WO2016002621A1 - 粉体中の特定成分を濃縮する方法 - Google Patents

粉体中の特定成分を濃縮する方法 Download PDF

Info

Publication number
WO2016002621A1
WO2016002621A1 PCT/JP2015/068339 JP2015068339W WO2016002621A1 WO 2016002621 A1 WO2016002621 A1 WO 2016002621A1 JP 2015068339 W JP2015068339 W JP 2015068339W WO 2016002621 A1 WO2016002621 A1 WO 2016002621A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
fine powder
whey
fine
protein
Prior art date
Application number
PCT/JP2015/068339
Other languages
English (en)
French (fr)
Inventor
秋彦 江間
健司 直原
Original Assignee
株式会社日清製粉グループ本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日清製粉グループ本社 filed Critical 株式会社日清製粉グループ本社
Priority to JP2016531311A priority Critical patent/JP6518248B2/ja
Priority to US15/319,245 priority patent/US10390545B2/en
Publication of WO2016002621A1 publication Critical patent/WO2016002621A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • A23C21/04Whey; Whey preparations containing non-milk components as source of fats or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C21/00Whey; Whey preparations
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting

Definitions

  • the present invention relates to a method for concentrating a specific component present in a powder in a powder obtained by granulating a solution containing two or more components. Specifically, in a dry state using a mechanical dry processing apparatus, The present invention relates to a method for concentrating at least one specific component present in a powder, and a method for concentrating the specific component by further concentrating the specific component in a wet operation using the powder in which at least one specific component is concentrated in a dry state.
  • the present invention relates to a method for concentrating protein in whey powder granulated by spray drying, and more specifically, a method for concentrating protein in whey powder in a dry state using a mechanical dry processing apparatus, and
  • the present invention relates to a protein concentration method in which a whey powder in which protein is concentrated in a dry state is further concentrated by a wet operation.
  • Whey is also called whey and is produced in large quantities as a by-product in the process of making cheese.
  • bacteria and acids are introduced into milk and reacted, and the solid content called curd, which is a lump of casein protein, is mainly called whey protein consisting of whey protein, mineral and lactose, etc. Separated into liquid parts. So far, most whey has been discarded, but it has been reviewed as an excellent food with high protein, low fat and high nutritional value.
  • Whey is in the form of powdery whey powder that is easily deteriorated in quality due to its high nutritional value and has been dehydrated. That is, the whey protein concentrate in which the lactose and the like present together with the protein in the whey are removed by ultrafiltration or the like to reduce the concentration of lactose and ash to concentrate the protein, or the whey protein concentrate Protein-enriched whey powder that has been dehydrated is commercially available, and is used as a protein source in the production of foods for childcare and as a raw material in the production of various foods.
  • Patent Document 1 in order to fractionate proteins in whey, concentrated whey obtained by ultrafiltration of whey or whey is directly applied to a column packed with an anion exchanger without adjusting its pH.
  • a technique is disclosed in which liquid is passed through, adsorbed on an anion exchanger, and ⁇ -lactoglobulin adsorbed with a salt solution is eluted.
  • whey is subjected to an ultrafiltration stage to remove lactose (lactose) as vermiate (extracted lactose and minerals), and ultrafiltered whey retinate (residue) is subjected to heat treatment to total about 50% or more.
  • a technique for producing a protein concentrate in whey that includes denaturing 90% or less of the protein in whey and concentrating the heat-treated whey to produce a whey protein concentrate is disclosed.
  • Patent Document 1 When the technique disclosed in Patent Document 1 is used, it is necessary to repeat protein adsorption and elution using an anion exchange membrane for whey, which is very complicated and complicated.
  • Patent Document 2 When the technique disclosed in Patent Document 2 is used, the protein can be concentrated, but heat denaturation occurs. Therefore, it cannot be applied to the use of a protein that has not been killed. Furthermore, all of these techniques only concentrate the liquid whey, and after performing the concentration process by any technique, the powder is dried and powdered to avoid quality degradation. There was a need.
  • An object of the present invention is to process powdery whey powder that is easy to handle and difficult to deteriorate in a dry state to concentrate the protein in the whey powder, and to concentrate the protein in the dry state by this method
  • An object of the present invention is to provide a protein concentration method in which whey fine powder is further concentrated by a wet operation.
  • the present inventors performed mechanical dry processing on the whey powder produced by the spray drying method, scraped the particle surface of the whey powder, It has been found that the protein in the whey powder can be concentrated by generating and classifying and collecting whey chips, and the present invention has been achieved.
  • the concentration method of the present invention concentrates one or more specific components present in a powder obtained by granulating a solution containing two or more components using a dry processing apparatus that performs mechanical dry processing.
  • a method of supplying a powder as a raw material to the dry processing apparatus, and performing a dry process on the powder supplied to the dry processing apparatus, and containing one or more specific components more than powder particles A step of scraping the surface to generate fine powdered pieces, a step of classifying the fine powder containing the generated pieces and coarse powder containing particles from which the particle surface has been scraped, and the above-mentioned including the classified pieces And a step of collecting fine powder.
  • the dry processing apparatus is an airflow classifier having a classification chamber, and the airflow classifier places the powder supplied into the classification chamber on a swirling airflow and scrapes the particle surface of the powder to remove particles. It is preferable to simultaneously perform the step of generating a chip and the step of classifying the fine powder including a chip by classifying the fine powder including the generated chip.
  • the amount of generated chips in the chip generating step is controlled by controlling one or more of the supply speed and air volume of the powder supplied to the airflow classifier and the rotational speed of the rotor in the airflow classifier. Preferably it is controlled.
  • the classification point for classifying the fine powder including the chip and the coarse powder in the classification process of the fine powder including the chip includes the supply speed and the air volume of the powder supplied to the airflow classifier, and the rotor in the airflow classifier. It is preferably controlled by controlling one or more of the rotation speeds.
  • the dry processing apparatus includes a pulverizer and a classifier
  • the chip generation process is a process of generating a chip by scraping the surface of the powder with the pulverizer, and the fine powder including the chip
  • the classifying step is preferably a step of classifying fine powder and coarse powder including the generated chips with a classifier.
  • the pulverizer is a pulverizer selected from one or more of an airflow pulverizer, an attrition pulverizer, an impact pulverizer, and a ball pulverizer
  • the classifier is an airflow classifier
  • the apparatus and apparatus which comprise a dry-type processing apparatus are not necessarily limited to a grinder or a classifier, The apparatus which has the function which scrapes off the surface and produces
  • the powder is obtained by granulating a solution containing two or more components having different solubility characteristics by a spray drying method.
  • the fine powder containing the chips collected in the step of collecting fine powder is supplied again as a raw material to the dry processing apparatus, and the fine powder containing the supplied chips is subjected to dry processing, The process of scraping the particle surface to produce (manufacturing) finer finely divided particles, and separating the finer fine particles including the finer finely divided particles generated from the finely ground particles that have been scraped off. It is preferable to concentrate the one or more specific components in the fine powder by repeating the step of collecting and the step of collecting the separated finer fine powder.
  • the coarse powder containing the particles whose particle surface collected in the step of collecting the coarse powder is scraped off as a raw material is supplied again to the dry processing apparatus, and the supplied particle surface is scraped off.
  • the coarse powder containing slag was dry-processed to scrape the fine powder particle surface, and further to produce (manufacture) fine powder-like chips, and the fine powder containing the generated chips and the remaining surface were scraped It is preferable to concentrate the protein in the fine powder by repeating the step of separating the coarse powder and the step of collecting the separated fine powder.
  • the two or more components preferably include at least one of protein, mineral and lactose.
  • the powder is whey powder, and the one or more specific components preferably include protein and mineral.
  • the powder is a whey powder, the one or more specific components are proteins, minerals and lactose, and the coarse powder containing particles from which the particle surface has been scraped off is used to remove the lactose component from the particle surface. It is preferable that it is the coarse powder containing the particle
  • the method for concentrating a specific component of the present invention is an intermediate product comprising a fine powder in which one or more specific components are concentrated by a method of concentrating one or more specific components present in the granulated powder. It is used as a raw material, and further includes a process of concentrating one or more specific components by wet operation.
  • the one or more specific components are preferably proteins.
  • the one or more specific components are preferably minerals.
  • the method for concentrating a specific component of the present invention is an intermediate product comprising a coarse powder obtained by concentrating one or more specific components in the granulated powder by concentrating the one or more specific components.
  • the one or more specific components are preferably lactose.
  • a mineral component can be concentrated from whey powder with a dry process with a dry process.
  • a lactose component can be concentrated from whey powder with a dry process by a dry process.
  • it is possible to reduce the transportation cost and the processing cost in the wet process by using the whey powder in which the protein is concentrated in the dry process as a raw material in the wet concentration operation.
  • the conveyance cost and the processing cost in a wet process can be reduced by using the whey powder which concentrated the mineral by the dry process as a raw material in wet concentration operation.
  • FIG. 1 It is a flowchart which shows the flow of an example of the concentration method of the protein in the whey powder which concerns on one Embodiment of this invention.
  • A is a schematic diagram of one Example of the dry concentration apparatus of the protein in the whey powder used for this invention method
  • (b) is the airflow which is the dry processing apparatus of the dry concentration apparatus shown to (a) It is explanatory drawing explaining the force which acts on whey powder particle
  • (A) is the drawing substitute photograph which image
  • (A) is a drawing-substituting photograph taken with an SEM (scanning electron microscope) of fine powder (F) collected on the fine powder side of the whey powder processed by the dry processing apparatus, and (b) is (a) ) Is further expanded.
  • (A) is a drawing-substituting photograph taken with an SEM (scanning electron microscope) of coarse powder (C) collected on the coarse powder side of the whey powder treated with the dry processing apparatus, (b) (A) is further enlarged.
  • FIG. 10 (A) is a drawing-substituting photograph taken with an SEM (scanning electron microscope) of the cross section of whey powder, which is a further enlarged view of FIG. 10 (a), and (b) is a diagram showing its EDS spectrum. is there. It is an EDS mapping image of the cross section of the whey powder shown in FIG. 11, (a) shows an element mapping diagram of Na, (b) shows an element mapping diagram of K, and (c) shows an element mapping of Ca. The figure is shown. It is a figure showing the measurement result of the particle size distribution of each sample in an example.
  • protein in whey powder which is a preferred embodiment of a method for concentrating a specific component present in a powder obtained by granulating a solution containing two or more components having different dissolution characteristics according to the present invention, is concentrated.
  • An example of the method to do is demonstrated in detail based on preferred embodiment of an accompanying drawing.
  • the powder obtained by granulating a solution containing two or more components having different solubility characteristics in the present invention is particularly suitable if the solution containing two or more components having different solubility characteristics is made into a dry powder form. It is not limited. Examples of such powders include powders granulated by a spray drying method or a vacuum drying method. Among these, powders granulated by a spray drying method are preferably used.
  • solubility characteristics in the present application include, for example, the amount of components that can be dissolved in a solvent (solubility), the ease of mixing or separation between two or more different components (affinity), and the same component. It refers to properties that occur when the liquid phase dries and becomes a solid phase, such as being easy to gather or disperse.
  • a method for concentrating protein in whey powder using whey powder granulated by a spray drying method will be described, but if the powder is a granulated solution containing two or more components
  • the present invention is not limited to this, and the spray-dried powder can be used for nonfat dry milk, instant coffee, and the like.
  • the whey powder used as a raw material in the present embodiment is a powder obtained by drying whey, and is made by a spray drying method.
  • the shape and particle size of such whey powder particles are not limited, and in particular, any particles may be used as long as they are produced by a spray drying method. It is better to have a smooth shape with less unevenness.
  • the whey powder produced by the spray drying method segregation occurs for each component due to the difference in dissolution characteristics of a plurality of types of components contained in the whey powder at the time of production. For this reason, lactose tends to segregate near the center of the whey powder and protein-rich portions segregate near the surface of the whey powder. That is, the surface of this whey powder tends to have a high concentration of protein present so as to surround lactose that segregates near the center. Therefore, the protein in the whey powder can be concentrated by scraping the surface of the whey powder and collecting the fine powder.
  • FIG. 1 is a flowchart showing a flow of an example of a method for concentrating proteins in whey powder according to the present embodiment.
  • the protein concentration method in the whey powder according to the present embodiment includes a step (step) S10 of supplying a raw material such as whey powder, and a particle surface containing a large amount of protein from the raw material particles such as whey powder.
  • Step S12 for generating scraped fine powdery whey chips step S14 for classifying fine powder made of fine powdered whey chips and coarse powder made of residual particles, step S16 for recovering the classified fine powder, and recovery
  • step S18 for determining whether or not to further concentrate the fine powder step S20 for recovering the classified coarse powder, and step S22 for determining whether to recover the protein from the recovered coarse powder, These steps are performed.
  • whey powder is supplied as a raw material to a dry processing apparatus that performs a mechanical dry processing in a dry state.
  • the supply method is not particularly limited, and any method may be used.
  • the whey powder as a raw material is supplied at a constant rate, such as supply using a screw feeder, a vibration feeder, or the like. .
  • the raw materials supplied by processing in a dry processing apparatus that performs mechanical dry processing in a dry state are used.
  • a whey powder particle surface is shaved to produce whey chips.
  • the method of scraping the surface and generating whey chips is not particularly limited as long as it is a method of scraping the surface without crushing the whey powder, but it is generated between the particles and the gas by applying gas to the whey powder.
  • fine powder and coarse powder are classified by classifying fine powder containing fine powdery whey chips containing a large amount of protein and coarse powder containing particles from which the particle surface has been scraped off. Divide into powder.
  • the step of generating fine powdered whey chips in step S12 and the step of classifying into coarse powder and fine powder in step S14 are performed simultaneously.
  • an apparatus such as an air classifier or a vibration sieve apparatus that can be classified according to the size of the particles independently may be used.
  • step S16 the fine powder separated in the step of classifying into the coarse powder and the fine powder in step S14 is collected.
  • the fine powder may be collected in step S16 and the protein concentration method in the whey powder may be terminated.
  • a step of determining whether or not to concentrate in step S18 may be provided, and the protein concentration method may be further repeated.
  • step S20 which collects the coarse powder separated from the fine powder in step S14 may be provided, and the coarse powder may be actively collected and used, or the protein of step S22 may be used.
  • a determination step for determining the necessity of recovery may be provided, and the protein concentration method may be further repeated using the recovered coarse powder as a raw material.
  • the collected fine powder is determined in the step of determining whether further concentration is necessary in step S18, and if it is determined that the collected fine powder does not require further concentration, the concentration according to the present embodiment.
  • the method ends and the fine powder collected in step S16 can be used as a product as it is. Since the fine powder collected in this way is a whey powder in which protein is concentrated, this concentrated whey powder is dissolved and applied to a wet method as in the prior art to further fractionate proteins into various types. You may use for.
  • the process returns to the step of supplying the raw material in step S10, and the collected fine powder (primary fine powder) is used as a raw material in the dry processing apparatus.
  • step S12 the primary fine powder supplied to the dry processing apparatus in step S12 is subjected to mechanical dry processing again to generate a finer fine powdery whey piece (secondary whey piece).
  • step S14 The fine powder (secondary fine powder) composed of secondary whey chips is separated from the primary fine powder from which the remaining surface that has become coarse powder with respect to the secondary fine powder is cut off, and the secondary fine powder separated in step S16 is recovered. This is repeated until it is determined in step S18 that concentration is unnecessary.
  • the coarse powder separated in the process of classifying into the coarse powder and the fine powder in step S14 is collected. Since the collected coarse powder contains a large amount of lactose component, it can be used to extract the lactose component.
  • the coarse powder may be collected in step S20, and the protein concentration method in the whey powder may be terminated. However, the collected coarse powder contains a large amount of lactose components.
  • a step of determining whether or not to recover the protein in step S22 is provided, and the recovered coarse powder is further used as a raw material. The protein concentration method may be repeated.
  • the concentration method of the present embodiment may be terminated, or the whey powder in which the protein is concentrated is dissolved in water, for example, water, and an ion exchange membrane or an ultrafiltration membrane is used.
  • the method may be applied to further fractionate proteins into various types.
  • step S22 if it is determined in step S22 that further protein recovery is required, the process returns to the step of supplying the raw material in step S10 in order to increase the protein recovery rate in the whey powder.
  • Supply the coarse powder (primary coarse powder) as a raw material to the dry processing apparatus perform mechanical dry processing again on the primary coarse powder supplied to the dry processing apparatus in step S12, further shaving the surface, A fine powdery whey chip is generated, and in step S14, the fine powder (coarse fine powder) composed of the whey chip and the remaining coarse powder (secondary coarse powder) from which the surface has been further removed are separated, and in step S16, the step is performed.
  • step S22 the coarse fine powder separated in S14 is recovered and the secondary coarse powder separated in step S14 is recovered in step S20. Repeated until the recovery of click quality is determined to be unnecessary.
  • the coarse fine powder collected in step S16 does not need to be concentrated in step S18 in order to increase the protein concentration, for example, to the target value (target concentration), similarly to the secondary fine powder described above.
  • the protein concentration method of the present embodiment may be repeated until it is determined that
  • the whey powder material (RM) containing 13.2 wt% protein is the first time. Dry processing is performed to obtain 28.7 wt% of fine powder (primary fine powder F) having a protein content of 21.6 wt% and 71.3 wt% of coarse powder (primary coarse powder C) having a protein content of 9.9 wt%. It can be obtained separately.
  • the primary fine powder (F) having a protein content of 21.6 wt% thus obtained is subjected to a second dry treatment to obtain a fine powder having a protein content of 32.1 wt% (secondary fine powder FF; FIG.
  • a primary dry powder (C) having a protein content of 9.9 wt% obtained by the first dry process is subjected to a second dry process to obtain a fine powder having a protein content of 11.3 wt% (coarse) (Fine powder CF) 49.3 wt% and coarse powder (secondary coarse powder CC; see FIGS. 9A and 9B) 50.7 wt% with a protein content of 8.8 wt% can be obtained separately. .
  • the dry processing is performed on the whey powder in step S12 to scrape the protein-rich surface and produce fine powdery whey chips.
  • the surface of the whey powder particles as a raw material is scraped or peeled off.
  • fine powder for example, see FIGS. 8A and 8B
  • fine powdery whey scraps or whey strips is generated.
  • a coarse powder containing particles for example, see FIGS. 9A and 9B from which the surface of the whey powder has been scraped is also generated.
  • the concentration of protein is to produce fine powder containing fine powdery whey scraps from which the protein-rich surface is scraped, and to separate and collect the coarse powder.
  • concentration (concentration) of the protein can be controlled by changing the strength to scrape, that is, the strength to generate fine powdered whey chips and the classification point for classifying fine powder and coarse powder.
  • FIG. 10A is a drawing-substituting photograph taken with an SEM (scanning electron microscope) of a cross section of whey powder (RM) produced by a spray drying method
  • FIG. 10B is an EDS (JEOL stock). It is a figure which shows the EDS spectrum detected by company JED-2300F type).
  • FIG. 11 (a) is an enlarged view of FIG. 10 (a)
  • FIG. 11 (b) is a diagram showing the EDS spectrum detected by EDS (JED-2300F type manufactured by JEOL Ltd.).
  • FIG. 12 is an EDS mapping image of the cross section of the whey powder shown in FIG. 11, where (a) shows an element mapping diagram of Na, (b) shows an element mapping diagram of K, and (c) shows The elemental mapping figure of Ca is shown. In the figure, yellow indicates Na, red indicates K, and blue indicates Ca.
  • the whey powder contains a plurality of kinds of minerals.
  • FIG. 12 minerals are present on the inner side of the whey powder and present more on the outer side and segregate so as to cover the powder surface. Therefore, it can be seen that minerals in the whey powder can be concentrated by grinding the surface of the whey powder granulated by the spray drying method and collecting the fine powder.
  • the whey powder raw material (RM) containing 4.1 wt% of a plurality of minerals according to the present embodiment described above.
  • the dry treatment can be performed in the same manner to obtain fine powder (secondary fine powder FF) having a mineral content of 9.5 wt%.
  • secondary fine powder FF fine powder having a mineral content of 9.5 wt%.
  • the mineral concentrated by the concentration method concerning the mechanical dry process of this embodiment can also be further concentrated using the wet method of a prior art similarly to the protein mentioned above.
  • FIG. 2A is a schematic diagram of an example of a protein (and mineral) dry concentration apparatus for performing a method of concentrating protein (and mineral) in whey powder according to an embodiment of the present invention.
  • the dry concentration apparatus 10 includes a raw material feeder 20, an airflow classifier 30, a bag filter 40, and a fan (suction blower) 50.
  • the dry concentration apparatus 10 further includes a fine powder collector 100 that collects fine powder from the bag filter 40 and a coarse powder collector 200 that collects the coarse powder classified in the airflow classifier 30.
  • the raw material feeder 20 is for carrying out the raw material supply process of step S10 of FIG. 1 and supplies the whey powder as the raw material to the airflow classifier 30.
  • the raw material feeder 20 is not particularly limited as long as a predetermined amount of whey powder can be supplied to the airflow classifier 30, and a known raw material feeder can be used.
  • a positive displacement feeder capable of supplying raw materials is preferable. That is, as shown in the illustrated example, the raw material feeder 20 cuts out a predetermined amount of the raw material powder (whey powder) in the hopper 26 by a screw 24 that is rotationally driven by the raw material feeder motor 22 and then supplies a predetermined amount from the discharge port 28. It is preferable to use a screw feeder that supplies the whey powder to the airflow classifier 30.
  • the air classifier 30 constitutes the dry processing apparatus for whey powder according to the present invention, and is for carrying out the whey chip producing process in step S12 in FIG. 1 and the classifying process in step S14 in FIG.
  • the airflow classifier 30 performs the generation and classification of whey chips at the same time.
  • the shearing force of the airflow acting on the raw material powder to be classified and the frictional force between the raw material powders are large, and the particle surface Any device that can be scraped off may be used.
  • a known airflow classifier can be used.
  • a pulverizer that performs the dry treatment process of step S12 in FIG. 1 and a classifier that performs the classification process of step S14 in FIG. May be.
  • An airflow classifier 30 shown in FIG. 2A incorporates a rotor 34 that is rotated by an airflow classifier motor 32.
  • a swirling airflow generated by rotation of the rotor 34 and suction of the fan 50 is applied to the supplied whey powder particles 500 to swirl the particles 500. Since the particles 500 are swirled on the airflow 510, the flow 520 of the particles 500 becomes a swirl.
  • the particle surface containing a lot of proteins (and minerals) is scraped off by the shearing force generated between the particles 500 and the swirling air flow, the friction between the particles and the contact between the particles and the inner wall surface of the apparatus or the collision force, and the fine powdery state.
  • Whey chips are generated, and a mixture of fine powder including whey chips and coarse powder including particles whose particle surfaces have been cut off is generated.
  • the airflow classifier 30 the impact force received by the raw material powder (whey powder) by the swirling airflow, the contact between the raw material powders, the shearing force received by the raw material powder due to the contact between the raw material powder and the inner wall surface of the apparatus, etc.
  • the surface of the whey powder particles as a raw material is scraped to produce whey chips.
  • the whey chip generating step of step S12 shown in FIG. 1 is performed.
  • the whey powder particles 500 (including the fine powder including the whey chips and the coarse powder including the particles whose particle surfaces are scraped) are rotated by the rotation axis of the rotor 34.
  • the centrifugal force 550 that is an outward force when viewed from the side is received.
  • the drag force 560 caused by the suction airflow generated by the fan 50 is designed to be a force in a direction toward the rotation axis of the rotor 34.
  • the larger the mass the larger the mass 500 receives the centrifugal force 550, and the larger the cross-sectional area, the greater the influence of the drag 560 caused by the air flow generated by the fan 50.
  • the whey powder is controlled by controlling one or more of the supply speed (supply amount per unit time) and the air volume (supply air flow rate per unit time) and the rotation speed of the rotor 34 in the airflow classifier. It is possible to change the force received by the fine powder containing pieces and the coarse powder containing particles whose surface has been cut off.
  • step S14 shown in FIG. 1 is performed in the airflow classifier 30.
  • the bag filter 40 is for collecting the powder flowing in with the gas from the gas and collecting the powder, and is not particularly limited, and a known bag filter can be used.
  • the fine powder that has moved to the bag filter 40 along with the airflow is separated into fine powder and gas in the bag filter 40 by a filter (not shown).
  • the fine powder separated from the gas in the bag filter 40 is collected by the fine powder collector 100 by opening a fine powder collection valve provided below the bag filter 40. In this way, the fine powder collection process of step S16 shown in FIG. 1 is implemented.
  • the coarse powder discharged from the airflow classifier 30 is collected by the coarse powder collector 200. In this way, the coarse powder recovery process of step S20 shown in FIG. 1 is performed.
  • the fine powder collector 100 and the coarse powder collector 200 are not particularly limited, and a known powder recovery container can be used.
  • the fine powder collected in the fine powder collector 100 is It is preferable to fill the hopper 26 of the raw material feeder 20 as raw material powder.
  • the determination step of step S22 shown in FIG. Is preferably filled into the hopper 26 of the raw material feeder 20 as a raw material powder.
  • FIG. 3 is a schematic view of an embodiment of a dry concentration apparatus for proteins (and minerals) in whey powder according to another configuration of the present invention.
  • the protein (and mineral) dry concentration apparatus 1000 includes a raw material feeder 20, a pulverizer 1060, a vibration sieve machine 1030, a bag filter 40, and a fan 50, and further a fine powder collector 100 that collects fine powder from the bag filter 40. And a coarse powder collector 200 that collects the coarse powder sieved in the vibration sieve 1030.
  • the raw material feeder 20 supplies the raw material whey powder to the pulverizer 1060, and performs the raw material supply process of step S10 of FIG.
  • the pulverizer 1060 is for carrying out the whey particle generating step of step S12 in FIG. 1.
  • the pulverizer 1060 performs protein processing by carrying out a light mechanical treatment that scrapes the surface without pulverizing the supplied raw material.
  • the surface of particles containing a large amount of (and mineral) is scraped to produce fine powdery whey chips, and the fine powder including whey chips and the coarse powder including particles from which the particle surface has been scraped are mixed. Thereafter, the mixed powder is supplied to the vibrating screen 1030.
  • the vibration sieve machine 1030 is for carrying out the classification process of step S14 in FIG. 1, and incorporates a vibration source (not shown) and vibrates a sieve (not shown) on which the supplied mixed powder is placed.
  • the fine powder containing whey scraps containing a large amount of fine powdered protein (and mineral) and the coarse powder containing particles whose surface has been scraped are classified into a lower sieve and an upper sieve, respectively.
  • the classification process of step S14 of FIG. Thereafter, the fine powder under the sieve passing through the sieve of the vibration sieve machine 1030 is collected by the fine powder collector 100, and the coarse powder on the sieve that cannot pass through the sieve and remains on the sieve is the coarse powder collector. Collected in 200.
  • FIG. 5 a whey powder (FIG. 5) prepared as a raw material sample (RM) having a protein ratio (content) of 13.2 wt% and an average particle size (particle size) (D50) of 77.7 ⁇ m (see FIG. 13A).
  • RM raw material sample
  • D50 average particle size
  • FIG. 4 is a diagram showing generation and classification of fine powder and coarse powder by mechanical dry processing from the raw material samples according to the examples, and the ratio of protein at that time.
  • the protein content of the raw material sample (RM) was 13.2 wt%.
  • the content of protein was determined by measuring the mass of elemental nitrogen in the raw material sample with TruMac N (manufactured by Leco Japan Co., Ltd.). 14 Table 7 Nitrogen-protein conversion factor Conversion was performed using the conversion factor 6.38 described in 13 milks.
  • the content ratio (content) is a mass ratio on a dry weight basis excluding the influence of moisture.
  • the mineral content of the raw material sample (RM) was 4.1 wt%. The mineral content was calculated from the weight difference before and after combustion of the sample using an electric furnace at a high temperature.
  • the content is a mass ratio on a dry weight basis excluding the influence of moisture.
  • the content of each mineral in the raw material sample (RM) is as follows: K content is 1.9 wt%, Ca content is 0.9 wt%, Cl content is 0.5 wt%, and P content is It was 0.3 wt%.
  • the content of each mineral component was calculated from the total mineral content described above by measuring the mass of the element in the sample with a scanning fluorescent X-ray analyzer (ZSX Primus II manufactured by Rigaku Corporation). As described above, the content is a mass ratio on a dry weight basis excluding the influence of moisture.
  • the average particle size (D50) of the raw material sample (RM) was 77.7 ⁇ m, and the particle size distribution as shown in FIG.
  • An airflow classifier turbo classifier TC-15 (manufactured by Nissin Engineering Co., Ltd.) is used as a dry processing apparatus of the present invention for mechanical dry processing on such a raw material sample (RM) 0.85 kg. The dry process was performed, and the protein (and mineral) concentration method in the whey powder of this embodiment was implemented.
  • the fine powder (primary fine powder) (F) shown in FIGS. 6A and 6B is 0.23 kg (28.7 wt%), and the coarse powder shown in FIGS. 0.58 kg (71.3 wt%) of primary coarse powder (C) was obtained.
  • the operating conditions of the turbo classifier TC-15 at this time were a raw material supply speed of 5.8 kg / h, a rotational speed of 1500 rpm, and an air volume of 2.5 m 3 / min.
  • the protein content of the primary fine powder (F) was 21.6 wt%, and the protein content of the primary coarse powder (C) was 9.9 wt%.
  • the average particle size (D50) of the primary fine powder (F) is 30.6 ⁇ m, and shows the particle size distribution as shown in FIG. 13 (b).
  • the average particle size (D50) of the primary coarse powder (C) is The particle size distribution was 80.3 ⁇ m, as shown in FIG.
  • each of the primary fine powder (F) and the primary coarse powder (C) prepared in the first implementation is further subjected to mechanical dry processing using a turbo classifier TC-15.
  • the second protein (and mineral) concentration method was carried out.
  • the primary fine powder (F) was subjected to a mechanical dry treatment again to carry out the second concentration method.
  • the operating conditions of the turbo classifier TC-15 at this time were a raw material supply speed of 5.8 kg / h, a rotational speed of 4000 rpm, and an air volume of 2.5 m 3 / min.
  • the protein content of the secondary fine powder (FF) was 32.1 wt%
  • the protein content of the coarse powder (FC) was 15.3 wt%.
  • content of the mineral of secondary fine powder (FF) was 9.5 wt%.
  • the content of each mineral in the secondary fine powder (FF) is 4.6 wt% for K, 2.1 wt% for Ca, 1.3 wt% for Cl, 1.3 wt% for P, The content was 0.7 wt%.
  • the average particle size (D50) of the secondary fine powder (FF) is 7.8 ⁇ m, shows a particle size distribution as shown in FIG. 13 (d), and the average particle size (D50) of the coarse fine powder (FC) is 35.
  • the particle size distribution was 6 ⁇ m, as shown in FIG.
  • the content of the protein in the secondary fine powder (FF) is larger than the content of the protein in the primary fine powder (F), it is understood that the protein is further concentrated by performing the repeated treatment.
  • the mineral content in the secondary fine powder (FF) is larger than the mineral content in the raw material sample (RM), it can be seen that the mineral is concentrated by performing the repeated treatment.
  • the operating conditions of the turbo classifier TC-15 at this time were a raw material supply speed of 5.4 kg / h, a rotational speed of 1200 rpm, and an air volume of 2.5 m 3 / min.
  • 0.28 kg (49.3 wt%) of fine powder (CF) and coarse powder (secondary coarse powder) (CC) 0.29 kg (50.50%) shown in FIGS. 7 wt%) was obtained.
  • the protein content of the fine powder (CF) was 11.3 wt%
  • the protein content of the secondary coarse powder (CC) was 8.8 wt%.
  • the average particle size (D50) of the fine coarse powder (CF) is 58.5 ⁇ m, and shows a particle size distribution as shown in FIG. 13 (e).
  • the average particle size (D50) of the secondary coarse powder (CC) is The particle size distribution was 91.3 ⁇ m as shown in FIG. Since the protein content in the fine coarse powder (CF) is larger than the protein content in the primary coarse powder (F), the protein that could not be removed by the first treatment is treated repeatedly. It turns out that it can collect
  • FIG.5 (a) is a SEM photograph of whey powder (RM) used as a raw material
  • FIG.5 (b) is what expanded further the whey powder (RM) shown to Fig.5 (a). is there. It can be seen that the particle surface is smooth and almost free from defects.
  • FIG.6 (a) is a SEM photograph of a primary fine powder (F)
  • FIG.6 (b) expands further the primary fine powder (F) shown to Fig.6 (a).
  • FIG. 5 (b) and FIG. 6 (b) have the same enlargement ratio, respectively, but FIG. 6 (a) and FIG.
  • the whey powder surface fine powder which is a fragment scraped from the particle surface of the large particle, the fine particle, and slightly larger than the fine particle It turns out that it is a fine powder containing the fine particle fragments with which the particle surface remains.
  • the mechanical dry treatment of the present invention does not pulverize whey powder particles, particularly large particles, but agglomerates or segregates proteins, resulting in a particle surface with a large protein (and mineral) content. It can be seen that the whey scraps that have been scraped off or the whey strips that have been peeled off are generated, and these whey scraps and whey strips are classified together with fine particles and fine particle fragments. In FIG. 6 (a), several large hole-like shapes can be seen. This is due to the surface shape of the fixing material used to fix the fine powder (FF) particles when taking the SEM photograph. is there.
  • FIG. 7A is an SEM photograph of the primary coarse powder (C)
  • FIG. 7B is an enlarged view of the primary coarse powder (C) shown in FIG. 7A. is there. 7 (a) and 7 (b), it can be seen that although the particle surface is deficient, the particle structure is not significantly different from that of FIGS. 5 (a) and 5 (b). Also from this result, the mechanical dry treatment of the present invention does not grind the whey powder particles, but whey scraped off the surface of particles having a large protein (and mineral) content, or whey stripped off. It can be seen that these whey chips and whey flakes are classified together with fine particles and fine particle fragments.
  • FIG.8 (a) is a SEM photograph of secondary fine powder (FF), FIG.8 (b) expands further the secondary fine powder (FF) shown to Fig.8 (a).
  • FIG. 5 (a) showing the raw material (RM)
  • FIG. 6 (a) showing the primary fine powder (F)
  • FIG. 8 (a), FIG. 5 (b), FIG. 6 (b) and FIG. are the same magnification, but in FIGS. 8 (a) and (b), most of the particles seen in FIGS. 5 (a), (b), 6 (a) and (b) It can be seen that the fine powder contains fine powder on the surface of the whey powder which is almost broken.
  • the mechanical dry treatment of the present invention does not pulverize the whey powder particles, but agglomeration or segregation of proteins (and minerals) occurs, resulting in a particle surface having a large protein (and mineral) content. It can be seen that the whey scraped pieces or the whey peeled pieces are generated and classified. Note that, as in FIG. 6A, several large hole-like shapes are also found in FIG. 8A, but they are used to fix fine powder (FF) particles when taking SEM photographs. This is due to the surface shape of the fixed material.
  • FF fine powder
  • FIG. 9 (a) is an SEM photograph of the secondary coarse powder (CC)
  • FIG. 9 (b) is an enlarged view of the secondary coarse powder (CC) shown in FIG. 9 (a).
  • the mechanical dry treatment of the present invention does not grind the whey powder particles, but whey scraped off the surface of particles having a large protein (and mineral) content, or whey stripped off. It can be seen that it is generated and classified.
  • FIGS. 13 (a) to 13 (g) show the particle size distribution of each sample of the raw material, fine powder and coarse powder.
  • the particle size distribution was measured by a laser diffraction / scattering method using Microtrac MT3300 (manufactured by Nikkiso Co., Ltd.).
  • FIG. 13 (a) shows the particle size distribution of the raw material sample (RM)
  • FIGS. 13 (b) and (c) show the primary fine powder (F) classified by the first mechanical dry treatment and The particle size distribution of the primary coarse powder (C) is shown. Comparing FIG. 13 (a) and FIG. 13 (c), it can be seen that since the mode particle diameter is hardly changed, it is hardly pulverized and only the surface is scraped off.
  • FIGS. 13 (d) and (f) show the secondary fine powder (FF) and coarse particles classified by the second mechanical dry treatment again, respectively, for the primary fine powder (F).
  • the particle size distribution of fine powder (FC) is shown. Comparing FIG. 13 (b) and FIG. 13 (f), in the second mechanical dry process for the primary fine powder (F), the second mechanical dry process is similar to the first mechanical dry process. The most frequent particle size of the fine powder (F) before the second mechanical dry treatment and the coarse powder (FC) after the second mechanical dry treatment has not changed and is almost crushed, only the surface You can see that it has been scraped off.
  • FIGS. 13 (e) and (g) show fine coarse powder (CF) and primary coarse powder (C), respectively, that is, fine coarse powder (CF) classified again by the second mechanical dry treatment.
  • the particle size distribution of secondary coarse powder (CC) is shown. Comparing FIG. 13 (c) and FIG. 13 (g), in the second mechanical dry treatment for the primary coarse powder (C), as in the first mechanical dry treatment, The most frequent particle sizes of the coarse powder (C) before the second mechanical dry treatment and the secondary coarse powder (CC) after the second mechanical dry treatment have not changed and are hardly crushed. It can be seen that only the surface has been removed.
  • the protein concentration method in the whey powder according to the present embodiment as mechanical dry processing of the dry processing apparatus, whey particles and whey particles generated by scraping or peeling the surface of the whey powder particles.
  • the protein present in the whey powder can be concentrated in a dry state.
  • whey such as whey scraps and whey scraps generated by shaving or peeling the surface of the whey powder particles.
  • Lactose present in whey powder can also be concentrated in a dry state.
  • the present invention is basically configured as described above. As mentioned above, although the protein concentration method in the whey powder which is one embodiment of this invention was demonstrated in detail, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the main point of this invention, it is various. Of course, improvements or changes may be made.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Dairy Products (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 2種以上の成分を含む溶液を粒状化した粉体に機械的な乾式処理を行って、粉体の粒子内部より特定成分を多く含む表面を削り取り、微粉状の削片を生成し、削片を含む微粉と粒子表面が削り取られた粒子を含む粗粉とを分級して、特定成分を多く含む微粉を回収することにより、粉体中の特定成分を濃縮する方法を提供する。

Description

粉体中の特定成分を濃縮する方法
 本発明は、2種以上の成分を含む溶液を粒状化した粉体における、粉体中に存在する特定成分の濃縮方法に関し、詳しくは、機械的な乾式処理装置を用いて乾燥状態のまま、粉体中に存在する少なくとも1つの特定成分を濃縮する方法、及びこうして乾燥状態のまま少なくとも1つの特定成分が濃縮された粉体をさらに湿式操作に特定成分を濃縮する特定成分の濃縮方法に関する。
 特に、本発明は、スプレードライ法により粒状化したホエイパウダー中のタンパク質の濃縮方法に関し、詳しくは、機械的な乾式処理装置を用いて乾燥状態のままホエイパウダー中のタンパク質を濃縮する方法、及びこうして乾燥状態のままタンパク質が濃縮されたホエイの紛体をさらに湿式操作にてタンパク質を濃縮するタンパク質の濃縮方法に関する。
 ホエイは、乳清とも呼ばれ、チーズを製造する過程で副産物として大量に発生する。チーズを製造する工程では、乳に対し菌や酸などを投入し反応させ、カゼインタンパク質の塊であるカードと呼ばれる固形分と、主にホエイタンパク質からなるタンパク質、ミネラルと乳糖などからなるホエイと呼ばれる液体部分とに分離される。
 これまで、ホエイは、大部分が廃棄されてきたが、高タンパク・低脂肪で栄養価が高い優れた食品として見直されてきている。
 ホエイは、その栄養価の高さから品質が劣化しやすく、水分をなくした状態の粉末状のホエイパウダーとして流通している。
 すなわち、ホエイ中のタンパク質とともに存在する乳糖等を、限外ろ過(ウルトラフィルトレーション)等により取り去って乳糖および灰分の濃度を低下させ、タンパク質を濃縮したホエイタンパク質濃縮物、またはこのホエイタンパク質濃縮物から水分をなくしたタンパク質濃縮ホエイパウダーが市販され、育児用食品の製造におけるタンパク源、各種食品の製造における原料等として利用されている。
 特許文献1には、ホエイ中のタンパク質を分画するために、ホエイまたはホエイを限外ろ過して得た濃縮ホエイを、そのpHを調整せずに、そのまま陰イオン交換体を充填したカラムに通液し、陰イオン交換体に吸着させ、塩溶液で吸着したβ-ラクトグロブリンを溶出させる技術が開示されている。
 特許文献2には、ホエイを限外ろ過段階にかけラクトース(乳糖)をバーミエート(抽出された乳糖、ミネラル分)として除去し、限外ろ過ホエイリチンテート(残余分)を熱処理にかけて合計約50%以上90%以下のホエイ中のタンパク質を変性させ、熱処理したホエイを濃縮してホエイタンパク濃縮物を生成させることを含むホエイ中のタンパク濃縮物を製造する技術が開示されている。
特開平6-62756号 特表平6-507312号
 特許文献1に開示の技術を用いた場合、ホエイに対して陰イオン交換膜を使用してタンパク質の吸着、溶出を繰り返す必要があり、大変複雑であり工程が煩雑であった。
 特許文献2に開示の技術を用いた場合、タンパク質は濃縮できるものの熱変性がおきるため、死活化していないタンパク質を利用する用途では適用できなかった。
 さらに、これらの技術はいずれも液体状態のホエイに対して濃縮処理を行うものに過ぎず、いずれの技術によっても濃縮処理を行った後、品質の劣化を避けるため乾燥させて、パウダー状にする必要があった。
 本発明の目的は、取扱いが簡単で劣化しにくい粉末状のホエイパウダーを乾燥状態のまま処理して、ホエイパウダー中のタンパク質を濃縮する方法、及びこの方法で乾燥状態のままタンパク質が濃縮されたホエイの微粉をさらに湿式操作にてタンパク質を濃縮するタンパク質の濃縮方法を提供することにある。
 本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、スプレードライ法で作られたホエイパウダーに機械的な乾式処理を行い、ホエイパウダーの粒子表面を削り、微粉状のホエイ削片を生成させて分級して回収することでホエイパウダー中のタンパク質を濃縮することができることを知見し、本発明に至ったものである。
 すなわち、本発明の濃縮方法は、機械的な乾式処理を行う乾式処理装置を用いて、2種以上の成分を含む溶液を粒状化した粉体中に存在する1種以上の特定成分を濃縮する方法であって、原料として粉体を前記乾式処理装置に供給する工程と、乾式処理装置に供給された粉体に乾式処理を行って、粉体の粒子より1種以上の特定成分を多く含む表面を削り取り、微粉状の削片を生成する工程と、生成された削片を含む微粉と粒子表面が削り取られた粒子を含む粗粉とを分級する工程と、分級された削片を含む前記微粉を回収する工程と、を有することを特徴とする。
 ここで、乾式処理装置は、分級室を備える気流式分級機であり、気流式分級機で、分級室内に供給された粉体を旋回気流に載せて粉体の粒子表面を削り取ることによって削片を生成し、生成された削片を含む前記微粉を分級することにより、削片の生成工程と、削片を含む前記微粉の分級工程とを同時に行うことが好ましい。
 また、削片の生成工程における削片の生成量は、気流式分級機に供給される粉体の供給速度および風量、並びに気流式分級機内のロータの回転数の1つ以上を制御することにより制御されることが好ましい。
 また、削片を含む微粉の分級工程における削片を含む微粉と粗粉とを分級する分級点は、気流式分級機に供給される粉体の供給速度および風量、並びに気流式分級機内のロータの回転数の1つ以上を制御することにより制御されることが好ましい。
 また、乾式処理装置は、粉砕機と、分級機と、を含み、削片の生成工程は、粉砕機で、粉体の表面を削り取って削片を生成する工程であり、削片を含む微粉の分級工程は、分級機で、生成された削片を含む微粉と粗粉とを分級する工程であることが好ましい。
 また、粉砕機は、気流式粉砕機、摩砕式粉砕機、衝撃式粉砕機、およびボール式粉砕機の中から1つ以上選択される粉砕機であり、分級機は、気流式分級機、および篩の中から1つ以上選択される分級機であることが好ましい。なお、乾式処理装置を構成する装置や機器は、粉砕機あるいは分級機に限定されるわけではなく、表面を削り取って削片を生成する機能を持つ装置あるいはそのような操作を行う機器と、その削片を分離回収する機能を持つ装置あるいはそのような操作を行う機器であればよい。また、これらの機能を併せ持つ装置あるいはそれらの両操作を行う機器であっても良い。
 また、粉体は、溶解特性の異なる2種以上の成分を含む溶液をスプレードライ法にて粒状化したものであることが好ましい。
 またさらに、微粉を回収する工程で回収された削片を含む微粉を、原料として、再度、乾式処理装置に供給する工程と、供給された削片を含む微粉に乾式処理を行って、微粉の粒子表面を削り取り、より微細な微粉状の削片を生成(製造)する工程と、生成されたより微細な微粉状の削片を含むより微細な微粉を、残りの表面が削り取られた微粉から分離する工程と、分離されたより微細な微粉を回収する工程と、を繰り返して、微粉中の1種以上の特定成分を濃縮することが好ましい。
 さらに、粒子表面が削り取られた粒子を含む粗粉を回収する工程を有することが好ましい。
 またさらに、粗粉を回収する工程で回収された粒子表面が削り取られた粒子を含む粗粉を、原料として、再度、乾式処理装置に供給する工程と、供給された粒子表面が削り取られた粒子を含む粗粉に乾式処理を行って、微粉の粒子表面を削り取り、さらに微粉状の削片を生成(製造)する工程と、生成された削片を含む微粉と残りのさらに表面が削り取られた粗粉とを分離する工程と、分離された微粉を回収する工程と、を繰り返して、微粉中のタンパク質を濃縮することが好ましい。
 上記2種以上の成分は、タンパク質、ミネラル及び乳糖の少なくとも1つを含むことが好ましい。
 上記粉体は、ホエイパウダーであり、上記1種以上の特定成分は、タンパク質及びミネラルを含むことが好ましい。
 上記粉体は、ホエイパウダーであり、上記1種以上の特定成分は、タンパク質、ミネラル及び乳糖であり、上記粒子表面が削り取られた粒子を含む粗粉は、粒子表面が削り取られ、乳糖成分を含む粒子を含む粗粉であることが好ましい。
 またさらに、本発明の特定成分の濃縮方法は、上記粒状化した粉体中に存在する1種以上の特定成分を濃縮する方法によって1種以上の特定成分が濃縮された微粉からなる中間製品を原料として用い、さらに、湿式操作にて1種以上の特定成分を濃縮するプロセスを含むものである。
 上記1種以上の特定成分は、タンパク質であることが好ましい。
 上記1種以上の特定成分は、ミネラルであることが好ましい。
 また、さらに、本発明の特定成分の濃縮方法は、上記粒状化した粉体中に存在する1種以上の特定成分を濃縮方法によって1種以上の特定成分が濃縮された粗粉からなる中間製品を原料として用い、さらに、湿式操作にて1種以上の特定成分を濃縮するプロセスを含むものである。
 上記1種以上の特定成分は乳糖であることが好ましい。
 本発明によれば、取扱いが簡単で劣化しにくい粉末状のホエイパウダーに機械的な乾式処理を行い、乾燥状態のままタンパク質を濃縮することができる。
 また、本発明によれば、乾式処理により、乾燥状態のままホエイパウダーよりミネラル成分を濃縮することができる。
 また、本発明によれば、乾式処理により、乾燥状態のままホエイパウダーより乳糖成分を濃縮することができる。
 さらに、本発明によれば、乾式工程でタンパク質を濃縮したホエイパウダーを湿式濃縮操作での原料として用いることで、運搬コストや湿式工程での処理コストを低減することができる。
 また、本発明によれば、乾式工程でミネラルを濃縮したホエイパウダーを湿式濃縮操作での原料として用いることで、運搬コストや湿式工程での処理コストを低減することができる。
本発明の一実施形態に係るホエイパウダー中のタンパク質の濃縮方法の一例のフローを示すフローチャートである。 (a)は、本発明法に用いられるホエイパウダー中のタンパク質の乾式濃縮装置の一実施例の模式図であり、(b)は、(a)に示す乾式濃縮装置の乾式処理装置である気流式分級機においてホエイパウダー粒子に作用する力を説明する説明図である。 本発明法に用いられる乾式処理装置の他の一例の模式図である。 本発明の一実施形態におけるタンパク質の濃縮方法の実施の結果として分離される微粉および粗粉サンプルの割合、並びにそれらのサンプルにおけるタンパク質の含有割合を表した図である。 (a)は原料として使用したホエイパウダーをSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は(a)を更に拡大したものである。 (a)は乾式処理装置で処理を行ったホエイパウダーのうち、微粉側で回収された微粉(F)のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は(a)を更に拡大したものである。 (a)は乾式処理装置で処理を行ったホエイパウダーのうち、粗粉側で回収された粗粉(C)のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は(a)を更に拡大したものである。 (a)は乾式処理装置で処理を行ったホエイパウダーのうち、微粉側で回収された微粉(F)をさらに乾式処理装置で処理して微粉側で回収された微粉(FF)のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は(a)を更に拡大したものである。 (a)は乾式処理装置で処理を行ったホエイパウダーのうち、粗粉側で回収された粗粉(C)をさらに乾式処理装置で処理して粗粉側で回収された粗粉(CC)のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は(a)を更に拡大したものである。 (a)はホエイパウダーの断面のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、(b)は、そのEDSスペクトルを示す図である。 (a)はホエイパウダーの断面のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、図10(a)を更に拡大したものであり、(b)は、そのEDSスペクトルを示す図である。 図11に示すホエイパウダーの断面のEDSマッピング像であり、(a)は、Naの元素マッピング図を示し、(b)は、Kの元素マッピング図を示し、(c)は、Caの元素マッピング図を示す。 実施例における各サンプルの粒度分布の測定結果を表す図である。
 以下に、本発明の溶解特性の異なる2種以上の成分を含む溶液を粒状化した粉体中に存在する特定成分を濃縮する方法の好適な一実施形態である、ホエイパウダー中のタンパク質を濃縮する方法の一例について、添付の図面の好適実施形態に基づいて詳細に説明する。
 なお、本発明における溶解特性の異なる2種以上の成分を含む溶液を粒状化した粉体とは、溶解特性の異なる2種以上の成分を含む溶液を乾燥粉体状にしたものであれば特に限定されない。このような粉体としては、例えば、スプレードライ法や真空乾燥法により粒状化した粉体があげられるが、その中でも、スプレードライ法により粒状化した粉体を用いるのが好ましい。スプレードライ法により粒状化した粉体は、粒子内での成分分布の偏りが大きいからである。
 また、本願における溶解特性とは、例えば、溶媒中に溶かすことができる成分の量(溶解度)や、異なる2種以上の成分間における混合または分離のしやすさ(親和性)や、同一成分が集まりやすいか、分散しやすいか等、液相が乾燥して固相になるときに生じる性質をいう。
 本実施形態においては、スプレードライ法により粒状化したホエイパウダーを使用し、ホエイパウダー中のタンパク質を濃縮する方法を説明するが、2種以上の成分を含む溶液を粒状化した粉体であれば、これに限定されず、スプレードライ粉体として、例えば、脱脂粉乳、インスタントコーヒー等にも用いることができる。
 まず、本発明の一実施形態に係るホエイパウダー中のタンパク質を濃縮する方法(以下、単にタンパク質の濃縮方法ともいう)を説明するに先立ち、本発明の一実施形態にかかる方法において原料として用いられるホエイパウダーについて説明する。
 本実施形態に原料として用いられるホエイパウダーは、ホエイを乾燥させて粉末状にしたもので、スプレードライ法で作られたものを用いる。また、このようなホエイパウダーの粒子の形状や粒径は、限定されるものではなく、特に、スプレードライ法で作られたものであれば、どのようなものでも構わないが、好ましくは表面に凹凸が少なく、なめらかな形状をしている方が良い。例えば、原料としては、図5(a)および(b)に示すようなホエイパウダーを用いるのが好ましい。
 スプレードライ法で作られたホエイパウダーは、その製造時において、ホエイパウダーに含まれる複数種類の成分の溶解特性の違いから、成分ごとに偏析が生じる。そのため、乳糖はホエイパウダーの中心部近くに、タンパク質が多い部分はホエイパウダーの表面近くに偏析する傾向にある。つまり、このホエイパウダーの表面は、中心部近くに偏析する乳糖を取り囲むように存在するタンパク質の濃度が高い傾向がある。
 したがって、ホエイパウダーの表面を削り、削り取られた微粉を回収することで、ホエイパウダー中のタンパク質を濃縮することができる。
 図1は、本実施形態に係るホエイパウダー中のタンパク質の濃縮方法の一例のフローを示すフローチャートである。
 本実施形態のホエイパウダー中のタンパク質の濃縮方法は、図1に示すように、ホエイパウダー等の原料を供給するステップ(工程)S10と、ホエイパウダー等の原料粒子からタンパク質を多く含む粒子表面を削り取り微粉状のホエイ削片を生成するステップS12と、微粉状のホエイ削片からなる微粉とのこりの粒子からなる粗粉とに分級するステップS14と、分級した微粉を回収するステップS16と、回収された微粉をさらに濃縮するか否かを判断するステップS18と、分級した粗粉を回収するステップS20と、回収された粗粉からタンパク質を回収するか否かを判断するステップS22とからなり、これらのステップを実施するものである。
 本実施形態においては、まず、ステップS10の原料を供給する工程において、原料としてホエイパウダーを、乾燥状態のまま、機械的な乾式処理を行う乾式処理装置に供給する。ここで、供給方法は、特に限定的ではなく、どのようなものでも良いが、スクリューフィーダ、振動フィーダ等を用いた供給のように、原料としてのホエイパウダーが一定速度で供給されることが好ましい。
 次に、ステップS12のタンパク質を多く含む粒子表面を削り取り微粉状のホエイ削片を生成する工程では、乾燥状態のまま、機械的な乾式処理を行う乾式処理装置で処理を行い供給された原料であるホエイパウダー粒子表面を削り、ホエイ削片を生成させる。
 ここで、表面を削り取りホエイ削片を生成させる方法は、ホエイパウダーを粉砕せず、表面を削り取る方法であれば、特に限定されないが、ホエイパウダーに気体を当て、粒子と気体との間に発生する剪断力や粒子同士や粒子と壁面の衝突による摩擦による方法(例えば、気流式分級機、気流式粉砕機など)、ホエイパウダーを容器にいれてかき回し、粒子同士や粒子と壁面、同時に投入した撹拌子との摩擦による方法(例えば、摩砕式粉砕機、衝撃式粉砕機、およびボール式粉砕機など)などがあげられる。
 ステップS14の粗粉と微粉とに分級する工程では、タンパク質を多く含む微粉状のホエイ削片を含む微粉と、粒子表面が削り取られた粒子を含む粗粉とを分級することで、微粉と粗粉に分ける。この時、気流式分級機のように分級機能を持っているものであれば、ステップS12の微粉状のホエイ削片を生成する工程とステップS14の粗粉と微粉とに分級する工程を同時に行うことができるが、そうでない場合には、独立して粒子の大きさによって分級できる装置(気流式分級機、振動篩装置など)を使用してもよい。
 ステップS16の分級した微粉を回収する工程では、ステップS14の粗粉と微粉とに分級する工程で分離した微粉を回収する。
 なお、本実施形態においては、ステップS16で微粉を回収して、ホエイパウダー中のタンパク質の濃縮方法を終了してもよいが、タンパク質の濃縮度を上げるために、例えば、目標値(目標濃縮度)まで上げるために、ステップS18の濃縮の要否の判断工程を設けて、更にタンパク質の濃縮方法を繰り返してもよい。
 また、本実施形態においては、ステップS14で微粉と分離された粗粉を回収するステップS20とを設け、粗粉を積極的に回収して利用するようにしてもよいし、ステップS22のタンパク質の回収の要否の判断工程を設けて、回収された粗粉を原料として更にタンパク質の濃縮方法を繰り返してもよい。
 すなわち、回収された微粉について、ステップS18のさらに濃縮が必要であるか判断する工程において判断を行い、回収された微粉がさらなる濃縮が不要であると判断された場合には、本実施形態の濃縮方法を終了し、ステップS16で回収された微粉は、そのまま製品とすることができる。なお、こうして回収された微粉は、タンパク質が濃縮されたホエイパウダーであるので、この濃縮ホエイパウダーを溶解し、従来技術のような湿式法に適用してタンパク質を更に種々の種類に分画するために用いても良い。
 一方、ステップS18の判断工程で、さらに濃縮が必要であると判断された場合には、ステップS10の原料を供給する工程に戻り、回収された微粉(1次微粉)を原料として乾式処理装置に供給し、ステップS12において乾式処理装置に供給された1次微粉に再度機械的な乾式処理を行って、さらに微細な微粉状のホエイ削片(2次ホエイ削片)を生成し、ステップS14において2次ホエイ削片からなる微粉(2次微粉)と、この2次微粉に対する粗粉となる残りの表面が削り取られた1次微粉とを分離し、ステップS16において分離された2次微粉を回収することを、ステップS18において濃縮が不要と判断されるまで繰り返す。
 一方、ステップS20の分級した粗粉を回収する工程では、ステップS14の粗粉と微粉とに分級する工程で分離した粗粉を回収する。回収された粗粉には、乳糖成分が多く含まれているので、乳糖成分を抽出するために用いることができる。
 なお、本実施形態においては、ステップS20で粗粉を回収して、ホエイパウダー中のタンパク質の濃縮方法を終了してもよいが、回収された粗粉には、乳糖成分が多く含まれているが、まだ、タンパク質も含まれているので、ホエイパウダー中のタンパク質の回収率を上げるために、ステップS22のタンパク質の回収の要否の判断工程を設けて、回収された粗粉を原料として更にタンパク質の濃縮方法を繰り返してもよい。
 すなわち、回収された粗粉について、ステップS22のさらにタンパク質の回収が必要であるか判断する工程において判断を行い、回収された粗粉からタンパク質の回収が不要であると判断された場合には、本実施形態の濃縮方法を終了しても良いし、タンパク質が濃縮されたホエイパウダーに対して、従来技術のような湿式法、例えば、水に溶かし、イオン交換膜や限外ろ過膜を使用した方法を適用してタンパク質を更に種々の種類に分画するために用いても良い。
 一方、ステップS22の判断工程で、さらにタンパク質の回収が必要であると判断された場合には、ホエイパウダー中のタンパク質の回収率を上げるために、ステップS10の原料を供給する工程に戻り、回収された粗粉(1次粗粉)を原料として乾式処理装置に供給し、ステップS12において乾式処理装置に供給された1次粗粉に再度機械的な乾式処理を行って、さらに表面を削り、微粉状のホエイ削片を生成し、ステップS14においてホエイ削片からなる微粉(粗微粉)と、残りのさらに表面が削り取られた粗粉(2次粗粉)とを分離し、ステップS16においてステップS14で分離された粗微粉を回収するとともに、ステップS20においてステップS14で分離された2次粗粉を回収することを、ステップS22においてタンパク質の回収が不要と判断されるまで繰り返す。
 なお、ステップS16において回収された粗微粉は、上述した2次微粉と同様に、タンパク質の濃縮度を上げるために、例えば、目標値(目標濃縮度)まで上げるために、ステップS18において濃縮が不要と判断されるまで本実施形態のタンパク質の濃縮方法を繰り返してもよい。
 例えば、本実施形態の濃縮方法においては、図4に示すように、タンパク質を13.2wt%含有するホエイパウダー原料(RM)(図5(a)および(b)参照)に対して1回目の乾式処理を行って、タンパク質含有量21.6wt%の微粉(1次微粉F)28.7wt%と、タンパク質含有量9.9wt%の粗粉(1次粗粉C)71.3wt%とを分離して得ることができる。
 こうして得られたタンパク質含有量21.6wt%の1次微粉(F)に対して、2回目の乾式処理を行って、タンパク質含有量32.1wt%の微粉(2次微粉FF;図8(a)および(b)参照)34.3wt%と、タンパク質含有量15.3wt%の粗粉(微粗粉FC)65.7wt%とを分離して得ることができる。
 一方、1回目の乾式処理で得られたタンパク質含有量9.9wt%の1次粗粉(C)に対して、2回目の乾式処理を行って、タンパク質含有量11.3wt%の微粉(粗微粉CF)49.3wt%と、タンパク質含有量8.8wt%の粗粉(2次粗粉CC;図9(a)および(b)参照)50.7wt%とを分離して得ることができる。
 なお、本実施形態において、ステップS12のホエイパウダーに乾式処理を行って、タンパク質を多く含む表面を削り取り、微粉状のホエイ削片を生成するとは、原料としてのホエイパウダーの粒子表面を削り取りまたは剥がし取り、微粉状のホエイ削片またはホエイ剥片を含む微粉(例えば、図8(a)および(b)参照)が生成することをいう。また、その結果、ホエイパウダーの粒子表面が削り取られた粒子(例えば、図9(a)および(b)参照)を含む粗粉も同時に生成される。
 本実施形態において、タンパク質の濃縮とは、タンパク質を多く含む表面を削り取った微粉状のホエイ削片を含む微粉を生成し、粗粉と分離して回収することであるので、タンパク質を多く含む表面を削り取る強さ、すなわち微粉状のホエイ削片を生成する強さと、微粉と粗粉を分級する分級点を変化させることにより、タンパク質の濃縮(濃縮度)を制御することができる。
 ところで、本発明の発明者らがさらに鋭意研究を重ねたところ、本実施形態の機械的な乾式処理にかかる濃縮方法によれば、タンパク質とともに複数種のミネラルも濃縮することができることを知見した。
 図10(a)は、スプレードライ法により製造されたホエイパウダー(RM)の断面のSEM(走査型電子顕微鏡)で撮影した図面代用写真であり、図10(b)は、EDS(日本電子株式会社製 JED-2300F型)により検出した、そのEDSスペクトルを示す図である。図11(a)は、図10(a)を拡大した図であり、図11(b)は、EDS(日本電子株式会社製 JED-2300F型)により検出した、そのEDSスペクトルを示す図である。図12は、図11に示すホエイパウダーの断面のEDSマッピング像であり、(a)は、Naの元素マッピング図を示し、(b)は、Kの元素マッピング図を示し、(c)は、Caの元素マッピング図を示す。図中、黄はNaを示し、赤はKを示し、青はCaを示す。
 図10(b)及び図11(b)に示すEDSスペクトル分析から、ホエイパウダーに、複数種のミネラルが含まれることがわかる。また、図12から、ミネラルが、ホエイパウダーの内側に少なく、外側に多く存在し、パウダー表面を覆うように偏析していることがわかる。
 したがって、スプレードライ法により粒状化されたホエイパウダーの表面を削り、削り取られた微粉を回収すれば、ホエイパウダー中のミネラルを濃縮することができることがわかる。
 例えば、図4に示す本実施形態の濃縮方法によれば、表1に示すように、複数のミネラルを4.1wt%含有するホエイパウダー原料(RM)に対して、上記の本実施形態に係る乾式処理を同様に行って、ミネラル含有量9.5wt%の微粉(2次微粉FF)を分離して得ることができる。
 また、同様に、ホエイパウダー原料(RM)および2次微粉FFの各ミネラルの含有量も測定したところ、表1に示されるように、K、Ca、ClおよびPの結果に有意差が認められ、これらミネラルが濃縮されていることがわかる。
Figure JPOXMLDOC01-appb-T000001
 なお、本実施形態の機械的な乾式処理にかかる濃縮方法により濃縮されたミネラルは、上述したタンパク質と同様に、従来技術の湿式法を利用して、さらに濃縮することもできる。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明を実施する装置の一実施形態を詳細に説明する。
 図2(a)は、本発明の一実施形態に係るホエイパウダー中のタンパク質(及びミネラル)を濃縮する方法を実施するタンパク質(及びミネラル)の乾式濃縮装置の一実施例の模式図である。
 乾式濃縮装置10は、原料フィーダ20、気流式分級機30、バグフィルタ40、およびファン(吸引ブロア)50から構成される。また、乾式濃縮装置10は、さらに、バグフィルタ40から微粉を回収する微粉回収器100と、気流式分級機30において分級された粗粉を回収する粗粉回収器200を備える。
 原料フィーダ20は、図1のステップS10の原料供給工程を実施するためのもので、原料であるホエイパウダーを気流式分級機30に供給する。本発明においては、原料フィーダ20は、所定量のホエイパウダーを気流式分級機30に供給することができれば、特に制限的ではなく、公知の原料フィーダを用いることができるが、例えば、一定量の原料を供給することができる容積型フィーダであるのが好ましい。すなわち、原料フィーダ20としては、図示例のように、原料フィーダモータ22によって回転駆動されるスクリュー24によってホッパ26内の原料粉末(ホエイパウダー)を一定量ずつ切り出して、排出口28から一定量のホエイパウダーを気流式分級機30に供給するスクリューフィーダを用いることが好ましい。
 気流式分級機30は、本発明のホエイパウダーの乾式処理装置を構成し、図1のステップS12のホエイ削片の生成工程および図1のステップS14の分級工程を実施するためのものである。
 気流式分級機30としては、ホエイ削片の生成と分級とを同時に行うもので、分級対象となる原料粉末に対して作用する気流の剪断力や原料粉末同士の摩擦力が大きく、粒子表面を削り取りが可能なものであればどのようなものでも良く、例えば、公知の気流式分級機を用いることができる。なお、後述するように、気流式分級機30の代わりに、図1のステップS12の乾式処理工程を実施する粉砕機と、図1のステップS14の分級工程を実施する分級機とを有していても良い。
 図2(a)に示す気流式分級機30には、気流式分級機モータ32により回転するロータ34が内蔵されている。
 気流式分級機30では、図2(b)に示すように、供給されたホエイパウダーの粒子500に、ロータ34の回転およびファン50の吸引によって発生した旋回する気流を当て、粒子500を旋回する気流の流れ510に載せて旋回させるので、粒子500の流れ520は、旋回流となる。この時、粒子500と旋回気流との間に発生する剪断力や粒子同士や粒子と装置内壁面との接触や衝突による摩擦力によりタンパク質(及びミネラル)を多く含む粒子表面を削り取り、微粉状のホエイ削片を生成し、ホエイ削片を含む微粉と粒子表面が削り取られた粒子を含む粗粉とが混合されたものが生成される。
 すなわち、気流式分級機30内において、旋回気流により原料粉末(ホエイパウダー)が受ける衝撃力や、原料粉末間の接触等や、原料粉末と装置内壁面との接触等によって原料粉末が受ける剪断力で、原料であるホエイパウダー粒子の表面が削られ、ホエイ削片が生成される。
 こうして、まず、図1に示すステップS12のホエイ削片の生成工程が実施される。
 ところで、図2(b)に示すように、ホエイパウダーの粒子500(ホエイ削片を含む微粉や粒子表面が削り取られた粒子を含む粗粉をも含む)は、この回転によりロータ34の回転軸から見て外側向きの力である遠心力550を受ける。さらに、ファン50によって発生する吸引気流による抗力560は、ロータ34の回転軸へ向かう方向の力になるように設計されている。この時、粒子500は、質量が大きいほど、遠心力550を大きく受け、断面積が大きいほどファン50によって発生する気流による抗力560の影響を大きく受ける。
 したがって、ホエイパウダーの供給速度(単位時間当たりの供給量)と風量(単位時間当たりの供給気流量)、並びに気流式分級機内のロータ34の回転数のうち1つ以上を制御することでホエイ削片を含む微粉や粒子表面を削り取られた粒子を含む粗粉の受ける力を変化させることができる。
 その結果、微粉状のタンパク質(及びミネラル)を多く含むホエイ削片を含む微粉は、ファン50の発生する気流に乗りバグフィルタ40へ移動する。一方、粗粉は、ファン50の発生する気流に乗り切れず、気流式分級機30から排出される。
 こうして、気流式分級機30内において、図1に示すステップS14の分級工程が実施される。
 バグフィルタ40は、気体と共に流入した粉体を気体から分離して粉体を回収するためのもので、特に制限的ではなく、公知のバグフィルタを用いることができる。バグフィルタ40に気流と共に移動した微粉は、バグフィルタ40の中で、図示しないフィルタにより、微粉と気体に分離される。バグフィルタ40内で気体と分離された微粉は、バグフィルタ40の下方に設けられた微粉回収バルブの開放により微粉回収器100に回収される。こうして、図1に示すステップS16の微粉回収工程が実施される。
 一方、気流式分級機30から排出された粗粉は、粗粉回収器200に回収される。こうして、図1に示すステップS20の粗粉回収工程が実施される。
 なお、微粉回収器100および粗粉回収器200も、特に制限的ではなく、公知の粉体回収容器を用いることができる。
 本発明においては、微粉の回収後、図1に示すステップS18の判断工程で微粉中のタンパク質のさらなる濃縮が必要であると判断された場合には、微粉回収器100に回収された微粉を、原料粉末として原料フィーダ20のホッパ26に充填するのが良い。
 一方、粗粉の回収後、図1に示すステップS22の判断工程で粗粉からタンパク質(及びミネラル)の回収が必要であると判断された場合には、微粉回収器100に回収された粗粉を、原料粉末として原料フィーダ20のホッパ26に充填するのが良い。
 上述した例では、本発明の乾式処理装置として、ホエイ削片の生成と分級とを同時に行う気流式分級機30を用いているが、本発明はこれに限定されず、それぞれを異なる装置で行うようにしても良い。
 図3は、本発明における、別の構成によるホエイパウダー中のタンパク質(及びミネラル)の乾式濃縮装置の一実施例の模式図である。
 タンパク質(及びミネラル)の乾式濃縮装置1000は、原料フィーダ20、粉砕機1060、振動篩機1030、バグフィルタ40、およびファン50から構成され、さらに、バグフィルタ40から微粉を回収する微粉回収器100と、振動篩機1030において篩い分けられた粗粉を回収する粗粉回収器200を備える。
 なお、図3に示す乾式濃縮装置1000と、乾式濃縮装置10と、気流式分級機30の代わりに、粉砕機1060および振動篩機1030を有している以外は、同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を割愛する。
 まず、原料フィーダ20は、原料であるホエイパウダーを粉砕機1060に供給して、図1のステップS10の原料供給工程を実施する。
 粉砕機1060は、図1のステップS12のホエイ削片の生成工程を実施するためのもので、供給された原料を粉砕せず表面を削り取る程度の軽度の機械的処理を行うことにより、タンパク質(及びミネラル)を多く含む粒子表面を削り取り、微粉状のホエイ削片を生成し、ホエイ削片を含む微粉と粒子表面を削り取られた粒子を含む粗粉とが混合されたものとなる。
 この後、混合された粉体は、振動篩機1030に供給される。
 振動篩機1030は、図1のステップS14の分級工程を実施するためのもので、図示しない振動源を内蔵し、供給された混合粉体を載せた篩(図示せず)を振動させることによって、篩の篩目によって微粉状のタンパク質(及びミネラル)を多く含むホエイ削片を含む微粉と粒子表面を削り取られた粒子を含む粗粉とをそれぞれ篩下と篩上とに分級する。こうして、振動篩機1030によって、図1のステップS14の分級工程が実施される。
 この後、振動篩機1030の篩目を通り抜けた篩下の微粉は、微粉回収器100に回収され、篩を通り抜けできず、篩の上に残った篩上の粗粉は、粗粉回収器200に回収される。
 本発明を実施例に基づいて具体的に説明する。
 先ず、原料サンプル(RM)として調整した、タンパク質の割合(含有量)13.2wt%、平均粒子径(粒度)(D50)77.7μm(図13(a)参照)であるホエイパウダー(図5(a)、(b)参照)0.85kgを用い、図4に示すように、本実施形態のホエイパウダー中のタンパク質(及びミネラル)の濃縮方法を繰り返し実施し、それぞれ微粉と粗粉とに分級した。
 図4は、実施例にかかわる原料サンプルから機械的な乾式処理による微粉と粗粉の生成と分級の繰り返し、およびその時のタンパク質の割合を示す図である。
 先ず、原料サンプル(RM)のタンパク質の含有量は、13.2wt%であった。タンパク質の含有量は、TruMac N(Lecoジャパン社製)にて、原料サンプル中の窒素元素の質量を測定し、五訂食品成分表2004(女子栄養大学出版部 2004年1月)P.14 表7 窒素―たんぱく質換算係数 13乳類記載の換算係数6.38を採用して換算をおこなった。また、本明細書中では、特に断りのない限り、含有割合(含有量)は、水分の影響を排除した乾燥重量基準の質量割合である。
 また、原料サンプル(RM)のミネラルの含有量は、4.1wt%であった。ミネラルの含有量は、電気炉を用いて、試料を高温で燃焼し、燃焼前後の重量差から算出した。また、上述のタンパク質の含有量と同様に、含有量は、水分の影響を排除した乾燥重量基準の質量割合である。
 また、原料サンプル(RM)の各ミネラルの含有量は、Kの含有量は1.9wt%、Caの含有量は0.9wt%、Clの含有量は0.5wt%、Pの含有量は0.3wt%であった。各ミネラル成分の含有量は、走査型蛍光X線分析装置(株式会社リガク製 ZSX PrimusII)により、試料中の元素の質量を測定し、上述のミネラル全含有量から算出した。上述と同様に、含有量は、水分の影響を排除した乾燥重量基準の質量割合である。
 原料サンプル(RM)の平均粒度(D50)は、77.7μmであり、図13(a)のような粒度分布を示すものであった。
 このような原料サンプル(RM)0.85kgに対し、気流式分級機ターボクラシファイアTC-15(日清エンジニアリング社製)を機械的な乾式処理を行う本発明の乾式処理装置として利用して、機械的な乾式処理を行い、本実施形態のホエイパウダー中のタンパク質(及びミネラル)の濃縮方法を実施した。
 本実施形態のホエイパウダー中のタンパク質(及びミネラル)の濃縮方法の第1回目の実施では、図5(a)、(b)に示す原料サンプル(RM)に対して機械的な乾式処理を行って濃縮処理し、図6(a)、(b)に示す微粉(1次微粉)(F)を0.23kg(28.7wt%)、図7(a)、(b)に示す粗粉(1次粗粉)(C)を0.58kg(71.3wt%)得た。この時のターボクラシファイアTC-15の運転条件は、原料供給速度が5.8kg/h、回転数が1500rpm、風量が2.5m/minであった。
 その結果、1次微粉(F)のタンパク質の含有量は21.6wt%、1次粗粉(C)のタンパク質の含有量は9.9wt%であった。また、1次微粉(F)の平均粒度(D50)は、30.6μmであり、図13(b)のような粒度分布を示し、1次粗粉(C)の平均粒度(D50)は、80.3μmであり、図13(c)のような粒度分布を示すものであった。
 次に、第1回目の実施で作成した1次微粉(F)と1次粗粉(C)とのそれぞれに対して、さらにターボクラシファイアTC-15を利用して、機械的な乾式処理を行い、第2回目のタンパク質(及びミネラル)の濃縮方法を実施した。
 1次微粉(F)に対して、再度、機械的な乾式処理を行って第2回目の濃縮方法を実施した。この時のターボクラシファイアTC-15の運転条件は、原料供給速度が5.8kg/h、回転数が4000rpm、風量が2.5m/minであった。
 その結果、図8(a)、(b)に示す微粉(2次微粉)(FF)0.06kg(34.3wt%)と粗粉(粗微粉)(FC)0.11kg(65.7wt%)を得た。この時の2次微粉(FF)のタンパク質の含有量は、32.1wt%、粗粉(FC)のタンパク質の含有量は、15.3wt%であった。また、2次微粉(FF)のミネラルの含有量は、9.5wt%であった。また、2次微粉(FF)の各ミネラルの含有量は、それぞれ、Kの含有量は4.6wt%、Caの含有量は2.1wt%、Clの含有量は1.3wt%、Pの含有量は0.7wt%であった。
 また、2次微粉(FF)の平均粒度(D50)は、7.8μmであり、図13(d)のような粒度分布を示し、粗微粉(FC)の平均粒度(D50)は、35.6μmであり、図13(f)のような粒度分布を示すものであった。
 1次微粉(F)中のタンパク質の含有量よりも2次微粉(FF)中のタンパク質の含有量が多くなっていることから、繰り返しの処理の実施によりタンパク質がさらに濃縮されることがわかる。
 また、原料サンプル(RM)中のミネラルの含有量よりも2次微粉(FF)中のミネラルの含有量が多くなっていることから、繰り返しの処理の実施によりミネラルが濃縮されることがわかる。
 一方、1次粗粉(C)に対して、再度、機械的な乾式処理を行って第2回目の濃縮方法を実施した。この時のターボクラシファイアTC-15の運転条件は、原料供給速度が5.4kg/h、回転数が1200rpm、風量が2.5m/minであった。
 その結果、微粉(微粗粉)(CF)0.28kg(49.3wt%)と図9(a)、(b)に示す粗粉(2次粗粉)(CC)0.29kg(50.7wt%)を得た。この時の微粉(CF)のタンパク質の含有量は11.3wt%、2次粗粉(CC)のタンパク質の含有量は8.8wt%であった。
 また、微粗粉(CF)の平均粒度(D50)は、58.5μmであり、図13(e)のような粒度分布を示し、2次粗粉(CC)の平均粒度(D50)は、91.3μmであり、図13(g)のような粒度分布を示すものであった。
 1次粗粉(F)中のタンパク質の含有量よりも、微粗粉(CF)中のタンパク質の含有量が多いことから、第1回目の処理でとりきれなかったタンパク質を、繰り返しの処理の実施により回収することができることがわかる。
 また、上記に示される原料サンプル(RM)、2次微粉(FF)及び2次粗粉(CC)100g中に含まれる乳糖量をそれぞれ高速液体クロマトグラフィーを用いて測定したところ、乾式処理前の原料サンプル(RM)の乳糖含有量は、71.1gであり、乾式処理後の2次微粉(FF)の乳糖含有量は、35.6gであり、乾式処理後の2次粗粉(CC)は、78.2gであった。つまり、原料サンプル(RM)中の乳糖量よりも2次微粉(FF)中の乳糖量が減少しているのに対して、2次粗粉(CC)中の乳糖量は増加していた。
 この結果から、本実施形態の機械的な乾式処理にかかる濃縮方法繰り返しの処理の実施により、粗粉側に乳糖が濃縮することがわかる。
 ここで、図5(a)は、原料として使用したホエイパウダー(RM)のSEM写真であり、図5(b)は、図5(a)に示すホエイパウダー(RM)をさらに拡大したものである。粒子表面は、なめらかで欠損はほとんどないことがわかる。
 図6(a)は、1次微粉(F)のSEM写真であり、図6(b)は、図6(a)に示す1次微粉(F)をさらに拡大したものである。図5(a)と図6(a)、図5(b)と図6(b)とは、それぞれ、同じ拡大率であるが、図6(a)および(b)には、図5(a)および(b)でみられた種々のサイズの粒子の内の、大きな粒子の粒子表面から削り取られた破片であるホエイパウダー表面微粉と、微細粒子と、微細粒子よりすこし大きく、削り取られて粒子表面が残る微粒子破片とを含む微粉であることがわかる。
 この結果から、本発明の機械的な乾式処理は、ホエイパウダー粒子、特に大きい粒子を粉砕するものではなく、タンパク質の凝集や偏析などが生じてタンパク質(及びミネラル)の含有量が大きい粒子表面を削り取ったホエイ削片、若しくは剥がし取ったホエイ剥片を生成し、これらのホエイ削片やホエイ剥片を、微細粒子及び微粒子破片と共に分級するものであることがわかる。
 なお、図6(a)には、大きな穴状の形状が数箇所見受けられるが、SEM写真を撮影する際に、微粉(FF)粒子を固定するために使用した固定材の表面形状によるものである。
 次に、図7(a)は、1次粗粉(C)のSEM写真であり、図7(b)は、図7(a)に示す1次粗粉(C)をさらに拡大したものである。図7(a)および(b)から、粒子表面は欠損が見受けられるものの、原料である図5(a)および(b)と大きく粒子構成が変わらないことがわかる。
 この結果からも、本発明の機械的な乾式処理は、ホエイパウダー粒子を粉砕するものではなく、タンパク質(及びミネラル)の含有量が大きい粒子表面を削り取ったホエイ削片、若しくは剥がし取ったホエイ剥片を生成し、これらのホエイ削片やホエイ剥片を、微細粒子及び微粒子破片と共に分級するものであることがわかる。
 また、図8(a)は、2次微粉(FF)のSEM写真であり、図8(b)は、図8(a)に示す2次微粉(FF)をさらに拡大したものである。原料(RM)を示す図5(a)および1次微粉(F)を示す図6(a)と図8(a)、図5(b)および図6(b)と図8(b)とは、それぞれ、同じ拡大率であるが、図8(a)および(b)には、図5(a)、(b)、図6(a)および(b)でみられた粒子は、ほとんどなく、ほぼ破片であるホエイパウダー表面微粉を含む微粉であることがわかる。
 この結果から、本発明の機械的な乾式処理は、ホエイパウダー粒子を粉砕するものではなく、タンパク質(及びミネラル)の凝集や偏析などが生じてタンパク質(及びミネラル)の含有量が大きい粒子表面を削り取ったホエイ削片、若しくは剥がし取ったホエイ剥片を生成して、分級するものであることがわかる。
 なお、図8(a)にも、図6(a)と同様に、大きな穴状の形状が数箇所見受けられるが、SEM写真を撮影する際に、微粉(FF)粒子を固定するために使用した固定材の表面形状によるものである。
 次に、図9(a)は、2次粗粉(CC)のSEM写真であり、図9(b)は、図9(a)に示す2次粗粉(CC)をさらに拡大したものである。図9(a)および(b)から、粒子表面は欠損が見受けられるものの、原料である図5(a)、(b)、図7(a)および(b)と大きく粒子構成が変わらないことがわかる。
 この結果からも、本発明の機械的な乾式処理は、ホエイパウダー粒子を粉砕するものではなく、タンパク質(及びミネラル)の含有量が大きい粒子表面を削り取ったホエイ削片、若しくは剥がし取ったホエイ剥片を生成して、分級するものであることがわかる。
 図13(a)~(g)は、それぞれの原料、微粉および粗粉の各サンプルの粒度分布を示すものである。本明細書において、粒度分布は、Microtrac MT3300(日機装社製)にて、レーザ回折・散乱法にて測定を行った。
 図13(a)は、原料サンプル(RM)の粒度分布を示し、図13(b)および(c)は、それぞれ第1回目の機械的な乾式処理して分級した1次微粉(F)および1次粗粉(C)の粒度分布を示す。図13(a)と図13(c)を比べると、最頻粒径は、ほとんど変わっていないことから、ほとんど粉砕されず、表面だけ削り取られていることがわかる。
 次に、図13(d)および(f)は、1次微粉(F)に対して、それぞれ、再度、すなわち第2回目の機械的な乾式処理して分級した2次微粉(FF)および粗微粉(FC)の粒度分布を示す。図13(b)と図13(f)とを比べると、1次微粉(F)に対する第2回目の機械的な乾式処理においても、第1回目の機械的な乾式処理と同様に、第2回目の機械的な乾式処理前の微粉(F)と第2回目の機械的な乾式処理後の粗粉(FC)の最頻度粒径は、変わっておらず、ほとんど粉砕されずに、表面だけ削り取られていることがわかる。
 次に、図13(e)および(g)は、1次粗粉(C)に対して、それぞれ、再度、すなわち第2回目の機械的な乾式処理して分級した微粗粉(CF)および2次粗粉(CC)の粒度分布を示す。図13(c)と図13(g)とを比べると、1次粗粉(C)に対する第2回目の機械的な乾式処理においても、第1回目の機械的な乾式処理と同様に、第2回目の機械的な乾式処理前の粗粉(C)と第2回目の機械的な乾式処理後の2次粗粉(CC)の最頻度粒径は、変わっておらず、ほとんど粉砕されずに、表面だけ削り取られていることがわかる。
 以上の結果から、本実施形態のホエイパウダー中のタンパク質の濃縮方法においては、乾式処理装置の機械的な乾式処理として、ホエイパウダーの粒子表面を削りまたは剥がすことによって発生したホエイ削片やホエイ剥片等のホエイパウダーの表面微粉を回収することで、ホエイパウダー中に存在するタンパク質を乾式のまま濃縮することができる。
 また、本実施形態のホエイパウダー中のタンパク質の濃縮方法においては、乾式処理装置の機械的な乾式処理として、ホエイパウダーの粒子表面を削りまたは剥がすことによって発生したホエイ削片やホエイ剥片等のホエイパウダーの表面微粉を回収することで、ホエイパウダー中に存在するミネラルも乾式のまま濃縮することができる。
 また、本実施形態のホエイパウダー中のタンパク質の濃縮方法においては、乾式処理装置の機械的な乾式処理として、ホエイパウダーの粒子表面が削りまたは剥がされたホエイパウダーの粗粉を回収することで、ホエイパウダー中に存在する乳糖も乾式のまま濃縮することができる。
 本発明は、基本的に以上のように構成されるものである。以上、本発明の一実施形態であるホエイパウダー中のタンパク質の濃縮方法について詳細に説明したが、本発明は上記実施形態や実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。
 10 タンパク質(及びミネラル)の乾式濃縮装置
 20 原料フィーダ
 22 原料フィーダモータ
 24 スクリュー
 26 ホッパ
 28 排出口
 30 気流式分級機
 32 気流式分級機モータ
 40 バグフィルタ
 42 微粉回収バルブ
 50 ファン
 100 微粉回収器
 200 粗粉回収器
 500 粒子(原料、微粉、粗粉)
 510 気体の流れ
 520 粒子の流れ
 550 遠心力
 560 気流による抗力
 1000 乾式処理装置
 1030 振動篩機
 1060 粉砕機

Claims (18)

  1.  機械的な乾式処理を行う乾式処理装置を用いて、2種以上の成分を含む溶液を粒状化した粉体中に存在する1種以上の特定成分を濃縮する方法であって、
     原料として前記粉体を前記乾式処理装置に供給する工程と、
     前記乾式処理装置に供給された前記粉体に前記乾式処理を行って、前記粉体の粒子より前記1種以上の特定成分を多く含む表面を削り取り、微粉状の削片を生成する工程と、
     生成された前記削片を含む微粉と前記粒子表面が削り取られた粒子を含む粗粉とを分級する工程と、
     分級された前記削片を含む前記微粉を回収する工程と、を有することを特徴とする濃縮方法。
  2.  前記乾式処理装置は、分級室を備える気流式分級機であり、
     前記気流式分級機で、前記分級室内に供給された前記粉体を旋回気流に載せて前記粉体の粒子表面を削り取ることによって前記削片を生成し、生成された前記削片を含む前記微粉を分級することにより、前記削片の生成工程と、前記削片を含む前記微粉の分級工程とを同時に行う請求項1に記載の濃縮方法。
  3.  前記削片の生成工程における前記削片の生成量は、前記気流式分級機に供給される前記粉体の供給速度および風量、並びに前記気流式分級機内のロータの回転数の1つ以上を制御することにより制御される請求項2に記載の濃縮方法。
  4.  前記削片を含む前記微粉の分級工程における前記削片を含む前記微粉と前記粗粉とを分級する分級点は、前記気流式分級機に供給される前記粉体の供給速度および風量、並びに前記気流式分級機内のロータの回転数の1つ以上を制御することにより制御される請求項2に記載の濃縮方法。
  5.  前記乾式処理装置は、粉砕機と、分級機と、を含み、
     前記削片の生成工程は、前記粉砕機で、前記粉体の表面を削り取って前記削片を生成する工程であり、
     前記削片を含む前記微粉の分級工程は、前記分級機で、生成された前記削片を含む前記微粉と前記粗粉とを分級する工程である請求項1に記載の濃縮方法。
  6.  前記粉砕機は、気流式粉砕機、摩砕式粉砕機、衝撃式粉砕機、およびボール式粉砕機の中から1つ以上選択される粉砕機であり、
     前記分級機は、気流式分級機、および振動篩装置の中から1つ以上選択される分級機である請求項5に記載の濃縮方法。
  7.  前記粉体は、溶解特性の異なる2種以上の成分を含む溶液をスプレードライ法にて粒状化したものである請求項1~6のいずれか1項に記載の濃縮方法。
  8.  さらに、前記微粉を回収する工程で回収された前記削片を含む前記微粉を、前記原料として、再度、前記乾式処理装置に供給する工程と、
     前記供給された前記削片を含む前記微粉に前記乾式処理を行って、前記微粉の粒子表面を削り取り、より微細な微粉状の削片を生成する工程と、
     生成された前記より微細な微粉状の前記削片を含むより微細な微粉を、残りの表面が削り取られた微粉から分離する工程と、
     分離された前記より微細な微粉を回収する工程と、
    を繰り返して、前記微粉中の1種以上の特定成分を濃縮する請求項1~7のいずれか1項に記載の濃縮方法。
  9.  さらに、前記粒子表面が削り取られた粒子を含む前記粗粉を回収する工程を有する請求項1~8のいずれか1項に記載の濃縮方法。
  10.  さらに、前記粗粉を回収する工程で回収された前記粒子表面が削り取られた粒子を含む前記粗粉を、前記原料として、再度、前記乾式処理装置に供給する工程と、
     前記供給された前記粒子表面が削り取られた粒子を含む前記粗粉に前記乾式処理を行って、前記微粉の粒子表面を削り取り、さらに微粉状の削片を生成する工程と、
     生成された前記削片を含む微粉と残りのさらに表面が削り取られた粗粉とを分離する工程と、
     分離された微粉を回収する工程と、
    を繰り返して、前記微粉中の1種以上の特定成分を濃縮する請求項9に記載の濃縮方法。
  11.  前記2種以上の成分は、タンパク質、ミネラル及び乳糖の少なくとも1つを含む請求項1~10のいずれか一項に記載の濃縮方法。
  12.  前記粉体は、ホエイパウダーであり、前記1種以上の特定成分は、タンパク質及びミネラルを含む請求項1~11のいずれか1項に記載の濃縮方法。
  13.  前記粉体は、ホエイパウダーであり、
     前記1種以上の特定成分は、タンパク質、ミネラル及び乳糖であり、
     前記粒子表面が削り取られた粒子を含む前記粗粉は、前記粒子表面が削り取られ、乳糖成分を含む粒子を含む前記粗粉である請求項9~12のいずれか1項に記載の濃縮方法。
  14.  請求項1~13のいずれか1項に記載の濃縮方法によって1種以上の特定成分が濃縮された微粉からなる中間製品を原料として用い、さらに湿式操作にて1種以上の特定成分を濃縮するプロセスを含むことを特徴とする特定成分の濃縮方法。
  15.  前記1種以上の特定成分はタンパク質である請求項14に記載の特定成分の濃縮方法。
  16.  前記1種以上の特定成分はミネラルである請求項14に記載の特定成分の濃縮方法。
  17.  請求項9~13のいずれか1項に記載の濃縮方法によって1種以上の特定成分が濃縮された粗粉からなる中間製品を原料として用い、さらに湿式操作にて1種以上の特定成分を濃縮するプロセスを含むことを特徴とする特定成分の濃縮方法。
  18.  前記1種以上の特定成分は乳糖である請求項17に記載の特定成分の濃縮方法。
PCT/JP2015/068339 2014-06-30 2015-06-25 粉体中の特定成分を濃縮する方法 WO2016002621A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531311A JP6518248B2 (ja) 2014-06-30 2015-06-25 粉体中の特定成分を濃縮する方法
US15/319,245 US10390545B2 (en) 2014-06-30 2015-06-25 Method for concentrating particular component in powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-135217 2014-06-30
JP2014135217 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002621A1 true WO2016002621A1 (ja) 2016-01-07

Family

ID=55019162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068339 WO2016002621A1 (ja) 2014-06-30 2015-06-25 粉体中の特定成分を濃縮する方法

Country Status (4)

Country Link
US (1) US10390545B2 (ja)
JP (1) JP6518248B2 (ja)
TW (1) TWI654934B (ja)
WO (1) WO2016002621A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122401A (ja) * 1995-10-31 1997-05-13 Nara Kikai Seisakusho:Kk 液状物質中の固形成分の乾燥回収方法
US6406729B1 (en) * 2000-04-14 2002-06-18 Land O′Lakes, Inc. Method and process for producing an improved milk replacer
JP2006297373A (ja) * 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd 吸水剤、吸収性物品及び吸水剤の製造方法
JP2007091688A (ja) * 2005-09-30 2007-04-12 Kurimoto Ltd 固形製剤コーティング用微粉末の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2046741C (en) 1991-05-16 1999-06-29 Yashavantkumar Jayasinh Asher Whey protein concentrate and its use in ice cream
JP2916047B2 (ja) 1992-08-20 1999-07-05 森永乳業株式会社 ホエー蛋白分画の製造法
US7032849B2 (en) * 2003-01-23 2006-04-25 Ricoh Company, Ltd. Fluidized bed pulverizing and classifying apparatus, and method of pulverizing and classifying solids
US7358024B2 (en) * 2003-12-26 2008-04-15 Canon Kabushiki Kaisha Process for producing toner, and apparatus for modifying surfaces of toner particles
DE602006001215D1 (de) * 2005-02-15 2008-07-03 Nippon Catalytic Chem Ind Wasser absorbierendes Harz und Verfahren zu seiner Herstellung
DE102006030166A1 (de) * 2006-06-29 2008-01-10 Boehringer Ingelheim Pharma Gmbh & Co. Kg Tempern
JP5849951B2 (ja) * 2010-07-30 2016-02-03 ホソカワミクロン株式会社 ジェットミル
JP2014231487A (ja) * 2013-05-28 2014-12-11 国立大学法人 東京大学 卵殻膜成分を含むサーチュイン遺伝子活性化剤ならびにそれを用いた組成物
CN103637261A (zh) * 2013-11-22 2014-03-19 威海博宇食品有限公司 一种蛤蜊浓缩液或蛤蜊粉及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122401A (ja) * 1995-10-31 1997-05-13 Nara Kikai Seisakusho:Kk 液状物質中の固形成分の乾燥回収方法
US6406729B1 (en) * 2000-04-14 2002-06-18 Land O′Lakes, Inc. Method and process for producing an improved milk replacer
JP2006297373A (ja) * 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd 吸水剤、吸収性物品及び吸水剤の製造方法
JP2007091688A (ja) * 2005-09-30 2007-04-12 Kurimoto Ltd 固形製剤コーティング用微粉末の製造方法

Also Published As

Publication number Publication date
TWI654934B (zh) 2019-04-01
JPWO2016002621A1 (ja) 2017-05-25
US10390545B2 (en) 2019-08-27
US20170135362A1 (en) 2017-05-18
TW201613474A (en) 2016-04-16
JP6518248B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
US7624936B2 (en) Granular material grinder and method of use
EP1623633A2 (en) Process for single-stage heat treatment and grinding of mustard bran, and product and its uses
JP2006055165A (ja) おろしたチーズの製造方法およびその使用方法
TW201130563A (en) Preparation method for stainless steel slags and steelworks slags for recovery of metal
JPWO2006070866A1 (ja) 粉砕物製造装置
CN208303240U (zh) 一种气流多级分级机
US20100187339A1 (en) Method for processing material to produce particles of a desired size
WO2018061545A1 (ja) 焼却灰の処理装置及び処理方法
JP6518248B2 (ja) 粉体中の特定成分を濃縮する方法
US4126673A (en) Method for processing dross
WO2004035216A1 (ja) 乾式粉砕装置および乾式粉砕方法
WO2019244357A1 (ja) 粉砕システム
JP7171173B2 (ja) プリント基板屑からの有価金属の回収方法
JP2019042627A (ja) 食品粒状物の粉砕機及び粉砕装置
JP4241908B2 (ja) 固形物の粉砕設備
JP2017074546A (ja) 循環型乾式粉砕装置
GB2147824A (en) Apparatus for and method of obtaining a comminuted product from a solid feed material
CN205392639U (zh) 一种改进型可循环颗粒粉碎设备
JP2011005350A (ja) 滑石の選鉱方法
JP2803853B2 (ja) 小麦フスマから高蛋白区分と高食物繊維区分を分離する方法
JP6271392B2 (ja) 研磨屑からの有価金属の回収方法
JPS6321324Y2 (ja)
US6082641A (en) Dross processing
US548377A (en) lovett
JP2017165613A (ja) コンクリート用骨材、コンクリート用骨材の製造方法およびコンクリート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531311

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15319245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814178

Country of ref document: EP

Kind code of ref document: A1