WO2016002414A1 - 鋼線用線材および鋼線 - Google Patents

鋼線用線材および鋼線 Download PDF

Info

Publication number
WO2016002414A1
WO2016002414A1 PCT/JP2015/065864 JP2015065864W WO2016002414A1 WO 2016002414 A1 WO2016002414 A1 WO 2016002414A1 JP 2015065864 W JP2015065864 W JP 2015065864W WO 2016002414 A1 WO2016002414 A1 WO 2016002414A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
steel
amount
steel wire
Prior art date
Application number
PCT/JP2015/065864
Other languages
English (en)
French (fr)
Inventor
友信 石田
智一 増田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to MX2016017015A priority Critical patent/MX2016017015A/es
Priority to US15/322,686 priority patent/US20170130303A1/en
Priority to CA2951781A priority patent/CA2951781A1/en
Priority to EP15814419.6A priority patent/EP3165623A4/en
Priority to KR1020167036838A priority patent/KR20170012467A/ko
Priority to CN201580034206.9A priority patent/CN106471146B/zh
Publication of WO2016002414A1 publication Critical patent/WO2016002414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments

Definitions

  • the present invention relates to a wire for steel wire that is a material of a high-strength steel wire used for a wire rope, PC steel wire, and the like, and such a steel wire.
  • the bending fatigue characteristics of the strands are important factors that determine the design strength and life of the ropes.
  • the wire material for high-strength steel wires excellent in bending fatigue characteristics is also useful as a material for PC (Pressed Concrete) steel wires.
  • PC Pressureed Concrete
  • Patent Document 1 discloses a technique for improving fatigue strength by finely depositing BN inclusions in steel.
  • Patent Document 2 discloses a technique for improving the fatigue characteristics evaluated in a 10 7 cycle rotating bending fatigue test by reducing the amount of hydrogen in an ultrafine steel wire having a drawn pearlite structure.
  • JP 2011-225990 A Japanese Patent Laid-Open No. 11-256274
  • Patent Document 1 The characteristic that is a problem in the technique of Patent Document 1 is high cycle fatigue that occurs near the fatigue limit of 10 7 repetitions, and the mechanism is different from that of the low cycle fatigue.
  • products exposed to the outside air for a long time, such as wire rope fatigue cracks are likely to occur due to oxidation of the surface layer and friction between the strands, and the crack growth is promoted by hydrogen that has penetrated into the steel.
  • the fatigue characteristics considered in Patent Document 2 are also high cycle fatigue, and in the case of products that have hydrogen penetration from the outside, such as wire rope and PC steel wire, Since the low cycle fatigue characteristics are lowered, it is not sufficient to simply reduce the amount of hydrogen in the steel as in Patent Document 2 above.
  • the present invention has been made in view of the circumstances as described above, and its purpose is excellent in low cycle fatigue characteristics and is useful as a material for high-strength steel wires such as wire ropes and PC steel wires. And providing a steel wire capable of exhibiting such characteristics.
  • the wire rod for steel wire of the present invention that can solve the above-mentioned problems is, in mass%, C: 0.70 to 1.3%, Si: 0.1 to 1.5%, Mn: 0.1 to 1. 5%, N: 0.001 to 0.006%, Al: 0.001 to 0.10%, Ti: 0.02 to 0.20%, B: 0.0005 to 0.010%, P: 0 %, 0.030% or less, S: 0% or more, 0.030% or less, the balance being iron and inevitable impurities, pearlite as the main phase, and hydrogen diffusion coefficient in steel at 300 ° C D satisfies the following formula (1).
  • pearlite as the main phase means that 95% by area or more of the metal structure is a pearlite structure.
  • the wire material for high-strength steel wire of the present invention is further in mass%, (A) Cr: more than 0%, 1.0% or less and V: more than 0%, 0.5% or less, (B) Ni: more than 0%, 0.5% or less and Nb: at least one kind of more than 0%, 0.5% or less, (C) Co: more than 0%, 1.0% or less, (D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less, Etc. are also preferable.
  • the present invention includes a steel wire having the above-described chemical composition of steel and having a hydrogen diffusion coefficient D in the steel at 300 ° C. satisfying the following expression (1).
  • D ⁇ 2.5 ⁇ 10 ⁇ 7 (cm 2 / sec) (1)
  • hydrogen diffusion in steel is hindered by the hydrogen trap effect by Ti-based inclusions such as finely dispersed TiC, and a steel wire having excellent fatigue characteristics is obtained by reducing its diffusion coefficient.
  • Can do In particular, it exhibits excellent characteristics against low cycle fatigue caused by repeated stress loading of about 10 4 to 10 5 times.
  • FIG. 1 is a schematic explanatory view showing an implementation status of a four-point bending fatigue test.
  • the present inventors diligently investigated the factors that influence the low cycle fatigue characteristics in a steel wire material having a metal structure having pearlite as a main phase.
  • the deterioration of the fatigue characteristics due to hydrogen is caused by the fact that hydrogen in the steel diffuses toward the minute cracks generated in the steel material due to repeated stress and embrittles the structure around the cracks.
  • hydrogen that has entered from the outside world also reduces fatigue properties. Therefore, fatigue characteristics can be improved by inhibiting hydrogen diffusion in the steel and reducing the amount of hydrogen accumulated around the cracks.
  • fatigue characteristics are improved by setting the hydrogen diffusion coefficient D in steel at 300 ° C. to 2.5 ⁇ 10 ⁇ 7 (cm 2 / sec) or less.
  • the hydrogen diffusion coefficient D is a physical property value depending on temperature
  • the hydrogen diffusion coefficient D in steel at 300 ° C. is used as an index.
  • the reason is derived from the method for measuring the hydrogen diffusion coefficient.
  • a method of analyzing the hydrogen gas release curve obtained by raising the temperature of the sample in the measuring instrument is adopted, but the low temperature part of the release curve is easily affected by disturbance. Not suitable for accurate evaluation. This is because hydrogen released at a low temperature is called diffusible hydrogen, and diffusion at room temperature cannot be ignored, so it is affected by the storage state of the sample used for measurement.
  • the hydrogen diffusion coefficient D is preferably 2.3 ⁇ 10 ⁇ 7 (cm 2 / sec) or less, and more preferably 2.0 ⁇ 10 ⁇ 7 (cm 2 / sec) or less.
  • the steel wire rod according to the present invention needs to have its chemical composition adjusted appropriately in order to exert its basic characteristics when applied to a wire or the like.
  • the chemical component composition is as follows. Note that “%” in the chemical composition is all “mass%”.
  • C (C: 0.70 to 1.3%) C is an element effective for increasing the strength, and the strength of the wire before cold working (steel wire) and the strength of the steel wire after cold working improves as the amount of C increases. Therefore, the C amount is set to 0.70% or more.
  • the amount of C is preferably 0.74% or more, and more preferably 0.78% or more.
  • pre-deposition ⁇ pro-eutectoid cementite
  • Si has an action as a deoxidizer and also has an action of improving the strength of the wire.
  • the Si amount was determined to be 0.1% or more.
  • the amount of Si is preferably 0.15% or more, and more preferably 0.18% or more.
  • the Si amount is set to 1.5% or less.
  • the amount of Si is preferably 1.4% or less, and more preferably 1.3% or less.
  • Mn has a deoxidizing effect similar to Si, but has an effect of increasing the toughness and ductility of steel by fixing S in the steel as MnS.
  • the amount of Mn is set to 0.1% or more.
  • the amount of Mn is preferably 0.15% or more, more preferably 0.20% or more.
  • Mn is an element that is easily segregated, and if added excessively, the hardenability of the Mn segregated portion is excessively increased, and a supercooled structure such as martensite may be generated. Therefore, the amount of Mn is set to 1.5% or less.
  • the amount of Mn is preferably 1.4% or less, more preferably 1.3% or less.
  • N (N: 0.001 to 0.006%) N combines with B in the steel to form BN, and the effect of B is lost. Further, N in a solid solution state causes a decrease in torsional characteristics due to strain aging during wire drawing, and if it is remarkable, causes vertical cracks. In order to prevent these harmful effects, the N content is 0.006% or less.
  • the N amount is preferably 0.005% or less, and more preferably 0.004% or less.
  • the N amount is set to 0.001% or more.
  • the N amount is preferably 0.0015% or more, more preferably 0.0020% or more.
  • Al is an effective deoxidizing element. It also has the effect of forming a nitride such as AlN to refine the crystal grains. In order to effectively exhibit such an effect, the Al content is set to 0.001% or more.
  • the amount of Al is preferably 0.002% or more, and more preferably 0.003% or more.
  • Al is set to 0.10% or less.
  • the amount of Al is preferably 0.09% or less, and more preferably 0.08% or less.
  • Ti forms carbides such as TiC and has a function of reducing the diffusion coefficient of hydrogen and improving the fatigue characteristics of the steel wire. Moreover, it combines with N in the steel to form a nitride such as TiN, and has the function of preventing the twisting characteristics from being lowered by N. In order to effectively exhibit these effects, the Ti content is 0.02% or more.
  • the amount of Ti is preferably 0.03% or more, more preferably 0.04% or more.
  • the Ti content is 0.20% or less.
  • the amount of Ti is preferably 0.15% or less, and more preferably 0.10% or less.
  • B has a function of suppressing pro-eutectoid ferrite (hereinafter sometimes abbreviated as “pre-deposition ⁇ ”) precipitated at the grain boundaries, and is effective in improving fatigue characteristics. Moreover, by forming BN, the effect of fixing the solid solution N in steel and improving the twisting property can be expected. In order to effectively exhibit the effect of B, the amount of B needs to be 0.0005% or more.
  • the lower limit of the preferable amount of B is 0.0007% or more, more preferably 0.001% or more.
  • the amount of B is preferably 0.008% or less, and more preferably 0.006% or less.
  • P 0% or more, 0.030% or less
  • P segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the smaller the content, the better. Therefore, the P content is 0.030% or less.
  • the amount of P is preferably 0.025% or less, and more preferably 0.020% or less.
  • the amount of P may be 0%, but is usually contained at 0.001% or more.
  • S (S: 0% or more, 0.030% or less) S, like P, segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and lowers fatigue strength. Therefore, the content is preferably as small as possible. Therefore, the S amount is 0.030% or less.
  • the amount of S is preferably 0.025% or less, and more preferably 0.020% or less.
  • the amount of S may be 0%, but is usually contained at 0.001% or more.
  • the basic components of the wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
  • the wire of the present invention further improves properties such as strength, toughness, ductility, etc.
  • D) Mo: more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less, Etc. are also preferable.
  • Cr and V are elements useful in increasing the strength (tensile strength) of the wire, and these may be used alone or in combination of two or more.
  • Cr has the effect of increasing the strength and toughness of the wire rod by reducing the pearlite lamella spacing.
  • the Cr content is preferably 0.05% or more.
  • the amount of Cr is more preferably 0.10% or more, and still more preferably 0.15% or more.
  • the Cr amount is preferably 1.0% or less.
  • the amount of Cr is more preferably 0.8% or less, and still more preferably 0.6% or less.
  • V has the effect of improving the strength of the wire by forming carbonitride. Further, in the same manner as Nb, nitride forms excessive solid solution N and nitride after precipitation of AlN and contributes to refinement of crystal grains, and also has an effect of suppressing aging embrittlement by fixing solid solution N.
  • the V amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • V is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the V amount is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.2% or less.
  • Ni and Nb are elements useful for increasing the toughness of the steel wire, and these may be used alone or in combination of two or more.
  • Ni is an element that enhances the toughness of the steel wire after drawing.
  • the Ni content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Ni content is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Nb like Ti and Al, forms a nitride, contributes to improving the toughness of the steel wire by refining crystal grains, and also has the effect of suppressing aging embrittlement by fixing solid solution N.
  • the Nb content is preferably 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
  • Nb is an expensive element, and even if added excessively, the effect is saturated and economically wasteful, so the amount of Nb is preferably 0.5% or less, more preferably 0.4% or less, More preferably, it is 0.3% or less.
  • Co over 0%, 1.0% or less
  • Co has an effect of reducing generation of pro-eutectoid cementite and making the structure a uniform pearlite structure particularly when the amount of C is high.
  • the Co content is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Co content is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Mo more than 0%, 0.5% or less and Cu: more than 0%, 0.5% or less
  • Mo is an element that improves the corrosion resistance of the steel wire.
  • the Mo amount is preferably 0.05% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the Mo amount is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Cu is an element that improves the corrosion resistance of steel wires.
  • the amount of Cu is preferably 0.05% or more, more preferably 0.08% or more, and further preferably 0.10% or more.
  • the amount of Cu is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • Mo and Cu may be contained in combination of one or two kinds.
  • the wire rod before cold drawing is usually produced by melting, split-rolling and hot-rolling steel with appropriately controlled chemical components, and further performing patenting treatment as necessary.
  • the Ti content is appropriately controlled within the above range, and then Ti system such as TiC is used. It is important to appropriately control the precipitation behavior of inclusions.
  • the slab is heated to 1200 ° C. or higher to decompose the coarse TiC precipitated during casting.
  • the heating temperature is lower than 1200 ° C., coarse TiC remains in the wire and the hydrogen diffusion coefficient cannot be sufficiently reduced, so that the fatigue strength is lowered.
  • This heating temperature is more preferably 1250 ° C. or more, and further preferably 1300 ° C. or more. However, if the heating temperature becomes too high, melting of the wire material occurs, so the temperature is usually set to about 1400 ° C.
  • the strain rate in the final four passes of rolling is 0.5 second ⁇ 1 or more, and the crystal grains are refined by dynamic recrystallization, It is preferable to deposit fine TiC. If the strain rate is less than 0.5 sec ⁇ 1 , TiC cannot be sufficiently miniaturized and the hydrogen diffusion coefficient D cannot be sufficiently reduced.
  • the strain rate at this time is more preferably 0.8 sec ⁇ 1 or more, and further preferably 1.0 sec ⁇ 1 or more. However, from the viewpoint of equipment load, the strain rate is usually preferably 5 seconds -1 or less.
  • strain rate V ⁇ is equal to the cross-sectional area S 0 (m 2 ) before entering the first roll, four rolls before the final pass, and the cross-sectional area S 4 (m 2 ) after passing the final pass.
  • total passage time (rolling time) t (seconds) of 4 passes can be expressed by the following equation (2).
  • V ⁇ ⁇ ln (S 0 / S 4 ) ⁇ / t (2)
  • the mounting temperature of the rolled material (wire material) on the lay head is 800 to 1000 ° C.
  • the mounting temperature is more preferably 980 ° C. or lower, and further preferably 950 ° C. or lower.
  • the mounting temperature is less than 800 ° C.
  • the mounting temperature is more preferably 820 ° C. or higher, and further preferably 850 ° C. or higher.
  • the wire After placing, the wire is cooled on a cooling conveyor, and pearlite transformation is caused during this cooling, but it is preferable to rapidly cool the pearlite transformation at an average cooling rate of 5 ° C./second or more. If the average cooling rate at this time is slow, TiC is likely to be coarsened and the hydrogen diffusion coefficient may be increased. Further, when the average cooling rate is less than 5 ° C./second, a structure with extremely rough lamellar spacing called “corse pearlite” is deposited locally, which may reduce the drawability.
  • the temperature of a wire may be measured and the point (inflection point) where a cooling curve may change by transformation heat_generation
  • the average cooling rate is more preferably 10 ° C./second or more, and further preferably 15 ° C./second or more.
  • a preferable upper limit of the average cooling rate is 100 ° C./second or less, and more preferably 50 ° C./second or less.
  • the wire obtained as described above can be used as a steel wire after being drawn (cold working) as it is, but may be subjected to a patenting treatment before the drawing.
  • a patenting treatment before the drawing.
  • the heating temperature when the patenting treatment is performed (hereinafter, this temperature may be referred to as “reheating temperature”) is preferably about 900 to 1000 ° C., more preferably 920 ° C. or more and 980 ° C. or less.
  • the reheating temperature is preferably 900 ° C. or higher from the standpoint of preventing undissolved carbide from remaining and making the structure completely austenitic.
  • TiC becomes coarse and the hydrogen diffusion coefficient D increases.
  • the holding temperature in the patenting treatment is preferably about 530 to 600 ° C., more preferably 550 ° C. or higher and 580 ° C. or lower.
  • the wire diffusion material D of the present invention has a sufficiently reduced hydrogen diffusion coefficient D in steel, a steel wire obtained by cold working the wire, a wire rope using the steel wire in whole or in part, a PC steel wire, etc. These products have better fatigue properties than normal products.
  • the obtained hydrogen release curve approximates that the hydrogen is uniformly distributed in the sample, assumes a sample shape of an infinite cylinder, and shows a hydrogen release curve obtained by numerical calculation using the diffusion coefficient as a parameter.
  • the hydrogen diffusion coefficient D was determined by fitting. The results are shown in Table 4 below. In order to make the infinite cylinder approximation effective, the sample length was set to 5 times the diameter or more. At this time, the peak of hydrogen release used for fitting was a peak having a peak temperature of 200 ° C. or higher. The low temperature peak appearing at 200 ° C. or lower is called diffusible hydrogen, and is not used for evaluating the diffusion coefficient because it can be influenced by disturbances such as being released even at room temperature. From the correlation curve between the temperature thus obtained and the diffusion coefficient, the diffusion coefficient at 300 ° C. was determined as the hydrogen diffusion coefficient D.
  • the obtained wire coil was drawn to produce a steel wire (wire), and a tensile test, a twist property evaluation, a fatigue property evaluation, and a hydrogen diffusion coefficient D were measured.
  • Table 5 shows the reduction in area during wire drawing and the wire diameter of the steel wire obtained by wire drawing.
  • the twisting property was evaluated based on the twist value (number of times of rupture twist) required for rupture after conducting a twist test.
  • the twist value was normalized by converting the distance between the chucks (test wire length) to 100 times the wire diameter d (100d). Moreover, the normal fracture surface and the vertical crack were discriminated by the fracture surface observation, and even one of the five vertical cracks was described as “with vertical crack” in Table 5 below.
  • the fatigue characteristics were evaluated by repeatedly performing a four-point bending fatigue test using a jig that supported four points.
  • 1 is a test piece (wire)
  • 2 is a direction in which repeated stress is applied
  • is a support point.
  • the maximum stress amplitude in the sample determined to be acceptable was defined as 100,000 times fatigue strength.
  • the 100,000 times fatigue strength is shown in Table 5 below.
  • the stress waveform was a sine wave and the frequency was 10 Hz.
  • test No. 1 to 3 and 9 to 20 are described in JIS G 3522 (1991) IV because the chemical composition, metal structure (perlite area ratio), and hydrogen diffusion coefficient D are all within the ranges specified in the present invention.
  • Steel wire that achieves a fatigue strength exceeding 0.45 times the tensile strength TS after obtaining a tensile strength exceeding the “Class B Piano wire” (standard, for example, 1620 to 1770 MPa when the wire diameter is 7.0 mm) (Wire) is obtained.
  • test no. Examples 4 to 8 and 21 to 26 are examples in which any of the requirements of the present invention is not satisfied. Of these, test no. In No. 4, since the heating temperature at the time of the ingot rolling was low, coarse TiC precipitated, the hydrogen diffusion coefficient D increased, and the fatigue strength decreased.
  • Test No. No. 7 has a high mounting temperature after hot rolling. In No. 8, since the cooling rate after rolling was slow, TiC coarsened, the hydrogen diffusion coefficient D increased, and the fatigue strength decreased.
  • Test No. No. 21 is an example using a steel type P having a small amount of C, which has a mixed phase structure of ferrite and pearlite, has low tensile strength and twisting characteristics, and has reduced fatigue strength.
  • Test No. No. 22 is an example using the steel type Q having a large amount of C. Since a large amount of pro-eutectoid cementite precipitated, the wire was broken during wire drawing.
  • Test No. No. 23 is an example using a steel type R having a small amount of Ti.
  • the amount of TiC is small, the hydrogen diffusion coefficient D is increased, and the fatigue strength is lowered.
  • Test No. No. 24 is an example using the steel type S with a large amount of Ti. A large amount of Ti-based inclusions were precipitated and disconnected during wire drawing.
  • Test No. 25 is an example using the steel type T having a large amount of B, and the sample was not obtained due to disconnection during hot rolling.
  • Test No. No. 26 is an example using a steel type U with a small amount of B, and the twisting characteristics and fatigue strength were lowered.
  • the hydrogen diffusion coefficient D is also increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 低サイクル疲労特性に優れ、ワイヤロープやPC鋼線等の高強度の鋼線の素材として有用な鋼線用線材、およびこのような特性を発揮できる鋼線を提供する。 本発明の鋼線用線材は、質量%で、C:0.70~1.3%、Si:0.1~1.5%、Mn:0.1~1.5%、N:0.001~0.006%、Al:0.001~0.10%、Ti:0.02~0.20%、B:0.0005~0.010%、P:0%以上、0.030%以下、S:0%以上、0.030%以下、を夫々含有し、残部が鉄および不可避不純物であり、パーライトを主相とし、300℃における鋼中の水素拡散係数Dが下記(1)式を満足する。 D≦2.5×10-7(cm2/秒) …(1)

Description

鋼線用線材および鋼線
 本発明は、ワイヤロープやPC鋼線等に用いられる高強度の鋼線の素材となる鋼線用線材、およびそのような鋼線に関する。
 エレベータ用ロープやクレーンの巻上げロープなど、繰り返し曲げ応力が付加される鋼撚り線においては、素線の曲げ疲労特性がロープの設計強度や寿命を決定する重要因子である。近年では、エレベータの高速化やクレーンの小型化に伴うロープの軽量化ニーズが増大しており、それを実現する曲げ疲労特性に優れた高強度鋼線用線材が求められている。また曲げ疲労特性に優れた高強度鋼線用線材は、PC(Prestressed Concrete)鋼線の素材としても有用である。こうした鋼線用線材には、具体的には、繰り返し回数が104~105回で起きる低サイクル疲労が発生しないことが要求される。
 線材の特性を改善するための技術として、これまでにも様々提案されている。例えば、特許文献1では、鋼中にBN系介在物を微細析出させることによって疲労強度を向上させる技術が開示されている。
 特許文献2では、伸線加工パーライト組織を持った極細鋼線中の水素量を低減することで107サイクルの回転曲げ疲労試験で評価される疲労特性を向上させる技術が公開されている。
特開2011-225990号公報 特開平11-256274号公報
 上記特許文献1の技術で問題にしている特性は、繰り返し回数が107回の疲労限近くで起こる高サイクル疲労であり、上記低サイクル疲労とはメカニズムが異なる。ワイヤロープの様な長期間外気に晒される製品では、表層部の酸化や素線同士の摩擦によって疲労亀裂が発生しやすく、かつ鋼中に侵入した水素によって亀裂進展が促進されるため、疲労限より遥かに低い寿命で材料が破壊する。したがって、水素に対する対策が必要になる。
 また、上記特許文献2で考慮されている疲労特性も高サイクル疲労であり、ワイヤロープやPC鋼線の様に、外界からの水素侵入がある様な製品の場合には外部から侵入した水素で低サイクル疲労特性が低下するため、上記特許文献2のように単に鋼中の水素量を低減するだけでは不十分である。
 本発明は上記のような事情に鑑みてなされたものであり、その目的は、低サイクル疲労特性に優れ、ワイヤロープやPC鋼線等の高強度の鋼線の素材として有用な鋼線用線材、およびこのような特性を発揮できる鋼線を提供することにある。
 上記課題を解決し得た本発明の鋼線用線材は、質量%で、C:0.70~1.3%、Si:0.1~1.5%、Mn:0.1~1.5%、N:0.001~0.006%、Al:0.001~0.10%、Ti:0.02~0.20%、B:0.0005~0.010%、P:0%以上、0.030%以下、S:0%以上、0.030%以下、を夫々含有し、残部が鉄および不可避不純物であり、パーライトを主相とし、300℃における鋼中の水素拡散係数Dが下記(1)式を満足することを特徴とする。
D≦2.5×10-7(cm2/秒) …(1)
 尚、「パーライトを主相とする」とは、金属組織の95面積%以上がパーライト組織であることを意味する。
 本発明の高強度鋼線用線材は、更に、質量%で、
(a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種、
(b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種、
(c)Co:0%超、1.0%以下、
(d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種、
等を含有することも好ましい。
 本発明は、上記した鋼の化学成分組成からなり、300℃における鋼中の水素拡散係数Dが下記(1)式を満足する鋼線も包含する。
D≦2.5×10-7(cm2/秒) …(1)
 本発明によれば、微細分散させたTiC等のTi系介在物による水素トラップ効果によって鋼中での水素拡散を阻害し、その拡散係数を低減することで疲労特性に優れた鋼線材を得ることができる。特に、104~105回程度の繰り返し応力負荷で生じる低サイクル疲労に対して、優れた特性を発揮する。
図1は、4点曲げ疲労試験の実施状況を示す概略説明図である。
 本発明者らは、パーライトを主相とする金属組織である鋼線材において、低サイクル疲労特性を左右する因子を鋭意調査した。水素による疲労特性の低下は、繰り返し応力が負荷されることによって鋼中の水素が鋼材に生じた微小なクラックに向かって拡散し、クラック周辺の組織を脆化させることで生じる。製造工程で鋼中に吸蔵された水素に加えて、外界から侵入した水素も同様に疲労特性を低下させる。従って、鋼中の水素拡散を阻害し、クラック周辺に集積する水素の量を低減することで疲労特性を向上させることができる。具体的には、300℃における鋼中の水素拡散係数Dを2.5×10-7(cm2/秒)以下にすることで疲労特性が向上する。
 水素拡散係数Dは温度に依存する物性値であるが、本発明では300℃における鋼中の水素拡散係数Dを指標とする。この理由は水素拡散係数の計測方法に由来する。水素拡散係数Dの測定に当たっては、試料を測定器中で昇温して得られた水素ガスの放出曲線を解析する方法を採用しているが、放出曲線の低温部分は外乱による影響を受けやすく、正確な評価に適さない。これは、低温で放出される水素は拡散性水素と呼ばれ、室温での拡散が無視できないため、測定に供する試料の保管状態によって影響を受けるためである。尚、水素拡散係数Dは、好ましくは2.3×10-7(cm2/秒)以下であり、より好ましくは2.0×10-7(cm2/秒)以下である。
 水素の拡散を阻害する手段としては、水素を吸着する効果のあるTiC等のTi系介在物を鋼中に微細分散させることが有効である。
 本発明に係る鋼線用線材は、ワイヤなどに適用したときにその基本的な特性を発揮させる上からも、その化学成分組成も適切に調整する必要がある。その化学成分組成は以下の通りである。尚、化学成分組成における「%」は、いずれも「質量%」である。
 (C:0.70~1.3%)
 Cは、強度の上昇に有効な元素であり、C量の増加に伴って、冷間加工前の線材(鋼線材)、および冷間加工後の鋼線の強度が向上する。そこで、C量は0.70%以上と定めた。C量は、好ましくは0.74%以上であり、より好ましくは0.78%以上である。しかし、C量が過剰になり過ぎると、初析セメンタイト(以下、「初析θ」と略記することがある)が析出し、伸線加工中に断線を引き起こす。そこで、C量は1.3%以下と定めた。C量は、好ましくは1.2%以下であり、より好ましくは1.1%以下である。
 (Si:0.1~1.5%)
 Siは、脱酸剤としての作用を有し、また線材の強度を向上させる作用も有する。これらの作用を有効に発揮させるために、Si量を0.1%以上と定めた。Si量は、好ましくは0.15%以上であり、より好ましくは0.18%以上である。一方、Si量が過剰になり過ぎると、冷間伸線性を悪化させ、断線率の増加を引き起こす。そこで、Si量を1.5%以下と定めた。Si量は好ましくは1.4%以下であり、より好ましくは1.3%以下である。
 (Mn:0.1~1.5%)
 Mnは、Siと同様に脱酸作用も有しているが、特に鋼中のSをMnSとして固定して、鋼の靭性および延性を高める作用を有している。これらの作用を有効に発揮させるために、Mn量は0.1%以上とする。Mn量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。しかしながら、Mnは偏析し易い元素であり、過剰に添加すると、Mn偏析部の焼入れ性が過剰に増大し、マルテンサイト等の過冷組織を生成させる恐れがある。そこで、Mn量は1.5%以下と定めた。Mn量は、好ましくは1.4%以下であり、より好ましくは1.3%以下である。
 (N:0.001~0.006%)
 Nは、鋼中のBと化合してBNを形成し、Bによる効果を失わせる。また、固溶状態のNは伸線時に歪み時効による捻回特性の低下を引き起こし、著しい場合には縦割れを招く。これらの弊害を防ぐために、N量は0.006%以下とする。N量は、好ましくは0.005%以下であり、より好ましくは0.004%以下である。一方、少量であればTiNやAlNなどの窒化物によって結晶粒を微細化し、線材の延性を高める効果がある。そのような効果を発揮させるために、N量は0.001%以上とする。N量は、好ましくは0.0015%以上、より好ましくは0.0020%以上である。
 (Al:0.001~0.10%)
 Alは、有効な脱酸元素である。また、AlNの様な窒化物を形成して結晶粒を微細化する効果も有する。このような効果を有効に発揮させるために、Al量は0.001%以上とする。Al量は、好ましくは0.002%以上であり、より好ましくは0.003%以上である。一方、Alを過剰に添加するとAl23の様な酸化物を形成し、伸線時の断線を増加させる。こうした観点から、Al量は0.10%以下とする。Al量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
 (Ti:0.02~0.20%)
 Tiは、TiCの様な炭化物を形成し、水素の拡散係数を低下させて鋼線の疲労特性を向上させる働きがある。また、鋼中のNと化合してTiNの様な窒化物を形成し、Nによる捻回特性の低下を防ぐ働きもある。それらの効果を有効に発揮させるために、Ti量は0.02%以上とする。Ti量は、好ましくは0.03%以上、より好ましくは0.04%以上である。一方、Ti量が過剰になると、TiCやTiN等のTi系介在物が多量に析出し、伸線時の断線を増加させる。したがって、Ti量は0.20%以下とする。Ti量は、好ましくは0.15%以下であり、さらに好ましくは0.10%以下である。
 (B:0.0005~0.010%)
 Bは、粒界に析出する初析フェライト(以下、「初析α」と略記することがある)を抑制する働きがあり、疲労特性の向上に有効である。また、BNを形成することで、鋼中の固溶Nを固定し、捻回特性を向上させる効果も期待できる。Bの効果を有効に発揮させるために、B量は0.0005%以上が必要である。好ましいB量の下限は0.0007%以上であり、より好ましくは0.001%以上である。一方、B量が過剰になると、Feとの化合物であるFe-B系化合物、例えばFeB2が析出し、熱間圧延時の割れを引き起こすため、B量は0.010%以下にする必要がある。B量は、好ましくは0.008%以下であり、より好ましくは0.006%以下である。
 (P:0%以上、0.030%以下)
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させ、疲労強度を低下させるため、その含有量は少なければ少ないほど好ましい。したがって、P量は0.030%以下とする。P量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。P量は0%であってもよいが、通常0.001%以上で含まれる。
 (S:0%以上、0.030%以下)
 Sは、Pと同様に旧オーステナイト粒界に偏析して粒界を脆化させ、疲労強度を低下させるため、その含有量は少なければ少ないほど好ましい。したがって、S量は0.030%以下とする。S量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。S量は0%であってもよいが、通常0.001%以上で含まれる。
 本発明の線材の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。
 また本発明の線材は、強度、靭性、延性等の特性を更に向上させるため、必要に応じて、更に、
(a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種、
(b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種、
(c)Co:0%超、1.0%以下、
(d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種、
等を含有することも好ましい。
 (Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種)
 CrおよびVは、線材の強度(引張強度)を高める上で有用な元素であり、これらは1種または2種を併用して含有させてもよい。
 特にCrは、パーライトのラメラ間隔を微細化し、線材の強度や靭性を高める作用を有する。このような作用を有効に発揮させるために、Cr量は0.05%以上が好ましい。Cr量は、より好ましくは0.10%以上であり、更に好ましくは0.15%以上である。一方、Cr量が過剰になり過ぎると、焼入れ性が向上して熱間圧延中に過冷組織を発生させる危険性が高まるため、Cr量は1.0%以下とすることが好ましい。Cr量は、より好ましくは0.8%以下であり、更に好ましくは0.6%以下である。
 Vは炭窒化物を形成して線材の強度を向上させる効果がある。また、Nbと同様にAlNが析出した後の余剰の固溶Nと窒化物を形成し、結晶粒微細化に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮させるために、V量は0.01%以上が好ましく、より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかし、Vは高価な元素であり、過剰に添加してもその効果は飽和し、経済的に無駄であるため、V量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.2%以下である。
 (Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種)
 NiおよびNbは、鋼線の靭性を高める上で有用な元素であり、これらは1種または2種を併用して含有させてもよい。
 特にNiは、伸線後の鋼線の靭性を高める元素である。このような作用を有効に発揮させるために、Ni量は0.05%以上が好ましく、より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。しかし、Niは過剰に添加してもその効果が飽和し、経済的に無駄である。したがって、Ni量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。
 Nbは、TiやAlと同様に窒化物を形成し、結晶粒を微細化して鋼線の靭性向上に寄与する他、固溶Nを固定することによる時効脆化の抑制効果も有する。このような作用を有効に発揮させるために、Nb量は0.01%以上が好ましく、より好ましくは0.03%以上、更に好ましくは0.05%以上である。しかし、Nbは高価な元素であり、過剰に添加してもその効果は飽和し、経済的に無駄であるため、Nb量は0.5%以下が好ましく、より好ましくは0.4%以下、更に好ましくは0.3%以下である。
 (Co:0%超、1.0%以下)
 Coは、特にC量が高い場合に初析セメンタイトの生成を低減し、組織を均一なパーライト組織にするという作用を有する。この作用を有効に発揮させるために、Co量は0.05%以上が好ましく、より好ましくは0.1%以上、更に好ましくは0.2%以上である。しかし、Coは過剰に添加してもその効果が飽和し、経済的に無駄である。したがって、Co量は1.0%以下が好ましく、より好ましくは0.8%以下であり、更に好ましくは0.6%以下である。
 (Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種)
 Moは、鋼線の耐食性を向上させる元素である。このような作用を有効に発揮させるために、Mo量は0.05%以上が好ましく、より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。しかし、Mo量が過剰になると、熱間圧延時に過冷組織が発生しやすくなり、また延性も劣化する。そこでMo量は0.5%以下が好ましく、より好ましくは0.4%以下であり、更に好ましくは0.3%以下である。
 Cuは、Moと同様に鋼線の耐食性を向上させる元素である。このような作用を有効に発揮させるために、Cu量は0.05%以上が好ましく、より好ましくは0.08%以上であり、更に好ましくは0.10%以上である。しかし、Cu量が過剰になると、Sと反応して粒界部にCuSを偏析させ、線材製造過程で疵を発生させる。このような影響を避けるために、Cu量は0.5%以下が好ましく、より好ましくは0.4%以下であり、更に好ましくは0.3%以下である。
 MoおよびCuは、1種または2種を併用して含有させてもよい。
 次に、本発明に係る鋼線用線材を製造できる方法について説明する。
 冷間伸線前の線材は、通常、化学成分を適切に制御した鋼を溶製、分塊圧延および熱間圧延し、更に必要に応じてパテンティング処理することにより製造される。本発明で規定する要件(金属組織、水素の拡散係数)を満足させつつ本発明の線材を製造するにあたっては、Tiの含有量を上記の範囲に適正に制御した上で、TiC等のTi系介在物の析出挙動を適切にコントロールすることが重要である。
 まず、分塊圧延では、鋳片を1200℃以上に加熱し、鋳造時に析出した粗大なTiCを分解することが好ましい。加熱温度が1200℃よりも低いと、線材に粗大なTiCが残存し、水素拡散係数を十分に小さくすることができないので、疲労強度が低下する。この加熱温度はより好ましくは1250℃以上であり、更に好ましくは1300℃以上である。しかし、加熱温度が高くなり過ぎると、線材の溶融が生じるので、通常は1400℃程度までに設定される。
 続いて熱間圧延を行なうにあたっては、1000℃以上に加熱した上で、圧延の最終4パスにおける歪み速度を0.5秒-1以上とし、動的再結晶によって結晶粒を微細化すると共に、微細なTiCを析出させることが好ましい。上記歪み速度が0.5秒-1よりも小さくなると、TiCを十分に微細化することができず、水素拡散係数Dを十分に小さくできない。このときの歪み速度は、より好ましくは0.8秒-1以上、更に好ましくは1.0秒-1以上である。しかし、設備負荷の問題から、上記歪み速度は、通常は5秒-1以下とすることが好ましい。尚、歪み速度Vεは、最終パスから4パス手前のロールである一つ目のロールに入線する前の断面積S0(m2)と、最終パス通過後の断面積S4(m2)と、4パスの合計通過時間(圧延時間)t(秒)を用いて、下記(2)式で表わせる。
Vε={ln(S0/S4)}/t …(2)
 熱間圧延後は、水冷で十分に冷却して、圧延材(線材)のレイングヘッドでの載置温度を800~1000℃に制御することが好ましい。載置温度が1000℃を超えると、載置後のコンベヤ上での冷却中に、TiCが粗大化してしまう恐れがある。載置温度は、より好ましくは980℃以下であり、更に好ましくは950℃以下である。また、載置温度が800℃未満の場合は線材の変形抵抗が増大し、例えば、コイリングできないなどレイングヘッドでの載置不良が生じる可能性がある。従って載置温度は800℃以上とすることが好ましい。載置温度は、より好ましくは820℃以上であり、更に好ましくは850℃以上である。
 載置後、冷却コンベア上で線材を冷却し、この冷却中にパーライト変態を起こさせるが、パーライト変態開始までの平均冷却速度を5℃/秒以上として急冷することが好ましい。このときの平均冷却速度が遅くなると、TiCが粗大化しやすくなり、水素拡散係数が大きくなる恐れがある。また、平均冷却速度が5℃/秒より小さくなると、局所的にコーズパーライトと呼ばれるラメラ間隔が極端に粗い組織が析出し、伸線性を低下させることもある。尚、パーライト変態の開始については、線材の温度を測定し、変態発熱によって冷却曲線が変化する点(変曲点)を求めれば良い。この平均冷却速度は、より好ましくは10℃/秒以上であり、更に好ましくは15℃/秒以上である。平均冷却速度の好ましい上限は100℃/秒以下であり、より好ましくは50℃/秒以下である。
 上記のようにして得られた線材は、そのまま伸線加工(冷間加工)して鋼線として使用することができるが、伸線加工前にパテンティング処理を施しても良い。こうした伸線加工前のパテンティング処理を施すことによって、線材の強度を高め、且つ強度ばらつきを低減することができる。
 また細径の鋼線を製造する場合のように、伸線加工度が大きくなることが予想されるときには、圧延材からある程度伸線した後にパテンティング処理を施し、線材組織を未加工のパーライト組織に戻した上で、更に伸線加工を行なうことも有用である。このとき、再加熱処理によっても微細析出したTiCが保たれていれば、一般的なパテンティング処理によっても水素拡散係数Dが低い状態を保つことができる。
 パテンティング処理を施すときの加熱温度(以下、この温度を「再加熱温度」と呼ぶことがある)は、900~1000℃程度が好ましく、より好ましくは920℃以上、980℃以下である。再加熱温度は、未固溶炭化物の残存を防ぎ、組織を完全にオーステナイト化する観点から、900℃以上であることが好ましいが、あまり高温になると、TiCが粗大化して水素拡散係数Dが増大する。また、パテンティング処理での保持温度は530~600℃程度が好ましく、より好ましくは550℃以上、580℃以下である。
 本発明の線材は、鋼中の水素拡散係数Dが十分に低減されているため、これを冷間加工した鋼線や、その鋼線を全部または一部に用いたワイヤロープやPC鋼線などの製品は、通常品よりも疲労特性に優れている。
 本願は、2014年7月1日に出願された日本国特許出願第2014-136223号に基づく優先権の利益を主張するものである。日本国特許出願第2014-136223号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 下記表1に示す化学成分組成の鋼塊を、下記表2に示した条件で分塊圧延、熱間圧延して線材コイルに加工し、一部のものは更に下記表3に示した条件でパテンティング処理を行った。下記表2に示した圧延線径と下記表3に示したパテンティング線径が異なるものは、中間伸線を挟んで熱処理したことを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 仕上げ伸線前の線材から採取したサンプルを用い、引張試験、金属組織の評価、水素拡散係数Dの測定を、下記の方法によって実施した。
 (引張試験)
 採取したサンプルの引張強度TS(Tensile Strength)は、JIS Z 2241(2011)に準拠して測定した。鋼線は8本作製し、平均値を求めた。結果を下記表4に示す。
 (金属組織の評価)
 金属組織は、採取したサンプルの横断面を光学顕微鏡にて観察した。尚、下記表4における金属組織の項目において、「P」と示したものは、パーライト組織が95面積%以上、即ち、パーライトが主相であることを示している。また、「P+α」や「P+θ」と示したものは、パーライト組織が95面積%未満で、パーライト組織の他に、5面積%よりも多いフェライト(α)やセメンタイト(θ)が混合した組織を示している。
 (水素拡散係数Dの測定)
 採取したサンプルに対して飽和状態まで水素チャージを行ない、昇温分析によって水素放出曲線を得た。昇温速度は12℃/秒とし、大気圧イオン化質量分析計にて水素の放出量を測定した。水素チャージ条件は、電解液にH2SO4水溶液(pH3)+KSCN0.01mol/Lを用い、電流密度5mA/cm2で48時間チャージを行なった。尚、チャージ後のサンプルは、水素の離散を極力防止するため、測定まで液体窒素中に保管した。
 得られた水素放出曲線に対して、水素がサンプル内に均一に分布しているものと近似し、サンプル形状を無限円柱と仮定して、拡散係数をパラメータとして数値計算で得られる水素放出曲線でフィッティングすることによって水素拡散係数Dを求めた。結果を下記表4に示す。尚、無限円柱近似を有効にするため、サンプル長は直径の5倍以上とした。またこのとき、フィッティングに使用する水素の放出ピークは、ピーク温度200℃以上のピークを使用した。200℃以下に現れる低温のピークは拡散性水素と呼ばれ、室温での拡散でも放出されるなど、外乱の影響が考えられるため、拡散係数の評価には用いなかった。こうして得た温度と、拡散係数の相関曲線から、300℃における拡散係数を水素拡散係数Dとして求めた。
 次に、得られた線材コイルを伸線加工して鋼線(ワイヤ)を作製し、引張試験、捻回特性の評価、疲労特性の評価、水素拡散係数Dの測定を実施した。下記表5に、伸線加工時の減面率と、伸線加工により得られた鋼線の線径を示す。
 (引張試験)
 鋼線の引張強度TSおよび降伏点YP(Yield Point)は、JIS Z 2241(2011)に準拠して測定した。鋼線は8本作製し、平均値を求めた。結果を下記表5に示す。また、引張強度TSに0.45を掛けた値を下記表5に示す。
 (捻回特性の評価)
 捻回特性は、捻回試験を行ない、破断までに要した捻回値(破断捻回数)に基づいて評価した。下記表5中の捻回値は、N=5本の平均値である。このとき、捻り速度は52回/分、張力は500gf(4.9N)とした。尚、捻回値は、チャック間距離(試験線長)を、線径dの100倍(100d)に換算して規格化した。また、破面観察によって正常破面と縦割れを判別し、5本中1本でも縦割れしたものは、後記表5において「縦割れあり」と記載した。
 (疲労特性の評価)
 疲労特性は、4点支持となる治具によって、繰り返し4点曲げ疲労試験を実施して評価した。図1において、1は試験片(線材)、2は繰り返し応力を付加する向き、○は支持点を示す。試験は片曲げで行ない、最大応力と最小応力の差を応力振幅と定義した。種々の応力振幅で10万回の繰り返し曲げを行ない、N=3本の試験で全て破断(断線)しなかったものを合格、1本でも破断したものは不合格と判定した。合格と判定した試料における最大の応力振幅を、10万回疲労強度と定義した。10万回疲労強度を下記表5に示す。尚、応力波形は正弦波、周波数は10Hzとした。
 (水素拡散係数Dの測定)
 鋼線についても、参考値として、上記と同じ条件で、水素拡散係数Dを求めた。結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、次のように考察できる。
 まず試験No.1~3、9~20は、化学成分組成、金属組織(パーライトの面積率)、水素拡散係数Dがいずれも本発明で規定する範囲内にあるため、JIS G 3522(1991) に記載されている「ピアノ線B種」を上回る引張強度(規格では、例えば線径が7.0mmで1620~1770MPa)を得た上で、引張強度TSの0.45倍を超える疲労強度を達成する鋼線(ワイヤ)が得られている。
 これに対し、試験No.4~8、21~26は、本発明の要件のいずれかが満たされていなかった例である。このうち試験No.4は、分塊圧延時の加熱温度が低かったため、粗大なTiCが析出し、水素拡散係数Dが大きくなり、疲労強度が低下した。
 試験No.5は、熱間圧延時の最終4パスの歪み速度が小さかったため、粗大なTiCが析出し、水素拡散係数Dが大きくなり、疲労強度が低下した。
 試験No.6は、熱間圧延後の載置温度が低かったので、載置不良が起きて試料が得られなかった。
 試験No.7は、熱間圧延後の載置温度が高く、また試験No.8は、圧延後の冷却速度が遅かったので、TiCが粗大化して水素拡散係数Dが大きくなり、疲労強度が低下した。
 試験No.21は、C量が少なかった鋼種Pを用いた例であり、フェライトとパーライトの混相組織となり、引張強度や捻回特性が低く、疲労強度も低下した。
 試験No.22は、C量が多かった鋼種Qを用いた例であり、多量の初析セメンタイトが析出したために伸線中に断線した。
 試験No.23は、Ti量が少なかった鋼種Rを用いた例であり、TiC量が少なく、水素拡散係数Dが大きくなって疲労強度が低下した。
 試験No.24は、Ti量が多かった鋼種Sを用いた例であり、多量のTi系介在物が析出して伸線中に断線した。
 試験No.25は、B量が多かった鋼種Tを用いた例であり、熱間圧延時に断線して試料が得られなかった。
 試験No.26は、B量が少なかった鋼種Uを用いた例であり、捻回特性と疲労強度が低下した。また水素拡散係数Dも大きくなっている。

Claims (3)

  1.  質量%で、
     C :0.70~1.3%、
     Si:0.1~1.5%、
     Mn:0.1~1.5%、
     N :0.001~0.006%、
     Al:0.001~0.10%、
     Ti:0.02~0.20%、
     B :0.0005~0.010%、
     P :0%以上、0.030%以下、
     S :0%以上、0.030%以下、
    を夫々含有し、残部が鉄および不可避不純物であり、
     パーライトを主相とし、
     300℃における鋼中の水素拡散係数Dが下記(1)式を満足する鋼線用線材。
    D≦2.5×10-7(cm2/秒) …(1)
  2.  更に、質量%で、以下の(a)~(d)のいずれかに属する1種以上を含有する請求項1に記載の鋼線用線材。
    (a)Cr:0%超、1.0%以下およびV:0%超、0.5%以下の少なくとも1種
    (b)Ni:0%超、0.5%以下およびNb:0%超、0.5%以下の少なくとも1種
    (c)Co:0%超、1.0%以下
    (d)Mo:0%超、0.5%以下およびCu:0%超、0.5%以下の少なくとも1種
  3.  請求項1または2に記載の鋼の化学成分組成からなり、300℃における鋼中の水素拡散係数Dが下記(1)式を満足する鋼線。
    D≦2.5×10-7(cm2/秒) …(1)
PCT/JP2015/065864 2014-07-01 2015-06-02 鋼線用線材および鋼線 WO2016002414A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2016017015A MX2016017015A (es) 2014-07-01 2015-06-02 Barra para trefilar para alambre de acero, y alambre de acero.
US15/322,686 US20170130303A1 (en) 2014-07-01 2015-06-02 Wire rod for steel wire, and steel wire
CA2951781A CA2951781A1 (en) 2014-07-01 2015-06-02 Wire rod for steel wire, and steel wire
EP15814419.6A EP3165623A4 (en) 2014-07-01 2015-06-02 Wire material for steel wire, and steel wire
KR1020167036838A KR20170012467A (ko) 2014-07-01 2015-06-02 강선용 선재 및 강선
CN201580034206.9A CN106471146B (zh) 2014-07-01 2015-06-02 钢丝用线材和钢丝

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136223 2014-07-01
JP2014136223A JP2016014169A (ja) 2014-07-01 2014-07-01 鋼線用線材および鋼線

Publications (1)

Publication Number Publication Date
WO2016002414A1 true WO2016002414A1 (ja) 2016-01-07

Family

ID=55018966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065864 WO2016002414A1 (ja) 2014-07-01 2015-06-02 鋼線用線材および鋼線

Country Status (8)

Country Link
US (1) US20170130303A1 (ja)
EP (1) EP3165623A4 (ja)
JP (1) JP2016014169A (ja)
KR (1) KR20170012467A (ja)
CN (1) CN106471146B (ja)
CA (1) CA2951781A1 (ja)
MX (1) MX2016017015A (ja)
WO (1) WO2016002414A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630171A (zh) * 2017-09-22 2018-01-26 张家港沙工科技服务有限公司 一种起重机用抗拉型金属吊绳
CN113684423B (zh) * 2021-10-26 2022-01-28 江苏省沙钢钢铁研究院有限公司 一种高碳钢盘条

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323870A (ja) * 2003-04-21 2004-11-18 Nippon Steel Corp 耐遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
JP2007126700A (ja) * 2005-11-02 2007-05-24 Kobe Steel Ltd 耐水素脆化特性に優れたばね用鋼、並びに該鋼から得られる鋼線及びばね
US20120227872A1 (en) * 2009-12-28 2012-09-13 Posco Ultra-high-strength steel wire having excellent resistance to delayed fracture and manufacturing method thereof
JP2013163865A (ja) * 2012-01-11 2013-08-22 Kobe Steel Ltd ボルトおよびボルトの製造方法
JP2013204069A (ja) * 2012-03-27 2013-10-07 Kobe Steel Ltd 線材及びこれを用いた鋼線

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581012A (ja) * 1981-06-25 1983-01-06 Nippon Steel Corp 均質な鋼の製造方法
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
CA1332210C (en) * 1985-08-29 1994-10-04 Masaaki Katsumata High strength low carbon steel wire rods and method of producing them
WO1994023086A1 (en) * 1993-04-06 1994-10-13 Nippon Steel Corporation Bainite rod wire or steel wire for wire drawing and process for producing the same
WO1994028189A1 (fr) * 1993-05-25 1994-12-08 Nippon Steel Corporation Fil d'acier ou barre en acier riche en carbone presentant une excellente usinabilite dans le trefilage, et leur procede de production
CA2183441C (en) * 1994-02-24 2000-05-23 Sakae Katayama Fine graphite uniform dispersion steel excellent in cold machinability, cuttability and hardenability, and production method for the same
JP3429178B2 (ja) * 1998-01-12 2003-07-22 株式会社神戸製鋼所 捻回特性に優れた鋼線と伸線加工用鋼材及びその製造方法
JP3542489B2 (ja) 1998-03-11 2004-07-14 新日本製鐵株式会社 疲労特性の優れた高強度極細鋼線
EP0952233B1 (en) * 1998-04-21 2003-03-19 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Steel wire rod or bar with good cold deformability and machine parts made thereof
JP2001011575A (ja) * 1999-06-30 2001-01-16 Nippon Steel Corp 冷間加工性に優れた機械構造用棒鋼・鋼線及びその製造方法
JP4435954B2 (ja) * 1999-12-24 2010-03-24 新日本製鐵株式会社 冷間鍛造用棒線材とその製造方法
US7789974B2 (en) * 2000-12-20 2010-09-07 Nippon Steel Corporation High-strength spring steel wire
JP3851095B2 (ja) * 2001-02-07 2006-11-29 新日本製鐵株式会社 高強度ばね用熱処理鋼線
US6783609B2 (en) * 2001-06-28 2004-08-31 Kabushiki Kaisha Kobe Seiko Sho High-carbon steel wire rod with superior drawability and method for production thereof
JP3844443B2 (ja) * 2002-04-12 2006-11-15 新日本製鐵株式会社 海底光ファイバーケーブル補強用異形線
JP4088220B2 (ja) * 2002-09-26 2008-05-21 株式会社神戸製鋼所 伸線前の熱処理が省略可能な伸線加工性に優れた熱間圧延線材
KR100695371B1 (ko) * 2003-01-27 2007-03-16 신닛뽄세이테쯔 카부시키카이샤 고강도, 고인성 고탄소강 선재와 그 제조 방법
JP3983218B2 (ja) * 2003-10-23 2007-09-26 株式会社神戸製鋼所 延性に優れた極細高炭素鋼線およびその製造方法
JP4441360B2 (ja) * 2003-12-01 2010-03-31 株式会社神戸製鋼所 仕上面粗さに優れた低炭素複合快削鋼材
JP4476863B2 (ja) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 耐食性に優れた冷間成形ばね用鋼線
JP4374357B2 (ja) * 2005-06-29 2009-12-02 新日本製鐵株式会社 伸線特性に優れた高強度線材及びその製造方法、並びに伸線特性に優れた高強度鋼線
KR101011565B1 (ko) * 2005-06-29 2011-01-27 신닛뽄세이테쯔 카부시키카이샤 신선 특성이 우수한 고강도 선재 및 그 제조 방법
WO2007001057A1 (ja) * 2005-06-29 2007-01-04 Nippon Steel Corporation 伸線特性に優れた高強度線材およびその製造方法
JP4718359B2 (ja) * 2005-09-05 2011-07-06 株式会社神戸製鋼所 伸線性と疲労特性に優れた鋼線材およびその製造方法
JP5162875B2 (ja) * 2005-10-12 2013-03-13 新日鐵住金株式会社 伸線特性に優れた高強度線材およびその製造方法
JP4393467B2 (ja) * 2006-02-28 2010-01-06 株式会社神戸製鋼所 強伸線加工用の熱間圧延線材およびその製造方法
JP5098444B2 (ja) * 2006-06-01 2012-12-12 新日鐵住金株式会社 高延性の直接パテンティング線材の製造方法
US8734599B2 (en) * 2006-10-11 2014-05-27 Posco Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
KR100940379B1 (ko) * 2006-10-12 2010-02-02 신닛뽄세이테쯔 카부시키카이샤 연성이 우수한 고강도 강선 및 그 제조 방법
JP4310359B2 (ja) * 2006-10-31 2009-08-05 株式会社神戸製鋼所 疲労特性と伸線性に優れた硬引きばね用鋼線
US8105698B2 (en) * 2007-01-31 2012-01-31 Nippon Steel Corporation Plated steel wire for parallel wire strand (PWS) with excellent twist properties
CN102268604A (zh) * 2007-07-20 2011-12-07 株式会社神户制钢所 弹簧用钢线材及其制造方法
JP5121360B2 (ja) * 2007-09-10 2013-01-16 株式会社神戸製鋼所 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法
US8034199B2 (en) * 2007-09-27 2011-10-11 Nippon Steel Corporation Case-hardening steel excellent in cold forgeability and low carburization distortion property
US8980022B2 (en) * 2009-01-16 2015-03-17 Nippon Steel & Sumitomo Metal Corporation Case hardening steel, carburized component, and manufacturing method of case hardening steel
US8470099B2 (en) * 2009-04-21 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Wire rod, steel wire, and manufacturing method thereof
JP4970562B2 (ja) * 2009-04-21 2012-07-11 新日本製鐵株式会社 延性に優れた高強度鋼線用線材及び鋼線の製造方法
KR101302291B1 (ko) * 2009-06-25 2013-09-03 신닛테츠스미킨 카부시키카이샤 내식성과 피로 특성이 우수한 교량용 고강도 Zn―Al 도금 강선 및 그 제조 방법
WO2011055746A1 (ja) * 2009-11-05 2011-05-12 新日本製鐵株式会社 加工性に優れた高炭素鋼線材
EP2546380B1 (en) * 2010-03-11 2016-06-08 Nippon Steel & Sumitomo Metal Corporation High-strength steel wire rod and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
WO2011125447A1 (ja) 2010-04-01 2011-10-13 株式会社神戸製鋼所 伸線加工性および伸線後の疲労特性に優れた高炭素鋼線材
SE537538C2 (sv) * 2010-07-06 2015-06-09 Nippon Steel Corp Dragen värmebehandlad ståltråd för höghållfasthetsfjäderanvändning, fördragen ståltråd för höghållfasthetsfjäderanvändning samt förfaranden för framställning av dessa trådar
JP5521885B2 (ja) * 2010-08-17 2014-06-18 新日鐵住金株式会社 高強度かつ耐水素脆化特性に優れた機械部品用鋼線、および機械部品とその製造方法
US9097306B2 (en) * 2010-08-30 2015-08-04 Kobe Steel, Ltd. Steel wire rod for high-strength spring excellent in wire drawability, manufacturing method therefor, and high-strength spring
JP5425744B2 (ja) * 2010-10-29 2014-02-26 株式会社神戸製鋼所 伸線加工性に優れた高炭素鋼線材
JP5224009B2 (ja) * 2011-03-14 2013-07-03 新日鐵住金株式会社 鋼線材及びその製造方法
KR20120134534A (ko) * 2011-06-02 2012-12-12 삼화강봉주식회사 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법
JP5357994B2 (ja) * 2011-12-19 2013-12-04 株式会社神戸製鋼所 冷間加工用機械構造用鋼およびその製造方法
EP2990499B1 (en) * 2013-04-25 2018-07-18 Nippon Steel & Sumitomo Metal Corporation Wire rod and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323870A (ja) * 2003-04-21 2004-11-18 Nippon Steel Corp 耐遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
JP2007126700A (ja) * 2005-11-02 2007-05-24 Kobe Steel Ltd 耐水素脆化特性に優れたばね用鋼、並びに該鋼から得られる鋼線及びばね
US20120227872A1 (en) * 2009-12-28 2012-09-13 Posco Ultra-high-strength steel wire having excellent resistance to delayed fracture and manufacturing method thereof
JP2013163865A (ja) * 2012-01-11 2013-08-22 Kobe Steel Ltd ボルトおよびボルトの製造方法
JP2013204069A (ja) * 2012-03-27 2013-10-07 Kobe Steel Ltd 線材及びこれを用いた鋼線

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165623A4 *

Also Published As

Publication number Publication date
CN106471146A (zh) 2017-03-01
MX2016017015A (es) 2017-05-12
CA2951781A1 (en) 2016-01-07
EP3165623A1 (en) 2017-05-10
JP2016014169A (ja) 2016-01-28
US20170130303A1 (en) 2017-05-11
KR20170012467A (ko) 2017-02-02
CN106471146B (zh) 2018-03-16
EP3165623A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5135557B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法
JP4324225B1 (ja) 伸びフランジ性に優れた高強度冷延鋼板
WO2016002413A1 (ja) 鋼線用線材および鋼線
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
JP5802162B2 (ja) 線材及びこれを用いた鋼線
JP5833485B2 (ja) 線材及びこれを用いた鋼線
CA2980886C (en) High-carbon steel wire material with excellent wire drawability, and steel wire
WO2019004454A1 (ja) 高強度鋼線
JP7226548B2 (ja) 線材
JP4980172B2 (ja) 強度延性バランスに優れた高強度極細鋼線の製造方法
JP2014189855A (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
JP5945196B2 (ja) 高強度鋼線用線材
WO2016002414A1 (ja) 鋼線用線材および鋼線
JP2019123905A (ja) プレストレストコンクリート用緊張材用の二相ステンレス鋼線材、二相ステンレス鋼線及びプレストレストコンクリート用緊張材
WO2020080415A1 (ja) 熱間圧延線材
JP2018162523A (ja) 鋼線用線材および鋼線
JP2018162524A (ja) 鋼線用線材および鋼線
JP6501036B2 (ja) 鋼線
JP2024029554A (ja) 亜鉛めっき鋼線
JP2015161018A (ja) 鉄筋およびその製造方法
JP2019056162A (ja) 高強度鋼線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2951781

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015814419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/017015

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15322686

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020167036838

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE