WO2016002637A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents
非水系二次電池用セパレータ及び非水系二次電池 Download PDFInfo
- Publication number
- WO2016002637A1 WO2016002637A1 PCT/JP2015/068419 JP2015068419W WO2016002637A1 WO 2016002637 A1 WO2016002637 A1 WO 2016002637A1 JP 2015068419 W JP2015068419 W JP 2015068419W WO 2016002637 A1 WO2016002637 A1 WO 2016002637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- fluorine
- secondary battery
- aqueous secondary
- nonionic surfactant
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/423—Polyamide resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
- Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Further, in recent years, such non-aqueous secondary batteries have been studied for application to automobiles and the like because of their high energy density.
- Non-aqueous secondary batteries generally have lower output characteristics than alkaline secondary batteries because non-aqueous electrolytes with low ionic conductivity are applied. Therefore, improving the output characteristics has conventionally been one of the important issues for non-aqueous secondary batteries.
- As an effective technique for improving the output characteristics there is a method of reducing the current density by thinning the electrode to increase the electrode area (see, for example, JP-A-2006-32246).
- a technique has been proposed (see, for example, Japanese Patent No. 4127898).
- the adhesive porous layer also has a function as an adhesive that satisfactorily bonds the electrode and the separator when the electrode is stacked or thermocompression bonded to the electrode. Therefore, the adhesive porous layer contributes to the improvement of the cycle life of the soft pack battery.
- the polyvinylidene fluoride resin generally has a characteristic that it is easily charged, and there is a possibility that handling properties may be impaired.
- a technique for improving the handling property for example, a technique for applying a surfactant has been proposed (see, for example, JP-A-2006-73221).
- the method of increasing the electrode area by reducing the thickness of the electrode increases the production cost of the battery. Therefore, it becomes a factor that hinders application to applications that require advanced output characteristics.
- the method is practical in terms of yield.
- the surfactant itself is a well-known material.
- the addition of the surfactant causes the water to be mixed into the battery, so that its use has conventionally been avoided. For this reason, the influence on the battery performance such as output by containing the surfactant has not been clarified so far.
- a non-fluorinated nonionic surfactant having an alkyl chain as a hydrophobic part and an ionic surfactant containing a salt have been conventionally known. According to the study, there was a concern that this type of surfactant would cause a decrease in battery output.
- the cycle life is improved by bonding the electrode and the separator through the adhesive porous layer.
- the porous layer itself tends to contribute to increasing the electrical resistance.
- the trade-off relationship that the output characteristics of the battery are sacrificed is also cited as an issue.
- One embodiment of the present invention ⁇ 1> A film containing a fluorine-containing nonionic surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit is provided, and the content of the fluorine-containing nonionic surfactant is 0.001 g / m 2.
- This is a separator for a non-aqueous secondary battery that is 1 g / m 2 or less.
- Another embodiment of the present invention is: ⁇ 2> Fluorine-containing nonionic surfactant having a polyvinylidene fluoride resin disposed on at least a part of at least one surface and one terminal having a hydrophilic structural unit and the other being a hydrophobic structural unit containing a fluorine atom And a separator for a non-aqueous secondary battery.
- One embodiment of the present invention or another embodiment preferably has the following aspects.
- ⁇ 3> The separator for a non-aqueous secondary battery according to ⁇ 2>, wherein the surface layer forming the surface includes a layer containing the polyvinylidene fluoride resin and the fluorine-containing nonionic surfactant on one side or both sides. It is.
- ⁇ 4> A porous substrate, and a layer comprising the polyvinylidene fluoride resin and the fluorine-containing nonionic surfactant provided as a surface layer that forms the surface on one or both surfaces of the porous substrate.
- ⁇ 5> The separator for a nonaqueous secondary battery according to ⁇ 4>, wherein the porous substrate is a polyethylene microporous membrane.
- ⁇ 6> The non-aqueous secondary according to any one of ⁇ 3> to ⁇ 5>, wherein the layer containing the polyvinylidene fluoride resin and the fluorine-containing nonionic surfactant is a porous layer. It is a battery separator.
- ⁇ 7> The nonaqueous secondary battery separator according to any one of ⁇ 1> to ⁇ 6>, wherein the hydrophobic structural unit has a fluoroalkyl group or a fluoroalkenyl group.
- ⁇ 8> The separator for a non-aqueous secondary battery according to any one of ⁇ 1> to ⁇ 7>, wherein the hydrophilic structural unit has an alkylene oxide chain.
- the alkylene oxide chain is an ethylene oxide chain.
- an average added mole number of the alkylene oxide chain is 5 mol or more and 25 mol or less.
- the fluorine-containing nonionic surfactant is at least one selected from a perfluoroalkyl alkylene oxide adduct and a perfluoroalkenyl alkylene oxide adduct, and any one of the above ⁇ 1> to ⁇ 10> It is a separator for non-aqueous secondary batteries described in 1.
- another embodiment of the present invention is: ⁇ 12> a positive electrode, a negative electrode, and the separator for a non-aqueous secondary battery according to any one of ⁇ 1> to ⁇ 11> disposed between the positive electrode and the negative electrode, and a lithium It is a non-aqueous secondary battery which obtains an electromotive force by doping and dedoping.
- a separator for a non-aqueous secondary battery that reduces the internal resistance of a battery and improves output characteristics is provided.
- a nonaqueous secondary battery excellent in output characteristics is provided.
- a separator for a non-aqueous secondary battery includes a film containing a fluorine-containing nonionic surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit, and this fluorine-containing nonionic
- the content of the surfactant is configured as a range of 0.001 g / m 2 or more and 1 g / m 2 or less.
- the film may further contain other components such as a functional resin and a filler as necessary.
- a separator for a non-aqueous secondary battery includes a polyvinylidene fluoride-based resin disposed on at least a part of at least one surface, and one of the terminals.
- a fluorine-containing nonionic surfactant which is a hydrophilic structural unit and the other is a hydrophobic structural unit containing a fluorine atom may be used.
- the separator for a non-aqueous secondary battery according to another embodiment of the present invention may further include other components such as a resin other than the polyvinylidene fluoride resin and a filler as necessary.
- the surfactant is a material that has been widely known in the past, but its use as a battery material has generally been avoided from the viewpoint of preventing moisture from entering the battery. Further, for example, it has been found that non-fluorinated nonionic surfactants having an alkyl chain as a hydrophobic part, ionic surfactants containing salts, and the like tend to increase the internal resistance of the battery. Therefore, there is a concern that this type of surfactant rather contributes to a decrease in battery output.
- the separator of the present disclosure by including a specific fluorine-containing nonionic surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit in the molecule, a high porosity and a large pore size are not necessarily achieved. Compared to separators using other nonionic surfactants or ionic surfactants, the effect of significantly reducing the internal resistance of the battery is manifested, and the output characteristics of the battery can be improved. Play. In addition, since it is not necessary to increase the porosity of the separator or increase the diameter of the separator, it does not lead to a decrease in the yield of the battery, but rather accelerates the penetration rate of the electrolyte and allows high uniformity of penetration. Become. Thereby, it becomes possible to improve the productivity and yield of the battery.
- a separator In order to form a separator that can be bonded to an electrode and has high adhesion to the electrode and excellent cycle life, it is effective to use a polyvinylidene fluoride resin as a resin component.
- polyvinylidene fluoride resins tend to be charged more easily than other resins and tend to impair handling properties.
- surfactants can be used for antistatic purposes. For example, nonionic surfactants whose alkyl chain forms a hydrophobic part tend to increase the internal resistance of the battery, but rather increase the battery output. There is a concern that causes a decrease.
- a specific fluorine-containing nonionic surfactant having a polyvinylidene fluoride resin as a resin component constituting the separator and having a hydrophilic structural unit and a hydrophobic structural unit containing a fluorine atom at each end. It is a preferable aspect (one embodiment of the above) that it is contained together with the agent.
- the internal resistance of the battery is more effective than when a non-ionic surfactant other than a specific fluorine-containing nonionic surfactant is used, in addition to suppressing charging and improving handling properties. The effect that it will fall and it will become the thing excellent in an output characteristic is acquired.
- separator for non-aqueous secondary batteries which is one embodiment of the present invention (hereinafter also simply referred to as “separator”) is configured as a film containing a specific fluorine-containing nonionic surfactant described later.
- separator is preferably a single layer film or a multilayer film that is a porous film from the viewpoint of ion permeability.
- the membrane structure of the separator according to one embodiment of the present invention may be any of the following aspects, and by adding a fluorine-containing nonionic surfactant to these, the non-aqueous two-phase composition according to one embodiment of the present invention is provided. It can be set as the separator for secondary batteries.
- Microporous membrane made of polyolefin For example, a single-layer polyolefin microporous membrane containing polyolefin and a multilayer film in which a plurality of single-layer polyolefin microporous membranes are laminated.
- Single-layer film of functional resin For example, a single-layer film made of a functional resin such as a heat-resistant resin or an adhesive resin, or a single-layer film in which a functional resin and a filler are mixed can be given.
- Composite film For example, a composite film in which a functional resin is applied to the inside and the surface of a fibrous sheet such as a nonwoven fabric or paper may be mentioned, and the composite film may further carry a filler.
- Laminated film For example, a porous substrate and a layer (preferably a porous layer) containing a functional resin such as a heat resistant resin or an adhesive resin laminated on one or both sides of the porous substrate , And the layer containing the functional resin may further contain a filler.
- the separator for non-aqueous secondary batteries which is one embodiment of the present invention contains at least one fluorine-containing nonionic surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit.
- nonionic surfactants having an alkyl group as a hydrophobic structural unit and fluorine-based surfactants having a fluorine atom in a hydrophobic structural unit. Even so, anionic surfactants such as sulfonates are not effective in reducing the internal resistance of the battery, but rather increase the internal resistance of the battery. There is a case. In the present disclosure, it is possible to reduce the internal resistance of the battery by using a nonionic fluorine-containing surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit as a separator.
- fluorine-containing nonionic surfactant in the present disclosure, a nonionic compound having a hydrophilic structural unit at one end and a hydrophobic structural unit containing a fluorine atom at the other end among both ends of the compound structure Preferred fluorine-containing surfactants are preferred.
- the fluorine-containing nonionic surfactant in the present disclosure preferably has an alkylene oxide chain as a hydrophilic structural unit at one end.
- the alkylene oxide chain include an ethylene oxide chain or a propylene oxide chain, and among them, an ethylene oxide chain is preferable in that it exhibits an antistatic effect while suppressing the moisture content inside the battery.
- the average number of added moles of the alkylene oxide chain in one molecule is preferably not too much from the viewpoint of obtaining a desired antistatic effect while suppressing the moisture content inside the battery, and is in the range of 5 to 25 moles. Is preferred.
- the average added mole number of the alkylene oxide chain is within the above range, the antistatic effect of the separator becomes more excellent.
- the average number of moles added of the alkylene oxide chain is more preferably in the range of 5 mol to 14 mol, and still more preferably in the range of 5 mol to 10 mol.
- the fluorine-containing nonionic surfactant in the present disclosure preferably has a fluoroalkyl group or a fluoroalkenyl group as a hydrophobic structural unit at the other end.
- the fluoroalkyl group is preferably a fluoroalkyl group having 1 to 18 carbon atoms, and examples thereof include fluoromethyl, fluoroethyl, fluoropropyl, fluorobutyl and the like.
- a perfluoroalkyl group is more preferable, and specific examples include perfluoromethyl, perfluoroethyl, perfluoropropyl, perfluorobutyl, and the like.
- the fluoroalkenyl group is preferably a fluoroalkenyl group having 1 to 12 carbon atoms, such as fluoroethylenyl (vinyl fluoride), fluoro-1-propenyl, fluoroallyl, fluoroisopropenyl, fluoro-1-butenyl, fluoro Isobutenyl and the like.
- a perfluoroalkenyl group is more preferable, and specific examples include perfluoroethylenyl, perfluoro-1-propenyl, perfluoroallyl, perfluoroisopropenyl, perfluoro-1-butenyl, perfluoroisobutenyl, and the like. It is done.
- the hydrophobic structural unit at the end of the fluorine-containing nonionic surfactant preferably has an unsaturated double bond and has a fluoroalkenyl group from the viewpoint of antistatic properties and improvement of battery output characteristics. More preferably. Furthermore, the hydrophobic structural unit may be either a linear structure or a branched structure, and it is more preferable to have a branched structure from the viewpoint of preventing charging and improving the output characteristics of the battery.
- fluorine-containing nonionic surfactant in the present disclosure examples include a fluoroalkyl ethylene oxide adduct, a fluoroalkenyl ethylene oxide adduct, a fluoroalkyl propylene oxide adduct, a fluoroalkenyl propylene oxide adduct, a perfluoroalkyl ethylene oxide adduct, Examples thereof include fluoroalkenyl ethylene oxide adducts.
- a fluoroalkenyl alkylene oxide adduct having an alkenyl group is preferred, and further a perfluoroalkyl alkylene oxide adduct having an alkylene oxide chain at one end and a perfluoroalkyl group at the other end, and an alkylene oxide chain at one end.
- a perfluoroalkenyl alkylene oxide adduct having a perfluoroalkenyl group on the other side is preferred. Particularly preferred is a perfluoroalkenyl ethylene oxide adduct having an ethylene oxide chain at one end and a perfluoroalkenyl group at the other end.
- the content of the fluorine-containing nonionic surfactant in the separator is in the range of 0.001 g / m 2 to 1 g / m 2 .
- the content of the fluorine-containing nonionic surfactant is less than 0.001 g / m 2, it is difficult to obtain the effect of reducing internal resistance, which is an effect in the embodiment of the present invention.
- the content of the fluorine-containing nonionic surfactant is more than 1 g / m 2 , the moisture content of the separator increases, which may deteriorate the durability and reliability of the battery.
- the content of the fluorine-containing nonionic surfactant in the separator is preferably in the range of 0.01 g / m 2 or more and 1 g / m 2 or less, for the same reason as above, and 0.1 g / m 2 or more and 1 g. / M 2 or less is more preferable, and a range of 0.1 g / m 2 or more and 0.5 g / m 2 or less is more preferable.
- the content of the fluorine-containing nonionic surfactant in the separator refers to the total amount of the amount contained in the separator and the amount adhering to the separator surface.
- the content of the fluorine-containing nonionic surfactant in the separator is determined by 1 H-NMR and 19 F-NMR obtained by NMR by using dimethyl sulfoxide (DMSO) and immersing the separator in DMSO to extract soluble components. It is calculated from the result.
- the method for including the fluorine-containing nonionic surfactant in the non-aqueous secondary battery separator according to the embodiment of the present invention is not particularly limited, and examples thereof include the following methods. Examples include a method in which a solution in which a fluorine-containing nonionic surfactant is dissolved in a suitable solvent is prepared, the separator is treated with this solution, and the solvent is removed by a technique such as drying. In this method, it is necessary to select a solvent that can be removed by drying or the like. Examples of such a solvent include low boiling point organic solvents such as methanol and ethanol, and water.
- the concentration of fluorine-containing nonionic surfactant in the solution and the treatment conditions may be adjusted so that the desired properties are expressed, and are not particularly limited.
- the treatment of the separator using the solution can be performed by a method such as application or spraying of the solution to the separator, or immersion of the separator in the solution.
- the moisture content of the non-aqueous secondary battery separator is preferably kept low. Specifically, the moisture content is preferably 500 ppm or less, more preferably 300 ppm or less, and still more preferably 100 ppm or less.
- the moisture content is a value measured with a Karl Fischer moisture meter. From the viewpoint of obtaining a separator having a low moisture content, the content of the fluorine-containing nonionic surfactant is important, but in addition, the hydrophilic structural unit of the fluorine-containing nonionic surfactant is also important. That is, it is important to select the type and abundance ratio of the hydrophilic structural unit as desired.
- the added mole number of the alkylene oxide chain is an index.
- the average number of added moles of the alkylene oxide chain is 5 mol or more and 14 mol or less.
- the separator for a non-aqueous secondary battery which is an embodiment of the present invention may be configured in any of the above-described membrane structures, for example, containing a fluorine-containing nonionic surfactant in the membrane or on the membrane surface It may be configured as an attached microporous film, or may be configured as a laminated film having a layer containing a functional resin and a fluorine-containing nonionic surfactant.
- the separator according to an embodiment of the present invention is configured as a laminated film, the porous base material, a functional resin such as a heat resistant resin or an adhesive resin provided on one side or both sides of the porous base material, and the above-described description And a porous layer containing a specific fluorine-containing nonionic surfactant.
- the porous layer has a structure in which a large number of micropores are formed in the inside and these micropores are connected to each other, so that a gas or liquid can pass from one surface to the other surface.
- a porous layer can be comprised using functional resin, and may be comprised as an adhesive porous layer to which adhesiveness was provided.
- the porous layer preferably has adhesiveness to an adherend such as an electrode.
- the porous layer is obtained when the separator and the electrode are overlapped and subjected to pressure bonding or thermocompression bonding. It is preferable to be configured in a layer that can be bonded to the electrode.
- a porous layer has on both surfaces of a porous base material is preferable at the point which is excellent in the cycling characteristics of a battery compared with the aspect which has only one side of a porous base material.
- both surfaces of the separator can be favorably bonded to both electrodes through the porous layer.
- the porous layer having adhesiveness contains an adhesive resin, but the coating amount of the adhesive resin contained in the porous layer is one side of the porous substrate from the viewpoint of adhesion to the electrode and ion permeability. Is preferably 0.5 g / m 2 to 1.5 g / m 2 , and more preferably 0.75 g / m 2 to 1.25 g / m 2 .
- the coating amount of the porous layer is preferably 1.0g / m 2 ⁇ 3.0g / m 2 as the sum of two-sided, 1 More preferably, it is from 5 g / m 2 to 2.5 g / m 2 .
- the coating amount of the porous layer is 1.0 g / m 2 (0.5 g / m 2 in the case of one side) or more, the adhesion with the electrode becomes better, and the cycle characteristics in the case of a battery are excellent. . Further, when the coating amount of the porous layer (in the case of single-sided 1.5g / m 2) 3.0g / m 2 or less, excellent load characteristics of better battery ion permeability.
- the difference between the coating amount on one side and the coating amount on the other side is 20% or less with respect to the total coating amount on both sides. Preferably there is.
- the difference is 20% or less, the separator is difficult to curl, and as a result, the handling property is further improved and the cycle characteristics are hardly deteriorated.
- the average thickness of the porous layer is preferably 0.5 ⁇ m to 4 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m, on one side of the porous substrate from the viewpoint of ensuring adhesion with the electrode and high energy density. More preferably, it is 1 ⁇ m to 2 ⁇ m.
- the average thickness is 0.5 ⁇ m or more, the adhesiveness to the electrode is good, and the cycle characteristics in the case of a battery are excellent. Further, when the average thickness is 4 ⁇ m or less, the ion permeability is further improved, the battery load characteristics are improved, and the coefficient of thermal expansion in the width direction of the separator is controlled within the range of more than 0% to 10%. It's easy to do.
- the average thickness is a value obtained by measuring 20 arbitrary points within 10 cm ⁇ 10 cm and arithmetically averaging the measured values.
- the porosity of the porous layer is preferably 30% to 80%, and more preferably 30% to 60%. When the porosity is 30% or more, the ion permeability is excellent. Moreover, when the porosity is 80% or less, it is possible to ensure the mechanical strength that can withstand the hot press when bonding to the electrode, and the surface opening ratio does not become too high, thereby ensuring the adhesive force. Is suitable.
- the average pore size of the porous layer is preferably 10 nm to 200 nm.
- the average pore diameter is 200 nm or less, the nonuniformity of the pores is suppressed, the adhesion points are evenly dispersed, and the adhesiveness is good. Further, when the average pore diameter is 200 nm or less, the movement of ions is uniform and the cycle characteristics and load characteristics are good.
- the average pore diameter is 10 nm or more, when the porous layer is impregnated with the electrolytic solution, the resin constituting the porous layer is unlikely to swell and block the pores.
- the specific surface area is multiplied by the basis weight (g / m 2 ), and the pore surface area per 1 m 2 is calculated.
- the pore surface area per 1 m 2 of the porous substrate is subtracted from the pore surface area per 1 m 2 of the separator to calculate the pore surface area S per 1 m 2 of the porous layer.
- a heat resistant resin and an adhesive resin can be used as the functional resin constituting the porous layer.
- Functional resin may contain only 1 type and may contain 2 or more types.
- the heat resistant resin includes a resin having a melting point of 200 ° C. or higher. In addition to a resin having a melting point of 200 ° C. or higher, a resin having substantially no melting point and a thermal decomposition temperature of 200 ° C. or higher is also included.
- Specific examples of the heat resistant resin include wholly aromatic polyamide, fluorine resin, polyimide, polyamideimide, polysulfone, polyketone, polyetherketone, polyethersulfone, polyetherimide, cellulose, and combinations of two or more of these. Can be mentioned.
- wholly aromatic polyamides are preferable from the viewpoint of easy formation of a porous structure, binding property with a filler when an inorganic filler is used, strength of the porous film associated therewith, and durability such as oxidation resistance.
- the wholly aromatic polyamide when the para type and the meta type are compared, the meta type wholly aromatic polyamide is preferable from the viewpoint of easy molding, and polymetaphenylene isophthalamide is particularly preferable.
- the adhesive resin which has adhesiveness with respect to adherends, such as an electrode, as functional resin.
- the adhesive resin has adhesiveness can form a state in which the electrode surface and the separator surface are not in contact with each other and are not separated when the separator is bonded to the electrode by pressure bonding or thermocompression bonding.
- Specific examples of the adhesive resin include polyvinylidene fluoride, polyvinylidene fluoride copolymer, styrene-butadiene copolymer, homopolymers or copolymers of vinyl nitriles such as acrylonitrile and methacrylonitrile, polyethylene oxide and polypropylene. Polyethers such as oxides are suitable.
- the adhesive resin contained in the porous layer is preferably a polyvinylidene fluoride-based resin because it is more excellent in adhesion to the electrode.
- polyvinylidene fluoride resin examples include a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride), and a copolymer of vinylidene fluoride and other copolymerizable monomer (that is, polyvinylidene fluoride copolymer). It is done. Moreover, you may use the mixture which mixed the polyvinylidene fluoride and the polyvinylidene fluoride copolymer as a polyvinylidene fluoride resin.
- Examples of the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one kind or two or more kinds can be used.
- the polyvinylidene fluoride resin is obtained by emulsion polymerization or suspension polymerization.
- a vinylidene fluoride-hexafluoropropylene copolymer is preferable from the viewpoint of adhesion to an electrode.
- the crystallinity and heat resistance of the resin can be controlled within an appropriate range.
- the porous layer can be prevented from flowing during the adhesion treatment with the electrode.
- the polyvinylidene fluoride resin preferably has a weight average molecular weight in the range of 300,000 to 3,000,000.
- weight average molecular weight is 300,000 or more, mechanical properties that the porous layer can withstand the adhesion treatment with the electrode can be secured, and sufficient adhesion can be obtained.
- weight average molecular weight is 3 million or less, the viscosity at the time of molding does not become too high, the moldability and crystal formation are good, and the porosity becomes good.
- the weight average molecular weight (Mw) of the polyvinylidene fluoride resin is a molecular weight measured by gel permeation chromatography (hereinafter also referred to as GPC) under the following conditions and converted to polystyrene.
- GPC gel permeation chromatography
- the porous layer can contain a filler.
- a filler By containing the filler, the slipperiness and heat resistance of the separator can be improved.
- a filler you may contain the filler which consists of an inorganic substance or an organic substance, and another component.
- the inorganic filler include metal oxides such as alumina and metal hydroxides such as magnesium hydroxide.
- an acrylic resin etc. are mentioned, for example.
- the porous substrate means a substrate having pores or voids inside.
- a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet; and one or more other porous layers are laminated on the microporous film or the porous sheet.
- a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
- the material constituting the porous substrate may be either an organic material or an inorganic material as long as it is an electrically insulating material.
- the material constituting the porous substrate is preferably a thermoplastic resin from the viewpoint of imparting a shutdown function to the porous substrate.
- the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature increases.
- the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
- a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as “polyolefin microporous membrane” in the present specification) is preferable.
- polyolefin microporous membrane one having sufficient mechanical properties and ion permeability may be selected from among polyolefin microporous membranes applied to conventional non-aqueous secondary battery separators.
- the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of expressing a shutdown function, and the content of polyethylene is preferably 95% by mass or more based on the total mass of the microporous membrane.
- the polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
- a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
- Such a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
- the polyolefin microporous membrane has a laminated structure of two or more layers, at least one layer contains polyethylene and at least one layer contains polypropylene. Is also preferable.
- the polyolefin contained in the polyolefin microporous membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.
- the polyolefin microporous membrane can be produced, for example, by the following method.
- the melted polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched, and further heat-treated to form a microporous film.
- a polyolefin resin melted together with a plasticizer such as liquid paraffin is extruded from a T-die, cooled and formed into a sheet, and after stretching, the plasticizer is extracted and heat treated to form a microporous membrane. is there.
- porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat resistant resins such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; And a porous sheet such as a non-woven fabric and paper made of the above fibrous material.
- the heat resistant resin means a polymer having a melting point of 200 ° C. or higher, or a polymer having no melting point and a decomposition temperature of 200 ° C. or higher.
- the composite porous sheet a structure in which a functional layer is laminated on a porous sheet made of a microporous film or a fibrous material can be adopted. Such a composite porous sheet is preferable in that a further function can be added by the functional layer.
- a porous layer made of a heat resistant resin, or a porous layer made of a heat resistant resin and an inorganic filler can be adopted.
- the heat resistant resin include one or more heat resistant resins selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
- a metal oxide such as alumina; a metal hydroxide such as magnesium hydroxide; and the like can be preferably used.
- a composite method a method of applying a functional layer to a microporous membrane or a porous sheet, a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous sheet, Examples include a method of thermocompression bonding with the functional layer.
- the thickness of the porous substrate is preferably 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
- the Gurley value (JIS P8117 (2009)) of the porous substrate is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining ion permeability.
- the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining an appropriate membrane resistance and shutdown function.
- the puncture strength of the porous base material is preferably 300 g or more from the viewpoint of improving the production yield.
- the surface of the porous substrate may be subjected to corona treatment, plasma treatment, flame treatment, ultraviolet irradiation treatment, etc. for the purpose of improving wettability with the coating liquid for forming the porous layer.
- the separator for a non-aqueous secondary battery which is an embodiment of the present invention preferably has a total film thickness of 5 ⁇ m to 35 ⁇ m from the viewpoint of mechanical strength and energy density when used as a battery.
- the porosity of the separator for a non-aqueous secondary battery which is one embodiment of the present invention is 30% or more and 60% from the viewpoint of the effect and mechanical strength, handling properties and ion permeability according to one embodiment of the present invention.
- the following ranges are preferred.
- the Gurley value (JIS P8117) of the separator for a non-aqueous secondary battery according to an embodiment of the present invention is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of a good balance between mechanical strength and membrane resistance.
- the separator for a non-aqueous secondary battery that is one embodiment preferably has a porous structure from the viewpoint of ion permeability.
- the value obtained by subtracting the Gurley value of the porous substrate from the Gurley value of the separator for a non-aqueous secondary battery in the state where the porous layer is formed is preferably 300 seconds / 100 cc or less, and 150 seconds.
- / 100 cc or less is more preferable, and 100 seconds / 100 cc or less is more preferable.
- this value is 300 seconds / 100 cc or less, the porous layer is not too dense and the ion permeability is kept good, and excellent battery characteristics are obtained.
- Film resistance of the separator for a nonaqueous secondary battery which is one embodiment of the present invention from the viewpoint of the load characteristics of the battery, it is preferable that 1ohm ⁇ cm 2 ⁇ 10ohm ⁇ cm 2.
- the membrane resistance is a resistance value when the separator is impregnated with an electrolytic solution, and is measured by an alternating current method.
- the curvature of the separator for a non-aqueous secondary battery which is one embodiment of the present invention is preferably 1.5 to 2.5 from the viewpoint of ion permeability.
- the separator for non-aqueous secondary batteries which is one embodiment of the present invention is manufactured, for example, by the following method.
- the separator is a single layer membrane
- a solution of the specific fluorine-containing nonionic surfactant described above is applied to a polyolefin microporous membrane which is an example of a porous layer, and fluorine You may manufacture by making a containing nonionic surfactant adhere.
- a coating liquid containing a functional resin (and filler if necessary) is formed on the release sheet to form a coating film, and the resin of the coating film is solidified.
- the solution can be applied by a method such as a coating method, a dipping method, or a spray method.
- a coating liquid containing a functional resin (and a filler if necessary) is applied on the porous substrate to form a coated film, and then After the resin of the coating film is solidified, a solution of the specific fluorine-containing nonionic surfactant described above is applied to the solidified coating film to add a fluorine-containing nonionic surfactant to the coating film.
- a coating liquid containing a functional resin, the specific fluorine-containing nonionic surfactant described above (and a filler as necessary) is prepared, and the coating liquid is made porous.
- a porous layer containing a fluorine-containing nonionic surfactant is formed on the porous substrate by coating on the porous substrate to form a coated film and then solidifying the resin of the coated film May be manufactured.
- the separator is a composite membrane
- the application of the solution can be performed by a method such as a coating method, a dipping method, or a spraying method.
- the porous layer containing the functional resin can be formed, for example, by the following wet coating method.
- a functional resin is dissolved and dispersed in a solvent to prepare a coating solution, and this coating solution is applied to a porous substrate.
- a fluorine-containing nonionic surfactant, a filler, etc. can be included in a coating liquid according to the objective.
- a separator for a non-aqueous secondary battery according to an embodiment of the present invention is produced by forming a porous layer as an independent sheet, and stacking the porous layer on a porous base material and combining it by thermocompression bonding or an adhesive. It can also be produced by a method.
- a separator for a non-aqueous secondary battery according to another embodiment of the present invention (also referred to as “separator” in the same manner as described above) has a polyvinylidene fluoride resin (hereinafter simply referred to as “a separator”) at least partially on one surface.
- a separator polyvinylidene fluoride resin
- it is configured as a film containing a specific fluorine-containing nonionic surfactant described later, and may be either a single layer film or a multilayer film. Either a porous membrane or a non-porous membrane may be used.
- the separator of the present invention is preferably a single layer film or a multilayer film which is a porous film from the viewpoint of ion permeability.
- the membrane structure in the case of the separator according to another embodiment may be any of the following modes.
- (1) Single layer film of PVDF resin For example, a single layer film composed of PVDF resin and a fluorine-containing nonionic surfactant, a single layer film obtained by mixing PVDF resin, filler, and fluorine nonionic surfactant. A layer film is mentioned.
- PVDF-based resin composite film For example, a composite film in which a PVDF-based resin and a fluorine-containing nonionic surfactant are applied to the inside and the surface of a fibrous sheet such as a nonwoven fabric or paper is mentioned. Further, a filler may be supported.
- Laminated film of PVDF resin For example, a porous substrate and a layer containing PVDF resin and a fluorine-containing nonionic surfactant (preferably porous, laminated on one or both surfaces of the porous substrate) The layer containing the PVDF resin and the fluorine-containing nonionic surfactant may further contain a filler.
- polyvinylidene fluoride resin examples include a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride), and a copolymer of vinylidene fluoride and other copolymerizable monomer (that is, polyvinylidene fluoride copolymer). It is done. Moreover, you may use the mixture which mixed the polyvinylidene fluoride and the polyvinylidene fluoride copolymer as a polyvinylidene fluoride resin.
- the details of the polyvinylidene fluoride resin in the separator according to another embodiment are the same as those of the polyvinylidene fluoride resin cited as the preferred adhesive resin contained in the porous layer according to the embodiment of the present invention described above.
- the preferred embodiments are also the same.
- a separator for a non-aqueous secondary battery according to another embodiment of the present invention has a hydrophilic structural unit at one end of both ends of the compound structure as a fluorosurfactant and at the other end. It contains at least one nonionic fluorine-containing surfactant having a hydrophobic structural unit containing a fluorine atom.
- PVDF polyvinylidene fluoride
- the hydrophobic structural unit has an affinity for the resin of the separator, and at the same time, the hydrophilic structural unit, particularly the alkylene oxide chain, has an affinity for the electrolyte.
- the battery characteristics are improved.
- the fluorine-containing nonionic surfactant preferably has an alkylene oxide chain as a hydrophilic structural unit at one end.
- the fluorine-containing nonionic surfactant in the present invention preferably has a fluoroalkyl group or a fluoroalkenyl group as a hydrophobic structural unit at the other end.
- the details of the fluorine-containing nonionic surfactant in the separator for a non-aqueous secondary battery according to another embodiment of the present invention are the same as those described above except for the content in the following separator. It is the same as the fluorine-containing nonionic surfactant having a hydrophobic structural unit containing a fluorine atom and a hydrophilic structural unit contained in the embodiment, and the preferred embodiment is also the same.
- the content of the fluorine-containing nonionic surfactant in the separator for a non-aqueous secondary battery according to another embodiment of the present invention includes antistatic, reduction of battery internal resistance, improvement of handling property, and battery From the viewpoint of adjusting the internal moisture content to a range described later, the range is preferably 0.1% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass with respect to the polyvinylidene fluoride resin.
- the content of the fluorine-containing nonionic surfactant is 0.1% by mass or more, charging is prevented, battery internal resistance is reduced, and handling properties are excellent.
- the content of the fluorine-containing nonionic surfactant in the separator refers to the total amount of the amount contained in the separator and the amount adhering to the separator surface.
- the content of the fluorine-containing nonionic surfactant in the separator is determined by 1 H-NMR and 19 F-NMR obtained by NMR by using dimethyl sulfoxide (DMSO) and immersing the separator in DMSO to extract soluble components. It is calculated from the result.
- the method for including the fluorine-containing nonionic surfactant in the nonaqueous secondary battery separator according to another embodiment of the present invention is not particularly limited, and examples thereof include the following two methods.
- the concentration of fluorine-containing nonionic surfactant in the solution and the treatment conditions may be adjusted so that the desired properties are expressed, and are not particularly limited.
- the treatment of the separator using the solution can be performed by a method such as application or spraying of the solution to the separator, or immersion of the separator in the solution.
- a fluorine-containing nonionic surfactant is dissolved in a polyvinylidene fluoride resin solution used for molding the separator.
- the concentration of the fluorine-containing nonionic surfactant is not particularly limited as long as the target characteristics are expressed.
- the separator for non-aqueous secondary batteries according to another embodiment of the present invention can contain at least one filler.
- the filler By containing the filler, the slipperiness and heat resistance of the separator can be improved.
- a filler you may contain the filler which consists of an inorganic substance or an organic substance, and another component.
- the inorganic filler include metal oxides such as alumina and metal hydroxides such as magnesium hydroxide.
- an acrylic resin etc. are mentioned, for example.
- a separator for a non-aqueous secondary battery according to another embodiment of the present invention includes a polyvinylidene fluoride resin and the specific fluorine-containing nonionic surfactant described above as a surface layer forming at least one surface. It is preferable to have a layer, and it may be configured in any of the film structures described above.
- the separator according to another embodiment of the present invention is preferably configured in the above laminated film in that the effect of the other embodiment of the present invention is more effectively exhibited. Specifically, it is an aspect of the following laminated film.
- a separator according to another embodiment of the present invention is provided as a porous substrate and a surface layer that forms a surface on one or both surfaces of the porous substrate, and includes a polyvinylidene fluoride-based resin and the specific fluorine-containing component described above.
- a laminated film having a porous layer containing a nonionic surfactant is preferred.
- the porous substrate means a substrate having pores or voids inside.
- a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet; and one or more other porous layers are laminated on the microporous film or the porous sheet.
- a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
- the separator for a non-aqueous secondary battery according to another embodiment of the present invention is synonymous with the porous substrate according to the above-described embodiment of the present invention, and the preferred embodiment is also the same.
- the puncture strength of the porous substrate can be 200 g or more from the viewpoint of improving the production yield.
- the porous layer has a large number of micropores inside, and has a structure in which these micropores are connected to each other. A layer through which liquid can pass.
- the porous layer when the separator has a porous layer, the porous layer preferably has adhesiveness to an adherend such as an electrode.
- a porous layer can be comprised as a layer to which adhesiveness was provided by containing a polyvinylidene fluoride resin.
- the above-described filler made of inorganic or organic materials may be added to the porous layer.
- the porous layer is provided as a surface layer (outermost layer) of the separator on one surface or both surfaces of the porous substrate, and when the separator and the electrode are stacked and hot pressed, It is preferable to be configured in an adhesive layer.
- the aspect which has a porous layer in both surfaces compared with the aspect which exists in only one side of a porous base material is preferable at the point which is excellent in the cycling characteristics of a battery.
- the coating amount of the polyvinylidene fluoride resin of the porous layer is 0.5g / m 2 ⁇ 1.5g / m 2 on one side of the porous substrate It is preferably 0.75 g / m 2 to 1.25 g / m 2 .
- the coating amount of the polyvinylidene fluoride resin porous layer is at 1.0g / m 2 ⁇ 3.0g / m 2 as the sum of two-sided It is preferably 1.5 g / m 2 to 2.5 g / m 2 .
- the coating amount of the porous layer is 1.0 g / m 2 (0.5 g / m 2 in the case of one side) or more, the adhesion with the electrode becomes better, and the cycle characteristics in the case of a battery are excellent. . Further, when the coating amount of the porous layer (in the case of single-sided 1.5g / m 2) 3.0g / m 2 or less, excellent load characteristics of better battery ion permeability.
- the difference between the coating amount on one side and the coating amount on the other side is relative to the total coating amount on both sides. It is preferable that it is 20% or less. When the difference is 20% or less, the separator is difficult to curl, and as a result, the handling property is further improved and the cycle characteristics are hardly deteriorated.
- the average thickness, porosity, and average pore diameter of the porous layer are the same as those in the porous layer according to the above-described embodiment of the present invention. It is the same as that of a case, and a preferable aspect is also the same.
- separators for non-aqueous secondary batteries are related to one embodiment of the present invention described above. This is the same as in the case of the non-aqueous secondary battery separator, and the preferred embodiment is also the same.
- the separator for a non-aqueous secondary battery according to another embodiment of the present invention preferably has a porous structure from the viewpoint of ion permeability, and therefore, a non-aqueous system in a state where a porous layer is formed.
- the value obtained by subtracting the Gurley value of the porous substrate from the Gurley value of the secondary battery separator is the same as that in the non-aqueous secondary battery separator according to the embodiment of the present invention described above, and a preferable aspect is also provided. It is the same.
- the chargeability (antistatic effect) of the separator for a non-aqueous secondary battery according to another embodiment of the present invention can be confirmed by a half-life measurement method described in JIS L 1094 (1997). However, since the separator is used in a dry environment, it is desirable to check the antistatic effect by assuming that environment.
- the separator is allowed to stand for 1 day in an environment with a dew point of ⁇ 50 ° C., and the half life measured in an environment with a dew point of ⁇ 50 ° C. is used as an index of the antistatic effect. To do.
- the half-life measured by such a method is preferably 100 seconds or less, more preferably 50 seconds or less.
- the effect of reducing the battery internal resistance of the non-aqueous secondary battery separator according to another embodiment of the present invention is the effect of the fluorine-containing nonionic surfactant applied for the above-described antistatic effect.
- the output characteristic of a battery improves.
- the detailed reason why the internal resistance is reduced is not necessarily clarified, but is presumed as follows. That is, The specific fluorine-containing nonionic surfactant described above adhering to the separator elutes into the electrolyte solution, and the eluted fluorine-containing nonionic surfactant acts on the electrode to reduce the reaction resistance. It is assumed that there is.
- the fluorine-containing nonionic surfactant is attached to the separator to such an extent that a half-life capable of ensuring handling properties can be obtained as described above. Therefore, also from the viewpoint of reducing internal resistance, the aforementioned half-life is preferably 100 seconds or less, and more preferably 50 seconds or less.
- the moisture content of the separator for a non-aqueous secondary battery according to another embodiment of the present invention is kept low.
- the moisture content is preferably 500 ppm or less, more preferably 300 ppm or less, and still more preferably 100 ppm or less.
- the moisture content is a value measured with a Karl Fischer moisture meter. From the viewpoint of obtaining a separator having a low moisture content, the hydrophilic structural unit of the fluorine-containing nonionic surfactant contained in the separator is important, and it is necessary to select the type and abundance ratio of the hydrophilic structural unit as desired.
- the added mole number of the alkylene oxide chain is an index.
- the average added mole number of the alkylene oxide chain eg, ethylene oxide chain
- the amount of the non-fluorinated nonionic surfactant attached may be within the range where the above-mentioned half-life and moisture content are realized. There is no particular limitation.
- the separator for non-aqueous secondary batteries according to another embodiment of the present invention is manufactured, for example, by the following method.
- a first method when the separator is a laminated film, a coating film containing a polyvinylidene fluoride resin (and filler if necessary) is coated on the porous substrate to form a coating film. Then, after the resin of the coating film is solidified, a solution of the specific fluorine-containing nonionic surfactant described above is applied to the solidified coating film to add a fluorine-containing nonion to the coating film.
- a coating film containing a polyvinylidene fluoride resin (and a filler or the like if necessary) is applied on the release sheet to form a coating film.
- the resin of the coating film is solidified and the solution of the specific fluorine-containing nonionic surfactant described above is applied to the solidified coating film and the fluorine-containing nonionic surfactant is adhered thereto Alternatively, it may be produced by peeling from the release sheet.
- coating of a solution can be performed by methods, such as the apply
- a solution containing a polyvinylidene fluoride resin and the specific fluorine-containing nonionic surfactant described above is applied to a porous sheet such as nonwoven fabric or paper (a filler may be supported beforehand if necessary), dried, and a polyvinylidene fluoride resin and a fluorine-containing nonionic surfactant are added. You may manufacture by carrying
- the application of the solution can be performed by a method such as a coating method, a dipping method, or a spraying method.
- the porous layer containing the polyvinylidene fluoride resin can be formed by, for example, the following wet coating method.
- a polyvinylidene fluoride resin is dissolved and dispersed in a solvent to prepare a coating solution, and this coating solution is applied to a porous substrate.
- a coating film Forming a porous layer on a porous substrate by solidifying the resin while inducing heat separation of the heat-resistant resin or adhesive resin in the coagulation liquid while solidifying the resin, and (iii) washing and drying.
- the coating liquid may contain a fluorine-containing nonionic surfactant, a filler, or the like. Details of the wet coating method suitable for the present invention are as follows.
- Solvents for dissolving the polyvinylidene fluoride resin used for preparing the coating liquid include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide. Preferably used. From the viewpoint of forming a good porous structure, it is preferable to mix a phase separation agent that induces phase separation in addition to a good solvent. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol. The phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
- the solvent used for preparing the coating liquid is preferably a mixed solvent containing 60% by mass or more of a good solvent and 40% by mass or less of a phase separation agent from the viewpoint of forming a good porous structure.
- the coating liquid preferably contains a polyvinylidene fluoride resin at a concentration of 3% by mass to 10% by mass from the viewpoint of forming a good porous structure.
- the porous layer may be mixed or dissolved in the coating solution.
- a conventional coating method such as a Meyer bar, a die coater, a reverse roll coater, or a gravure coater may be applied to the coating liquid on the porous substrate. Moreover, you may apply by immersing a porous base material in a coating liquid. When forming a porous layer on both surfaces of a porous base material, it is preferable from a viewpoint of productivity to apply a coating liquid to a base material simultaneously on both surfaces.
- the porous layer can be produced by a dry coating method other than the wet coating method described above.
- the dry coating method refers to, for example, coating a porous substrate with a coating liquid containing a polyvinylidene fluoride resin and a filler, and drying the coating layer to volatilize and remove the solvent. Is the way to get.
- the wet coating method is preferred in that a good porous structure can be obtained.
- the coagulation liquid is generally composed of a good solvent used for preparing the coating liquid, a phase separation agent, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is matched to the mixing ratio of the mixed solvent used for preparing the coating liquid.
- the water concentration is suitably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
- the heat-resistant resin or adhesive resin can be coagulated by spraying a coagulating liquid on the porous substrate after coating, or by using a porous substrate in a bath (coagulating bath) containing the coagulating solution.
- the method of immersing is included.
- the drying method is not particularly limited, but the drying temperature is suitably 50 ° C to 100 ° C.
- the drying temperature is suitably 50 ° C to 100 ° C.
- a step (v) for drying the coated porous substrate may be provided.
- the drying temperature in step (v) may be any temperature at which the solvent can be removed, and a range of 50 ° C. to 200 ° C. is appropriate.
- a porous layer is produced as an independent sheet, and this porous layer is stacked on a porous substrate and combined by thermocompression bonding or an adhesive. It can also be manufactured by a method of converting to As a method for producing the porous layer as an independent sheet, a coating liquid containing a polyvinylidene fluoride resin and a filler is applied onto a release sheet, and the above-described wet coating method or dry coating method is applied to make the porous layer porous. The method of forming a layer and peeling a porous layer from a peeling sheet is mentioned.
- a non-aqueous secondary battery according to an embodiment of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, and relates to a positive electrode, a negative electrode, and the above-described embodiments of the present invention. And a non-aqueous secondary battery separator.
- the non-aqueous secondary battery has a structure in which a battery element in which a structure body in which a negative electrode and a positive electrode face each other via a separator is impregnated with an electrolytic solution is enclosed in an exterior material.
- Doping means occlusion, loading, adsorption, or insertion, and means a phenomenon in which lithium ions enter an active material of an electrode such as a positive electrode.
- the nonaqueous secondary battery which is an embodiment of the present invention is suitable for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
- the non-aqueous secondary battery according to the embodiment of the present invention includes the above-described separator as a separator, so that the internal resistance of the battery is kept low, and the output characteristics are excellent.
- the positive electrode may have a structure in which an active material layer including a positive electrode active material and a binder resin is formed on a current collector.
- the active material layer may further contain a conductive additive.
- the positive electrode active material include lithium-containing transition metal oxides, and specifically include LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1. / 3 O 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 1/2 Ni 1/2 O 2 , LiAl 1/4 Ni 3/4 O 2 and the like.
- the binder resin include polyvinylidene fluoride resin.
- the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
- the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m.
- the polyvinylidene fluoride resin when the porous layer of the separator is disposed on the positive electrode side, the polyvinylidene fluoride resin is excellent in oxidation resistance, so that it can operate at a high voltage of 4.2 V or more. It is easy to apply positive electrode active materials such as LiMn 1/2 Ni 1/2 O 2 and LiCo 1/3 Mn 1/3 Ni 1/3 O 2 .
- the negative electrode may have a structure in which an active material layer including a negative electrode active material and a binder resin is formed on a current collector.
- the active material layer may further contain a conductive additive.
- the negative electrode active material include materials that can occlude lithium electrochemically, and specific examples include carbon materials; alloys of silicon, tin, aluminum, and the like with lithium; and the like.
- the binder resin include polyvinylidene fluoride resin and styrene-butadiene rubber.
- the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
- Examples of the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.
- the electrolytic solution is, for example, a solution in which a lithium salt is dissolved in a non-aqueous solvent.
- the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
- non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof; ⁇ -butyrolactone , Cyclic esters such as ⁇ -valerolactone; and the like. These may be used alone or in combination.
- Examples of the exterior material include metal cans and aluminum laminate film packs.
- the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator according to the embodiment of the present invention is suitable for any shape.
- the separator for a non-aqueous secondary battery according to an embodiment of the present invention is not easily charged, includes a polyvinylidene fluoride resin, has excellent adhesion to an electrode, and reduces internal battery resistance. In addition, it is configured to obtain good battery output from both physical and chemical aspects. From this point of view, the reduction in output characteristics due to the formation of a gap between the electrode and the separator due to expansion and contraction of the electrode due to external impact or charge / discharge, charging due to charge / discharge, etc. has been improved.
- the separator for a non-aqueous secondary battery according to the embodiment is suitable for a soft pack battery having an aluminum laminate film pack as an exterior material.
- a non-aqueous secondary battery includes, for example, an exterior material (for example, an aluminum laminate film pack) obtained by impregnating a laminate in which the separator described above is disposed between a positive electrode and a negative electrode with an electrolytic solution. And pressurizing (pressing; a preferable pressing pressure is 0.5 to 40 kg / cm 2 ) from above the exterior material. By this hot pressing, the electrode and the separator are favorably bonded.
- an exterior material for example, an aluminum laminate film pack obtained by impregnating a laminate in which the separator described above is disposed between a positive electrode and a negative electrode with an electrolytic solution.
- pressurizing pressing; a preferable pressing pressure is 0.5 to 40 kg / cm 2
- the separator for a non-aqueous secondary battery according to the embodiment of the present invention includes a polyvinylidene fluoride-based resin, and can be bonded by overlapping with the electrode. Therefore, in the battery manufacturing process, the above pressing is not an indispensable step, but it is preferable to perform pressing in terms of enhancing the adhesion between the electrode and the separator. Further, from the viewpoint of enhancing the adhesion between the electrode and the separator, the pressing is preferably performed by applying pressure while heating (hot pressing; preferable temperature is 80 to 100 ° C.).
- the method of arranging the separator between the positive electrode and the negative electrode may be a method of stacking at least one layer of the positive electrode, the separator, and the negative electrode in this order (so-called stack method).
- stack method A method of overlapping in this order and rolling in the length direction may be used.
- a separator (size: 20 cm ⁇ 20 cm) is immersed in dimethyl sulfoxide, dimethyl sulfoxide soluble components in the separator are extracted, and the surface activity contained in the separator is determined from the results of 1 H-NMR and 19 F-NMR determined by NMR. The amount of agent was calculated.
- the test lithium ion secondary battery was charged at a constant current and constant voltage of 0.2C, 4.2V, 8 hours, and discharged at a constant current discharge of 0.2C and 2.75V at 25 ° C. After carrying out the operation of repeating charge / discharge at the bottom (5 cycles of charge / discharge), constant current charge of 0.2C, 4.2V, 8 hours was carried out, and in this state, AC impedance measurement was carried out at 25 ° C. . At this time, AC impedance measurement conditions were an amplitude of 10 mV and a frequency of 0.1 Hz. Resistance (ohm * cm ⁇ 2 >) obtained on said measurement conditions was made into battery internal resistance.
- Example 1 Provide of separators for non-aqueous secondary batteries-
- a fluorine-containing nonionic surfactant, Phantent 222F (perfluoroalkenyl ethylene oxide adduct (ethylene oxide average addition mole number: 22 mol); manufactured by Neos) 0.12% by mass was dissolved in methanol and dissolved in this solution.
- a polyethylene microporous film film thickness: 16 ⁇ m, Gurley value: 150 seconds / 100 ml, porosity: 40% was immersed. Then, it was made to dry and the separator for non-aqueous secondary batteries which is one Embodiment of this invention was obtained.
- the detergent 222F is a polyoxyethylene ether in which one terminal is a perfluoroalkyl structure and the other is an ethylene oxide chain.
- Gurley value was measured with a Gurley densometer (G-B2C, manufactured by Toyo Seiki Co., Ltd.) according to JIS P8117 (2009).
- the porosity is determined from the following formula [ ⁇ : porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness ( ⁇ m)]. It was.
- the film thickness t may be a value obtained by subtracting the thickness of the porous substrate from the thickness of the separator, for example.
- ⁇ ⁇ 1-Ws / (ds ⁇ t) ⁇ ⁇ 100
- Negative Electrode 87 g of artificial graphite as a negative electrode active material, 3 g of acetylene black as a conductive additive, and 10 g of polyvinylidene fluoride as a binder were added so that the concentration of polyvinylidene fluoride was 8.5% by mass.
- NMP methyl-pyrrolidone
- This negative electrode slurry was applied to a 25 ⁇ m thick copper foil as a negative electrode current collector, dried and pressed to obtain a negative electrode having a negative electrode active material layer.
- test lithium ion secondary battery After welding a lead tab to the obtained positive electrode and negative electrode, the positive electrode, the separator, and the negative electrode were joined in this order, soaked in the electrolyte, and then in the aluminum pack was sealed using a vacuum sealer to prepare a test lithium ion secondary battery.
- Example 2 In Example 1, except that the amount of fluorine-containing nonionic surfactant (phthalent 222F) dissolved in methanol was changed from 0.12% by mass to 0.95% by mass, the same as in Example 1, While obtaining the separator for non-aqueous secondary batteries, the lithium ion secondary battery for a test was produced.
- phthalent 222F fluorine-containing nonionic surfactant
- Example 3 In Example 1, in the same manner as in Example 1 except that the amount of fluorine-containing nonionic surfactant (phthalent 222F) dissolved in methanol was changed from 0.12% by mass to 0.011% by mass, While obtaining the separator for non-aqueous secondary batteries, the lithium ion secondary battery for a test was produced.
- fluorine-containing nonionic surfactant phthalent 222F
- Example 4 In Example 1, except that the amount of fluorine-containing nonionic surfactant (phthalent 222F) dissolved in methanol was changed from 0.12% by mass to 0.0013% by mass, the same as in Example 1, While obtaining the separator for non-aqueous secondary batteries, the lithium ion secondary battery for a test was produced.
- phthalent 222F fluorine-containing nonionic surfactant
- Example 5 In Example 1, 0.12 parts by mass of a fluorine-containing nonionic surfactant (phthalent 222F) was added to a fluorine-containing nonionic surfactant, solvent 212M (perfluoroalkenyl ethylene oxide adduct (ethylene oxide average addition mole). Number: 12 mol); manufactured by Neos Co., Ltd.) A non-aqueous secondary battery separator was obtained and a test lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 0.14 parts by mass. .
- the detergent 212M is a polyoxyethylene ether in which one terminal is a perfluoroalkenyl structure and the other is an ethylene oxide chain.
- Example 6 In Example 1, 0.12 parts by mass of a fluorine-containing nonionic surfactant (phthalent 222F) was added to a fluorine-containing nonionic surfactant, surfactant 208G (perfluoroalkenyl ethylene oxide adduct (ethylene oxide average addition mole). Number: 8 moles); manufactured by Neos Co.) A non-aqueous secondary battery separator was obtained and a test lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 0.13 parts by mass. .
- the detergent 208G is a polyoxyethylene ether in which one terminal is a perfluoroalkenyl structure and the other is an ethylene oxide chain.
- Example 7 In Example 1, 0.12 part by mass of a fluorine-containing nonionic surfactant (phthalent 222F) was added to the solvent FTX-218 (perfluoroalkenyl ethylene oxide adduct (ethylene oxide average addition mole number: 18 mol)); (Product made) Except having replaced with 0.11 mass part, it carried out similarly to Example 1, and obtained the separator for non-aqueous secondary batteries, and produced the lithium ion secondary battery for a test.
- the tergent FTX-218 is a polyoxyethylene ether in which one terminal is a perfluoroalkenyl structure and the other is an ethylene oxide chain.
- Example 1 Comparative Example 1 In Example 1, except that the amount of the fluorine-containing nonionic surfactant (phthalent 222F) dissolved in methanol was changed from 0.12% by mass to 0.00065% by mass, the same as in Example 1, While obtaining the separator for non-aqueous secondary batteries, the lithium ion secondary battery for a test was produced.
- the fluorine-containing nonionic surfactant phthalent 222F
- Example 2 (Comparative Example 2) In Example 1, except that the amount of fluorine-containing nonionic surfactant (Furgent 222F) dissolved in methanol was changed from 0.12% by mass to 1.8% by mass, the same as in Example 1, While obtaining the separator for non-aqueous secondary batteries, the lithium ion secondary battery for a test was produced.
- Example 3 In Example 1, the same procedure as in Example 1 was performed, except that the fluorine-containing nonionic surfactant (Furgent 222F) was replaced with Fluorant 110 (manufactured by Neos), which is a fluorine-containing anionic surfactant. A separator for a non-aqueous secondary battery was obtained, and a test lithium ion secondary battery was produced.
- Fluorant 110 manufactured by Neos
- Example 4 In Example 1, 0.12 parts by mass of the fluorine-containing nonionic surfactant (Furgent 222F) was replaced with 0.14 parts by mass of Phgentent 310 (manufactured by Neos), which is a fluorine-based cationic surfactant. Except for the above, a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 1, and a test lithium ion secondary battery was produced.
- Example 5 (Comparative Example 5) In Example 1, 0.12 parts by mass of fluorine-containing nonionic surfactant (Furgent 222F) was added to 0.13 mass of Emulgen 108 (polyoxyethylene lauryl ether; manufactured by Kao Corporation) as a nonionic surfactant. A non-aqueous secondary battery separator was obtained and a test lithium ion secondary battery was produced in the same manner as in Example 1 except that the part was replaced with the part.
- fluorine-containing nonionic surfactant Fluorine-containing nonionic surfactant
- Emulgen 108 polyoxyethylene lauryl ether
- Example 6 In Example 1, a non-aqueous system was obtained in the same manner as in Example 1 except that a polyethylene microporous membrane was immersed in methanol to obtain a non-aqueous secondary battery separator without using a fluorine-containing nonionic surfactant. While obtaining the separator for secondary batteries, the lithium ion secondary battery for a test was produced.
- Example 8 -Production of separators for non-aqueous secondary batteries-
- DMAc dimethylacetamide
- TPG tripropylene glycol
- this coating solution is applied to both sides of a polyethylene microporous film (film thickness: 9 ⁇ m, Gurley value: 150 seconds / 100 ml, porosity: about 40%), and this is mixed with water, dimethylacetamide and tri
- the coating film After the coating film is solidified, it is washed with water, dipped in a 0.1% by weight aqueous solution of footgent 212M (average added mole number of ethylene oxide: 12 moles, fluorine-containing nonionic surfactant manufactured by Neos) and dried. It was. In this way, a separator for a non-aqueous secondary battery was obtained.
- Table 2 shows the physical properties of the obtained separator.
- the detergent 212M is a polyoxyethylene ether in which one end is a perfluoroalkenyl group and the other is an ethylene oxide chain.
- Gurley value was measured with a Gurley densometer (G-B2C, manufactured by Toyo Seiki Co., Ltd.) according to JIS P8117 (2009).
- the porosity is determined from the following formula [ ⁇ : porosity (%), Ws: basis weight (g / m 2 ), ds: true density (g / cm 3 ), t: film thickness ( ⁇ m)]. It was.
- Negative Electrode 87 g of artificial graphite as a negative electrode active material, 3 g of acetylene black as a conductive additive, and 10 g of polyvinylidene fluoride as a binder were added so that the concentration of polyvinylidene fluoride was 8.5% by mass.
- NMP methyl-pyrrolidone
- This negative electrode slurry was applied to a 25 ⁇ m thick copper foil as a negative electrode current collector, dried and pressed to obtain a negative electrode having a negative electrode active material layer.
- test lithium ion secondary battery After welding a lead tab to the obtained positive electrode and negative electrode, the positive electrode, the separator, and the negative electrode were joined in this order, soaked in the electrolyte, and then in the aluminum pack was sealed using a vacuum sealer to prepare a test lithium ion secondary battery.
- Example 9 In Example 8, 0.1% of fluorine-containing nonionic surfactant (phthalent 212M) was added to the solvent 215M (ethylene oxide average addition mole number: 15 mol, fluorine-containing nonionic surfactant manufactured by Neos).
- solvent 215M ethylene oxide average addition mole number: 15 mol, fluorine-containing nonionic surfactant manufactured by Neos.
- a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 8 except that the mass% aqueous solution was used, and a test lithium ion secondary battery was produced.
- Table 2 shows the physical properties of this separator.
- the detergent 215M is a polyoxyethylene ether in which one end is a perfluoroalkenyl group and the other is an ethylene oxide chain.
- Example 10 In Example 8, a fluorine-containing nonionic surfactant (phthalent 212M) was mixed with 0.12 of footent 250 (average added mole number of ethylene oxide: 22 mol, fluorine-containing nonionic surfactant manufactured by Neos).
- a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 8 except that the mass% aqueous solution was used, and a test lithium ion secondary battery was produced.
- Table 2 shows the physical properties of this separator.
- the detergent 250 is a polyoxyethylene ether in which one end is a perfluoroalkenyl group and the other is an ethylene oxide chain.
- Example 11 In Example 8, a fluorine-containing nonionic surfactant (phthalent 212M) was mixed with 0.15 of solvent 251 (average addition mole number of ethylene oxide: 8 mol, fluorine-containing nonionic surfactant manufactured by Neos).
- solvent 251 average addition mole number of ethylene oxide: 8 mol, fluorine-containing nonionic surfactant manufactured by Neos.
- a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 8 except that the mass% aqueous solution was used, and a test lithium ion secondary battery was produced.
- Table 2 shows the physical properties of this separator.
- the detergent 251M is a polyoxyethylene ether in which one end is a perfluoroalkenyl group and the other is an ethylene oxide chain.
- Example 7 (Comparative Example 7) In Example 8, except that the fluorine-containing nonionic surfactant (Fargent 212M) was replaced with a 0.1% by mass aqueous solution of Footent 110 (manufactured by Neos), which is a fluorine-containing anionic surfactant, In the same manner as in Example 8, a separator for a non-aqueous secondary battery was obtained, and a test lithium ion secondary battery was produced. Table 2 shows the physical properties of this separator.
- Fargent 212M fluorine-containing nonionic surfactant
- Footent 110 manufactured by Neos
- Example 8 In Example 8, except that the fluorine-containing nonionic surfactant (Factent 212M) was replaced with a 0.1 mass% aqueous solution of Phgentent 310 (manufactured by Neos), which is a fluorine-based cationic surfactant, In the same manner as in Example 8, a separator for a non-aqueous secondary battery was obtained, and a test lithium ion secondary battery was produced. Table 2 shows the physical properties of this separator.
- Example 8 a fluorine-containing nonionic surfactant (phthalent 212M) was mixed with 0.12 of the solvent 245F (average added mole number of ethylene oxide: 45 mol, fluorine-containing nonionic surfactant manufactured by Neos).
- a separator for a non-aqueous secondary battery was obtained in the same manner as in Example 8 except that the mass% aqueous solution was used, and a test lithium ion secondary battery was produced.
- Table 2 shows the physical properties of this separator.
- the detergent 222F is a polyoxyethylene ether in which both ends are perfluoroalkenyl groups and an ethylene oxide chain is arranged in the center.
- Example 10 Comparative Example 10
- the fluorine-containing nonionic surfactant phthalent 212M
- Emulgen 120 polyoxyethylene lauryl ether, manufactured by Kao Corporation
- Table 2 shows the physical properties of this separator.
- Example 8 In Example 8, after the coating film was solidified and washed with water, it was dried without performing the operation of immersing it in a 0.1% by weight aqueous solution of Footent 212M, thereby obtaining a separator for a non-aqueous secondary battery, and a test. A lithium ion secondary battery was prepared. Table 2 shows the physical properties of the obtained separator.
- Comparative Example 10 using a non-fluorinated nonionic surfactant has a small half-life and exhibits an antistatic effect, but conversely, the battery internal resistance is increased, resulting in the deterioration of battery characteristics. It was. Moreover, in Comparative Example 11 containing no surfactant, the battery was easily charged, the internal resistance of the battery was high, and the battery characteristics were inferior.
- the separator for a non-aqueous secondary battery reduces the internal resistance of the battery and improves the output characteristics, and is therefore suitable for a non-aqueous secondary battery, specifically a lithium ion secondary battery. is there.
- the secondary battery provided with the separator which concerns on one Embodiment of this invention can be utilized suitably for the application where an output characteristic is important.
- the separator for a non-aqueous secondary battery which is another embodiment of the present invention by preventing charging of the separator containing a polyvinylidene fluoride-based resin that can be bonded to the electrode, good handling properties are realized, Moreover, the internal resistance of the battery was reduced and the output characteristics were improved. From this, it can apply suitably for a non-aqueous secondary battery, specifically, a lithium ion secondary battery. In particular, it is suitable for a lithium ion secondary battery having a soft pack exterior made of aluminum laminate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
Abstract
Description
セパレータ側で行う技術として、空孔率が高く孔径の大きい構造とする方法が検討され、このような観点から、不織布や紙などを用いた形態が注目されている(例えば、特許第4970539号公報参照)。
アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴なって電極とセパレータとの間に隙間が形成される場合がある。これは、サイクル寿命を悪化させる一因であり、電極やセパレータ等の接着部の接着性を均一に保つことは重要な技術的課題の一つである。
また、不織布等を用いた形態では、セパレータ本来の役割である正極と負極の電気的短絡を防止する機能を適切な膜厚で確保することが困難であり、またデンドライトに対する耐性が不十分である等により、歩留まりの点で実用的な手法とは言い難い。
本発明の一実施形態は、電池の内部抵抗を低減し、出力特性を改善する非水系二次電池用セパレータを提供することを目的とする。また、本発明の他の一実施形態は、ポリフッ化ビニリデン系樹脂を含みつつも帯電が抑制され、電池の内部抵抗を低減する非水系二次電池用セパレータを提供することを目的とする。
更に、本発明の実施形態は、出力特性に優れた非水系二次電池を提供することを目的とする。
本発明の一実施形態は、
<1> フッ素原子を含む疎水構造単位と親水構造単位とを有するフッ素含有非イオン性界面活性剤を含む膜を備え、前記フッ素含有非イオン性界面活性剤の含有量が0.001g/m2以上1g/m2以下である非水系二次電池用セパレータである。
<2> 少なくとも一方の表面の少なくとも一部に配されたポリフッ化ビニリデン系樹脂と、末端の一方が親水構造単位であり、他方がフッ素原子を含む疎水構造単位であるフッ素含有非イオン性界面活性剤と、を含む非水系二次電池用セパレータである。
<3> 前記表面を形成する表層として、前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層を片面又は両面に有する前記<2>に記載の非水系二次電池用セパレータである。
<4> 多孔質基材と、多孔質基材の片面又は両面に前記表面を形成する表層として設けられ、前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層と、を備えた前記<2>又は前記<3>に記載の非水系二次電池用セパレータである。
<5> 前記多孔質基材が、ポリエチレン微多孔膜である前記<4>に記載の非水系二次電池用セパレータである。
<6> 前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層は、多孔質層である前記<3>~前記<5>のいずれか1つに記載の非水系二次電池用セパレータである。
<7> 前記疎水構造単位としてフルオロアルキル基又はフルオロアルケニル基を有する前記<1>~前記<6>のいずれか1つに記載の非水系二次電池用セパレータである。
<8> 前記親水構造単位としてアルキレンオキシド鎖を有する前記<1>~前記<7>のいずれか1つに記載の非水系二次電池用セパレータである。
<9> 前記アルキレンオキシド鎖は、エチレンオキシド鎖である前記<8>に記載の非水系二次電池用セパレータである。
<10> 前記アルキレンオキシド鎖の平均付加モル数が、5モル以上25モル以下である前記<8>又は前記<9>に記載の非水系二次電池用セパレータである。
<11> 前記フッ素含有非イオン性界面活性剤は、パーフルオロアルキルアルキレンオキシド付加物及びパーフルオロアルケニルアルキレンオキシド付加物から選択される少なくとも一種である前記<1>~前記<10>のいずれか1つに記載の非水系二次電池用セパレータである。
<12> 正極と、負極と、前記正極及び前記負極の間に配置された前記<1>~前記<11>のいずれか1つに記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池である。
また、本発明の実施形態によれば、出力特性に優れた非水系二次電池が提供される。
好ましい実施形態の一つとして、本発明の他の一実施形態に係る非水系二次電池用セパレータは、少なくとも一方の表面の少なくとも一部に配されたポリフッ化ビニリデン系樹脂と、末端の一方が親水構造単位であり、他方がフッ素原子を含む疎水構造単位であるフッ素含有非イオン性界面活性剤と、を用いて構成されてもよい。本発明の他の一実施形態に係る非水系二次電池用セパレータは、必要に応じて、更に、ポリフッ化ビニリデン系樹脂以外の樹脂や、フィラー等の他の成分を含んでもよい。
本開示のセパレータにおいては、分子中にフッ素原子を含む疎水構造単位と親水構造単位とを有する特定のフッ素含有非イオン性界面活性剤を含有することで、必ずしも高空孔率化、大孔径化を図ることなく、他の非イオン性界面活性剤やイオン性界面活性剤を用いたセパレータに比べ、電池の内部抵抗を著しく低下させる効果が発現し、電池の出力特性の向上が図れるとの効果を奏する。
また、セパレータを高空孔率にしたり孔を大径にする必要がないため、電池の歩留まりの低下を招くことがなく、むしろ電解液の浸透速度を促進し、かつ均一性の高い浸透が可能になる。これにより、電池の生産性や歩留まりを向上させることも可能になる。
本発明において、上記のように、セパレータを構成する樹脂成分であるポリフッ化ビニリデン系樹脂を、各末端に親水構造単位とフッ素原子を含む疎水構造単位とを有する特定のフッ素含有非イオン性界面活性剤とともに含有することは好ましい態様(上記他の一実施形態)である。これにより、帯電を抑制し、ハンドリング性が向上することに加え、特定のフッ素含有非イオン性界面活性剤以外の他の非イオン性界面活性剤を用いた場合に比べ、電池の内部抵抗が効果的に低下し、出力特性に優れたものとなるとの効果が得られる。
本発明の一実施形態である非水系二次電池用セパレータ(以下、単に「セパレータ」ともいう。)は、後述する特定のフッ素含有非イオン性界面活性剤を含む膜として構成されていれば、特に制限はなく、単層膜又は多層膜のいずれでもよく、多孔質膜又は非多孔質膜のいずれでもよい。本発明の一実施形態であるセパレータは、イオン透過性の観点から、多孔質膜である単層膜又は多層膜であることが好ましい。
本発明の一実施形態であるセパレータの膜構造としては、以下の態様のいずれでもよく、これらにフッ素含有非イオン性界面活性剤を付与することで、本発明の一実施形態に係る非水系二次電池用セパレータとすることができる。
(1)ポリオレフィン製の微多孔膜
例えば、ポリオレフィンを含む単層のポリオレフィン微多孔膜、及び単層のポリオレフィン微多孔膜が複数積層された多層膜が挙げられる。
(2)機能性樹脂の単層膜
例えば、耐熱性樹脂や接着性樹脂等の機能性樹脂からなる単層膜、機能性樹脂とフィラーとを混合した単層膜が挙げられる。
(3)複合膜
例えば、不織布や紙などの繊維状シートの内部及び表面に、機能性樹脂が付与された複合膜が挙げられ、複合膜には更にフィラーが担持されてもよい。
(4)積層膜
例えば、多孔質基材と、該多孔質基材の片面又は両面に積層された、耐熱性樹脂や接着性樹脂等の機能性樹脂を含む層(好ましくは多孔質層)と、を有する積層膜が挙げられ、機能性樹脂を含む層はさらにフィラーを含んでもよい。
本発明の一実施形態である非水系二次電池用セパレータは、フッ素原子を含む疎水構造単位と親水構造単位とを有するフッ素含有非イオン性界面活性剤の少なくとも一種を含有する。
この理由については、必ずしも明らかになっていないが、セパレータに付着しているフッ素含有非イオン性界面活性剤が電解液中へ溶出し、これが電極へ作用し、反応抵抗を低減させていると推定される。また、界面活性剤をセパレータに付着させることによって、電解液のセパレータへの浸透速度を促進し、さらに電解液を均一に浸透させる効果が期待され、電池の生産性向上にも寄与する。更には、帯電防止、滑り性の向上も得られ、結果、ハンドリング性も改善され、電池の歩留まり向上にも寄与する。
また、アルキレンオキシド鎖の、1分子中における平均付加モル数は、電池内部の水分量を抑えつつ所望の帯電防止効果を得る観点からは多過ぎないことが望ましく、5モル以上25モル以下の範囲が好ましい。アルキレンオキシド鎖の平均付加モル数が上記範囲内であることで、セパレータの帯電防止効果がより優れたものとなる。アルキレンオキシド鎖の平均付加モル数は、上記と同様の理由から、5モル以上14モル以下の範囲がより好ましく、5モル以上10モル以下の範囲がさらに好ましい。
フルオロアルキル基としては、炭素数が1~18のフルオロアルキル基が好ましく、例えば、フルオロメチル、フルオロエチル、フルオロプロピル、フルオロブチルなどが挙げられる。中でも、パーフルオロアルキル基がより好ましく、具体例として、パーフルオロメチル、パーフルオロエチル、パーフルオロプロピル、パーフルオロブチルなどが挙げられる。
フルオロアルケニル基としては、炭素数が1~12のフルオロアルケニル基が好ましく、例えば、フルオロエチレニル(フッ化ビニル)、フルオロ-1-プロペニル、フルオロアリル、フルオロイソプロペニル、フルオロ-1-ブテニル、フルオロイソブテニル等などが挙げられる。中でも、パーフルオロアルケニル基がより好ましく、具体例として、パーフルオロエチレニル、パーフルオロ-1-プロペニル、パーフルオロアリル、パーフルオロイソプロペニル、パーフルオロ-1-ブテニル、パーフルオロイソブテニルなどが挙げられる。
更には、疎水構造単位は、直鎖状もしくは分岐状の構造のいずれでもよく、帯電を防ぎ、電池の出力特性を向上させる観点からは、分岐構造を有することがより好ましい。
特に好ましくは、末端の一方にエチレンオキシド鎖を有し、他方にパーフルオロアルケニル基を有するパーフルオロアルケニルエチレンオキシド付加物である。
中でも、フッ素含有非イオン性界面活性剤のセパレータ中における含有量は、上記と同様の理由から、0.01g/m2以上1g/m2以下の範囲が好ましく、0.1g/m2以上1g/m2以下の範囲がより好ましく、0.1g/m2以上0.5g/m2以下の範囲がさらに好ましい。
フッ素含有非イオン性界面活性剤のセパレータにおける含有量は、ジメチルスルホキシド(DMSO)を用い、セパレータをDMSOに浸漬して可溶成分を抽出し、NMRにより求められる1H-NMR、19F-NMRの結果から算出される。
フッ素含有非イオン性界面活性剤を適当な溶媒に溶解した溶液を準備し、この溶液を用いてセパレータを処理し、溶媒を乾燥等の手法で除去する方法が挙げられる。この方法では、乾燥等により除去可能な溶媒を選択する必要がある。このような溶媒としては、メタノール、エタノール等の低沸点有機溶剤、水などが挙げられる。なお、溶液中のフッ素含有非イオン性界面活性剤の濃度及び処理条件(処理する時間や温度など)は、目的とする特性が発現されるように調整すればよく、特に制限はない。
溶液を用いたセパレータの処理は、溶液のセパレータへの塗布もしくは噴霧、溶液中へのセパレータの浸漬などの方法により行うことができる。
低水分率のセパレータを得る観点からは、フッ素含有非イオン性界面活性剤の含有量が重要になるが、加えてフッ素含有非イオン性界面活性剤の親水構造単位も重要となる。すなわち、親水構造単位の種類や存在比率を所望により選択することが重要である。例えば、親水構造単位がアルキレンオキシド鎖(例:エチレンオキシド鎖)の場合、アルキレンオキシド鎖の付加モル数がその指標になる。具体的には、セパレータの水分率を抑える観点から、アルキレンオキシド鎖(例:エチレンオキシド鎖)の平均付加モル数は、5モル以上14モル以下である場合が特に好ましい。
本発明の一実施形態であるセパレータが積層膜として構成する場合、多孔質基材と、多孔質基材の片面又は両面に設けられ、耐熱性樹脂又は接着性樹脂等の機能性樹脂及び既述の特定のフッ素含有非イオン性界面活性剤を含む多孔質層と、が設けられた構成でもよい。
多孔質層は、内部に多数の微細孔を有し、これらの微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能とされた層である。多孔質層は、機能性樹脂を用いて構成することができ、接着性が付与された接着性多孔質層として構成されてもよい。
多孔質層が多孔質基材の両面に設けられている場合、多孔質層の塗工量は、両面の合計として1.0g/m2~3.0g/m2であることが好ましく、1.5g/m2~2.5g/m2であることがより好ましい。
多孔質層の塗工量が1.0g/m2(片面の場合は0.5g/m2)以上であると、電極との接着がより良好になり、電池とした場合のサイクル特性により優れる。また、多孔質層の塗工量が3.0g/m2(片面の場合は1.5g/m2)以下であると、イオン透過性がより良好で電池の負荷特性に優れる。
平均厚さが0.5μm以上であると、電極との接着性が良好であり、電池とした場合のサイクル特性により優れたものとなる。また、平均厚さが4μm以下であると、イオン透過性がより向上し、電池の負荷特性により優れたものとなり、また、セパレータ幅方向における熱膨張率を0%超10%以下の範囲に制御しやすい。
なお、平均厚さは、10cm×10cm内の任意の20点を測定し、その測定値を算術平均して求められる値である。
なお、空孔率は、下記式より求められる値である。
ε={1-Ws/(ds・t)}×100
式中、ε:空孔率(%)、Ws:目付(g/m2)、ds:真密度(g/cm3)、t:膜厚(μm)を表す。
なお、多孔質層の平均孔径(直径、単位:nm)は、窒素ガス吸着量から算出されるPVDF系樹脂からなる多孔質層の空孔表面積Sと、空孔率から算出される多孔質層の空孔体積Vと、を用い、全ての孔が円柱状であると仮定して下記式より算出される。
d=4・V/S
式中、d:多孔質層の平均孔径(nm)、V:多孔質層の1m2当たりの空孔体積、S:多孔質層の1m2当たりの空孔表面積を表す。
また、多孔質層の空孔表面積Sは、以下のようにして求められる。
窒素ガス吸着法でBET式を適用することにより、多孔質基材の比表面積(m2/g)と、多孔質基材及び多孔質層を積層した複合膜の比表面積(m2/g)と、を測定する。それぞれの比表面積にそれぞれの目付(g/m2)を乗算し、それぞれの1m2当たりの空孔表面積を算出する。次いで、多孔質基材1m2当たりの空孔表面積をセパレータ1m2当たりの空孔表面積から減算して、多孔質層1m2当たりの空孔表面積Sを算出する。
耐熱性樹脂としては、融点が200℃以上の樹脂が含まれ、融点が200℃以上の樹脂以外にも、実質的に融点が存在せずに熱分解温度が200℃以上の樹脂も含まれる。
耐熱性樹脂の具体例としては、全芳香族ポリアミド、フッ素系樹脂、ポリイミド、ポリアミドイミド、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド、セルロース、及びこれら2種以上の組み合わせ等が挙げられる。中でも、多孔質構造の形成しやすさ、無機フィラーを用いた場合のフィラーとの結着性、それに伴う多孔膜の強度、耐酸化性など耐久性の観点において、全芳香族ポリアミドが好ましい。また、全芳香族ポリアミドにおいても、パラ型とメタ型とを対比すると、成形が容易という点で、メタ型全芳香族ポリアミドが好ましく、特にポリメタフェニレンイソフタルアミドが好適である。
接着性樹脂の具体例としては、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、スチレン-ブタジエン共重合体、アクリロニトリルやメタクリロニトリル等のビニルニトリル類の単独重合体又は共重合体、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル等が好適である。
また、ポリフッ化ビニリデン系樹脂として、ポリフッ化ビニリデンとポリフッ化ビニリデン共重合体とを混合した混合物を用いてもよい。
ポリフッ化ビニリデン系樹脂は、乳化重合又は懸濁重合により得られる。
<条件>
・GPC:GPC-900(日本分光社製)
・カラム:TSKgel Super AWM-H×2本(東ソー社製)
・移動相溶媒:ジメチルホルムアミド(DMF)
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:140℃
・流量:10ml/分
多孔質層は、フィラーを含有することができる。フィラーを含有することで、セパレータの滑り性や耐熱性を向上し得る。
フィラーとしては、無機物又は有機物からなるフィラーやその他の成分を含有してもよい。無機フィラーとしては、例えばアルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等が挙げられる。また、有機フィラーとしては、例えばアクリル樹脂等が挙げられる。
多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;不織布、紙状シート等の繊維状物からなる多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層させた複合多孔質シート;などが挙げられる。
微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
ポリオレフィン微多孔膜としては、従来の非水系二次電池用セパレータに適用されているポリオレフィン微多孔膜の中から、十分な力学特性とイオン透過性を有するものを選択すればよい。
耐熱性樹脂とは、融点が200℃以上のポリマー、又は、融点を有さず分解温度が200℃以上のポリマーをいう。
本発明の一実施形態である非水系二次電池用セパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm~35μmであることが好ましい。
一実施形態である非水系二次電池用セパレータは、イオン透過性の観点から、多孔化された構造であることが好ましい。具体的には、多孔質層を形成した状態の非水系二次電池用セパレータのガーレ値から多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることが好ましく、150秒/100cc以下であることがより好ましく、さらに好ましくは100秒/100cc以下である。この値が300秒/100cc以下であることで、多孔質層が緻密になり過ぎずイオン透過性が良好に保たれ、優れた電池特性が得られる。
本発明の一実施形態である非水系二次電池用セパレータは、例えば、以下の方法で製造される。
セパレータが単層膜である場合、第1の方法として、多孔質層の例であるポリオレフィン製の微多孔膜に既述の特定のフッ素含有非イオン性界面活性剤の溶解液を付与し、フッ素含有非イオン性界面活性剤を付着させることで製造してもよい。また、第2の方法として、剥離シート上に機能性樹脂(及び必要に応じてフィラー等)を含む塗工液を塗工して塗工膜を形成し、塗工膜の樹脂を固化させ、固化した塗工膜に既述の特定のフッ素含有非イオン性界面活性剤の溶解液を付与してフッ素含有非イオン性界面活性剤を付着させた後、剥離シートから剥離することにより製造してもよい。
第1及び第2の方法において、溶解液の付与は、塗布法、浸漬法、噴霧法等の方法により行うことができる。
湿式塗工法は、(i)機能性樹脂を溶媒に溶解及び分散させて塗工液を調製し、この塗工液を多孔質基材に塗工し、(ii)その後、塗工膜中の機能性樹脂を凝固液により相分離を誘発しつつ凝固させ、(iii)水洗と乾燥を行って、多孔質基材上に多孔質層を形成する製膜法である。なお、塗工液には、目的等に応じてフッ素含有非イオン性界面活性剤やフィラー等を含ませることができる。
本発明の他の一実施形態に係る非水系二次電池用セパレータ(上記同様、「セパレータ」ともいう。)は、少なくとも一方の表面の一部又は全部にポリフッ化ビニリデン系樹脂(以下、単に「PVDF系樹脂」ともいう。)を有し、かつ後述する特定のフッ素含有非イオン性界面活性剤を含む膜として構成されていれば、特に制限はなく、単層膜又は多層膜のいずれでもよく、多孔質膜又は非多孔質膜のいずれでもよい。本発明のセパレータは、イオン透過性の観点から、多孔質膜である単層膜又は多層膜であることが好ましい。
他の一実施形態に係るセパレータの場合の膜構造は、以下の態様のいずれでもよい。
(1)PVDF系樹脂の単層膜
例えば、PVDF系樹脂とフッ素含有非イオン性界面活性剤とからなる単層膜、PVDF系樹脂とフィラーとフッ素系非イオン性界面活性剤とを混合した単層膜が挙げられる。
(2)PVDF系樹脂の複合膜
例えば、不織布や紙などの繊維状シートの内部及び表面に、PVDF系樹脂とフッ素含有非イオン性界面活性剤とが付与された複合膜が挙げられ、複合膜には更にフィラーが担持されてもよい。
(3)PVDF系樹脂の積層膜
例えば、多孔質基材と、該多孔質基材の片面又は両面に積層された、PVDF系樹脂及びフッ素含有非イオン性界面活性剤を含む層(好ましくは多孔質層)と、を有する積層膜が挙げられ、PVDF系樹脂及びフッ素含有非イオン性界面活性剤を含む層は、更にフィラーを含んでもよい。
ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(すなわちポリフッ化ビニリデン)、及びフッ化ビニリデンと他の共重合可能なモノマーとの共重合体(すなわちポリフッ化ビニリデン共重合体)が挙げられる。
また、ポリフッ化ビニリデン系樹脂として、ポリフッ化ビニリデンとポリフッ化ビニリデン共重合体とを混合した混合物を用いてもよい。
本発明の他の一実施形態に係る非水系二次電池用セパレータは、フッ素系界面活性剤として、化合物構造の両末端のうち、一方の末端に親水構造単位を有し、かつ他方の末端にフッ素原子を含む疎水構造単位を有する、非イオン性のフッ素含有界面活性剤の少なくとも一種を含有する。
これは、フッ素系界面活性剤において、その疎水構造単位がセパレータの樹脂に親和的であると同時に、親水構造単位、特にアルキレンオキシド鎖が電解液に対して親和的なためであると推察されるが、電池特性が向上する理由については必ずしも明らかになっていない。
なお、本発明の他の一実施形態に係る非水系二次電池用セパレータにおけるフッ素含有非イオン性界面活性剤の詳細については、下記のセパレータ中の含有量以外は、既述の本発明の一実施形態に含有される、フッ素原子を含む疎水構造単位と親水構造単位とを有するフッ素含有非イオン性界面活性剤と同様であり、好ましい態様も同様である。
フッ素含有非イオン性界面活性剤の含有量が0.1質量%以上であることで、帯電を防ぎ、電池内部抵抗の低減を図り、ハンドリング性に優れたものとなる。また、フッ素含有非イオン性界面活性剤の含有量が20質量%以下であると、セパレータ中の水分率を抑制することができるという点で有利である。
第1に、前記一実施形態と同様に、フッ素含有非イオン性界面活性剤を適当な溶媒に溶解した溶液を準備し、この溶液を用いてセパレータを処理し、溶媒を乾燥等の手法で除去する方法が挙げられる。この方法では、乾燥等により除去可能な溶媒を選択する必要がある。このような溶媒としては、メタノール、エタノール等の低沸点有機溶剤、水などが挙げられる。なお、溶液中のフッ素含有非イオン性界面活性剤の濃度及び処理条件(処理する時間や温度など)は、目的とする特性が発現されるように調整すればよく、特に制限はない。
溶液を用いたセパレータの処理は、溶液のセパレータへの塗布もしくは噴霧、溶液中へのセパレータの浸漬などの方法により行うことができる。
第2に、セパレータを成形する際に用いるポリフッ化ビニリデン系樹脂の溶液にフッ素含有非イオン性界面活性剤を溶解しておく方法が挙げられる。この方法においても、フッ素含有非イオン性界面活性剤の濃度は、目的とする特性が発現されるように調整すればよく、特に制限はない。
本発明の他の一実施形態に係る非水系二次電池用セパレータは、フィラーの少なくとも一種を含有することができる。フィラーを含有することで、セパレータの滑り性や耐熱性を向上し得る。フィラーとしては、無機物又は有機物からなるフィラーやその他の成分を含有してもよい。無機フィラーとしては、例えばアルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等が挙げられる。また、有機フィラーとしては、例えばアクリル樹脂等が挙げられる。
本発明の他の一実施形態に係るセパレータは、本発明の他の一実施形態による効果がより効果的に奏される点で、上記の積層膜に構成されることが好ましい。具体的には、以下の積層膜の態様である。
本発明の他の一実施形態に係るセパレータは、多孔質基材と、多孔質基材の片面又は両面に表面を形成する表層として設けられ、ポリフッ化ビニリデン系樹脂及び既述の特定のフッ素含有非イオン性界面活性剤を含む多孔質層と、を有する積層膜が好ましい。
多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;不織布、紙状シート等の繊維状物からなる多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層させた複合多孔質シート;などが挙げられる。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
本発明の他の一実施形態に係る非水系二次電池用セパレータは、既述の本発明の一実施形態における多孔質基材と同義であり、好ましい態様も同様である。但し、多孔質基材の突刺強度は、製造歩留まりを向上させる観点から、200g以上とすることができる。
本発明の他の一実施形態において、多孔質層は、内部に多数の微細孔を有し、これらの微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能とされた層である。本発明の他の一実施形態において、セパレータが多孔質層を有する場合、多孔質層は、電極等の被接着体に対して接着性を有していることが好ましい。多孔質層は、ポリフッ化ビニリデン系樹脂を含有することで、接着性が付与された層として構成することができる。
多孔質層には、耐熱性向上、ハンドリング性向上を目的として、前述の無機物又は有機物からなるフィラーを添加してもよい。
多孔質層が多孔質基材の両面に設けられている場合、多孔質層のポリフッ化ビニリデン系樹脂の塗工量は、両面の合計として1.0g/m2~3.0g/m2であることが好ましく、1.5g/m2~2.5g/m2であることがより好ましい。
多孔質層の塗工量が1.0g/m2(片面の場合は0.5g/m2)以上であると、電極との接着がより良好になり、電池とした場合のサイクル特性により優れる。また、多孔質層の塗工量が3.0g/m2(片面の場合は1.5g/m2)以下であると、イオン透過性がより良好で電池の負荷特性に優れる。
本発明の他の一実施形態に係る非水系二次電池用セパレータの、全体の膜厚、空孔率、ガーレ値、膜抵抗、曲路率は、既述の本発明の一実施形態に係る非水系二次電池用セパレータにおける場合と同様であり、好ましい態様も同様である。また、本発明の他の一実施形態に係る非水系二次電池用セパレータは、イオン透過性の観点から、多孔化された構造であることが好ましく、したがって多孔質層を形成した状態の非水系二次電池用セパレータのガーレ値から多孔質基材のガーレ値を減算した値も、既述の本発明の一実施形態に係る非水系二次電池用セパレータにおける場合と同様であり、好ましい態様も同様である。
本発明の他の一実施形態では、露点-50℃の環境下でセパレータを1日放置して調湿した後、露点-50℃の環境下で測定された半減期を帯電防止効果の指標とする。良好なハンドリング性を確保するためには、このような方法で測定された半減期は、100秒以下であることが好ましく、さらに好ましくは50秒以下である。
セパレータに付着している既述の特定のフッ素含有非イオン性界面活性剤が電解液中へ溶出し、溶出したフッ素含有非イオン性界面活性剤が、電極へ作用し、反応抵抗を低減させているものと推察される。
良好な内部抵抗低減効果を得るためには、前述のようにハンドリング性を確保し得る半減期が得られる程度に、セパレータにフッ素含有非イオン性界面活性剤が付着されていればよい。したがって、内部抵抗低減の観点からも、前述の半減期としては、100秒以下が好ましく、さらに好ましくは50秒以下である。
低水分率のセパレータを得る観点からは、セパレータに含有されるフッ素含有非イオン性界面活性剤の親水構造単位が重要になり、親水構造単位の種類や存在比率を所望により選択する必要がある。例えば、親水構造単位がアルキレンオキシド鎖(例:エチレンオキシド鎖)の場合、アルキレンオキシド鎖の付加モル数がその指標になる。具体的には、セパレータの水分率を抑える観点から、アルキレンオキシド鎖(例:エチレンオキシド鎖)の平均付加モル数が5モル以上14モル以下である場合が特に好ましい。
なお、本発明の他の一実施形態に係る非水系二次電池用セパレータにおいて、非フッ素系非イオン性界面活性剤の付着量については、前述の半減期及び水分率が実現される範囲であれば、特に制限されるものではない。
本発明の他の一実施形態に係る非水系二次電池用セパレータは、例えば、以下の方法で製造される。
第1の方法として、セパレータが積層膜である場合は、ポリフッ化ビニリデン系樹脂(及び必要に応じてフィラー等)を含む塗工液を多孔質基材上に塗工して塗工膜を形成し、次いで塗工膜の樹脂を固化させた後、この固化した塗工膜に、既述の特定のフッ素含有非イオン性界面活性剤の溶解液を付与して塗工膜にフッ素含有非イオン性界面活性剤を付着させることで、フッ素含有非イオン性界面活性剤を含む多孔質層を多孔質基材上に形成することにより製造してもよい。
また、セパレータが積層膜である場合の第2の方法として、ポリフッ化ビニリデン系樹脂と既述の特定のフッ素含有非イオン性界面活性剤と(必要に応じてフィラー等と)を含む塗工液を用意し、この塗工液を多孔質基材上に塗工して塗工膜を形成し、次いで塗工膜の樹脂を固化させることで、フッ素含有非イオン性界面活性剤を含む多孔質層を多孔質基材上に形成することにより製造してもよい。
また、第4の方法として、セパレータが複合膜である場合には、ポリフッ化ビニリデン系樹脂と既述の特定のフッ素含有非イオン性界面活性剤と(必要に応じてフィラー等と)を含む溶液を用意し、この溶液を不織布や紙などの多孔性シート(必要に応じてあらかじめフィラーが担持されてもよい)に付与、乾燥させ、ポリフッ化ビニリデン系樹脂及びフッ素含有非イオン性界面活性剤を多孔性シートに担持することにより製造してもよい。溶液の付与は、塗布法、浸漬法、噴霧法等の方法によって行うことができる。
湿式塗工法は、(i)ポリフッ化ビニリデン系樹脂を溶媒に溶解及び分散させて塗工液を調製し、この塗工液を多孔質基材に塗工し、(ii)その後、塗工膜中の耐熱性樹脂又は接着性樹脂を、凝固液により相分離を誘発しつつ、樹脂を凝固させ、(iii)水洗と乾燥を行って、多孔質基材上に多孔質層を形成する製膜法である。
なお、塗工液には、場合によりフッ素含有非イオン性界面活性剤やフィラー等を含ませることができる。
本発明に好適な湿式塗工法の詳細は、以下の通りである。
良好な多孔構造を形成する観点からは、良溶媒に加えて相分離を誘発させる相分離剤を混合させることが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。
多孔質層にフィラーやその他の成分を含有させる場合は、塗工液中に混合あるいは溶解させればよい。
多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に基材へ塗工することが生産性の観点から好ましい。
本発明の実施形態である非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系の二次電池であり、正極と、負極と、既述の本発明の実施形態に係る非水系二次電池用セパレータと、を設けて構成されている。非水系二次電池は、負極と正極とがセパレータを介して対向した構造体に電解液が含浸された電池要素が、外装材内に封入された構造を有する。
ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
本発明の実施形態である非水系二次電池は、非水電解質二次電池、特にリチウムイオン二次電池に好適である。
正極活物質としては、例えばリチウム含有遷移金属酸化物等が挙げられ、具体的には、LiCoO2、LiNiO2、LiMn1/2Ni1/2O2、LiCo1/3Mn1/3Ni1/3O2、LiMn2O4、LiFePO4、LiCo1/2Ni1/2O2、LiAl1/4Ni3/4O2等が挙げられる。
バインダー樹脂としては、例えばポリフッ化ビニリデン系樹脂等が挙げられる。
導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。
集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
負極活物質としては、リチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には、例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;等が挙げられる。
バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエンゴム等が挙げられる。
導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。
集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。
また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
リチウム塩としては、例えばLiPF6、LiBF4、LiClO4等が挙げられる。
非水系溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;等が挙げられ、これらは単独で用いても混合して用いてもよい。
電解液としては、鎖状カーボネートに対する環状カーボネートの質量比(環状カーボネート/鎖状カーボネート)を20/80~40/60の範囲として混合し、リチウム塩を0.5M~1.5M溶解したものが好適である。
電池の形状は角型、円筒型、コイン型等があるが、本発明の実施形態に係るセパレータはいずれの形状にも好適である。
かかる観点から、外部からの衝撃や充放電に伴う電極の膨張、収縮による電極とセパレータとの間の隙間形成、充放電に伴う帯電などに起因した出力特性の低下が改善されており、本発明の実施形態に係る非水系二次電池用セパレータは、アルミラミネートフィルム製パックを外装材とするソフトパック電池に好適である。
本発明の実施形態に係る非水系二次電池用セパレータは、ポリフッ化ビニリデン系樹脂を含むことで、電極と重ねることによって接着することが可能である。そのため、電池の製造過程において、上記のプレスは必須とされる工程ではないが、電極とセパレータとの接着性を高める点では、プレスを施すことが好ましい。さらに電極とセパレータとの接着性を高める観点からは、プレスは、加熱しながら加圧(熱プレス;好ましい温度は80~100℃)する方法が好ましい。
以下に示す実施例及び比較例で作製したセパレータ及びリチウムイオン二次電池について、以下の測定、評価を行なった。測定及び評価の結果は、下記の表1に示す。
セパレータ(サイズ:20cm×20cm)をジメチルスルホキシドに浸漬し、セパレータ中のジメチルスルホキシド可溶成分を抽出し、NMRにより求められる1H-NMR、19F-NMRの結果から、セパレータに含まれる界面活性剤の量を算出した。
露点-50℃のドライルーム内にセパレータを1時間放置して調湿した後、放置後のセパレータの質量当たりに対する水分率(ppm)を、露点-50℃のドライルーム内にてカールフィッシャー水分計(AQ-22010S、平沼産業社製)を用いて測定した。
試験用リチウムイオン二次電池を、充電条件を0.2C、4.2V、8時間の定電流定電圧充電とし、放電条件を0.2C、2.75Vカットオフの定電流放電として、25℃下で充放電を繰り返す操作(5サイクルの充放電)を実施した後、0.2C、4.2V、8時間の定電流充電を実施し、この状態で交流インピーダンス測定を25℃にて実施した。このとき、交流インピーダンス測定の条件を振幅10mV、周波数0.1Hzとした。
上記の測定条件で得られた抵抗(ohm・cm2)を電池内部抵抗とした。
JIS L 1094(1997年)に記載の半減期測定法にて、オネストメータアラナイザー-V1(シシド静電気株式会社)を用いてセパレータの半減期(秒)を測定し、測定値に基づいて帯電性を評価した。測定は、セパレータを露点-50℃のドライルーム内に1日放置して調湿し、放置後のサンプルに対して、露点-50℃のドライルーム内で行った。
-非水系二次電池用セパレータの作製-
フッ素含有非イオン性界面活性剤であるフタージェント222F(パーフルオロアルケニルエチレンオキシド付加物(エチレンオキシド平均付加モル数:22モル);ネオス社製)0.12質量%をメタノールに溶解し、この溶解液にポリエチレン微多孔膜(膜厚:16μm、ガーレ値:150秒/100ml、空孔率:40%)を浸漬した。その後、乾燥させて、本発明の一実施形態である非水系二次電池用セパレータを得た。
フタージェント222Fは、末端の一方がパーフルオロアルキル構造であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
なお、ガーレ値は、JIS P8117(2009)に従い、ガーレ式デンソメータ(G-B2C、東洋精機社製)にて測定した。
また、空孔率は、下記式〔ε:空孔率(%)、Ws:目付(g/m2)、ds:真密度(g/cm3)、t:膜厚(μm)〕より求めた。なお、膜厚tは、例えばセパレータの厚みから多孔質基材の厚みを減算した値とすればよい。
ε={1-Ws/(ds・t)}×100
(1)負極の作製
負極活物質である人造黒鉛87g、導電助剤であるアセチレンブラック3g、及びバインダーであるポリフッ化ビニリデン10gを、ポリフッ化ビニリデンの濃度が8.5質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ25μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
(2)正極の作製
正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダーであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
(3)試験用リチウムイオン二次電池の作製
得られた正極と負極とにリードタブを溶接した後、正極、セパレータ、負極をこの順に重ねて接合し、電解液を染み込ませた後、アルミパック中に真空シーラーを用いて封入し、試験用リチウムイオン二次電池を作製した。
電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを3:7の質量比(=EC:EMC)で混合した1M LiPF6混合溶液を用いた。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)のメタノールへの溶解量を0.12質量%から0.95質量%に変更したこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)のメタノールへの溶解量を0.12質量%から0.011質量%に変更したこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)のメタノールへの溶解量を0.12質量%から0.0013質量%に変更したこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)0.12質量部を、フッ素含有非イオン性界面活性剤であるフタージェント212M(パーフルオロアルケニルエチレンオキシド付加物(エチレンオキシド平均付加モル数:12モル);ネオス社製)0.14質量部に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
なお、フタージェント212Mは、末端の一方がパーフルオロアルケニル構造であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)0.12質量部を、フッ素含有非イオン性界面活性剤であるフタージェント208G(パーフルオロアルケニルエチレンオキシド付加物(エチレンオキシド平均付加モル数:8モル);ネオス社製)0.13質量部に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
なお、フタージェント208Gは、末端の一方がパーフルオロアルケニル構造であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)0.12質量部を、フタージェントFTX-218(パーフルオロアルケニルエチレンオキシド付加物(エチレンオキシド平均付加モル数:18モル);ネオス社製)0.11質量部に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
なお、フタージェントFTX-218は、末端の一方がパーフルオロアルケニル構造であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)のメタノールへの溶解量を0.12質量%から0.00065質量%に変更したこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)のメタノールへの溶解量を0.12質量%から1.8質量%に変更したこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)を、フッ素含有アニオン性界面活性剤であるフタージェント110(ネオス社製)に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)0.12質量部を、フッ素系カチオン性界面活性剤であるフタージェント310(ネオス社製)0.14質量部に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤(フタージェント222F)0.12質量部を、非イオン性界面活性剤であるエマルゲン108(ポリオキシエチレンラウリルエーテル;花王社製)0.13質量部に代えたこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
実施例1において、フッ素含有非イオン性界面活性剤を用いず、メタノールにポリエチレン微多孔膜を浸漬して非水系二次電池用セパレータを得たこと以外、実施例1と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。
これに対し、フッ素含有非イオン性界面活性剤の付着量の少ない比較例1では、電池の内部抵抗の低減効果がみられなかった。逆に、フッ素含有非イオン性界面活性剤の付着量が所定量を超える比較例2では、内部抵抗の低減効果は得られるものの、電池内の水分率が著しく増加する結果となった。水分率が多くなり過ぎると、電池内でフッ化水素が発生するため、電池の耐久性及び信頼性を著しく損なうおそれがある。
また、イオン性のフッ素含有界面活性剤を用いた比較例3~4、及び非フッ素系の非イオン性界面活性剤を用いた比較例5では、電池の内部抵抗の低減効果がないばかりか、むしろ電池内部抵抗が高くなり、電池特性を損う結果を招いた。
-非水系二次電池用セパレータの作製-
ポリフッ化ビニリデン系樹脂として、フッ化ビニリデン/ヘキサフロロプロピレン(=98.9モル%/1.1モル%)共重合体(重量平均分子量=195万)を用意した。
ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)とを7/3の比率(=DMAc/TPG;質量比)で混合した混合溶媒に、このポリフッ化ビニリデン系樹脂を3.8質量%溶解し、塗工液を作製した。この塗工液をポリエチレン製の微多孔膜(膜厚:9μm、ガーレ値:150秒/100ml、空孔率:約40%)の両面に等量塗工し、これを水とジメチルアセトアミドとトリプロピレングリコールとを混合した40℃の凝固液(水/DMAc/TPG=57/30/13[質量比])に浸漬してポリフッ化ビニリデン系樹脂を凝固させた。
塗工膜を固化した後、水洗し、フタージェント212M(エチレンオキシド平均付加モル数:12モル、ネオス社製のフッ素含有非イオン性界面活性剤)の0.1質量%水溶液に浸漬し、乾燥させた。
このようにして、非水系二次電池用セパレータを得た。得られたセパレータの物性を表2に示す。
ここで、フタージェント212Mは、末端の一方がパーフルオロアルケニル基であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
なお、ガーレ値は、JIS P8117(2009)に従い、ガーレ式デンソメータ(G-B2C、東洋精機社製)にて測定した。
また、空孔率は、下記式〔ε:空孔率(%)、Ws:目付(g/m2)、ds:真密度(g/cm3)、t:膜厚(μm)〕より求めた。なお、膜厚tは、例えばセパレータの厚みから多孔質基材の厚みを減算した値とすればよい。
ε={1-Ws/(ds・t)}×100
(1)負極の作製
負極活物質である人造黒鉛87g、導電助剤であるアセチレンブラック3g、及びバインダーであるポリフッ化ビニリデン10gを、ポリフッ化ビニリデンの濃度が8.5質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ25μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
(2)正極の作製
正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダーであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
(3)試験用リチウムイオン二次電池の作製
得られた正極と負極とにリードタブを溶接した後、正極、セパレータ、負極をこの順に重ねて接合し、電解液を染み込ませた後、アルミパック中に真空シーラーを用いて封入し、試験用リチウムイオン二次電池を作製した。
電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを3:7の質量比(=EC:EMC)で混合した1M LiPF6混合溶液を用いた。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フタージェント215M(エチレンオキシド平均付加モル数:15モル、ネオス社製のフッ素含有非イオン性界面活性剤)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
ここで、フタージェント215Mは、末端の一方がパーフルオロアルケニル基であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フタージェント250(エチレンオキシド平均付加モル数:22モル、ネオス社製のフッ素含有非イオン性界面活性剤)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
ここで、フタージェント250は、末端の一方がパーフルオロアルケニル基であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フタージェント251(エチレンオキシド平均付加モル数:8モル、ネオス社製のフッ素含有非イオン性界面活性剤)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
ここで、フタージェント251Mは、末端の一方がパーフルオロアルケニル基であり、他方がエチレンオキシド鎖であるポリオキシエチレンエーテルである。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フッ素含有アニオン性界面活性剤であるフタージェント110(ネオス社製)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フッ素系カチオン性界面活性剤であるフタージェント310(ネオス社製)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、フタージェント245F(エチレンオキシド平均付加モル数:45モル、ネオス社製のフッ素含有非イオン性界面活性剤)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
ここで、フタージェント222Fは、両端がパーフルオロアルケニル基であり、中央にエチレンオキシド鎖が配置されたポリオキシエチレンエーテルである。
実施例8において、フッ素含有非イオン性界面活性剤(フタージェント212M)を、非イオン性界面活性剤であるエマルゲン120(ポリオキシエチレンラウリルエーテル、花王社製)の0.1質量%水溶液に代えたこと以外、実施例8と同様にして、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。このセパレータの物性を表2に示す。
実施例8において、塗工膜を固化し水洗した後に、フタージェント212Mの0.1質量%水溶液に浸漬する操作を行わず、乾燥させることによって、非水系二次電池用セパレータを得ると共に、試験用リチウムイオン二次電池を作製した。得られたセパレータの物性を表2に示す。
これに対し、イオン性のフッ素含有界面活性剤を用いた比較例7~8では、帯電を防ぐ効果は得られなかった。また、両末端が疎水構造であるフッ素含有界面活性剤を用いた比較例9でも、帯電防止の効果は期待できなかった。一方、非フッ素系の非イオン性界面活性剤を用いた比較例10では、半減期が小さく帯電防止の効果はみられるものの、逆に電池内部抵抗が高くなり、電池特性を損う結果を招いた。また、界面活性剤を含まない比較例11では、帯電しやすく、電池の内部抵抗も高く電池特性に劣っていた。
また、本発明の他の一実施形態である非水系二次電池用セパレータでは、電極と接着可能なポリフッ化ビニリデン系樹脂を含むセパレータの帯電を防止することで、良好なハンドリング性を実現し、かつ、電池の内部抵抗を低減し、出力特性を向上させた。これより、非水系二次電池、具体的にはリチウムイオン二次電池に好適に適用できる。特に、アルミラミネート製のソフトパック外装からなるリチウムイオン二次電池に好適である。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (12)
- フッ素原子を含む疎水構造単位と親水構造単位とを有するフッ素含有非イオン性界面活性剤を含む膜を備え、
前記フッ素含有非イオン性界面活性剤の含有量が0.001g/m2以上1g/m2以下である、非水系二次電池用セパレータ。 - 少なくとも一方の表面の少なくとも一部に配されたポリフッ化ビニリデン系樹脂と、
末端の一方が親水構造単位であり、他方がフッ素原子を含む疎水構造単位であるフッ素含有非イオン性界面活性剤と、
を含む非水系二次電池用セパレータ。 - 前記表面を形成する表層として、前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層を片面又は両面に有する請求項2に記載の非水系二次電池用セパレータ。
- 多孔質基材と、
前記多孔質基材の片面又は両面に前記表面を形成する表層として設けられ、前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層と、
を備えた請求項2又は請求項3に記載の非水系二次電池用セパレータ。 - 前記多孔質基材が、ポリエチレン微多孔膜である請求項4に記載の非水系二次電池用セパレータ。
- 前記ポリフッ化ビニリデン系樹脂及び前記フッ素含有非イオン性界面活性剤を含む層は、多孔質層である請求項3~請求項5のいずれか1項に記載の非水系二次電池用セパレータ。
- 前記疎水構造単位としてフルオロアルキル基又はフルオロアルケニル基を有する請求項1~請求項6のいずれか1項に記載の非水系二次電池用セパレータ。
- 前記親水構造単位としてアルキレンオキシド鎖を有する請求項1~請求項7のいずれか1項に記載の非水系二次電池用セパレータ。
- 前記アルキレンオキシド鎖は、エチレンオキシド鎖である請求項8に記載の非水系二次電池用セパレータ。
- 前記アルキレンオキシド鎖の平均付加モル数が、5モル以上25モル以下である請求項8又は請求項9に記載の非水系二次電池用セパレータ。
- 前記フッ素含有非イオン性界面活性剤は、パーフルオロアルキルアルキレンオキシド付加物及びパーフルオロアルケニルアルキレンオキシド付加物から選択される少なくとも一種である請求項1~請求項10のいずれか1項に記載の非水系二次電池用セパレータ。
- 正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項11のいずれか1項に記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015551296A JP6058159B2 (ja) | 2014-06-30 | 2015-06-25 | 非水系二次電池用セパレータ及び非水系二次電池 |
CN201580026385.1A CN106463676A (zh) | 2014-06-30 | 2015-06-25 | 非水系二次电池用隔膜及非水系二次电池 |
KR1020167032516A KR20170022977A (ko) | 2014-06-30 | 2015-06-25 | 비수계 이차전지용 세퍼레이터 및 비수계 이차전지 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-135222 | 2014-06-30 | ||
JP2014-135223 | 2014-06-30 | ||
JP2014135223 | 2014-06-30 | ||
JP2014135222 | 2014-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016002637A1 true WO2016002637A1 (ja) | 2016-01-07 |
Family
ID=55019176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068419 WO2016002637A1 (ja) | 2014-06-30 | 2015-06-25 | 非水系二次電池用セパレータ及び非水系二次電池 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6058159B2 (ja) |
KR (1) | KR20170022977A (ja) |
CN (1) | CN106463676A (ja) |
WO (1) | WO2016002637A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018216159A1 (de) | 2017-09-22 | 2019-03-28 | Toyota Jidosha Kabushiki Kaisha | Separator für sekundärbatterie mit nichtwässrigem elektrolyt |
WO2019176290A1 (ja) * | 2018-03-16 | 2019-09-19 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
CN111448691A (zh) * | 2017-12-26 | 2020-07-24 | 昭和电工株式会社 | 非水系电池电极用粘合剂、非水系电池电极用浆料、非水系电池电极和非水系电池 |
JP2020198480A (ja) * | 2019-05-31 | 2020-12-10 | ティグロン株式会社 | オーディオ機器用アクセサリ及びその製造方法 |
JP2021170458A (ja) * | 2020-04-15 | 2021-10-28 | 日本バイリーン株式会社 | 電気化学素子用の分離膜支持体 |
EP3875522A4 (en) * | 2018-10-30 | 2022-08-31 | The Japan Steel Works, Ltd. | POROUS FILM PRODUCTION METHOD AND POROUS FILM |
JP2022540696A (ja) * | 2019-09-11 | 2022-09-16 | エルジー エナジー ソリューション リミテッド | 電解液含浸性に優れた二次電池用分離膜 |
WO2024167005A1 (ja) * | 2023-02-10 | 2024-08-15 | エリーパワー株式会社 | 非水電解質二次電池用セパレータ及び非水電解質二次電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114883743A (zh) * | 2022-05-18 | 2022-08-09 | 北京大学 | 一种无机阻燃隔膜及制备方法、二次电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07312215A (ja) * | 1994-05-16 | 1995-11-28 | Mitsubishi Rayon Co Ltd | 電池用セパレータ |
JP2002042891A (ja) * | 2000-07-27 | 2002-02-08 | Toshiba Battery Co Ltd | 薄型リチウム二次電池 |
JP2006073221A (ja) * | 2004-08-31 | 2006-03-16 | Teijin Ltd | リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池 |
JP2013125629A (ja) * | 2011-12-14 | 2013-06-24 | Panasonic Corp | マンガン乾電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002033118A (ja) * | 2000-07-14 | 2002-01-31 | Mitsubishi Heavy Ind Ltd | リチウム二次電池 |
JP4245933B2 (ja) * | 2003-02-13 | 2009-04-02 | セイコーインスツル株式会社 | リフローハンダ付け用非水電解質二次電池 |
KR101159001B1 (ko) * | 2007-09-12 | 2012-06-21 | 다이킨 고교 가부시키가이샤 | 전해액 |
CN101771167B (zh) * | 2010-02-05 | 2013-09-25 | 九江天赐高新材料有限公司 | 一种高容量锂离子电解液、电池以及电池的制备方法 |
CN102263220B (zh) * | 2011-06-22 | 2014-09-24 | 广东博特动力能源有限公司 | 电池隔膜的制备方法 |
JP5293985B1 (ja) * | 2011-10-18 | 2013-09-18 | Jsr株式会社 | 保護膜及びそれを作製するための組成物、スラリー、並びに蓄電デバイス |
-
2015
- 2015-06-25 WO PCT/JP2015/068419 patent/WO2016002637A1/ja active Application Filing
- 2015-06-25 JP JP2015551296A patent/JP6058159B2/ja not_active Expired - Fee Related
- 2015-06-25 CN CN201580026385.1A patent/CN106463676A/zh active Pending
- 2015-06-25 KR KR1020167032516A patent/KR20170022977A/ko not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07312215A (ja) * | 1994-05-16 | 1995-11-28 | Mitsubishi Rayon Co Ltd | 電池用セパレータ |
JP2002042891A (ja) * | 2000-07-27 | 2002-02-08 | Toshiba Battery Co Ltd | 薄型リチウム二次電池 |
JP2006073221A (ja) * | 2004-08-31 | 2006-03-16 | Teijin Ltd | リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池 |
JP2013125629A (ja) * | 2011-12-14 | 2013-06-24 | Panasonic Corp | マンガン乾電池 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018216159A1 (de) | 2017-09-22 | 2019-03-28 | Toyota Jidosha Kabushiki Kaisha | Separator für sekundärbatterie mit nichtwässrigem elektrolyt |
US10714725B2 (en) | 2017-09-22 | 2020-07-14 | Toyota Jidosha Kabushiki Kaisha | Separator for nonaqueous electrolyte secondary battery |
CN111448691A (zh) * | 2017-12-26 | 2020-07-24 | 昭和电工株式会社 | 非水系电池电极用粘合剂、非水系电池电极用浆料、非水系电池电极和非水系电池 |
US11764359B2 (en) | 2017-12-26 | 2023-09-19 | Resonac Corporation | Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same |
JPWO2019176290A1 (ja) * | 2018-03-16 | 2021-01-14 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
WO2019176290A1 (ja) * | 2018-03-16 | 2019-09-19 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
EP3875522A4 (en) * | 2018-10-30 | 2022-08-31 | The Japan Steel Works, Ltd. | POROUS FILM PRODUCTION METHOD AND POROUS FILM |
JP2020198480A (ja) * | 2019-05-31 | 2020-12-10 | ティグロン株式会社 | オーディオ機器用アクセサリ及びその製造方法 |
JP2022540696A (ja) * | 2019-09-11 | 2022-09-16 | エルジー エナジー ソリューション リミテッド | 電解液含浸性に優れた二次電池用分離膜 |
JP7483299B2 (ja) | 2019-09-11 | 2024-05-15 | エルジー エナジー ソリューション リミテッド | 電解液含浸性に優れた二次電池用分離膜 |
JP2021170458A (ja) * | 2020-04-15 | 2021-10-28 | 日本バイリーン株式会社 | 電気化学素子用の分離膜支持体 |
WO2024167005A1 (ja) * | 2023-02-10 | 2024-08-15 | エリーパワー株式会社 | 非水電解質二次電池用セパレータ及び非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN106463676A (zh) | 2017-02-22 |
JPWO2016002637A1 (ja) | 2017-04-27 |
JP6058159B2 (ja) | 2017-01-11 |
KR20170022977A (ko) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6058159B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP5624251B2 (ja) | 非水電解質電池用セパレータ及び非水電解質電池 | |
JP5355823B1 (ja) | 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池 | |
JP5342088B1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP5603522B2 (ja) | 非水電解質電池用セパレータおよび非水電解質電池 | |
JP5129895B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP5964951B2 (ja) | 非水電解質電池用セパレータおよび非水電解質電池 | |
US10199623B2 (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
TW201733186A (zh) | 非水系二次電池用隔板及非水系二次電池 | |
JP5612797B1 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP5952509B2 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
JP5745174B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP6078703B1 (ja) | 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法 | |
JP6526359B1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
KR20200053489A (ko) | 비수계 이차전지용 세퍼레이터, 및 비수계 이차전지 | |
JP2014026946A (ja) | 非水電解質電池用セパレータ及び非水電解質電池 | |
WO2023190521A1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 | |
WO2023190520A1 (ja) | 非水系二次電池用セパレータ及び非水系二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015551296 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815354 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167032516 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815354 Country of ref document: EP Kind code of ref document: A1 |