WO2016000656A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2016000656A1
WO2016000656A1 PCT/CN2015/083265 CN2015083265W WO2016000656A1 WO 2016000656 A1 WO2016000656 A1 WO 2016000656A1 CN 2015083265 W CN2015083265 W CN 2015083265W WO 2016000656 A1 WO2016000656 A1 WO 2016000656A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
valve
ejector
way
way reversing
Prior art date
Application number
PCT/CN2015/083265
Other languages
English (en)
French (fr)
Inventor
田翔
吴俊鸿
罗永前
魏广飞
熊军
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2016000656A1 publication Critical patent/WO2016000656A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the invention relates to the field of household appliances, and in particular to an air conditioning system.
  • Conventional air conditioning systems with ejector generally have the following problems: 1.
  • the refrigerant does not flow through the ejector in the heating mode, and the COP (coefficient of performance) of the system has a low value;
  • the flow direction of the refrigerant in the indoor heat exchanger and the outdoor heat exchanger is the same, resulting in a large flow resistance of the refrigerant, and the heat exchange performance of the indoor heat exchanger and the outdoor heat exchanger is not high; 3.
  • the control strategy of the whole system is complex, the cost is high, and the control fault tolerance rate of the system is low.
  • An air conditioning system provided for achieving the object of the present invention includes a compressor, a first four-way reversing valve, an outdoor unit, a second four-way reversing valve, an injector, a gas-liquid separator, a throttle valve, and an indoor unit;
  • a first nozzle of the first four-way switching valve is connected to one end of the outdoor unit, and a second nozzle of the first four-way switching valve is connected to an exhaust port of the compressor, a third nozzle of the first four-way switching valve is connected to one end of the indoor unit, and a fourth nozzle of the first four-way switching valve is connected to the jet flow inlet of the injector;
  • a first nozzle of the second four-way switching valve is connected to the other end of the indoor unit, and a second nozzle of the second four-way switching valve is connected to an outlet of the throttle valve, a third nozzle of the second four-way switching valve is connected to the other end of the outdoor unit, and a fourth nozzle of the second four-way switching valve is connected to the working inlet of the injector;
  • An inlet of the gas-liquid separator is connected to an outlet of the injector, a first outlet of the gas-liquid separator is connected to an intake port of the compressor, and a second outlet of the gas-liquid separator is The inlet connection of the throttle valve.
  • the air conditioning system of the present invention has a cold mode and a heating mode
  • a first nozzle of the first four-way reversing valve is connected to a second nozzle of the first four-way reversing valve, and a third of the first four-way reversing valve a nozzle is connected to the fourth nozzle of the first four-way switching valve;
  • a first nozzle of the second four-way switching valve is connected to a second nozzle of the second four-way switching valve, a third nozzle of the second four-way selector valve and a fourth nozzle of the second four-way selector valve are connected;
  • a first nozzle of the first four-way reversing valve is connected to a fourth nozzle of the first four-way reversing valve, and the first four-way reversing valve is a second nozzle is connected to the third nozzle of the first four-way reversing valve; a first nozzle of the second four-way reversing valve is connected to a fourth nozzle of the second four-way reversing valve The second nozzle of the second four-way reversing valve is connected to the third nozzle of the second four-way reversing valve.
  • a radius of a connecting pipe between the outdoor unit and the first nozzle of the first four-way switching valve is larger than a length of the outdoor unit and the second four-way switching valve The radius of the connecting pipe between the three nozzles;
  • a radius of the connecting pipe between the indoor unit and the third nozzle of the first four-way switching valve is greater than a connection between the indoor unit and the first nozzle of the second four-way switching valve The radius of the pipe.
  • the ejector includes an ejector chamber, a mixing chamber, and a diffuser chamber that are in communication;
  • the ejector chamber has two inlets, one of which is the working inlet of the ejector and the other of which is the ejector inlet of the ejector;
  • a nozzle is disposed in the ejector chamber, and an inlet of the nozzle is connected to a working inlet of the ejector;
  • An outlet of the ejector is disposed at an end of the diffuser chamber.
  • the nozzle is a tapered diverging nozzle or a tapered nozzle.
  • the throttle valve is an electronic expansion valve, or a thermal expansion valve, or a capillary tube.
  • a refrigerant in a heating or cooling mode, can flow through an ejector, and an ejector is used to ignite a low-pressure low-temperature refrigerant to increase an intake pressure of the compressor, thereby Increase the COP value of the system.
  • the flow direction of the refrigerant in the outdoor unit and the indoor unit is opposite to the flow direction in the cooling mode, which reduces the flow resistance of the refrigerant in the outdoor unit and the indoor unit, and improves the heat exchange performance.
  • the whole system only needs to control the nozzle connection of two four-way reversing valves, which can realize mode switching, simple operation and easy implementation, greatly reducing the cost and improving the fault tolerance of the system.
  • FIG. 1 is a schematic structural view of an embodiment of an air conditioning system of the present invention
  • Figure 2 is a schematic view showing the structure of an embodiment of the injector shown in Figure 1;
  • Figure 3 is a schematic view showing the structure of another embodiment of the injector shown in Figure 1;
  • FIG. 4 is a schematic view showing a flow direction of a refrigerant when the air conditioning system of the present invention is in a cooling mode
  • Fig. 5 is a schematic view showing the flow direction of the refrigerant when the air conditioning system of the present invention is in the heating mode.
  • an embodiment of an air conditioning system includes a compressor 100, a first four-way reversing valve 200, an outdoor unit 300, a second four-way reversing valve 400, an injector 500, and a gas-liquid separator. 600, throttle valve 700 and indoor unit 800.
  • the compressor 100 provides power for the refrigerant flow of the entire system, and simultaneously compresses the low-temperature low-pressure gas from the evaporator into a high-temperature and high-pressure gas.
  • the outdoor unit 300 and the indoor unit 800 can be selected from a conventional heat exchanger of a copper tube aluminum fin structure.
  • the throttle valve 700 can be an electronic expansion valve, a thermal expansion valve, or a capillary tube. The throttle valve 700 maintains the pressure of the refrigerant while maintaining the enthalpy of the refrigerant.
  • the first four-way reversing valve 200 has four nozzles, which are a first nozzle C1, a second nozzle D1, a third nozzle E1, and a fourth nozzle S1.
  • the first four-way reversing valve 400 also has four nozzles, which are a first nozzle C2, a second nozzle D2, a third nozzle E2, and a fourth nozzle S2.
  • the gas-liquid separator 600 has an inlet and two outlets, respectively a first outlet and a second outlet. The liquid and gas mixture enters from the inlet of the gas-liquid separator 600 to be separated, and the separated liquid and gas are respectively separated from the two. The outlets flow out, the outlet at the top of the gas-liquid separator 600 is the first outlet, and the outlet at the bottom is the second outlet.
  • the ejector 500 includes an ejector chamber 510, a mixing chamber 520, and a diffuser chamber 530 that are in communication.
  • the ejector chamber 510 has two inlets, one of which is the operative inlet 511 of the ejector and the other of which is the ejector inlet 512 of the ejector.
  • a nozzle 540 is provided in the ejector chamber 510, the inlet of the nozzle 540 is connected to the working inlet 511 of the ejector, and the outlet 513 of the ejector is disposed at the end of the diffuser chamber 530.
  • the nozzle 540 can be a tapered diverging nozzle (see Figure 2) or a tapered nozzle (see Figure 3).
  • each corresponding state parameter has a corresponding sound velocity.
  • the value a of the sound velocity generally depends on the pressure P and the dryness x at the point, when the fluid is at the nozzle 540.
  • the nozzle 540 should be tapered as shown in FIG.
  • the nozzle is gradually expanded; when the macroscopic velocity v ⁇ a (P, x) of the fluid at the outlet of the nozzle 540, the nozzle 540 should use a tapered nozzle as shown in FIG.
  • the principle of operation of the ejector 500 is as follows:
  • the mainstream fluid enters the nozzle 540 from the working inlet 511 and expands in the nozzle 540 such that the potential energy or thermal energy of the mainstream fluid is converted into kinetic energy.
  • the ejector fluid enters the ejector chamber from the ejector inlet 512, and the mainstream fluid and the ejector fluid are mixed in the mixing chamber 520, and a portion of the kinetic energy of the mainstream fluid is transferred to the ejector fluid.
  • the kinetic energy of the mixed fluid is instead converted to potential or thermal energy with an accompanying increase in pressure.
  • the mixed fluid exits the mixing chamber 520 into the diffuser chamber 530 and the pressure will continue to rise. Finally, at the outlet 513 of the ejector, the pressure of the mixed fluid is higher than the pressure of the ejector fluid as it enters the ejector chamber 510, thus increasing the pressure of the ejector fluid without directly consuming mechanical energy.
  • the flow of refrigerant in the outdoor unit and the indoor unit should be reversed.
  • This requirement can be achieved by a four-way reversing valve on a conventional vapor compression refrigeration system.
  • the air-conditioning system of vapor compression/injection refrigeration in the cooling/heating mode, while satisfying the flow direction of the refrigerant flowing through the outdoor unit and the indoor unit, it is necessary to satisfy the same flow direction of the refrigerant in the injector. of.
  • the conventional air conditioning system with an injector cannot solve this problem.
  • the invention can realize the application of the injector to the refrigeration/heating air conditioning system through two four-way reversing valves, the system has little change, the cost is low, and the control strategy It is very simple, and it can also ensure that the flow resistance of the refrigerant is as low as possible, which greatly improves the heat exchange efficiency.
  • the first nozzle C1 of the first four-way switching valve 200 is connected to one end of the outdoor unit 300, and the second port D1 of the first four-way switching valve 200 is connected to the exhaust port of the compressor 100, the first four-way
  • the third port E1 of the diverter valve 200 is connected to one end of the indoor unit 800, and the fourth port S1 of the first four-way selector valve 200 is connected to the jet stream inlet 512 of the ejector 500.
  • the first nozzle C2 of the second four-way switching valve 400 is connected to the other end of the indoor unit 800, and the second port D2 of the second four-way switching valve 400 is connected to the outlet of the throttle valve 700, and the second four-way
  • the third port E2 of the reversing valve 400 is connected to the other end of the outdoor unit 300, and the fourth port S2 of the second four-way switching valve 400 is connected to the working inlet 511 of the ejector 500.
  • the inlet of the gas-liquid separator 600 is connected to the outlet of the ejector 500, the first outlet of the gas-liquid separator 600 is connected to the suction port of the compressor 100, and the second outlet of the gas-liquid separator 600 is connected to the inlet of the throttle valve 700. connection.
  • the cooling mode and the heating mode can be converted, and the operation is ensured whether the operation is in the cold mode or the heating mode.
  • the refrigerant can flow through the ejector 500, and the ejector 500 is used to ignite the low-pressure low-temperature refrigerant, thereby increasing the intake pressure of the compressor 100, thereby increasing the COP value of the system.
  • the arrows point to the direction of refrigerant flow.
  • the connection of the first four-way switching valve 200 is controlled as follows: the first nozzle C1 and the second nozzle D1 are connected, and the third nozzle E1 and the fourth nozzle S1 are connected.
  • the connection of the second four-way reversing valve 400 is controlled as follows: the first nozzle C2 and the second nozzle D2 are connected, and the third nozzle E2 is connected to the fourth nozzle S2.
  • Refrigerant circulation process the high-temperature high-pressure gaseous refrigerant from the compressor 100 passes through the first four-way reversing valve 200 (from the second nozzle D1 to the first nozzle C1), enters the outdoor unit 300, condenses and releases heat, and becomes The high temperature and high pressure liquid further passes through the second four-way switching valve 400 (from the third nozzle E2 to the fourth nozzle S2), enters the injector 500 as a mainstream fluid from the working inlet 511, and expands in the nozzle 540.
  • the pressure energy is converted into kinetic energy, and the pressure at the outlet of the nozzle 540 is lower than the pressure in the indoor unit 800, so that the refrigerant in the indoor unit 800 passes through the first four-way valve 200 (from the third nozzle E1 to the fourth nozzle S1).
  • the jet stream inlet 512 is drawn into the injector 500.
  • the two fluids mix and the mixed fluid is pressure raised in the diffuser chamber 530 of the ejector 500 and then enters the gas-liquid separator 600 from the outlet 512 of the ejector 500.
  • the gas separated by the gas-liquid separator 600 enters the compressor 100, and the liquid passes through the throttle valve 700, passes through the second four-way valve 400 (the second nozzle D2 reaches the first nozzle C2) and enters the indoor unit. 800, evaporation and heat absorption, according to this cycle, to achieve indoor refrigeration.
  • the connection of the first four-way switching valve 200 is controlled as follows: the first nozzle C1 and the fourth nozzle S1 are connected, and the second nozzle D1 and the third nozzle E1 are connected.
  • the connection of the second four-way switching valve 400 is controlled as follows: the first nozzle C2 and the fourth nozzle S2 are connected, and the second nozzle D2 is connected to the third nozzle E2.
  • Refrigerant circulation process the high-temperature high-pressure gaseous refrigerant from the compressor 100 passes through the first four-way reversing valve 200 (from the second nozzle D1 to the third nozzle E1), and enters the indoor unit 800 to condense and release heat, Heating indoors. After the exotherm is completed, the liquid becomes high temperature and high pressure, passes through the second four-way reversing valve 400 (from the first nozzle C2 to the fourth nozzle S2), and enters the injector 500 as a mainstream fluid from the working inlet 511 at the nozzle.
  • the pressure is converted into kinetic energy, and the pressure at the outlet of the nozzle 540 is lower than the pressure in the indoor unit 800, so that the refrigerant in the outdoor unit 300 passes through the first four-way valve 200 (from the first nozzle C1 to the fourth tube).
  • Port S1 is drawn into the injector 500 from the jet stream inlet 512.
  • the two fluids mix and the mixed fluid is pressure raised in the diffuser chamber 530 of the ejector 500 and then enters the gas-liquid separator 600 from the outlet 513 of the ejector 500.
  • the gas separated by the gas-liquid separator 600 enters the compressor 100 to be circulated again, and the liquid passes through the throttle valve 700 and passes through the second four-way valve 400 (from the second nozzle D2 to the third nozzle E2). ) enters the outdoor unit 300 and evaporates heat. According to this cycle, indoor heating is realized.
  • the ejector 500 uses the condensed high temperature and high pressure liquid to eject the vaporized low temperature and low pressure gas, thereby increasing the inlet pressure of the compressor 100, reducing the compression ratio of the compressor 100, thereby reducing the compressor.
  • the power consumption of 100 can also reduce the irreversible loss during the actual compression process of the compressor 100.
  • a radius of the connecting pipe between the outdoor unit 300 and the first nozzle C1 of the first four-way switching valve 200 is larger than between the outdoor unit 300 and the third port E2 of the second four-way switching valve 400.
  • the radius of the connecting pipe; the radius of the connecting pipe between the indoor unit 800 and the third port E1 of the first four-way switching valve 200 is larger than the first port C2 of the indoor unit 800 and the second four-way switching valve 400.
  • the refrigerant undergoes gas-liquid phase change in the outdoor unit 300 and the indoor unit 800.
  • the gaseous refrigerant flows into (or flows out) the outdoor unit 300 and the indoor unit 800.
  • the thick tube when the refrigerant is in the liquid phase, the volume is small, and the liquid refrigerant flows into (or flows out) the outdoor unit 300 and the indoor unit 800 through the small tube, which can reduce the cost.
  • the refrigerant in the heating or cooling mode, can flow through the ejector 500, and the ejector 500 is used to ignite the low-pressure low-temperature refrigerant, thereby increasing the intake pressure of the compressor 100, thereby improving the system.
  • COP value in the heating mode, the flow direction of the refrigerant in the outdoor unit 300 and the indoor unit 800 is opposite to the flow direction in the cooling mode, thereby reducing the flow resistance of the refrigerant in the outdoor unit 300 and the indoor unit 800, The heat exchange performance of the outdoor unit 300 and the indoor unit 800 is improved.
  • the whole system only needs to control the nozzle connection of two four-way reversing valves, which can realize mode switching, simple operation and easy implementation, greatly reducing the cost and improving the fault tolerance of the system.
  • the refrigeration coefficient can be increased by 19%, and the circulating refrigeration capacity of the volume is increased by 47.2%, which significantly improves the energy saving effect of the air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调系统,包括压缩机(100)、第一四通换向阀(200)、室外机(300)、第二四通换向阀(400)、喷射器(500)、气液分离器(600)、节流阀(700)以及室内机(800)。第一四通换向阀(200)的四个管口依次与室外机(300)的一端、压缩机(100)的排气口、室内机(800)的一端、喷射器(500)的引射流入口(512)连接;第二四通换向阀(400)的四个管口依次与室内机(800)的另一端、节流阀(700)的出口、室外机(300)的另一端、喷射器(500)的工作流入口(511)连接;气液分离器(600)的入口与喷射器(500)的出口连接,气液分离器(600)的第一出口与压缩机(100)的吸气口连接,气液分离器(600)的第二出口与节流阀(700)的入口连接。该空调系统在制热或者制冷模式下,制冷剂都能流经喷射器,提高了系统的COP值,而且换热性能好,操作简单,易于实现,提高了系统的容错率,降低了成本。

Description

空调系统
相关申请
本专利申请要求2014年7月4日申请的,申请号为201410318597.4,名称为“空调系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及家电领域,特别是涉及一种空调系统。
背景技术
传统的带喷射器的空调系统,通常存在以下问题:1、在制热模式下制冷剂不流经喷射器,系统的COP(coefficient of performance,热泵系统的循环效率)值较低;2、在制热模式和制冷模式下,制冷剂在室内换热器和室外换热器中的流向相同,导致制冷剂的流动阻力变大,室内换热器和室外换热器的换热性能不高;3、整个系统的控制策略复杂、成本高,系统的控制容错率较低。
发明内容
基于此,有必要针对现有技术的缺陷和不足,提供一种简单可控的带有喷射器的空调系统,以提升系统的循环效率和室内换热器、室外换热器的换热性能。
为实现本发明目的而提供的空调系统,包括压缩机、第一四通换向阀、室外机、第二四通换向阀、喷射器、气液分离器、节流阀以及室内机;
所述第一四通换向阀的第一管口与所述室外机的一端连接,所述第一四通换向阀的第二管口与所述压缩机的排气口连接,所述第一四通换向阀的第三管口与所述室内机的一端连接,所述第一四通换向阀的第四管口与所述喷射器的引射流入口连接;
所述第二四通换向阀的第一管口与所述室内机的另一端连接,所述第二四通换向阀的第二管口与所述节流阀的出口连接,所述第二四通换向阀的第三管口与所述室外机的另一端连接,所述第二四通换向阀的第四管口与所述喷射器的工作流入口连接;
所述气液分离器的入口与所述喷射器的出口连接,所述气液分离器的第一出口与所述压缩机的吸气口连接,所述气液分离器的第二出口与所述节流阀的入口连接。
在其中一个实施例中,本发明的空调系统,具有冷制模式和制热模式;
在所述制冷模式中,所述第一四通换向阀的第一管口和所述第一四通换向阀的第二管口连接,所述第一四通换向阀的第三管口和所述第一四通换向阀的第四管口连接;所述第二四通换向阀的第一管口和所述第二四通换向阀的第二管口连接,所述第二四通换向阀的第三管口和所述第二四通换向阀的第四管口连接;
在所述制热模式中,所述第一四通换向阀的第一管口和所述第一四通换向阀的第四管口连接,所述第一四通换向阀的第二管口和所述第一四通换向阀的第三管口连接;所述第二四通换向阀的第一管口和所述第二四通换向阀的第四管口连接,所述第二四通换向阀的第二管口和所述第二四通换向阀的第三管口连接。
在其中一个实施例中,所述室外机与所述第一四通换向阀的第一管口之间的连接管道的半径大于所述室外机与所述第二四通换向阀的第三管口之间的连接管道的半径;
所述室内机与所述第一四通换向阀的第三管口之间的连接管道的半径大于所述室内机与所述第二四通换向阀的第一管口之间的连接管道的半径。
在其中一个实施例中,所述喷射器包括依次连通的引射室、混合室以及扩压室;
所述引射室具有两个入口,其中一个入口为所述喷射器的工作流入口,另一个入口为所述喷射器的引射流入口;
所述引射室中设置有喷嘴,所述喷嘴的入口与所述喷射器的工作流入口连接;
所述喷射器的出口设置在所述扩压室的末端。
在其中一个实施例中,所述喷嘴为渐缩渐扩喷管或渐缩喷管。
在其中一个实施例中,所述节流阀为电子膨胀阀、或热力膨胀阀、或毛细管。
本发明的有益效果:本发明提供的空调系统,在制热或制冷模式下,制冷剂都能流经喷射器,利用喷射器来引射低压低温制冷剂,提高压缩机的进气压力,从而提高系统的COP值。而且,在制热模式下,制冷剂在室外机和室内机内的流动方向与在制冷模式下的流动方向相反,降低了制冷剂在室外机和室内机内的流动阻力,提升了换热性能。整个的系统只需要控制两个四通换向阀的管口连接,就能实现模式转换,操作简单,易于实现,大大降低了成本,提高了系统的容错率。
附图说明
为了使本发明的空调系统的目的、技术方案及优点更加清楚明白,以下结合具体附图 及具体实施例,对本发明的空调系统进行进一步详细说明。
图1为本发明的空调系统的一个实施例的结构示意图;
图2为图1中所示的喷射器的一个实施例的结构示意图;
图3为图1中所示的喷射器的另一个实施例的结构示意图;
图4为本发明的空调系统处于制冷模式时的制冷剂流向示意图;
图5为本发明的空调系统处于制热模式时的制冷剂流向示意图。
具体实施方式
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参见图1,本发明提供的空调系统的一个实施例,包括压缩机100、第一四通换向阀200、室外机300、第二四通换向阀400、喷射器500、气液分离器600、节流阀700以及室内机800。
其中,压缩机100为整个系统的制冷剂流动提供动力,同时将从蒸发器出来的低温低压气体压缩成为高温高压的气体。室外机300和室内机800可选用常规的铜管铝翅片结构的换热器。节流阀700可以为电子膨胀阀、热力膨胀阀或者是毛细管。节流阀700在降低制冷剂的压力的同时保持制冷剂的焓值不变。第一四通换向阀200具有四个管口,分别为第一管口C1、第二管口D1、第三管口E1以及第四管口S1。第一四通换向阀400也具有四个管口,分别为第一管口C2、第二管口D2、第三管口E2以及第四管口S2。气液分离器600具有一个入口和两个出口,分别为第一出口和第二出口,液体和气体混合从气液分离器600的入口进入,进行分离,分离后的液体和气体会分别从两个出口流出,气液分离器600顶部的出口为第一出口,底部的出口为第二出口。
参见图2和图3,喷射器500包括依次连通的引射室510、混合室520以及扩压室530。引射室510具有两个入口,其中一个入口为喷射器的工作流入口511,另一个入口为喷射器的引射流入口512。引射室510中设置有喷嘴540,喷嘴540的入口与喷射器的工作流入口511连接,喷射器的出口513设置在扩压室530的末端。喷嘴540可为渐缩渐扩喷管(参见图2)或渐缩喷管(参见图3)。制冷剂在喷嘴540内流动时,处于两相态,其对应的每一个状态参数都会有一个对应的音速,音速的数值a一般取决与该点的压力P和干度x,当流体在喷嘴540出口的宏观速度v>a(P,x)时,喷嘴540应该选用如图2所示的渐缩 渐扩喷管;当流体在喷嘴540出口的宏观速度v≤a(P,x)时,喷嘴540应该选用如图3所示的渐缩喷管。
喷射器500的工作原理如下:主流流体从工作流入口511进入喷嘴540,在喷嘴540中膨胀,使得主流流体的势能或热能转变为动能。引射流体从引射流入口512进入引射室,主流流体和引射流体在混合室520混合,主流流体的动能一部分传给引射流体。由于在沿喷射器500流动的过程中,混合流体的速度渐渐均衡,于是混合流体的动能相反地转变为势能或热能,并伴随有压力升高。混合流体从混合室520出来进入扩压室530,压力将继续升高。最终,在喷射器的出口513处,混合流体的压力高于进入引射室510时引射流体的压力,这样就提高了引射流体的压力而不直接消耗机械能。
在制冷/制热模式下,制冷剂在室外机和室内机中的流向是应该相反的,这种要求在传统蒸气压缩制冷系统上通过一个四通换向阀就可以实现。但是在蒸气压缩/喷射制冷的空调系统中,在制冷/制热模式下,在满足制冷剂流经室外机和室内机的流向相反的同时,还必须满足制冷剂在喷射器内的流向是相同的。传统的带喷射器的空调系统均无法解决这个问题,本发明通过两个四通换向阀就可以实现将喷射器应用于制冷/制热空调系统,系统改变很小,成本较低,控制策略很简单,而且还能保证制冷剂的流动阻力尽可能低,大大提升了换热效率。
具体连接关系如下:
第一四通换向阀200的第一管口C1与室外机300的一端连接,第一四通换向阀200的第二管口D1与压缩机100的排气口连接,第一四通换向阀200的第三管口E1与室内机800的一端连接,第一四通换向阀200的第四管口S1与喷射器500的引射流入口512连接。第二四通换向阀400的第一管口C2与室内机800的另一端连接,第二四通换向阀400的第二管口D2与节流阀700的出口连接,第二四通换向阀400的第三管口E2与室外机300的另一端连接,第二四通换向阀400的第四管口S2与喷射器500的工作流入口511连接。气液分离器600的入口与喷射器500的出口连接,气液分离器600的第一出口与压缩机100的吸气口连接,气液分离器600的第二出口与节流阀700的入口连接。
上述空调系统,通过简单控制第一四通换向阀200和第二四通换向阀400的转换,就可以实现制冷模式和制热模式的转换,而且保证无论工作在冷制模式或制热模式下,制冷剂都能流经喷射器500,利用喷射器500来引射低压低温制冷剂,提高压缩机100的进气压力,从而提高系统的COP值。
具体的实现过程如下:
参见图2和图4,箭头指向为制冷剂流向。当系统需要工作在制冷模式时,控制第一四通换向阀200的连接如下:第一管口C1和第二管口D1连接,第三管口E1和第四管口S1连接。同时控制第二四通换向阀400的连接如下:第一管口C2和第二管口D2连接,第第三管口E2和第四管口S2连接。
制冷剂循环过程:从压缩机100出来的高温高压的气态制冷剂通过第一四通换向阀200(由第二管口D1到达第一管口C1),进入室外机300冷凝放热,变成高温高压的液体,进一步经过第二四通换向阀400(由第三管口E2到达第四管口S2),作为主流流体由工作流入口511进入喷射器500,在喷嘴540内膨胀,压力能转化为动能,喷嘴540出口处压力小于室内机800中的压力,从而将室内机800内的制冷剂经过第一四通阀200(由第三管口E1到达第四管口S1)从引射流入口512吸入到喷射器500内。两股流体混合,混合流体在喷射器500的扩压室530内压力升高,然后从喷射器500的出口512进入气液分离器600。最后,经气液分离器600分离后的气体进入压缩机100,而液体则经过节流阀700,经过第二四通阀400(由第二管口D2到达第一管口C2)进入室内机800,蒸发吸热,依此循环,实现室内制冷。
参见图2和图5,箭头指向为制冷剂流向。当系统需要工作在制热模式时,控制第一四通换向阀200的连接如下:第一管口C1和第四管口S1连接,第二管口D1和第三管口E1连接。同时控制第二四通换向阀400的连接如下:第一管口C2和第四管口S2连接,第第二管口D2和第三管口E2连接。
制冷剂循环过程:从压缩机100出来的高温高压的气态制冷剂通过第一四通换向阀200(由第二管口D1到达第三管口E1),进入室内机800冷凝放热,对室内进行制热。放热完毕后变成高温高压的液体,经过第二四通换向阀400(由第一管口C2到达第四管口S2),作为主流流体由工作流入口511进入喷射器500,在喷嘴540内膨胀,压力能转化为动能,喷嘴540出口处压力小于室内机800中的压力,从而将室外机300内的制冷剂经过第一四通阀200(由第一管口C1到达第四管口S1)从引射流入口512吸入到喷射器500内。两股流体混合,混合流体在喷射器500的扩压室530内压力升高,然后从喷射器500的出口513进入气液分离器600。最后,经气液分离器600分离后的气体进入压缩机100,进行再次循环,而液体则经过节流阀700,经过第二四通阀400(由第二管口D2到达第三管口E2)进入室外机300,蒸发吸热。依此循环,实现室内制热。
上述循环过程中,喷射器500利用经冷凝后的高温高压的液体喷射经蒸发后的低温低压的气体,这样就可以提高压缩机100的进口压力,降低压缩机100的压缩比,从而降低压缩机100的功耗,同时还能减少压缩机100实际压缩过程中的不可逆损失。
进一步地,室外机300与第一四通换向阀200的第一管口C1之间的连接管道的半径大于室外机300与第二四通换向阀400的第三管口E2之间的连接管道的半径;室内机800与第一四通换向阀200的第三管口E1之间的连接管道的半径大于室内机800与第二四通换向阀400的第一管口C2之间的连接管道的半径。参见图4和图5,室外机300和室内机800右端连接管为粗管,左端连接管为细管。制冷剂在室外机300和室内机800内发生气液相变,当制冷剂处于气相时体积很大,所以为了降低流动阻力,气态制冷剂流入(或流出)室外机300和室内机800时经过粗管;当制冷剂处于液相时体积较小,液态制冷剂流入(或流出)室外机300和室内机800时经过小管,可以降低成本。
本发明提供的空调系统,在制热或制冷模式下,制冷剂都能流经喷射器500,利用喷射器500来引射低压低温制冷剂,提高压缩机100的进气压力,从而提高系统的COP值。而且,在制热模式下,制冷剂在室外机300和室内机800内的流动方向与在制冷模式下的流动方向相反,从而降低了制冷剂在室外机300和室内机800内的流动阻力,提升了室外机300和室内机800的换热性能。整个的系统只需要控制两个四通换向阀的管口连接,就能实现模式转换,操作简单,易于实现,大大降低了成本,提高了系统的容错率。
本发明相对于传统的制冷循环(蒸发温度与冷凝温度相同),制冷系数可以提高19%,增加容积的循环制冷量47.2%,显著提高了空调系统的节能效果。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种空调系统,其特征在于,包括压缩机、第一四通换向阀、室外机、第二四通换向阀、喷射器、气液分离器、节流阀以及室内机;
    所述第一四通换向阀的第一管口与所述室外机的一端连接,所述第一四通换向阀的第二管口与所述压缩机的排气口连接,所述第一四通换向阀的第三管口与所述室内机的一端连接,所述第一四通换向阀的第四管口与所述喷射器的引射流入口连接;
    所述第二四通换向阀的第一管口与所述室内机的另一端连接,所述第二四通换向阀的第二管口与所述节流阀的出口连接,所述第二四通换向阀的第三管口与所述室外机的另一端连接,所述第二四通换向阀的第四管口与所述喷射器的工作流入口连接;
    所述气液分离器的入口与所述喷射器的出口连接,所述气液分离器的第一出口与所述压缩机的吸气口连接,所述气液分离器的第二出口与所述节流阀的入口连接。
  2. 根据权利要求1所述的空调系统,其特征在于,具有冷制模式和制热模式;
    在所述制冷模式中,所述第一四通换向阀的第一管口和所述第一四通换向阀的第二管口连接,所述第一四通换向阀的第三管口和所述第一四通换向阀的第四管口连接;所述第二四通换向阀的第一管口和所述第二四通换向阀的第二管口连接,所述第二四通换向阀的第三管口和所述第二四通换向阀的第四管口连接;
    在所述制热模式中,所述第一四通换向阀的第一管口和所述第一四通换向阀的第四管口连接,所述第一四通换向阀的第二管口和所述第一四通换向阀的第三管口连接;所述第二四通换向阀的第一管口和所述第二四通换向阀的第四管口连接,所述第二四通换向阀的第二管口和所述第二四通换向阀的第三管口连接。
  3. 根据权利要求1或2所述的空调系统,其特征在于,所述室外机与所述第一四通换向阀的第一管口之间的连接管道的半径大于所述室外机与所述第二四通换向阀的第三管口之间的连接管道的半径;
    所述室内机与所述第一四通换向阀的第三管口之间的连接管道的半径大于所述室内机与所述第二四通换向阀的第一管口之间的连接管道的半径。
  4. 根据权利要求1或2所述的空调系统,其特征在于,所述喷射器包括依次连通的引射室、混合室以及扩压室;
    所述引射室具有两个入口,其中一个入口为所述喷射器的工作流入口,另一个入口为 所述喷射器的引射流入口;
    所述引射室中设置有喷嘴,所述喷嘴的入口与所述喷射器的工作流入口连接;
    所述喷射器的出口设置在所述扩压室的末端。
  5. 根据权利要求4所述的空调系统,其特征在于,所述喷嘴为渐缩渐扩喷管或渐缩喷管。
  6. 根据权利要求1或2所述的空调系统,其特征在于,所述节流阀为电子膨胀阀、或热力膨胀阀、或毛细管。
PCT/CN2015/083265 2014-07-04 2015-07-03 空调系统 WO2016000656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410318597.4 2014-07-04
CN201410318597.4A CN104110910A (zh) 2014-07-04 2014-07-04 空调系统

Publications (1)

Publication Number Publication Date
WO2016000656A1 true WO2016000656A1 (zh) 2016-01-07

Family

ID=51707809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083265 WO2016000656A1 (zh) 2014-07-04 2015-07-03 空调系统

Country Status (2)

Country Link
CN (1) CN104110910A (zh)
WO (1) WO2016000656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176009A (zh) * 2017-05-24 2017-09-19 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN109539406A (zh) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110910A (zh) * 2014-07-04 2014-10-22 珠海格力电器股份有限公司 空调系统
CN105805981A (zh) * 2016-05-23 2016-07-27 华北理工大学 双工况压缩-引射热泵空调系统
CN106679233B (zh) * 2016-07-12 2019-06-28 青岛海信日立空调系统有限公司 一种热泵及热泵控制方法
CN106931675B (zh) * 2017-04-13 2019-11-29 广东美的白色家电技术创新中心有限公司 喷射式循环系统和空调
CN107131679A (zh) * 2017-05-31 2017-09-05 珠海格力电器股份有限公司 采用喷射器的热泵系统及其控制方法、空调设备
CN109307378A (zh) * 2018-08-07 2019-02-05 珠海格力电器股份有限公司 空调系统
CN110803288A (zh) * 2019-10-25 2020-02-18 中航通飞研究院有限公司 一种座舱加温引射混合器
CN111023363B (zh) * 2019-12-17 2021-10-29 海信(山东)空调有限公司 一种空调器及控制方法
CN111928548A (zh) * 2020-07-15 2020-11-13 青岛海尔空调电子有限公司 气液分离器、回油系统及空调系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020140A (ja) * 2006-07-13 2008-01-31 Fujitsu General Ltd ボルテックスチューブ及び、それを用いた冷媒回路
JP2010159926A (ja) * 2009-01-08 2010-07-22 Mitsubishi Heavy Ind Ltd 空気調和装置
KR20110022182A (ko) * 2009-08-27 2011-03-07 대한공조(주) 순환수 온도 상승용 열교환기를 구비한 히트펌프 시스템
CN102472537A (zh) * 2009-10-16 2012-05-23 株式会社日立制作所 空气调节热水供给系统
CN202938542U (zh) * 2012-11-16 2013-05-15 珠海格力电器股份有限公司 空调系统
CN103822393A (zh) * 2012-11-16 2014-05-28 珠海格力电器股份有限公司 空调系统
CN104110910A (zh) * 2014-07-04 2014-10-22 珠海格力电器股份有限公司 空调系统
CN204115293U (zh) * 2014-07-04 2015-01-21 珠海格力电器股份有限公司 空调系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639541B2 (ja) * 2001-03-01 2011-02-23 株式会社デンソー エジェクタを用いたサイクル
US6550255B2 (en) * 2001-03-21 2003-04-22 The Coca-Cola Company Stirling refrigeration system with a thermosiphon heat exchanger
JP2008116124A (ja) * 2006-11-06 2008-05-22 Hitachi Appliances Inc 空気調和機
JP4889714B2 (ja) * 2008-12-03 2012-03-07 三菱電機株式会社 冷凍サイクル装置及びこれを搭載した空気調和機
KR20100006350U (ko) * 2008-12-15 2010-06-24 백현정 냉동시스템
CN103148649B (zh) * 2013-03-27 2015-03-04 上海理工大学 蒸汽压缩制冷循环系统中喷射器设计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020140A (ja) * 2006-07-13 2008-01-31 Fujitsu General Ltd ボルテックスチューブ及び、それを用いた冷媒回路
JP2010159926A (ja) * 2009-01-08 2010-07-22 Mitsubishi Heavy Ind Ltd 空気調和装置
KR20110022182A (ko) * 2009-08-27 2011-03-07 대한공조(주) 순환수 온도 상승용 열교환기를 구비한 히트펌프 시스템
CN102472537A (zh) * 2009-10-16 2012-05-23 株式会社日立制作所 空气调节热水供给系统
CN202938542U (zh) * 2012-11-16 2013-05-15 珠海格力电器股份有限公司 空调系统
CN103822393A (zh) * 2012-11-16 2014-05-28 珠海格力电器股份有限公司 空调系统
CN104110910A (zh) * 2014-07-04 2014-10-22 珠海格力电器股份有限公司 空调系统
CN204115293U (zh) * 2014-07-04 2015-01-21 珠海格力电器股份有限公司 空调系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176009A (zh) * 2017-05-24 2017-09-19 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN109539406A (zh) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组
CN109539406B (zh) * 2018-11-02 2024-06-04 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组

Also Published As

Publication number Publication date
CN104110910A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2016000656A1 (zh) 空调系统
CN104061705B (zh) 双级压缩空调系统及其控制方法
WO2019128516A1 (zh) 空调器系统
WO2016000652A1 (zh) 引射制冷循环装置
WO2019091241A1 (zh) 空调制冷循环系统及空调器
WO2015158174A1 (zh) 制冷装置
CN107178833B (zh) 热回收外机系统和空调系统
WO2015158138A1 (zh) 制冷装置
CN204115293U (zh) 空调系统
CN108800678B (zh) 空调系统
CN106556083B (zh) 一种具备喷射器的多联机空调系统及其控制方法
US11353249B2 (en) Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
US20210396432A1 (en) Air-conditioning system with mixed working medium
CN106225296B (zh) 一种换向除霜空气源热泵机组及换向除霜方法
US20220011021A1 (en) Cascade air conditioner system
WO2020082739A1 (zh) 两管制喷气增焓室外机及多联机系统
WO2020082741A1 (zh) 两管制喷气增焓室外机及多联机系统
WO2021208584A1 (zh) 高效制热的风冷热泵空调系统
CN108800393A (zh) 空调系统
CN108759157B (zh) 一次节流双级压缩热泵系统
WO2019128517A1 (zh) 空调器系统
US11892214B2 (en) Outdoor unit and heat pump system
CN115077119A (zh) 一种不停机快速化霜节能型空调装置
CN108007009A (zh) 一种废热辅助的太阳能喷射式冷暖空调系统及运行模式
CN208779747U (zh) 空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814060

Country of ref document: EP

Kind code of ref document: A1