WO2016002183A1 - 進行波管及び高周波回路システム - Google Patents

進行波管及び高周波回路システム Download PDF

Info

Publication number
WO2016002183A1
WO2016002183A1 PCT/JP2015/003234 JP2015003234W WO2016002183A1 WO 2016002183 A1 WO2016002183 A1 WO 2016002183A1 JP 2015003234 W JP2015003234 W JP 2015003234W WO 2016002183 A1 WO2016002183 A1 WO 2016002183A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
traveling wave
wave tube
heater
voltage
Prior art date
Application number
PCT/JP2015/003234
Other languages
English (en)
French (fr)
Inventor
孝継 宗廣
Original Assignee
Necネットワーク・センサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necネットワーク・センサ株式会社 filed Critical Necネットワーク・センサ株式会社
Priority to US15/319,845 priority Critical patent/US10068738B2/en
Priority to EP15815841.0A priority patent/EP3163596B1/en
Publication of WO2016002183A1 publication Critical patent/WO2016002183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • H01J23/065Electron or ion guns producing a solid cylindrical beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/08Focusing arrangements, e.g. for concentrating stream of electrons, for preventing spreading of stream
    • H01J23/087Magnetic focusing arrangements
    • H01J23/0873Magnetic focusing arrangements with at least one axial-field reversal along the interaction space, e.g. P.P.M. focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/42Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and with a magnet system producing an H-field crossing the E-field

Definitions

  • the present invention relates to a high-frequency circuit system including a traveling wave tube and a power supply device that supplies a required DC high voltage to each electrode of the traveling wave tube.
  • a traveling wave tube is an electron tube used for amplification or oscillation of an RF (Radio-Frequency) signal by the interaction between an electron beam emitted from an electron gun and a high-frequency circuit.
  • the traveling wave tube 1 includes an electron gun 10, a helix 20, a collector 30, and an anode 40, for example, as shown in FIG.
  • the electron gun 10 emits electrons.
  • the helix 20 is a high-frequency circuit that causes an electron beam 50 formed by electrons emitted from the electron gun 10 to interact with an RF signal.
  • the collector 30 captures the electron beam 50 output from the helix 20.
  • the anode 40 extracts electrons from the electron gun 10 and guides electrons emitted from the electron gun 10 into the spiral helix 20.
  • the electron gun 10 includes a cathode 11 that emits electrons (thermoelectrons), a heater 12 that gives thermal energy for emitting electrons (thermoelectrons) to the cathode 11, and electrons emitted from the cathode 11 by focusing. And Wehnelt 13 for forming the beam 50.
  • the cathode 11 is formed of a disk-shaped cathode pellet made of a porous tungsten substrate impregnated with an oxide (emitter material) such as barium (Ba).
  • An electron gun (Pierce-type electron gun) provided with the Wehnelt 13 is also described in, for example, Patent Document 1.
  • Electrons emitted from the electron gun 10 are accelerated by the potential difference between the cathode 11 and the anode 40 while forming the electron beam 50 and introduced into the helical structure of the helix 20.
  • the electrons introduced into the helical structure of the helix 20 travel in the helical structure of the helix 20 while interacting with the RF signal input from one end of the helix 20.
  • the electron beam 50 that has passed through the helical structure of the helix 20 is captured by the collector 30. At this time, an RF signal amplified by the interaction with the electron beam 50 is output from the other end of the helix 20.
  • the diameter of the electron beam 50 expands in accordance with the distance traveled by the electrons because the negatively charged individual electrons repel each other due to the Coulomb force. Therefore, a periodic magnetic field generator (not shown) that generates a magnetic field for suppressing the spread of the electron beam 50 passing through the helical structure of the helix 20 is provided on the outer periphery of the helix 20. The diameter of the electron beam 50 is maintained over the entire length of 20.
  • the periodic magnetic field generator is described in Patent Document 2, for example.
  • Patent Documents 3 and 4 describe that the ability to control an electron beam by a magnetic field is described in Patent Documents 3 and 4, for example.
  • Patent Document 3 describes that a magnetic field application means such as a coil is used to deflect an electron beam.
  • Patent Document 4 describes a configuration in which a demagnetizing unit including a coil is provided on the outer periphery of the electron gun in order to prevent the electron gun from being magnetized and the trajectory of the electron beam from becoming unstable.
  • a common negative DC high voltage (body voltage Ebody) is supplied to the cathode 11 and the Wehnelt 13 from a power supply device (not shown) based on the potential HELIX of the helix 20.
  • a positive or negative DC voltage (negative voltage: heater voltage Ef in FIG. 6) is supplied to the heater 12 with reference to the potential H / K of the cathode 11.
  • a positive DC high voltage (anode voltage Ea) is supplied to the anode 40 with reference to the potential H / K of the cathode 11.
  • the collector 30 is supplied with a positive DC high voltage (collector voltage Ecol) with reference to the potential H / K of the cathode 11.
  • the helix 20 is normally connected to the case (body) of the traveling wave tube 1 and grounded.
  • FIG. 6 shows a configuration example of the traveling wave tube 1 including one collector 30, the traveling wave tube 1 may be configured to include a plurality of collectors 30.
  • FIG. 6 shows an example in which the anode voltage Ea is supplied to the anode 40, but the traveling wave tube 1 may be used with the anode 40 grounded.
  • 6 shows an example in which the Wehnelt 13 is connected to the cathode 11, but the traveling wave tube 1 is supplied with positive or negative DC voltage (Wernert voltage Ew) to the Wehnelt 13 based on the potential of the cathode 11. There is also a configuration to do.
  • the amount of electrons emitted from the cathode 11 can be controlled by the anode voltage Ea, and the power of the RF signal output from the traveling wave tube 1 can be controlled by the anode voltage Ea.
  • Similar control is also possible with the Wehnelt voltage Ew applied to the Wehnelt 13.
  • the heater voltage Ef is set according to the output power of the RF signal.
  • Patent Document 5 A configuration for controlling the power of the RF signal output from the traveling wave tube 1 by the anode voltage Ea is described in Patent Document 5, for example.
  • Patent Document 5 describes that the output power of the RF signal is controlled by the anode voltage Ea and the heater voltage Ef is adjusted according to the output power of the RF signal.
  • the power of the RF signal output from the traveling wave tube 1 is controlled by the above-described anode voltage Ea or Wehnelt voltage Ew. That is, when the traveling wave tube 1 is operated with an RF output power (multimode) of two or more values, the heater temperature is generally set to a high output mode corresponding to the maximum output power of the RF signal.
  • the heater temperature is raised and the cathode temperature is raised, the amount of evaporation of the emitter material impregnated in the cathode pellet increases, so the time until the emitter material is depleted is shortened.
  • barium (Ba) is included as the emitter material, the barium (Ba) not only evaporates as an oxide, but also barium (Ba) alone, which is a metal, evaporates. Therefore, when the heater temperature is increased and the cathode temperature is increased, the voltage resistance of the traveling wave tube 1 is rapidly deteriorated. Therefore, even if it is often operated in the low output mode, the product life of the traveling wave tube 1 is shortened to the same extent as in the case of always operating in the high output mode.
  • the heater temperature may be set high in the high output mode and the heater temperature may be set low in the low output mode.
  • the product life of the traveling wave tube 1 can be expected to be extended.
  • the configuration in which the heater temperature is switched according to the operation mode another problem as described below occurs.
  • the traveling wave tube 1 when the traveling wave tube 1 is designed so that the trajectory of the electron beam 50 is optimal in the high output mode, the amount of electrons emitted from the cathode 11 is reduced in the low output mode than in the high output mode.
  • the diameter of the beam 50 is reduced. Therefore, the interaction between the electron beam 50 and the RF signal input to the helix 20 is weakened, and the gain of the traveling wave tube 1 is lower in the low output mode than in the high output mode.
  • the gain changes depending on the operation mode when it is desired to make the output power of the RF signal the same before and after the switching of the operation mode, it is necessary to change the power of the RF signal input to the traveling wave tube 1. Therefore, the convenience of traveling wave tube 1 is reduced.
  • the traveling wave tube 1 is designed so that the trajectory of the electron beam 50 is optimal in the high output mode, there is a problem that the amplification efficiency of the traveling wave tube 1 is reduced in the low output mode.
  • the periodic magnetic field generator described above it is known that the peak value of the magnetic flux density needs to be increased as the diameter of the electron beam 50 is reduced (see Patent Document 2). For this reason, the periodic magnetic field generator is designed so as to obtain an optimum peak value of magnetic flux density according to the diameter of the electron beam 50.
  • the traveling wave tube 1 is designed so that the trajectory of the electron beam 50 is optimal in the low output mode, the amount of electrons emitted from the cathode 11 increases in the high output mode than in the low output mode.
  • the diameter of the beam 50 is increased. Therefore, the interaction between the electron beam and the RF signal input to the helix 20 becomes stronger, and the gain of the traveling wave tube 1 is increased in the high output mode than in the low output mode, and the RF signal is easily oscillated. Further, when the diameter of the electron beam 50 is increased, the electrons easily collide with the helix 20, so that the current (helix current) flowing through the helix 20 increases and the power consumption of the traveling wave tube 1 increases.
  • the present invention has been made to solve the above-described problems, and in a traveling wave tube operated in a multimode, it is possible to suppress fluctuations in gain and amplification efficiency associated with switching of the operation mode while extending the product life. It is an object of the present invention to provide a traveling wave tube and a high frequency circuit system.
  • a traveling wave tube comprises an electron gun provided with a cathode that emits electrons and a heater that provides thermal energy to cause the cathode to emit electrons, A helix that interacts an electron beam formed by electrons emitted from the electron gun and an RF (Radio Frequency) signal; A periodic magnetic field generator for generating a magnetic field for suppressing the spread of the electron beam passing through the helix; A collector that captures an electron beam output from the helix; An anode for guiding electrons emitted from the electron gun into the helix; A magnetic field application device that generates a magnetic field for changing the diameter of the electron beam and that is supplied with electric power for generating the magnetic field from the outside.
  • RF Radio Frequency
  • the high-frequency circuit system of the present invention includes the traveling wave tube, A power supply device for supplying a required DC voltage to the traveling wave tube,
  • the power supply device An anode power source capable of switching the anode voltage supplied to the anode to two or more values according to an instruction from the outside;
  • a heater power supply capable of switching the heater voltage supplied to the heater to two or more according to an instruction from the outside;
  • a magnetic field application power source capable of switching the power supplied to the magnetic field application device to two or more values in accordance with an instruction from the outside.
  • the traveling wave tube is Having an electron gun with a Wehnelt for focusing the electrons emitted from the cathode;
  • the power supply device A Wehnelt power supply capable of switching the Wehnelt voltage supplied to the Wehnelt to two or more according to an instruction from the outside;
  • a heater power supply capable of switching the heater voltage supplied to the heater to two or more according to an instruction from the outside;
  • a magnetic field application power source capable of switching the power supplied to the magnetic field application device to two or more values in accordance with an instruction from the outside.
  • the present invention in a traveling wave tube operated in a multi-mode, it is possible to suppress fluctuations in the gain and amplification efficiency of the traveling wave tube accompanying switching of the operation mode while extending the product life.
  • (A) is a schematic diagram which shows the mode of the magnetic field which generate
  • (b) is a schematic diagram which shows a mode that the principal part of (a) was expanded.
  • (A) is a schematic diagram which shows the operation
  • (b) is the low output mode of the modification of the high frequency circuit system of embodiment of this invention.
  • It is a schematic diagram which shows the operation
  • It is a schematic diagram which shows one structural example of the high frequency circuit system of background art.
  • It is a schematic diagram which shows a mode that a ripple generate
  • FIG. 1 is a schematic diagram showing a configuration example of a high-frequency circuit system according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the power supply device provided in the high-frequency circuit system according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing another configuration example of the high-frequency circuit system according to the embodiment of the present invention.
  • the high-frequency circuit system includes a traveling wave tube 2 and a power supply device 60 that supplies a necessary DC high voltage (power supply voltage) to each electrode of the traveling wave tube 2.
  • the traveling wave tube 2 of the embodiment of the present invention generates a magnetic field for controlling the diameter of the electron beam 50 in the traveling wave tube 1 of the background art shown in FIG.
  • a magnetic field application device 70 to which power is supplied is added.
  • the other configuration is the same as that of the traveling wave tube 1 of the background art shown in FIG.
  • the magnetic field applying device 70 forms a coil on the sealing plate 21 for vacuum-sealing the casing (body) of the traveling wave tube 2 from the back direction of the electron gun 10 facing the electron emitting surface. Realize it. In that case, it is desirable to use a magnetic metal material (magnetic material) for the sealing plate 21. If a magnetic metal material (magnetic material) is used for the sealing plate 21, the magnetic field generated by passing a current through the coil can be strengthened.
  • the coil of the magnetic field application device 70 is formed so that a magnetic field including magnetic field lines in a direction substantially orthogonal to the electron emission surface of the cathode 11 is generated when a current is passed.
  • the magnetic field application device 70 does not have to have a configuration in which a coil is directly wound around the sealing plate 21, and any configuration can be used as long as it can generate a magnetic field including a magnetic field line substantially orthogonal to the electron emission surface of the cathode 11. But you can.
  • the magnetic field applying device 70 may be configured by providing a ring-shaped magnetic core made of a magnetic metal material (magnetic material) on the outer periphery of the sealing plate 21 and forming a coil on the outer periphery of the magnetic core. Good.
  • Electric power is supplied to the coil of the magnetic field application device 70 from a magnetic field application power source 65 provided in the power supply device 60 described later.
  • a coil voltage is supplied to the coil of the magnetic field application device 70 from a magnetic field application power source 65 described later.
  • a heater power supply 63 of the power supply device 60 described later supplies a heater voltage Ef to the heater 12 of the electron gun 10.
  • the magnetic field application power supply 65 may be configured by a dedicated power supply circuit, and may be commonly used with a heater power supply 63 that supplies power to the heater 12 as described later. FIG.
  • FIG. 1 shows a configuration example in which the heater voltage Ef is supplied from the heater power source to the magnetic field applying device 70 and the heater 12 by using a magnetic field applying power source, which will be described later, in common with the heater power source.
  • a magnetic field applying power source which will be described later
  • FIG. 1 shows a configuration example in which the heater voltage Ef is supplied to one end connected in common.
  • the power supply device 60 includes a helix power supply 61, a collector power supply 62, a heater power supply 63, an anode power supply 64, and a magnetic field application power supply 65.
  • the helix power supply 61 of the power supply device 60 supplies the cathode 11 with a body voltage Ebody that is a negative DC voltage with reference to the potential HELIX of the helix 20.
  • the collector power supply 62 of the power supply device 60 supplies the collector 30 with a collector voltage Ecol that is a positive DC voltage with reference to the potential H / K of the cathode 11.
  • the heater power supply 63 of the power supply device 60 supplies the heater 12 with a heater voltage Ef that is a positive or negative DC voltage (a negative DC voltage in FIG.
  • the anode power supply 64 of the power supply device 60 supplies a positive DC voltage (anode voltage Ea) to the anode 40 with reference to the potential H / K of the cathode 11.
  • the magnetic field application power source 65 of the power supply device 60 supplies the coil voltage Es, which is a positive or negative DC voltage (a negative DC voltage in FIG. 2) with respect to the potential H / K of the cathode 11 to the magnetic field application device 70.
  • the helix 20 is connected to, for example, the case (body) of the traveling wave tube 2 and grounded in the power supply device 60.
  • the heater 12 is supplied with the heater voltage Ef from the heater power supply 63 of the power supply device 60 of FIG. 2, and the coil of the magnetic field application device 70 is coiled from the magnetic field application power supply 65 of the power supply device 60 of FIG.
  • the voltage Es is supplied.
  • the high frequency circuit system of FIG. 3 shows a configuration in which a magnetic field application power source 65 that supplies a coil voltage Es is provided in addition to the heater power source 63 that supplies power to the heater 12.
  • the heater power supply 63, the anode power supply 64, and the magnetic field application power supply 65 included in the power supply device 60 according to the embodiment of the present invention are configured to be able to switch the output voltage according to the operation mode of the traveling wave tube 2.
  • the heater power supply 63 includes, for example, a plurality of power supply circuits that generate the heater voltage Ef for each operation mode, and switches the heater voltage Ef supplied to the heater 12 according to the operation mode of the traveling wave tube 2 with a switch.
  • FIG. 2 shows a configuration example in which two power supply circuits connected in series are provided and power is supplied to the heater 12 from one power supply circuit or two power supply circuits according to the operation mode.
  • a known DC-DC converter including an inverter, a transformer, a rectifier circuit, a rectifier capacitor, and the like may be used.
  • the anode power source 64 includes, for example, a plurality of power supply circuits that generate the anode voltage Ea for each operation mode, and switches the anode voltage Ea supplied to the anode 40 according to the operation mode of the traveling wave tube 2 with a switch.
  • FIG. 2 shows a configuration example in which two power supply circuits connected in series are provided and power is supplied from one power supply circuit or two power supply circuits to the anode 40 according to the operation mode.
  • a well-known DC-DC converter may be used for the power supply circuit for generating the anode voltage Ea, similarly to the heater power supply 63.
  • a positive DC high voltage (first anode voltage) having a large difference from the cathode potential H / K is supplied to the anode 40.
  • the anode power supply 64 may be configured to be connected to the ground potential using a switch in the high output mode.
  • the anode 40 when the traveling wave tube 2 is operated in the low output mode, the anode 40 has a positive DC high voltage (second anode voltage) that has a small difference from the cathode potential H / K and is lower than that in the high output mode. Supply.
  • the anode power source 64 since only a small amount of current normally flows through the anode 40, the anode power source 64 does not require a large current supply capability. Therefore, the anode power source 64 is realized by a configuration including, for example, a plurality of resistors connected in series that divide the body voltage Ebody, and a switch that connects any one of the connection nodes to the anode 40. May be. In that case, the switch may be used to switch the node connected to the anode 40 in accordance with the operation mode of the traveling wave tube 2.
  • the magnetic field application power source 65 includes, for example, a plurality of power supply circuits that generate the coil voltage Es for each operation mode, and switches the coil voltage Es supplied to the magnetic field application device 70 according to the operation mode of the traveling wave tube 2 with a switch. is there.
  • FIG. 2 shows a configuration example in which two power supply circuits connected in series are provided and power is supplied from one power supply circuit or two power supply circuits to the magnetic field application device 70 in accordance with the operation mode.
  • a well-known DC-DC converter may be used for the power supply circuit for generating the coil voltage Es, similarly to the heater power supply 63.
  • the magnetic field application power source 65 may be shared with the heater power source 63. If the magnetic field application power source 65 is shared with the heater power source 63, the strength of the magnetic field generated by the magnetic field application device 70 can be changed simultaneously when the heater voltage Ef is switched according to the operation mode.
  • the switches included in the heater power supply 63, the anode power supply 64, and the magnetic field application power supply 65 are switched according to a control signal transmitted from, for example, an operation mode switching switch provided in the casing of the power supply device 60 or a control device (not shown). Just do it.
  • the helix power supply 61 and the collector power supply 62 only need to be able to generate a required DC high voltage.
  • a known DC-DC converter including an inverter, a transformer, a rectifier circuit, a rectifier capacitor, and the like may be used.
  • the inverter and transformer included in the helix power supply 61, the collector power supply 62, the heater power supply 63, the anode power supply 64, and the magnetic field application power supply 65 can be made common.
  • the power supply device 60 may include a Wehnelt power source (not shown) that supplies a positive or negative DC voltage (Whnelt voltage Ew) to the Wehnelt 13 with reference to the potential H / K of the cathode 11. Similar to the anode power source 64, the Wehnelt power source may be configured to switch the DC voltage supplied to the Wehnelt 13 in accordance with the operation mode of the traveling wave tube 2.
  • a Wehnelt power source (not shown) that supplies a positive or negative DC voltage (Whnelt voltage Ew) to the Wehnelt 13 with reference to the potential H / K of the cathode 11.
  • the Wehnelt power source may be configured to switch the DC voltage supplied to the Wehnelt 13 in accordance with the operation mode of the traveling wave tube 2.
  • the traveling wave tube 2 shown in FIG. 1 is operated in a multimode in which the output power of the RF signal is switched by the anode voltage Ea or the Wehnelt voltage Ew.
  • the heater temperature is changed by switching the heater voltage Ef in accordance with the operation mode of the traveling wave tube 2. Specifically, in the high output mode, the heater voltage Ef (first heater voltage) is set high so that the heater temperature at which the maximum RF output power can be obtained. In the low output mode, the heater voltage Ef (second heater voltage) is set low so that the heater temperature at which required RF output power can be obtained.
  • the operation mode is not limited to two types of the high output mode and the low output mode, and an intermediate mode for outputting an intermediate RF power may be provided.
  • the heater voltage Ef is lowered in the low output mode to lower the heater temperature, the evaporation amount of the emitter material from the cathode 11 in the low output mode is suppressed. Further, if the amount of evaporation of the emitter material is suppressed, the amount of evaporation of the metal barium (Ba) alone is also suppressed, so that the withstand voltage of the traveling wave tube 2 does not deteriorate rapidly. Therefore, it is possible to extend the product life of the traveling wave tube 2 according to the ratio of operation in the low output mode.
  • the magnetic field applying device 70 shown in FIG. 1 is used to generate a magnetic field in the vicinity of the cathode 11, and the strength of the magnetic field is changed according to the operation mode of the traveling wave tube 2.
  • the variation in the diameter of the beam 50 is suppressed. Thereby, fluctuations in the gain of the traveling wave tube and the amplification efficiency due to the switching of the operation mode are suppressed.
  • the magnetic field application device 70 Since the strength of the magnetic field generated by the magnetic field application device 70 depends on the value of the current flowing through the coil, the magnetic field application device can be switched by switching the coil voltage Es supplied from the magnetic field application power source 65 according to the operation mode of the traveling wave tube 2. The strength of the magnetic field generated at 70 is changed.
  • FIG. 4A is a schematic diagram showing a state of a magnetic field generated by the magnetic field application device and the periodic magnetic field generator
  • FIG. 4B is a schematic diagram showing an enlarged view of the main part of FIG. is there.
  • the periodic magnetic field generator 80 included in the traveling wave tube 2 includes a plurality of ring-shaped pole pieces 81, a plurality of ring-shaped permanent magnets 82, and a plurality of The spacer 83 is provided.
  • the plurality of ring-shaped pole pieces 81 are made of a magnetic material.
  • the plurality of ring-shaped permanent magnets 82 are arranged between the plurality of pole pieces 81 so that the magnetic dipoles are alternately inverted.
  • the plurality of spacers 83 support the plurality of permanent magnets 82.
  • the helix 20 is disposed in an opening of a periodic magnetic field generator 80 formed in a ring shape.
  • a plurality of permanent magnets 82 are provided in the opening of the periodic magnetic field generator 80 in accordance with the moving distance of electrons as shown in the central magnetic field pattern of FIGS. 4 (a) and 4 (b).
  • a magnetic field is generated in which the magnetic field lines are alternately reversed.
  • each electron emitted from the cathode 11 is converged by traveling toward the center by the shape (spherical shape) of the electron emission surface of the cathode 11 and the electric field generated by the Wehnelt 13.
  • the electrons that have reached the opening of the periodic magnetic field generation device 80 travel while spirally rotating due to the force (Lorentz force) received from the magnetic field generated by the periodic magnetic field generation device 80, thereby suppressing the spread.
  • the magnetic flux generated by the magnetic field (main magnetic field) generated by the periodic magnetic field generator 80 leaks to the vicinity of the cathode 11, and as shown by the central magnetic field patterns in FIGS. 4 (a) and 4 (b), the electrons are emitted from the cathode 11.
  • a magnetic field having a magnetic flux density Bc is generated near the surface.
  • the diameter of the electron beam 50 can be controlled by generating a magnetic field that cancels the leakage magnetic flux by the magnetic field application device 70 and adjusting the strength of the leakage magnetic flux.
  • the radial direction is inward due to the structure of the electrode. Since electrons have a negative charge, the direction of the current is outside the direction opposite to the direction of movement of the electrons. Therefore, the “direction of current flow” in Fleming's left-hand rule is outside the radial direction.
  • the “force applied to the conductor” is the force applied to the electrons, and is the force in the tangential direction of the circle based on Fleming's left-hand rule.
  • the electrons are directed toward the inside and receive a tangential force, so they tend to go outside rather than the original state without a magnetic field.
  • a general traveling wave tube is designed so that the magnetic flux leaking from the periodic magnetic field generator 80 to the vicinity of the cathode 11 is as small as possible in order to prevent the electron beam 50 from spreading due to the leakage magnetic flux of the periodic magnetic field generator 80.
  • the traveling wave tube 2 of the embodiment of the present invention is designed so that the leakage magnetic flux of the periodic magnetic field generator 80 in the vicinity of the cathode 11 is larger than that of a general traveling wave tube.
  • the diameter of the opening of the anode 40 through which electrons pass may be increased.
  • the direction of the magnetic flux lines of the leakage magnetic flux is generally the direction from the periodic magnetic field generator 80 toward the cathode 11 (the left direction in the figure). Therefore, the magnetic field applying device 70 generates a magnetic field in which the direction of the magnetic force lines is the direction from the cathode 11 toward the periodic magnetic field generating device 80 (right direction in the figure). For example, if a coil is formed by winding a wiring material clockwise around the sealing plate 21 with respect to the traveling direction of electrons, and a current is passed clockwise through the coil, the right direction of the figure is determined by the well-known right-handed screw rule.
  • the magnetic field generated by the magnetic field applying device 70 is weakened (the low coil voltage Es is supplied), and the magnetic field caused by the leakage magnetic flux is increased. Conversely, when it is desired to reduce the diameter of the electron beam 50, the magnetic field generated by the magnetic field application device 70 is strengthened (high coil voltage Es is supplied), and the magnetic field due to the leakage magnetic flux is weakened.
  • the traveling wave tube 2 is designed so that the trajectory of the electron beam 50 is optimal in the high output mode, the amount of electrons emitted from the cathode 11 is reduced in the low output mode than in the high output mode. As a result, the diameter of the electron beam 50 is reduced. In that case, by supplying a smaller electric power to the magnetic field application device 70 than in the high output mode to weaken the magnetic field generated by the magnetic field application device 70, the diameter of the electron beam 50 is increased to the same extent as in the high output mode. . When the diameter of the electron beam 50 is approximately the same as in the high output mode, the strength of the interaction between the electron beam 50 and the RF signal input to the helix 20 is also approximately the same as in the high output mode.
  • a decrease in the gain of the traveling wave tube 2 is suppressed. Further, if the diameter of the electron beam 50 is approximately the same as that in the high output mode, the amount of ripple of the electron beam 50 is also reduced, so that a decrease in amplification efficiency of the traveling wave tube 2 is suppressed.
  • the traveling wave tube 2 is designed so that the trajectory of the electron beam 50 is optimal in the low output mode
  • the amount of electrons emitted from the cathode 11 increases in the high output mode than in the low output mode.
  • the diameter of the beam 50 is increased.
  • the diameter of the electron beam 50 is reduced to the same level as in the low output mode by supplying a larger electric power to the magnetic field application device 70 than in the low output mode to increase the magnetic field generated by the magnetic field application device 70.
  • the diameter of the electron beam 50 is approximately the same as that in the low output mode
  • the strength of the interaction between the electron beam 50 and the RF signal input to the helix 20 is also approximately the same as in the low output mode. The increase in the gain is suppressed and the possibility of oscillation is reduced.
  • FIG. 5A is a schematic diagram showing an operation in a high output mode of a modified example of the high-frequency circuit system according to the embodiment of the present invention
  • FIG. 5B is a diagram of the high-frequency circuit system according to the embodiment of the present invention. It is a schematic diagram which shows the operation
  • 5A and 5B show a configuration example in which power is supplied from the heater power supply 63 to the magnetic field application device 70 as in FIG.
  • the Wehnelt 13 is supplied with, for example, the potential H / K of the cathode 11.
  • a negative DC voltage (Wernert voltage Ew) is supplied to the reference.
  • a negative DC voltage (first Wehnelt voltage, Ew: Low) having a small difference from the cathode potential H / K is obtained.
  • first Wehnelt voltage, Ew: Low first Wehnelt voltage having a small difference from the cathode potential H / K is obtained.
  • second Wehnelt voltage (first Wehnelt voltage, Ew: Low) having a small difference from the cathode potential H / K is obtained.
  • the potential of the Wehnelt 13 may be matched with the potential H / K of the cathode 11, and a positive DC voltage may be supplied to the Wehnelt 13 with reference to the potential H / K of the cathode 11.
  • the magnetic field application device 70 may generate a magnetic field in which the direction of the magnetic field lines is the direction from the periodic magnetic field generation device 80 toward the cathode 11 (left direction in the figure).
  • the traveling wave tube 2 of the embodiment of the present invention may be designed so that the leakage magnetic flux of the periodic magnetic field generator 80 in the vicinity of the cathode 11 becomes small, as in a general traveling wave tube.
  • the traveling wave tube 2 is designed so that the trajectory of the electron beam 50 is optimal in the high output mode
  • a larger electric power is supplied to the magnetic field applying device 70 than in the high output mode.
  • the magnetic field generated by the applying device 70 is strengthened.
  • the diameter of the electron beam 50 may be increased to the same level as in the high output mode.
  • the magnetic field applying device 70 When the traveling wave tube 2 is designed so that the trajectory of the electron beam 50 is optimal in the low output mode, the magnetic field applying device 70 is supplied with smaller electric power than in the low output mode in the high output mode. The magnetic field generated by the applying device 70 is weakened. Thus, in the high output mode, the diameter of the electron beam 50 may be reduced to the same level as in the low output mode. In such a configuration, the magnetic field application power source 65 and the heater power source 63 cannot be shared, but the diameter of the electron beam 50 can be controlled by the magnetic field generated by the magnetic field application device 70 as described above.
  • the heater temperature is switched according to the operation mode, if the heater temperature is lowered in the low output mode, the evaporation amount of the emitter material from the cathode 11 in the low output mode is suppressed. Is done. Further, if the amount of evaporation of the emitter material is suppressed, the amount of evaporation of the metal barium (Ba) alone is also suppressed, so that the withstand voltage of the traveling wave tube 2 does not deteriorate rapidly. Therefore, it is possible to extend the product life of the traveling wave tube 2 according to the ratio of operation in the low output mode.
  • the traveling wave tube 2 is provided with a magnetic field applying device 70, and the magnetic field applying device 70 switches the intensity of the magnetic field generated in the vicinity of the cathode according to the operation mode, so that the diameter of the electron beam 50 associated with the switching of the operation mode can be increased. Variation can be suppressed. Therefore, while extending the product life of the traveling wave tube 2, fluctuations in the gain and amplification efficiency of the traveling wave tube 2 associated with the switching of the operation mode are suppressed.

Landscapes

  • Microwave Tubes (AREA)

Abstract

 マルチモードで動作させる進行波管において、製品寿命を延伸しつつ、動作モードの切り換えに伴う利得や増幅効率の変動を抑制できる進行波管及び高周波回路システムを提供する。 進行波管(2)に、電子を放出するカソード(11)及びカソード(11)に電子を放出させるための熱エネルギーを与えるヒータ(12)を備えた電子銃(10)と、電子銃(10)から放出された電子で形成される電子ビームとRF信号とを相互作用させるヘリックス(20)と、ヘリックス(20)から出力された電子ビームを捕捉するコレクタ(30)と、電子銃(10)から放出された電子をヘリックス(20)内へ導くアノード(40)と、電子ビームの直径を変更するための磁界を発生する、外部から該磁界を発生するための電力が供給される磁界印加装置(70)とを備える。

Description

進行波管及び高周波回路システム
 本発明は、進行波管及び該進行波管の各電極に所要の直流高電圧を供給する電源装置を備えた高周波回路システムに関する。
 進行波管は、電子銃から放出された電子ビームと高周波回路との相互作用により、RF(Radio Frequency)信号の増幅や発振等に用いる電子管である。進行波管1は、例えば図6に示すように、電子銃10と、ヘリックス20と、コレクタ30と、アノード40と、を有する。電子銃10は、電子を放出する。ヘリックス20は、電子銃10から放出された電子で形成される電子ビーム50とRF信号とを相互作用させる高周波回路である。コレクタ30は、ヘリックス20から出力された電子ビーム50を捕捉する。アノード40は、電子銃10から電子を引き出すと共に、電子銃10から放出された電子を螺旋状のヘリックス20内へ導く。
 電子銃10は、電子(熱電子)を放出するカソード11と、カソード11に電子(熱電子)を放出させるための熱エネルギーを与えるヒータ12と、カソード11から放出された電子を集束して電子ビーム50を形成するためのウェネルト13と、を備えている。カソード11は、例えばバリウム(Ba)等の酸化物(エミッタ材)が含浸されたポーラスタングステン(porous tungsten)基体からなる円板状のカソードペレットで形成される。ウェネルト13を備えた電子銃(ピアス型電子銃)については、例えば特許文献1等にも記載されている。
 電子銃10から放出された電子は、電子ビーム50を形成しつつカソード11とアノード40の電位差によって加速されてヘリックス20の螺旋構造内に導入される。ヘリックス20の螺旋構造内に導入された電子は、ヘリックス20の一端から入力されたRF信号と相互作用しながら、ヘリックス20の螺旋構造内を進行する。ヘリックス20の螺旋構造内を通過した電子ビーム50は、コレクタ30で捕捉される。このとき、ヘリックス20の他端からは、電子ビーム50との相互作用によって増幅されたRF信号が出力される。
 電子ビーム50は、負電荷を有する個々の電子がクーロン力によって互いに反発するため、電子の移動距離に応じてその直径が拡がっていく。そこで、ヘリックス20の外周には、ヘリックス20の螺旋構造内を通過している電子ビーム50の拡がりを抑制するための磁界を発生する周期磁界発生装置(不図示)が設けられ、該磁界によりヘリックス20の全長に亘って電子ビーム50の直径が維持される。周期磁界発生装置については、例えば特許文献2に記載されている。
 なお、磁界によって電子ビームを制御できることは、例えば特許文献3及び4に記載されている。特許文献3には、電子ビームを偏向するためにコイル等の磁界印加手段を用いることが記載されている。また、特許文献4には、電子銃が着磁して電子ビームの軌道が不安定になるのを防止するため、電子銃の外周にコイルから成る消磁手段を設けた構成が記載されている。
 図6に示すように、カソード11及びウェネルト13には、不図示の電源装置からヘリックス20の電位HELIXを基準に共通の負の直流高電圧(ボディ電圧Ebody)がそれぞれ供給される。ヒータ12には、カソード11の電位H/Kを基準に正または負の直流電圧(図6では負電圧:ヒータ電圧Ef)が供給される。アノード40には、カソード11の電位H/Kを基準に正の直流高電圧(アノード電圧Ea)が供給される。また、コレクタ30には、カソード11の電位H/Kを基準に正の直流高電圧(コレクタ電圧Ecol)が供給される。ヘリックス20は、通常、進行波管1のケース(ボディ)に接続されて接地される。
 図6では1つのコレクタ30を備える進行波管1の構成例を示しているが、進行波管1には複数のコレクタ30を備える構成もある。また、図6では、アノード40にアノード電圧Eaを供給する例を示しているが、進行波管1はアノード40を接地して使用する場合もある。さらに、図6では、ウェネルト13をカソード11と接続する例を示しているが、進行波管1にはウェネルト13にカソード11の電位を基準に正または負の直流電圧(ウェネルト電圧Ew)を供給する構成もある。
 図6に示す進行波管1では、アノード電圧Eaによってカソード11から放出される電子の量を制御することが可能であり、進行波管1から出力するRF信号の電力をアノード電圧Eaによって制御できる。同様の制御は、ウェネルト13に印加するウェネルト電圧Ewでも可能である。さらに、カソード11から放出可能な電子量は、カソード11の温度、すなわちヒータ12の温度にも依存するため、進行波管1ではRF信号の出力電力に合わせてヒータ電圧Efが設定される。
 アノード電圧Eaによって進行波管1から出力するRF信号の電力を制御する構成は、例えば特許文献5に記載されている。特許文献5には、アノード電圧EaでRF信号の出力電力を制御すると共に、RF信号の出力電力に応じてヒータ電圧Efを調整することが記載されている。
特開2006-127899号公報 特開平09-274865号公報 特開2002-198002号公報 特開2007-273158号公報 特開昭58-157206号公報
 上述したアノード電圧Eaまたはウェネルト電圧Ewによって、進行波管1から出力するRF信号の電力を制御する場合を考える。すなわち進行波管1を2値以上のRF出力電力(マルチモード)で動作させる場合、一般的にはRF信号の出力電力が最大となる高出力モードに対応したヒータ温度に設定される。
 これは、RF信号の出力電力が低い低出力モードに対応したヒータ温度に設定すると、高出力モードではカソード11から放出される電子量が不足するため、RF信号の出力電力が所要の最大電力よりも低い値で飽和するからである。
 しかしながら、ヒータ温度を高くしてカソード温度を上昇させると、上記カソードペレットに含浸されたエミッタ材の蒸発量が増大するため、該エミッタ材が枯渇するまでの時間が短くなってしまう。また、エミッタ材としてバリウム(Ba)が含まれている場合は、該バリウム(Ba)が酸化物として蒸発するだけでなく、金属であるバリウム(Ba)単体でも蒸発する。そのため、ヒータ温度を高くしてカソード温度を上昇させると、進行波管1の耐電圧性が急速に劣化する。したがって、低出力モードで動作させることが多くても、進行波管1の製品寿命は、高出力モードで常に動作させる場合と同程度まで短くなってしまう。
 そこで、進行波管1をマルチモードで動作させる場合は、特許文献5に記載されているように、高出力モードでヒータ温度を高く設定し、低出力モードでヒータ温度を低く設定すればよい。このように動作モードに応じてヒータ温度を切り換えれば、進行波管1の製品寿命の延伸が期待できる。しかしながら、動作モードに応じてヒータ温度を切り換える構成では、以下に記載するような別の課題が発生する。
 例えば、高出力モードにおいて電子ビーム50の軌道が最適となるように進行波管1が設計されている場合、低出力モードでは高出力モードよりもカソード11から放出される電子量が低減して電子ビーム50の直径が小さくなる。そのため、該電子ビーム50とヘリックス20に入力されたRF信号との相互作用が弱くなり、低出力モードでは高出力モードよりも進行波管1の利得が低下する。このように動作モードによって利得が変化する構成では、動作モードの切り換え前後におけるRF信号の出力電力を同一としたい場合に、進行波管1に入力するRF信号の電力を変化させる必要がある。そのため、進行波管1の利便性が低下してしまう。
 また、高出力モードにおいて電子ビーム50の軌道が最適となるように進行波管1が設計されている場合、低出力モードでは進行波管1の増幅効率が低下する、という課題も発生する。
 上述した周期磁界発生装置では、電子ビーム50の直径が小さくなるほど、磁束密度のピーク値を大きくする必要があることが知られている(特許文献2参照)。このことから、周期磁界発生装置は、電子ビーム50の直径に応じて最適な磁束密度のピーク値が得られるように設計されている。
 そのため、低出力モード時にカソード11から放出される電子量が低減して電子ビーム50の直径が小さくなると、周期磁界発生装置で得られる磁束密度が相対的に低下することになり、電子ビーム50を集束する力が低下する。その結果、図7で示すように電子ビーム50の直径が周期的に変動するリップルが発生し、該電子ビーム50とRF信号との相互作用が弱くなることで、進行波管1の増幅効率が低下する。
 一方、低出力モードにおいて電子ビーム50の軌道が最適となるように進行波管1が設計されている場合、高出力モードでは低出力モードよりもカソード11から放出される電子量が増大して電子ビーム50の直径が大きくなる。そのため、該電子ビームとヘリックス20に入力されたRF信号との相互作用が強くなり、高出力モードでは低出力モードよりも進行波管1の利得が増大してRF信号が発振し易くなる。また、電子ビーム50の直径が大きくなると、電子がヘリックス20に衝突し易くなるため、ヘリックス20に流れる電流(ヘリックス電流)が増えて進行波管1の消費電力が増大する。
 本発明は、上述した課題を解決するためになされたものであり、マルチモードで動作させる進行波管において、製品寿命を延伸しつつ、動作モードの切り換えに伴う利得や増幅効率の変動を抑制できる進行波管及び高周波回路システムを提供することを目的とする。
 上記目的を達成するため本発明の進行波管は、電子を放出するカソード及び前記カソードに電子を放出させるための熱エネルギーを与えるヒータを備えた電子銃と、
 前記電子銃から放出された電子で形成される電子ビームとRF(Radio Frequency)信号とを相互作用させるヘリックスと、
 前記ヘリックス内を通過している前記電子ビームの拡がりを抑制するための磁界を発生する周期磁界発生装置と、
 前記ヘリックスから出力された電子ビームを捕捉するコレクタと、
 前記電子銃から放出された電子を前記ヘリックス内へ導くアノードと、
 前記電子ビームの直径を変更するための磁界を発生する、外部から該磁界を発生するための電力が供給される磁界印加装置と、を有する。
 一方、本発明の高周波回路システムは、上記進行波管と、
 前記進行波管に所要の直流電圧を供給する電源装置と、を有し、
 前記電源装置は、
 外部からの指示にしたがって前記アノードへ供給するアノード電圧を2値以上に切り換え可能なアノード電源と、
 外部からの指示にしたがって前記ヒータへ供給するヒータ電圧を2値以上に切り換え可能なヒータ電源と、
 外部からの指示にしたがって前記磁界印加装置へ供給する電力を2値以上に切り換え可能な磁界印加電源と、を有する。
 または、上記進行波管と、
 前記進行波管に所要の直流電圧を供給する電源装置と、を有し、
 前記進行波管は、
 前記カソードから放出された電子を集束するためのウェネルトを備えた電子銃を有し、
 前記電源装置は、
 外部からの指示にしたがって前記ウェネルトへ供給するウェネルト電圧を2値以上に切り換え可能なウェネルト電源と、
 外部からの指示にしたがって前記ヒータへ供給するヒータ電圧を2値以上に切り換え可能なヒータ電源と、
 外部からの指示にしたがって前記磁界印加装置へ供給する電力を2値以上に切り換え可能な磁界印加電源と、を有する。
 本発明によれば、マルチモードで動作させる進行波管において、製品寿命を延伸しつつ、動作モードの切り換えに伴う進行波管の利得や増幅効率の変動を抑制できる。
本発明の実施形態の高周波回路システムの一構成例を示す模式図である。 本発明の実施形態の高周波回路システムが備える電源装置の一構成例を示す回路図である。 本発明の実施形態の高周波回路システムの別の構成例を示す模式図である。 (a)は磁界印加装置及び周期磁界発生装置により発生する磁界の様子を示す模式図であり、(b)は(a)の要部を拡大した様子を示す模式図である。 (a)は本発明の実施形態の高周波回路システムの変形例の高出力モード時の動作を示す模式図であり、(b)は本発明の実施形態の高周波回路システムの変形例の低出力モード時の動作を示す模式図である。 背景技術の高周波回路システムの一構成例を示す模式図である。 低出力モード時に電子ビームでリップルが発生する様子を示す模式図である。
 次に本発明の実施形態について、図面を用いて説明する。
 図1は、本発明の実施形態の高周波回路システムの一構成例を示す模式図である。図2は、本発明の実施形態の高周波回路システムが備える電源装置の一構成例を示す回路図である。図3は、本発明の実施形態の高周波回路システムの別の構成例を示す模式図である。
 図1に示すように、本発明の実施形態の高周波回路システムは、進行波管2及び該進行波管2の各電極に所要の直流高電圧(電源電圧)を供給する電源装置60を有する。
 本発明の実施形態の進行波管2は、図6に示した背景技術の進行波管1に、電子ビーム50の直径を制御するための磁界を発生する、外部から該磁界を発生するための電力が供給される磁界印加装置70を追加した構成である。その他の構成は図6に示した背景技術の進行波管1と同様であるため、その説明は省略する。
 磁界印加装置70は、例えば電子を放出する面と対向する電子銃10の背面方向から進行波管2の筐体(ボディ)を真空封止するための封止皿21にコイルを形成することで実現すればよい。その場合、封止皿21には磁性金属材料(磁性体材料)を用いることが望ましい。封止皿21に磁性金属材料(磁性体材料)を用いれば、コイルへ電流を流すことで発生する磁界を強くすることができる。磁界印加装置70のコイルは、電流を流した際に、カソード11の電子放出面と略直交する方向の磁力線を含む磁界が発生するように形成する。
 なお、磁界印加装置70は、封止皿21にコイルを直接巻いた構成である必要はなく、カソード11の電子放出面と略直交する磁力線を含む磁界を発生させることができれば、どのような構成でもよい。例えば、封止皿21の外周に磁性金属材料(磁性体材料)から成るリング状の磁性体コアを設け、該磁性体コアの外周にコイルを形成することで磁界印加装置70を構成してもよい。
 磁界印加装置70のコイルには、後述する電源装置60が備える磁界印加電源65から電力が供給される。言い換えると、磁界印加装置70のコイルには、後述する磁界印加電源65からコイル電圧が供給される。後述する電源装置60のヒータ電源63は、電子銃10のヒータ12にヒータ電圧Efを供給する。磁界印加電源65は、専用の電源回路で構成してもよく、後述するようにヒータ12へ電力を供給するヒータ電源63と共通にできる場合がある。図1は、後述する磁界印加電源をヒータ電源と共通にして、ヒータ電源から磁界印加装置70及びヒータ12へヒータ電圧Efを供給する構成例を示している。図1では、電子銃10のヒータ12の一端と、磁界印加装置70のコイルの一端とを共通接続している。この共通接続された一端に、ヒータ電圧Efを供給する構成例を図1は示している。
 図2に示すように、電源装置60は、ヘリックス電源61と、コレクタ電源62と、ヒータ電源63と、アノード電源64と、磁界印加電源65と、を有する。電源装置60のヘリックス電源61は、カソード11に対してヘリックス20の電位HELIXを基準に負の直流電圧であるボディ電圧Ebodyを供給する。電源装置60のコレクタ電源62は、コレクタ30に対してカソード11の電位H/Kを基準に正の直流電圧であるコレクタ電圧Ecolを供給する。電源装置60のヒータ電源63は、ヒータ12に対してカソード11の電位H/Kを基準に正または負の直流電圧(図2では負の直流電圧)であるヒータ電圧Efを供給する。電源装置60のアノード電源64は、アノード40に対してカソード11の電位H/Kを基準に正の直流電圧(アノード電圧Ea)を供給する。電源装置60の磁界印加電源65は、磁界印加装置70に対してカソード11の電位H/Kを基準に正または負の直流電圧(図2では負の直流電圧)であるコイル電圧Esを供給する。へリックス20は、例えば進行波管2のケース(ボディ)に接続されて、電源装置60内で接地される。
 図3の高周波回路システムでは、ヒータ12が図2の電源装置60のヒータ電源63からヒータ電圧Efの供給を受け、磁界印加装置70のコイルが図2の電源装置60の磁界印加電源65からコイル電圧Esの供給を受ける。図3の高周波回路システムは、ヒータ12へ電力を供給するヒータ電源63とは別に、コイル電圧Esを供給する磁界印加電源65を設けた場合の構成を示している。
 本発明の実施形態の電源装置60が備えるヒータ電源63、アノード電源64及び磁界印加電源65は、進行波管2の動作モードに応じて出力電圧の切り換えが可能な構成である。
 ヒータ電源63は、例えば動作モード毎のヒータ電圧Efを生成する複数の電源回路を備え、進行波管2の動作モードに応じてヒータ12へ供給するヒータ電圧Efをスイッチで切り換える構成である。図2は、直列に接続された2つの電源回路を備え、動作モードに応じて一方の電源回路または2つの電源回路からヒータ12へ電力を供給する構成例を示している。ヒータ電圧Efを生成する電源回路には、例えばインバータ、トランス、整流回路、整流用コンデンサ等を備えた周知のDC-DCコンバータを用いればよい。
 アノード電源64は、例えば動作モード毎のアノード電圧Eaを生成する複数の電源回路を備え、進行波管2の動作モードに応じてアノード40へ供給するアノード電圧Eaをスイッチで切り換える構成である。図2は、直列に接続された2つの電源回路を備え、動作モードに応じて一方の電源回路または2つの電源回路からアノード40へ電力を供給する構成例を示している。アノード電圧Eaを生成する電源回路には、ヒータ電源63と同様に、周知のDC-DCコンバータを用いればよい。
 進行波管2を高出力モードで動作させる場合、アノード40には、カソード電位H/Kとの差が大きい、正の直流高電圧(第1のアノード電圧)を供給する。アノード電源64は、高出力モード時にスイッチを用いて接地電位と接続する構成としてもよい。
 一方、進行波管2を低出力モードで動作させる場合、アノード40には、カソード電位H/Kとの差が小さい、高出力モード時よりも低い正の直流高電圧(第2のアノード電圧)を供給する。
 なお、アノード40には、通常、わずかな電流しか流れないため、アノード電源64には大きな電流供給能力が要求されない。そのため、アノード電源64は、例えばボディ電圧Ebodyを分圧する直列に接続された複数の抵抗器と、それらの接続ノードのいずれか1つとアノード40を接続するスイッチと、を備えた構成で、実現してもよい。その場合、該スイッチを用いて、進行波管2の動作モードに応じてアノード40と接続するノードを切り換えればよい。
 磁界印加電源65は、例えば動作モード毎のコイル電圧Esを生成する複数の電源回路を備え、進行波管2の動作モードに応じて磁界印加装置70へ供給するコイル電圧Esをスイッチで切り換える構成である。図2は、直列に接続された2つの電源回路を備え、動作モードに応じて一方の電源回路または2つの電源回路から磁界印加装置70へ電力を供給する構成例を示している。コイル電圧Esを生成する電源回路には、ヒータ電源63と同様に、周知のDC-DCコンバータを用いればよい。後述するように、磁界印加装置70により周期磁界発生装置80からカソード11まで漏洩する磁束を打ち消す磁界を発生させる場合、磁界印加電源65はヒータ電源63と共通にしてもよい。磁界印加電源65をヒータ電源63と共通にすれば、動作モードに応じてヒータ電圧Efを切り換える際に、磁界印加装置70で発生する磁界の強さも同時に変更できる。
 ヒータ電源63、アノード電源64及び磁界印加電源65が備えるスイッチは、例えば電源装置60の筐体に設けた動作モード切り換え用のスイッチ、あるいは不図示の制御装置等から送信される制御信号にしたがって切り換えればよい。
 ヘリックス電源61及びコレクタ電源62は、所要の直流高電圧を生成できればよく、例えばインバータ、トランス、整流回路、整流用コンデンサ等を備えた周知のDC-DCコンバータを用いればよい。その場合、ヘリックス電源61、コレクタ電源62、ヒータ電源63、アノード電源64及び磁界印加電源65が備えるインバータ及びトランスは共通にすることも可能である。
 なお、電源装置60には、ウェネルト13へカソード11の電位H/Kを基準に正または負の直流電圧(ウェネルト電圧Ew)を供給する不図示のウェネルト電源を備えていてもよい。ウェネルト電源は、上記アノード電源64と同様に、進行波管2の動作モードに応じてウェネルト13へ供給する直流電圧をスイッチで切り換える構成とすればよい。
 本発明の実施形態では、図1に示した進行波管2を、アノード電圧Eaまたはウェネルト電圧EwによってRF信号の出力電力を切り換える、マルチモードで動作させる。また、本発明の実施形態では、進行波管2の動作モードに合わせてヒータ電圧Efを切り換えることでヒータ温度を変化させる。具体的には、高出力モードでは最大のRF出力電力が得られるヒータ温度となるようにヒータ電圧Ef(第1のヒータ電圧)を高く設定する。また、低出力モードでは所要のRF出力電力が得られるヒータ温度となるようにヒータ電圧Ef(第2のヒータ電圧)を低く設定する。動作モードは、高出力モードと低出力モードの2種類に限定されるものではなく、その中間のRF電力を出力する中間モードを設けてもよい。
 このように低出力モード時にヒータ電圧Efを低くしてヒータ温度を下げれば、低出力モード時におけるカソード11からのエミッタ材の蒸発量が抑制される。また、エミッタ材の蒸発量が抑制されれば、金属であるバリウム(Ba)単体の蒸発量も抑制されるため、進行波管2の耐電圧性が急速に劣化することもない。そのため、低出力モードで動作させる割合に応じて、進行波管2の製品寿命を延ばすことが可能になる。
 さらに本発明の実施形態では、図1に示した磁界印加装置70を用いてカソード11近傍で磁界を発生させ、進行波管2の動作モードに応じて該磁界の強さを変えることで、電子ビーム50の直径の変動を抑制する。これにより、動作モードの切り換えに伴う進行波管の利得や増幅効率の変動を、抑制する。
 磁界印加装置70で発生する磁界の強さはコイルに流れる電流値に依存するため、進行波管2の動作モードに応じて磁界印加電源65から供給するコイル電圧Esを切り換えることで、磁界印加装置70で発生する磁界の強さを変更する。
 以下、磁界印加装置70で生成する磁界により電子ビーム50の直径が制御できる理由について、図4(a)及び図4(b)を用いて説明する。
 図4(a)は磁界印加装置及び周期磁界発生装置により発生する磁界の様子を示す模式図であり、図4(b)は図4(a)の要部を拡大した様子を示す模式図である。
 図4(a)及び図4(b)で示すように、進行波管2が備える周期磁界発生装置80は、リング状の複数のポールピース81と、リング状の複数の永久磁石82と、複数のスペーサ83と、を有する構成である。リング状の複数のポールピース81は、磁性体から成る。リング状の複数の永久磁石82は上記複数のポールピース81間に、磁気双極子が交互に反転するように配置される。複数のスペーサ83は、上記複数の永久磁石82を支持する。図4(a)及び図4(b)では示されていないが、ヘリックス20はリング状に形成された周期磁界発生装置80の開口内に配置される。
 このような構成では、周期磁界発生装置80の開口内に、複数の永久磁石82により、図4(a)及び図4(b)の中心磁界パターンで示すような、電子の移動距離に応じて磁力線が交互に反転する磁界が発生する。
 進行波管2では、カソード11から放出された各電子が、カソード11の電子放出面の形状(球面形状)やウェネルト13で発生する電界により中心へ向かって進行することで集束する。周期磁界発生装置80の開口へ到達した電子は、周期磁界発生装置80で発生した磁界から受ける力(ローレンツ力)により螺旋状に回転しつつ進行することで拡がりが抑制される。
 一方、周期磁界発生装置80で発生した磁界(主磁界)による磁束は、カソード11近傍まで漏洩し、図4(a)及び図4(b)の中心磁界パターンで示すようにカソード11の電子放出面近傍で磁束密度Bcの磁界を発生させる。カソード11の電子放出面近傍で磁界が発生すると、カソード11から放出された電子にはフレミングの左手の法則により外側へ向かう力が働く。すなわち、漏洩磁束によってカソード11の電子放出面近傍で発生する磁界は電子ビーム50を拡げる作用がある。したがって、磁界印加装置70により漏洩磁束を打ち消す磁界を発生させて該漏洩磁束の強さを調整すれば、電子ビーム50の直径を制御できる。
 なお、カソード11の電子放出面近傍では、電子ビームの放出の向きを軸方向と径方向の成分に分けて考えると、径方向では、その電極の構造により内側になる。電子はマイナスの電荷を持っているので、電流の向きは電子の動く方向と反対の外側になる。よってフレミングの左手の法則の「電流の流れる方向」は径方向の外側になる。フレミングの左手の法則の「磁界の方向」の磁界は、周期磁界発生装置80の漏洩磁束によるものなので、軸方向が主な成分と考えられる。「導体にかかる力」は、電子にかかる力であり、フレミングの左手の法則から、円の接線方向の力となる。つまり、電子は内側に向かいながら、接線方向の力を受けるので、元の磁界の無い状態よりも外側に向かおうとする。カソード電子放出面での磁界が強いほど、電子の進む向きは、接線成分が大きくなるため、外側に向かう力が大きくなる。
 一般的な進行波管は、周期磁界発生装置80の漏洩磁束によって電子ビーム50が拡がるのを抑制するため、周期磁界発生装置80からカソード11近傍へ漏洩する磁束ができるだけ小さくなるように設計される。それに対して、本発明の実施形態の進行波管2は、カソード11近傍における周期磁界発生装置80の漏洩磁束が一般的な進行波管よりも大きくなるように設計する。カソード11近傍における漏洩磁束を大きくするには、例えばアノード40が磁性体で形成されている場合、電子が通過するアノード40の開口の直径を拡げればよい。また、カソード11近傍における漏洩磁束を大きくする方法としては、周期磁界発生装置80をカソード11(電子銃)の方へ延長して形成する方法、あるいは周期磁界発生装置80全体をカソード11(電子銃)へ近づけて配置する方法がある。
 図4(a)及び図4(b)で示すように、漏洩磁束の磁力線の向きは、一般に周期磁界発生装置80からカソード11へ向かう方向(図の左方向)となる。したがって、磁界印加装置70では、磁力線の向きがカソード11から周期磁界発生装置80へ向かう方向(図の右方向)となるような磁界を発生させる。例えば、電子の進行方向に対して封止皿21へ右回りに配線材を巻くことでコイルを形成し、該コイルへ右回りに電流を流せば、周知の右ネジの法則により図の右方向へ向かう磁力線が発生する。そして、電子ビーム50の直径を大きくしたい場合は、磁界印加装置70で生成する磁界を弱くして(低いコイル電圧Esを供給する)漏洩磁束による磁界を強くする。逆に電子ビーム50の直径を小さくしたい場合は、磁界印加装置70で生成する磁界を強くして(高いコイル電圧Esを供給する)漏洩磁束による磁界を弱くする。
 上述したように、高出力モードにおいて電子ビーム50の軌道が最適となるように進行波管2が設計されている場合、低出力モードでは高出力モードよりもカソード11から放出される電子量が低減して電子ビーム50の直径が小さくなる。その場合、磁界印加装置70へ高出力モード時よりも小さな電力を供給して磁界印加装置70で発生する磁界を弱くすることで、電子ビーム50の直径を高出力モード時と同程度まで大きくする。電子ビーム50の直径が高出力モード時と同程度になると、電子ビーム50とヘリックス20に入力されたRF信号との相互作用の強さも高出力モード時と同程度になるため、低出力モードにおける進行波管2の利得の低下が抑制される。また、電子ビーム50の直径が高出力モード時と同程度であれば、電子ビーム50のリップル量も低減するため、進行波管2の増幅効率の低下も抑制される。
 一方、低出力モードにおいて電子ビーム50の軌道が最適となるように進行波管2が設計されている場合、高出力モードでは低出力モードよりもカソード11から放出される電子量が増大して電子ビーム50の直径が大きくなる。その場合、磁界印加装置70へ低出力モード時よりも大きな電力を供給して磁界印加装置70で発生する磁界を強くすることで、電子ビーム50の直径を低出力モード時と同程度まで小さくする。電子ビーム50の直径が低出力モード時と同程度になると、電子ビーム50とヘリックス20に入力されたRF信号との相互作用の強さも低出力モード時と同程度になるため、進行波管2の利得の増大が抑制されて発振する可能性が低減する。
 なお、上記説明では、図1、図2、図4(a)及び図4(b)を用いてアノード電圧Eaにより進行波管2から出力するRF信号の電力を切り換える例を示したが、上述したように進行波管2から出力するRF信号の電力はウェネルト電圧Ewでも制御可能である。このようにウェネルト電圧EwによりRF信号の出力電力を切り換える場合の構成例を図5(a)及び図5(b)に示す。
 図5(a)は、本発明の実施形態の高周波回路システムの変形例の高出力モード時の動作を示す模式図であり、図5(b)は、本発明の実施形態の高周波回路システムの変形例の低出力モード時の動作を示す模式図である。なお、図5(a)及び図5(b)は、図1と同様に、ヒータ電源63から磁界印加装置70へ電力を供給する構成例を示している。
 図5(a)及び図5(b)で示すように、ウェネルト電圧Ewにより進行波管2から出力するRF信号の電力を制御する場合、ウェネルト13には、例えばカソード11の電位H/Kを基準に負の直流電圧(ウェネルト電圧Ew)を供給する。
 そして、進行波管2を高出力モードで動作させる場合は、図5(a)に示すように、カソード電位H/Kとの差が小さい負の直流電圧(第1のウェネルト電圧、Ew:Low)をウェネルト13に供給する。なお、高出力モード時、ウェネルト13の電位はカソード11の電位H/Kと一致させてもよく、ウェネルト13にカソード11の電位H/Kを基準に正の直流電圧を供給してもよい。
 一方、図5(b)に示すように、進行波管2を低出力モードで動作させる場合は、高出力モード時よりも高い負の直流電圧(第2のウェネルト電圧、Ew:High)をウェネルト13に供給する。
 ヒータ温度の切り換え動作及び磁界印加装置70による磁界の切り換え動作は、上述したアノード電圧EaによりRF信号の出力電力を切り換える場合と同様であるため、その説明は省略する。
 また、上記説明では、磁界印加装置70により周期磁界発生装置80の漏洩磁束を打ち消す磁界を発生する例を示したが、磁界印加装置70は周期磁界発生装置80の漏洩磁束を強くする磁界を発生してもよい。すなわち、図4(a)及び図4(b)において、磁界印加装置70により、磁力線の向きが周期磁界発生装置80からカソード11へ向かう方向(図の左方向)となる磁界を発生させてもよい。その場合、本発明の実施形態の進行波管2は、一般的な進行波管と同様に、カソード11近傍における周期磁界発生装置80の漏洩磁束が小さくなるように設計すればよい。
 そして、高出力モードにおいて電子ビーム50の軌道が最適となるように進行波管2が設計されている場合、低出力モードでは磁界印加装置70へ高出力モード時よりも大きな電力を供給して磁界印加装置70で発生する磁界を強くする。こうして低出力モードでは、電子ビーム50の直径を高出力モード時と同程度まで、大きくすればよい。
 また、低出力モードにおいて電子ビーム50の軌道が最適となるように進行波管2が設計されている場合、高出力モードでは磁界印加装置70へ低出力モード時よりも小さな電力を供給して磁界印加装置70で発生する磁界を弱くする。こうして高出力モードでは、電子ビーム50の直径を低出力モード時と同程度まで、小さくすればよい。このような構成では、磁界印加電源65とヒータ電源63とを共通にできないが、上記と同様に磁界印加装置70で発生する磁界により電子ビーム50の直径を制御できる。
 本発明の実施形態によれば、動作モードに応じてヒータ温度を切り換える構成であるため、低出力モード時にヒータ温度を下げれば、該低出力モード時におけるカソード11からのエミッタ材の蒸発量が抑制される。また、エミッタ材の蒸発量が抑制されれば、金属であるバリウム(Ba)単体の蒸発量も抑制されるため、進行波管2の耐電圧性が急速に劣化することもない。そのため、低出力モードで動作させる割合に応じて、進行波管2の製品寿命を延ばすことが可能になる。
 また、進行波管2に磁界印加装置70を設け、動作モードに応じて磁界印加装置70によりカソード近傍で発生する磁界の強さを切り換えることで、動作モードの切り換えに伴う電子ビーム50の直径の変動を抑制できる。したがって、進行波管2の製品寿命を延伸しつつ、動作モードの切り換えに伴う進行波管2の利得や増幅効率の変動が抑制される。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年6月30日に出願された日本出願特願2014-133645号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、2  進行波管
 10  電子銃
 11  カソード
 12  ヒータ
 13  ウェネルト
 20  ヘリックス
 30  コレクタ
 40  アノード
 50  電子ビーム
 60  電源装置
 61  ヘリックス電源
 62  コレクタ電源
 63  ヒータ電源
 64  アノード電源
 65  磁界印加電源
 70  磁界印加装置
 80  周期磁界発生装置
 81  ポールピース
 82  永久磁石
 83  スペーサ

Claims (10)

  1.  電子を放出するカソード及び前記カソードに電子を放出させるための熱エネルギーを与えるヒータを備えた電子銃と、
     前記電子銃から放出された電子で形成される電子ビームとRF(Radio Frequency)信号とを相互作用させるヘリックスと、
     前記ヘリックス内を通過している前記電子ビームの拡がりを抑制するための磁界を発生する周期磁界発生装置と、
     前記ヘリックスから出力された電子ビームを捕捉するコレクタと、
     前記電子銃から放出された電子を前記ヘリックス内へ導くアノードと、
     前記電子ビームの直径を変更するための磁界を発生する、外部から該磁界を発生するための電力が供給される磁界印加装置と、を有する進行波管。
  2.  前記磁界印加装置は、
     前記カソードの電子放出面と略直交する方向の磁力線を含む磁界を発生する請求項1記載の進行波管。
  3.  前記磁界印加装置は、
     前記電子を放出する面と対向する前記電子銃の背面方向から筐体を封止するための封止皿に形成されたコイルである請求項1または2記載の進行波管。
  4.  前記封止皿が磁性体材料から成る請求項3記載の進行波管。
  5.  前記磁界印加装置は、
     前記電子を放出する面と対向する前記電子銃の背面方向から筐体を封止するための封止皿の外周に設けられた、磁性体材料から成る磁性体コアと、
     前記磁性体コアの外周に形成されたコイルと、を有する請求項1または2記載の進行波管。
  6.  請求項1から5のいずれか1項記載の進行波管と、
     前記進行波管に所要の直流電圧を供給する電源装置と、を有し、
     前記電源装置は、
     外部からの指示にしたがって前記アノードへ供給するアノード電圧を2値以上に切り換え可能なアノード電源と、
     外部からの指示にしたがって前記ヒータへ供給するヒータ電圧を2値以上に切り換え可能なヒータ電源と、
     外部からの指示にしたがって前記磁界印加装置へ供給する電力を2値以上に切り換え可能な磁界印加電源と、を有する高周波回路システム。
  7.  前記アノード電源は、
     前記RF信号の出力電力が最大となる前記進行波管の高出力モード時に第1のアノード電圧を前記アノードへ供給し、前記RF信号の出力電力が前記高出力モードよりも低い低出力モード時に前記第1のアノード電圧よりも低い第2のアノード電圧を前記アノードへ供給し、
     前記ヒータ電源は、
     前記高出力モード時に第1のヒータ電圧を前記ヒータへ供給し、前記低出力モード時に前記第1のヒータ電圧よりも低い第2のヒータ電圧を前記ヒータへ供給し、
     前記磁界印加電源は、
     前記進行波管が前記高出力モードにおいて前記電子ビームの軌道が最適となるように設計されている場合、前記低出力モード時に前記高出力モード時よりも小さい電力を前記磁界印加装置へ供給し、
     前記進行波管が前記低出力モードにおいて前記電子ビームの軌道が最適となるように設計されている場合、前記高出力モード時に前記低出力モード時よりも大きい電力を前記磁界印加装置へ供給する請求項6記載の高周波回路システム。
  8.  請求項1から5のいずれか1項記載の進行波管と、
     前記進行波管に所要の直流電圧を供給する電源装置と、を有し、
     前記進行波管は、
     前記カソードから放出された電子を集束するためのウェネルトを備えた電子銃を有し、
     前記電源装置は、
     外部からの指示にしたがって前記ウェネルトへ供給するウェネルト電圧を2値以上に切り換え可能なウェネルト電源と、
     外部からの指示にしたがって前記ヒータへ供給するヒータ電圧を2値以上に切り換え可能なヒータ電源と、
     外部からの指示にしたがって前記磁界印加装置へ供給する電力を2値以上に切り換え可能な磁界印加電源と、を有する高周波回路システム。
  9.  前記ウェネルト電源は、
     前記RF信号の出力電力が最大となる前記進行波管の高出力モード時に負電圧である第1のウェネルト電圧を前記ウェネルトへ供給し、前記RF信号の出力電力が前記高出力モードよりも低い低出力モード時に前記第1のウェネルト電圧よりも高い負電圧である第2のウェネルト電圧を前記ウェネルトへ供給し、
     前記ヒータ電源は、
     前記高出力モード時に第1のヒータ電圧を前記ヒータへ供給し、前記低出力モード時に前記第1のヒータ電圧よりも低い第2のヒータ電圧を前記ヒータへ供給し、
     前記磁界印加電源は、
     前記進行波管が前記高出力モードにおいて前記電子ビームの軌道が最適となるように設計されている場合、前記低出力モード時に前記高出力モード時よりも小さい電力を前記磁界印加装置へ供給し、
     前記進行波管が前記低出力モードにおいて前記電子ビームの軌道が最適となるように設計されている場合、前記高出力モード時に前記低出力モード時よりも大きい電力を前記磁界印加装置へ供給する請求項8記載の高周波回路システム。
  10.  前記磁界印加装置により前記周期磁界発生装置から前記カソードへ漏洩する磁束を打ち消す磁界を発生させる場合、前記磁界印加電源が、前記ヒータ電源と共通である請求項6から9のいずれか1項記載の高周波回路システム。
PCT/JP2015/003234 2014-06-30 2015-06-26 進行波管及び高周波回路システム WO2016002183A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/319,845 US10068738B2 (en) 2014-06-30 2015-06-26 Traveling wave tube and high-frequency circuit system
EP15815841.0A EP3163596B1 (en) 2014-06-30 2015-06-26 Traveling wave tube and high-frequency circuit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014133645A JP5835822B1 (ja) 2014-06-30 2014-06-30 高周波回路システム
JP2014-133645 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002183A1 true WO2016002183A1 (ja) 2016-01-07

Family

ID=54933175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003234 WO2016002183A1 (ja) 2014-06-30 2015-06-26 進行波管及び高周波回路システム

Country Status (4)

Country Link
US (1) US10068738B2 (ja)
EP (1) EP3163596B1 (ja)
JP (1) JP5835822B1 (ja)
WO (1) WO2016002183A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760949B2 (ja) * 2015-09-24 2020-09-23 Necネットワーク・センサ株式会社 電子銃、電子管及び高周波回路システム
CN107316792B (zh) * 2017-08-15 2023-07-07 成都国光电气股份有限公司 电子收发器
CN110620028B (zh) * 2019-09-27 2021-11-16 南京三乐集团有限公司 小型化、轻重量的Ka波段空间行波管
CN112820611A (zh) * 2020-12-31 2021-05-18 山东微波电真空技术有限公司 一种接地行波管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028137A (ja) * 1983-07-26 1985-02-13 Nec Corp マイクロ波管
JPS6435829A (en) * 1987-07-30 1989-02-06 Nec Corp Traveling-wave tube
JPH02227950A (ja) * 1989-01-17 1990-09-11 Thomson Tubes Electron 陰極の回りに磁界を生じさせる装置を有する電子銃
EP0589606A2 (en) * 1992-09-24 1994-03-30 Eev Limited Electron gun arrangements
JPH07182968A (ja) * 1993-12-22 1995-07-21 Nec Corp 電界放出冷陰極とこれを用いたマイクロ波管

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE528454A (ja) 1953-04-29
US2886738A (en) 1954-01-29 1959-05-12 Bell Telephone Labor Inc Electron beam system
US2945153A (en) 1956-08-31 1960-07-12 Rca Corp Electron beam tube
US3755706A (en) 1972-03-20 1973-08-28 Varian Associates Miniaturized traveling wave tube
JPS58157206A (ja) 1982-03-15 1983-09-19 Nippon Telegr & Teleph Corp <Ntt> 送信電力制御方法
EP0144317B2 (en) 1983-06-16 1991-03-27 Hughes Aircraft Company Grid structure for certain plural mode electron guns
US5959406A (en) * 1995-08-23 1999-09-28 Hughes Electronics Corporation Traveling wave tube with expanding resilient support elements
US5694005A (en) * 1995-09-14 1997-12-02 Hughes Aircraft Company Plasma-and-magnetic field-assisted, high-power microwave source and method
JP2850842B2 (ja) 1996-04-05 1999-01-27 日本電気株式会社 周期磁界集束進行波管
FR2785471B1 (fr) * 1998-11-02 2005-02-04 Nec Corp Amplificateur a tubes a ondes progressives
JP2002198002A (ja) 2000-12-26 2002-07-12 Sony Corp 陰極線管
US6747412B2 (en) * 2001-05-11 2004-06-08 Bernard K. Vancil Traveling wave tube and method of manufacture
US20060028144A1 (en) * 2004-08-03 2006-02-09 The Boeing Company Traveling wave tube with radioactive isotope charged particle source
JP4134000B2 (ja) 2004-10-28 2008-08-13 Necマイクロ波管株式会社 電子銃
JP2007273158A (ja) * 2006-03-30 2007-10-18 Mitsubishi Electric Corp 電子管及び進行波管
US7952287B2 (en) * 2007-10-12 2011-05-31 Barnett Larry R Traveling-wave tube 2D slow wave circuit
FR2936354B1 (fr) * 2008-09-19 2012-09-21 Thales Sa Tube hyperfrequences avec dispositif d'extraction d'ions produits dans le tube
JP2014197471A (ja) * 2013-03-29 2014-10-16 株式会社ネットコムセック 電子管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028137A (ja) * 1983-07-26 1985-02-13 Nec Corp マイクロ波管
JPS6435829A (en) * 1987-07-30 1989-02-06 Nec Corp Traveling-wave tube
JPH02227950A (ja) * 1989-01-17 1990-09-11 Thomson Tubes Electron 陰極の回りに磁界を生じさせる装置を有する電子銃
EP0589606A2 (en) * 1992-09-24 1994-03-30 Eev Limited Electron gun arrangements
JPH07182968A (ja) * 1993-12-22 1995-07-21 Nec Corp 電界放出冷陰極とこれを用いたマイクロ波管

Also Published As

Publication number Publication date
EP3163596B1 (en) 2021-08-25
EP3163596A4 (en) 2018-03-14
US10068738B2 (en) 2018-09-04
JP2016012473A (ja) 2016-01-21
EP3163596A1 (en) 2017-05-03
JP5835822B1 (ja) 2015-12-24
US20170140892A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
WO2016002183A1 (ja) 進行波管及び高周波回路システム
JP5255189B2 (ja) 電源装置及び高周波回路システム
US8258725B2 (en) Hollow beam electron gun for use in a klystron
US9196449B1 (en) Floating grid electron source
JP4517097B2 (ja) 電子ビームを発生する加速器
JP2008108540A (ja) マグネトロン
US3896332A (en) High power quick starting magnetron
JP2005116355A (ja) マイクロ波管システム及びマイクロ波管
US2998544A (en) Magnetron cathode
EP3364440A1 (en) Iot based power system
JP2019186083A (ja) クライストロン
JPH047532B2 (ja)
KR20160043821A (ko) 가변 용량 마그네트론
JP5136906B2 (ja) 電子銃及び電子管
WO2024071105A1 (ja) ジャイロトロン用電源装置及び電源制御方法
KR101689359B1 (ko) 의료용 전자가속기의 이극관 전자총 전원공급장치
WO2024071104A1 (ja) ジャイロトロン用電源装置及び電源制御方法
US11259397B2 (en) Microwave plasma source
JP2010153095A (ja) イオンガン
JP6300312B2 (ja) 進行波管システム
JP2004159266A (ja) 進行波管増幅器及びこれを用いたアクティブフェーズドアレーアンテナ
JP2023545683A (ja) 電界放出陰極装置および電界放出陰極装置の形成方法
JP2011100600A (ja) クライストロン装置
US20110062898A1 (en) Dual element switched electron gun
KR200161121Y1 (ko) 마그네트론의 에미터구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815841

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15319845

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE