アミン化合物の製造)
 原料(基質)のアルコール化合物の種類を代えた以外は、実施例12と同様にして反応を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-T000044
 
 上記表2の結果から、実施例12~22に記載するいずれのアルコール化合物(基質)を用いても、本発明のイリジウム化合物は、該アルコール化合物(3)を第一級アミン化合物(4)に変換することができた。
 実施例23
 アルゴン雰囲気下、ステンレス製密閉容器(内容積5 mL)に、触媒として化合物1c(2.0 mol%)、28%アンモニア水(40 mmol)、ベンジルアルコール3-1a(0.5 mmol)を加え、170 ℃で100時間撹拌した。反応液を冷却後、内容物を試験管に移し、生成物であるベンジルアミン4-1aをジクロロメタン(15 mL)で抽出した。溶媒を留去して得られた粗生成物をシリカゲルクラマトグラフィー(溶出液:ヘキサン/酢酸エチル混合溶媒)により精製し、ベンジルアミン4-1aを得た。生成物の収率は、ビフェニルを内部標準に用いるガスクロマトグラフィー分析の結果から算出した。その結果を表3に示す。
 実施例24~30
 原料(基質)のアルコール化合物の種類を表3に記載の第1級アルコールに代えた以外は、実施例23と同様にして反応を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-T000046
 
 実施例31
 アルゴン雰囲気下、ステンレス製密閉容器(内容積5 mL)に、触媒として化合物1c(4.0 mol%)、28%アンモニア水(40 mmol)、フェニルプロピルアルコール3-2a(0.5 mmol)を加え、170 ℃で100時間撹拌した。反応液を冷却後、内容物を試験管に移し、生成物であるフェニルプロピルアミン4-2aをジクロロメタン(15 mL)で抽出した。溶媒を留去して得られた粗生成物をシリカゲルクラマトグラフィー(溶出液:ヘキサン/酢酸エチル混合溶媒)により精製し、フェニルプロピルアミン4-2aを得た。生成物の収率は、ビフェニルを内部標準に用いるガスクロマトグラフィー分析の結果から算出した。その結果を表4に示す。
 実施例32~33
 原料(基質)のアルコール化合物の種類を表4に記載の第1級アルコールに代えた以外は、実施例31と同様にして反応を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-T000048
 実施例34
 アルゴン雰囲気下、ステンレス製密閉容器(内容積5 mL)に、触媒として化合物2a(2.0 mol%)、28%アンモニア水(20 mmol)、1-(p-トリル)エタノール3a(1.0 mmol)を加え、150 ℃で20時間撹拌した。反応液を冷却後、内容物を試験管に移し、生成物である1-(p-トリル)エチルアミン4aをジクロロメタン(15 mL)で抽出した。生成物の収率は、ビフェニルを内部標準に用いるガスクロマトグラフィー分析の結果から算出した。その結果を表4に示す。
 実施例35
 触媒の種類を表5に記載の化合物(2e)に代えた以外は、実施例34と同様にして反応を行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-C000049
 
 
Figure JPOXMLDOC01-appb-T000050
 触媒として、本発明のイリジウム化合物を用いれば、アンモニアとアルコール化合物とから簡便にかつ高原子効率的に第一級アミン化合物を選択的に製造することができる。そのため、経済的観点からも生理活性物質、医薬品、化成品等の精密合成の極めて有効なツールとなり得る。

Claims (6)

  1. 含窒素複素環カルベン配位子、シクロペンタジエニル配位子及びアンミン配位子を含むイリジウム化合物。
  2. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、R及びRは、同一又は異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
    及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
    、R、R、R、及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
    、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
    Figure JPOXMLDOC01-appb-C000002
     
    で表される結合は、単結合又は二重結合を示す。
    Xは、イリジウムカチオンと対アニオンを形成しうる原子又は原子団を示す。)
    で表される請求項1に記載のイリジウム化合物。
  3. 請求項1又は2に記載のイリジウム化合物を含む触媒。
  4. 請求項1又は2に記載のイリジウム化合物の製造方法であって、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000003
     
    (式中、R、R、R、R、R、R、R、R、及びR及び
    Figure JPOXMLDOC01-appb-C000004
     
    で表される結合は、前記と同じ。2つのXaは、同一又は異なって、ハロゲン原子を示す。)
    で表される化合物とアンモニア水とを反応させる工程を含む、製造方法。
  5. 第一級アミン化合物の製造方法であって、請求項1若しくは2に記載のイリジウム化合物、又は請求項3に記載の触媒の存在下に、アルコール化合物と、アンモニアとを反応させる工程を含む、製造方法。
  6. 第一級アミン化合物の製造方法であって、一般式(2):
    Figure JPOXMLDOC01-appb-C000005
     
    (式中、R及びRは、同一又は異なって、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
    及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。R及びRは、これらが互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
    、R、R、R、及びRは、同一又は異なって、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、又は置換基を有していてもよいアリール基を示す。
    、R、R、及びRのうちいずれか1つとR、R、R、R、及びRのうちいずれか1つとが、互いに結合して2価の炭化水素基を形成していてもよく、該炭化水素基は置換基を有していてもよい。
    Figure JPOXMLDOC01-appb-C000006
     
    で表される結合は、単結合又は二重結合を示す。
    2つのXaは、同一又は異なって、ハロゲン原子を示す。)
    で表される化合物の存在下に、アルコール化合物と、アンモニアとを反応させる工程を含む、製造方法。
PCT/JP2015/068796 2014-06-30 2015-06-30 新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法 WO2016002762A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531386A JPWO2016002762A1 (ja) 2014-06-30 2015-06-30 新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134962 2014-06-30
JP2014134962 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002762A1 true WO2016002762A1 (ja) 2016-01-07

Family

ID=55019294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068796 WO2016002762A1 (ja) 2014-06-30 2015-06-30 新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2016002762A1 (ja)
WO (1) WO2016002762A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537588A (ja) * 2001-08-09 2004-12-16 デグサ アクチエンゲゼルシャフト 移動水素化条件下でのカルボニル化合物の還元アミノ化による、アミンの製造方法
JP2015074632A (ja) * 2013-10-09 2015-04-20 関東化学株式会社 含窒素複素環カルベン配位子を有する有機金属化合物、これを含む触媒およびアミン化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537588A (ja) * 2001-08-09 2004-12-16 デグサ アクチエンゲゼルシャフト 移動水素化条件下でのカルボニル化合物の還元アミノ化による、アミンの製造方法
JP2015074632A (ja) * 2013-10-09 2015-04-20 関東化学株式会社 含窒素複素環カルベン配位子を有する有機金属化合物、これを含む触媒およびアミン化合物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Shinki Suiyosei NHC Iridium Sakutai Shokubai o Mochiita Alcohol to Ammonia-sui kara no Kogenshi Koritsuteki Daiikkyu Amine Gosei", THE 95TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2015) KOEN YOKOSHU I, 11 March 2015 (2015-03-11), pages 55 *
KAWAHARA R. ET AL.: "Multialkylation of Aqueous Ammonia with Alcohols Catalyzed by Water- Soluble Cp*Ir-Ammine Complexes", JACS, vol. 132, no. 43, 8 October 2010 (2010-10-08), pages 15108 - 15111, XP055074773, ISSN: 0002-7863 *
TERMATEN AT . ET AL.: "N-Heterocyclic Carbene Functionalized Iridium Phosphinidene Complex [Cp*(NHC)Ir=PMes*]: Comparison of Phosphinidene, Imido, and Carbene Complexes", CHEMISTRY A EUROPEAN JOURNAL, vol. 9, no. 3577-3582, 2003, pages 3579 *
YAMADA Y. ET AL.: "Polymeric Bimetallic Catalyst-Promoted In-Water Dehydrative Alkylation of Ammonia and Amines with Alcohols", SYNTHESIS, vol. 45, 29 May 2013 (2013-05-29), pages 2093 - 2100 *

Also Published As

Publication number Publication date
JPWO2016002762A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US9796647B2 (en) Method for producing fluorine-containing olefin
US9776178B2 (en) Ruthenium complexes comprising an asymmetrical unsaturated N-heterocyclic diaminocarbene
JP2002201153A (ja) 共役ジエンをテロメル化する方法
TWI259183B (en) Novel strong acids, process for the preparation thereof, and uses thereof
TWI637961B (zh) Cyclic decane neutral complex, method for producing the same, and method for producing cyclic hydrogenated decane or cyclic organic decane
CN102209704A (zh) 芳基胺化合物制备方法
CN109384769A (zh) 一种r构型3-取代-3-羟基氧化吲哚类化合物的合成方法
US8901323B2 (en) Ruthenium-diamine complex and method for producing optically active compound
WO2016002762A1 (ja) 新規なイリジウム化合物、その製造方法、それを用いた触媒、及びそれを用いた第一級アミン化合物の製造方法
KR100787946B1 (ko) 전달 수소화 방법
US6476250B1 (en) Optically active fluorinated binaphthol derivative
Adams et al. Evidence for the activation of thietanes to ring opening by nucleophiles through bridging coordination
Mandal et al. Syntheses of fluorous quaternary ammonium salts and their application as phase transfer catalysts for halide substitution reactions in extremely nonpolar fluorous solvents
US20140200345A1 (en) Production method for 2-alkenylamine compound
US9663452B2 (en) Method for preparing formamidines
CN110862324A (zh) 一种手性二级胺类化合物的直接合成方法
JP6429105B2 (ja) ジアリールヨードニウム塩
EP3066064B1 (en) Cyclopropanation
KR101660390B1 (ko) 2-알케닐아민 화합물의 제조 방법
WO2016056669A1 (ja) 固相担持ルテニウム-ジアミン錯体及び光学活性化合物の製造方法
US20100267977A1 (en) Method for producing cycloplatinized platinum complexes, platinum complexes produced by said method, and the use thereof
JP4625741B2 (ja) 第二級ホスフィン−ボラン錯体の製造方法
JP6302378B2 (ja) ヘキサフルオロベンゼンの脱フルオロ化によるフルオロベンゼン類の製造方法
JPH08325166A (ja) 触媒としてパラダサイクルを用いて芳香族アセチレンを製造する方法
CN116041129A (zh) 一种卤化物脱卤氢/氘化的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815049

Country of ref document: EP

Kind code of ref document: A1