WO2020082741A1 - 两管制喷气增焓室外机及多联机系统 - Google Patents

两管制喷气增焓室外机及多联机系统 Download PDF

Info

Publication number
WO2020082741A1
WO2020082741A1 PCT/CN2019/089869 CN2019089869W WO2020082741A1 WO 2020082741 A1 WO2020082741 A1 WO 2020082741A1 CN 2019089869 W CN2019089869 W CN 2019089869W WO 2020082741 A1 WO2020082741 A1 WO 2020082741A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchange
exchange flow
outdoor unit
enthalpy
Prior art date
Application number
PCT/CN2019/089869
Other languages
English (en)
French (fr)
Inventor
颜利波
杨国忠
王命仁
彭三国
黄金远
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Priority to US16/619,729 priority Critical patent/US11300329B2/en
Priority to CA3081380A priority patent/CA3081380C/en
Publication of WO2020082741A1 publication Critical patent/WO2020082741A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present application relates to the field of air conditioning, and more specifically, to a two-control jet enthalpy-enhanced outdoor unit and a two-control jet enthalpy-enhanced multi-connection system.
  • This application aims to solve at least one of the technical problems in the prior art.
  • One aspect of the present application provides a two-control jet enthalpy-enhancing outdoor unit.
  • One aspect of the present application provides a two-control jet enthalpy multi-online system.
  • the two-control air jet-enhanced outdoor unit includes: an outdoor heat exchanger and a second interface; ;
  • the reversing component including the first end to the fourth end, the first end of the reversing component is connected to the air outlet, the second end of the reversing component is connected to the air return port;
  • the subcooler including the main heat exchange flow
  • the heat exchange flow path is connected to the auxiliary heat exchange flow path, the main heat exchange flow path is connected to the second interface, the auxiliary heat exchange flow path is connected to the injection port;
  • the throttle component one end of the throttle component is connected to the outlet of the main heat exchange flow path, and the other One end is connected to the inlet of the outdoor heat exchanger.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes an outdoor heat exchanger, an air-jet enthalpy-enhancing compressor, a reversing component, a supercooler and a throttling component.
  • the first end of the reversing component is connected to the air outlet for reversing
  • the second end of the component is connected to the return air port;
  • the main heat exchange flow path of the subcooler is connected to the auxiliary heat exchange flow path, the main heat exchange flow path is connected to the second interface, and the auxiliary heat exchange flow path is connected to the injection port
  • One end of the throttling component is connected to the outlet of the main heat exchange flow path, and the other end is connected to the inlet of the outdoor heat exchanger.
  • the gaseous refrigerant flowing out of the air injection enthalpy heat exchanger is directly discharged from
  • the intermediate injection port of the compressor enters the compressor for supplemental air and enthalpy compression, and at the same time increases the subcooler and throttling components, significantly increases the refrigerant circulation during low temperature heating operation, and expands the low temperature control in the two-control jet enthalpy outdoor unit Hot running range, while significantly improving the effect of heating capacity.
  • the two-control jet enthalpy outdoor unit has a two-control structure, and there are two connecting pipes between the external unit and the internal unit, that is, the first interface and the second interface are connected to the indoor unit, compared with the three-control multi-connection system in the related technology
  • the two-control heat recovery multi-line system provided in this application has a simple structure, saves copper pipe materials, and reduces installation costs.
  • the two-control jet enthalpy-enhanced outdoor unit provided in this application is applied to the two-control jet enthalpy-enhanced multi-connected system, and the multi-connected system is a heat recovery multi-connected.
  • the meaning of heat recovery is to recover the heat discharged from the cooling room for heating Room heating, specifically, the system absorbs heat from the cooling room through the indoor unit heat exchanger, and then releases all or part of the heat to the heating room for heating by the indoor unit heat exchanger, the system is insufficient or the remaining heat Then it is taken from the environment through the outdoor unit heat exchanger.
  • heat recovery multi-line has a significant energy saving effect.
  • cooling main cooling
  • main heating There are 4 operation modes for heat recovery multi-line: cooling, main cooling, main heating and heating.
  • cooling / heating mode When all running indoor units are in cooling / heating mode, the outdoor unit operates in cooling / heating mode; when the running indoor unit has both cooling and heating and the cooling load is greater than the heating load, the outdoor unit will Operate in the main cooling mode; when the operating indoor unit has both cooling and heating and the cooling load is less than the heating load, the outdoor unit will operate in the main heating mode. If the flow required to operate the cooling indoor unit and the heating indoor unit is exactly equal, the system operates in full heat recovery mode.
  • the two-control enthalpy-enhanced outdoor unit provided by the above technical solution of the present application also has the following additional technical features:
  • the third end of the reversing component is switchably connected to the inlet of the outdoor heat exchanger or the outlet of the outdoor heat exchanger, and the fourth end of the reversing component It is switchably connected to the second interface or the first interface.
  • the third end of the reversing component is switchably connected to the inlet of the outdoor heat exchanger or the outlet of the outdoor heat exchanger, and the fourth end of the reversing component is switchably connected to the second interface or the first Interface
  • the third end of the reversing component is connected to the inlet of the outdoor heat exchanger, and the fourth end of the reversing component is connected to the second interface
  • the multi-online system with controlled air injection enthalpy is heating and main heating mode
  • the third end of the reversing component is connected to the outlet of the outdoor heat exchanger
  • the fourth end of the reversing component is connected to the first interface to achieve the refrigerant Different directions.
  • the inlet of the main heat exchange flow path is connected to the second interface, and the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path.
  • the outlet of the flow path is in contact with the injection port.
  • a specific connection method inside the supercooler is provided, that is, the inlet of the main heat exchange flow path is connected to the second interface, and the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path, The outlet of the auxiliary heat exchange flow path is connected to the injection port.
  • the refrigerant flowing from the second interface first enters the inlet of the main heat exchange flow path, and then the outlet of the main heat exchange flow path Entering the inlet of the auxiliary heat exchange flow path, the outlet of the auxiliary heat exchange flow path enters the injection port, so as to realize the supplementary air and enthalpy compression of the jet air enthalpy-increasing compressor.
  • the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are both connected to the second interface, and the outlet of the auxiliary heat exchange flow path is opposite to the injection port Pick up.
  • a specific connection method inside the supercooler that is, the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are connected to the second interface, and the outlet of the auxiliary heat exchange flow path is
  • the injection ports are connected, and in the heating or main heating mode, the refrigerant flowing from the second interface enters the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path respectively, and then respectively passes through the main heat exchange flow path
  • the auxiliary heat exchange flow path the refrigerant flowing out of the main heat exchange flow path enters the inlet of the outdoor heat exchanger through the throttling assembly, and the refrigerant flowing out of the auxiliary heat exchange flow path enters the jet enthalpy-increasing compressor through the injection port.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a first solenoid valve, which is provided between the auxiliary heat exchange flow path and the injection port, and the guide of the first solenoid valve The communication direction is from the auxiliary heat exchange flow path to the injection port.
  • the two-control jet enthalpy-increasing outdoor unit includes a first solenoid valve, and the first solenoid valve is energized, closed, and closed, and when the first solenoid valve is energized, the conduction direction of the first solenoid valve In order to pass from the auxiliary heat exchange flow path to the direction of the injection port, that is, only the refrigerant is allowed to pass from the auxiliary heat exchange flow path to the direction of the injection port to avoid the phenomenon of refrigerant backflow.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a first throttling device, the first throttling device is disposed on the auxiliary heat exchange flow path and is located on the auxiliary heat exchange flow The entrance to the road.
  • the two-control jet enthalpy-increasing outdoor unit includes a first throttling device, the first throttling device is disposed on the auxiliary heat exchange flow path, and the first throttling device is located at the entrance of the auxiliary heat exchange flow path, Therefore, after the refrigerant passes through the main heat exchange flow path, a part of it can enter the auxiliary heat exchange flow path after being throttled and reduced by the throttle device, and then the refrigerant in the auxiliary heat exchange flow path and the refrigerant in the main heat exchange flow path
  • the heat exchange can effectively improve the heating capacity of the two-control jet enthalpy-increasing outdoor unit, which is conducive to improving the reliability of the two-control jet enthalpy-increasing outdoor unit.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a first one-way valve, the first one-way valve connects the second interface to the fourth end of the reversing component ,
  • the conduction direction of the first one-way valve is from the second port to the fourth end of the reversing assembly;
  • the second one-way valve, the second one-way valve connects the first port to the fourth end of the reversing assembly,
  • the conducting direction of the second check valve is the direction from the fourth end of the reversing assembly to the first interface.
  • the two-control air-jet enthalpy-increasing outdoor unit includes a first one-way valve and a second one-way valve.
  • the first one-way valve connects the second interface to the fourth end of the reversing component, and the first one-way valve
  • the conduction direction of the valve is the direction from the second port to the fourth end of the reversing assembly.
  • the second one-way valve connects the first port to the fourth end of the reversing assembly.
  • the conducting direction of the second one-way valve is In the direction from the fourth end of the reversing component to the first interface, in the cooling and main cooling modes, the first check valve is turned on and the second check valve is closed. In the heating and main heating mode, the first The two check valves are on and the first check valve is closed.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a third one-way valve, the third one-way valve connects the third end of the reversing component to the outdoor heat exchanger The inlet of the third one-way valve is connected to the direction from the third end of the reversing component to the outdoor heat exchanger; the fourth one-way valve, the fourth one-way valve connects the third end of the reversing component to The outlet of the outdoor heat exchanger is connected, and the conduction direction of the fourth check valve is the direction from the outlet of the outdoor heat exchanger to the third end of the reversing assembly.
  • the two-control jet enthalpy-increasing outdoor unit includes: a third check valve and a fourth check valve, the third check valve and the fourth check valve are connected to the third end of the uniform reversing assembly, and the third The other ends of the one-way valve and the fourth one-way valve are respectively connected to the inlet of the outdoor heat exchanger and the outlet of the outdoor heat exchanger.
  • the conduction direction of the third one-way valve is from the third end of the reversing component to The direction of the outdoor heat exchanger;
  • the conduction direction of the fourth check valve is the direction from the outlet of the outdoor heat exchanger to the third end of the reversing assembly; in the cooling and main cooling modes, the third check valve is conductive 4.
  • the fourth one-way valve is closed. During heating and main heating modes, the fourth one-way valve is turned on and the fifth one-way valve is closed.
  • the throttle assembly includes at least one second throttle device and at least one fifth check valve connected in series, and the conduction direction of the fifth check valve is The direction from the subcooler to the entrance of the outdoor heat exchanger.
  • the throttle assembly includes at least one second throttle device and at least one fifth check valve connected in series, and the conduction direction of the fifth check valve is from the subcooler to the inlet of the outdoor heat exchanger Direction, a second throttle device can be connected in series with a fifth check valve, or a second throttle device can be connected in series with multiple fifth check valves, and multiple second throttle devices can be connected in series with a fifth check valve, In order to ensure the effect of throttling and pressure reduction, and after multi-stage pressure reduction, a better pressure reduction effect can be achieved.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a second pipeline connecting the air outlet to the first interface; and a second solenoid valve disposed on the second tube On the way, the conduction direction of the second solenoid valve is the direction from the air outlet to the first interface.
  • the two-control air-jet enthalpy-increasing outdoor unit includes a second pipeline and a second solenoid valve provided on the second pipeline.
  • the second solenoid valve is closed, and the refrigerant discharged from the air outlet is all Enter the inlet of the outdoor heat exchanger through the third end of the reversing component;
  • the second solenoid valve opens, and the refrigerant part discharged from the air outlet enters the inlet of the outdoor heat exchanger through the third end of the reversing component , The other part enters the first interface from the second solenoid valve, to ensure that the two-control air-jet enthalpy multi-online system can realize two modes of cooling and main cooling.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes: a third pipeline, one end of the third pipeline is connected to the outlet of the outdoor heat exchanger, and the third pipeline The other end of the circuit is located between the second one-way valve and the first interface; the sixth one-way valve is provided on the third pipeline.
  • the two-control air-jet enthalpy-increasing outdoor unit includes a third pipeline and a sixth check valve.
  • the sixth check valve opens and the outlet from the outdoor heat exchanger is discharged.
  • the refrigerant enters the first interface through the sixth check valve; in the cooling and main cooling modes, the sixth check valve is closed.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a seventh one-way valve, the seventh one-way valve connects the main heat exchange flow path to the second interface, and The conduction direction of the seven check valve is the direction from the second port to the entrance of the main heat exchange flow path.
  • the two-control air-jet enthalpy-enhancing outdoor unit includes a seventh check valve.
  • the conduction direction of the seventh check valve is the direction from the second port to the entrance of the main heat exchange flow path.
  • the seventh check valve opens, and in cooling and main cooling mode, the seventh check valve closes, so in heating and main heating mode, the jet enthalpy-increasing compressor can achieve the effect of jet enthalpy increase
  • the refrigerant cannot pass through the subcooler, so the effect of air injection to increase enthalpy cannot be achieved.
  • a two-control jet enthalpy multi-online system includes the two-control jet enthalpy outdoor unit as described in any one of the above technical solutions.
  • the enthalpy multi-online system has all the beneficial effects of the two-control jet enthalpy-enhancing outdoor unit as in any of the above technical solutions.
  • FIG. 1 shows a structural schematic diagram of a two-control jet enthalpy multi-online system provided by an embodiment of the present application
  • FIG. 2 shows another structural schematic diagram of a two-control jet enthalpy multi-online system provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a two-control jet enthalpy multi-online system in cooling mode provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural view of a two-control air-jet enthalpy multi-online system in an heating mode provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a two-control jet multi-online enthalpy multi-online system in the main cooling mode provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural view of a two-control air-jet enthalpy multi-online system provided in an embodiment of the present application in a main heating mode
  • FIG. 7 shows a pressure enthalpy diagram of a two-control air injection enthalpy multi-online system provided by an embodiment of the present application.
  • a two-control jet enthalpy-enhancing outdoor unit includes: an outdoor heat exchanger 10, a first interface 12 and a second interface 14; Enthalpy compressor 16, including an air outlet 162, a return air port 164, and an injection port 166; a reversing assembly 18, including a first end to a fourth end, the first end of the reversing assembly 18 is connected to the air outlet 162, the reversing assembly 18 The second end is connected to the return air port 164; the supercooler 20 includes a main heat exchange flow path and an auxiliary heat exchange flow path that are connected, the main heat exchange flow path is connected to the second interface 14, the auxiliary heat exchange flow path is connected to the injection
  • the ports 166 are connected; the throttle assembly 22, one end of the throttle assembly 22 is connected to the outlet of the main heat exchange flow path, and the other end is connected to the inlet of the outdoor heat exchanger 10.
  • the two-control jet-enhanced enthalpy outdoor unit includes an outdoor heat exchanger 10, a jet-enhanced enthalpy compressor 16, a reversing component 18, a supercooler 20, and a throttling component 22.
  • the first end of the reversing component 18 is The air outlet 162 is connected, and the second end of the reversing assembly 18 is connected to the air return port 164; the main heat exchange flow path of the subcooler 20 is connected to the auxiliary heat exchange flow path, and the main heat exchange flow path is connected to the second interface 14,
  • the auxiliary heat exchange flow path is connected to the injection port 166, one end of the throttle assembly 22 is connected to the outlet of the main heat exchange flow path, and the other end is connected to the entrance of the outdoor heat exchanger 10.
  • the gaseous refrigerant flowing out of the air-jet enthalpy heat exchanger enters the compressor directly from the intermediate injection port 166 of the compressor for supplemental air enthalpy compression, and at the same time increases the subcooler 20 and the throttle assembly 22, significantly increasing low temperature heating
  • the amount of refrigerant circulation during operation expands the operating range of low-temperature heating in the two-control air-jet enthalpy-increasing outdoor unit, while significantly improving the effect of heating capacity.
  • the two-control jet enthalpy outdoor unit has a two-control structure.
  • the two-control jet enthalpy-enhanced outdoor unit provided in this application is applied to the two-control jet enthalpy-enhanced multi-connected system, and the multi-connected system is a heat recovery multi-connected.
  • the meaning of heat recovery is to recover the heat discharged from the cooling room for heating Room heating, specifically, the system absorbs heat from the cooling room through the indoor unit heat exchanger, and then releases all or part of the heat to the heating room for heating by the indoor unit heat exchanger, the system is insufficient or the remaining heat Then it is taken from the environment through the outdoor unit heat exchanger.
  • heat recovery multi-line has a significant energy saving effect.
  • cooling main cooling
  • main heating There are 4 operation modes for heat recovery multi-line: cooling, main cooling, main heating and heating.
  • cooling / heating mode When all running indoor units are in cooling / heating mode, the outdoor unit operates in cooling / heating mode; when the running indoor unit has both cooling and heating and the cooling load is greater than the heating load, the outdoor unit will Operate in the main cooling mode; when the operating indoor unit has both cooling and heating and the cooling load is less than the heating load, the outdoor unit will operate in the main heating mode. If the flow required to operate the cooling indoor unit and the heating indoor unit is exactly equal, the system operates in full heat recovery mode.
  • the third end of the reversing assembly 18 is reversibly connected to the inlet of the outdoor heat exchanger 10 or the outlet of the outdoor heat exchanger 10, reversing
  • the fourth end of the component 18 is switchably connected to the second interface 14 or the first interface 12.
  • the third end of the commutation assembly 18 is switchably connected to the inlet of the outdoor heat exchanger 10 or the outlet of the outdoor heat exchanger 10, and the fourth end of the commutation assembly 18 is switchably connected to the second The interface 14 or the first interface 12, when the two-control jet multi-entry enthalpy multi-online system is in cooling and main cooling modes, the third end of the reversing module 18 is connected to the inlet of the outdoor heat exchanger 10, and the fourth of the reversing module 18
  • the second end 14 is connected to the second interface; when the two-control air-enhanced multi-line system is heating and main heating mode, the third end of the reversing module 18 is connected to the outlet of the outdoor heat exchanger 10, the reversing module 18
  • the fourth end is connected to the first interface 12 to achieve different flow directions of the refrigerant.
  • the inlet of the main heat exchange flow path is connected to the second interface 14, and the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path,
  • the outlet of the auxiliary heat exchange flow path is in contact with the injection port 166.
  • a specific connection method inside the supercooler 20 is provided, that is, the inlet of the main heat exchange flow path is connected to the second interface 14, and the inlet of the auxiliary heat exchange flow path is connected to the outlet of the main heat exchange flow path Connected, the outlet of the auxiliary heat exchange flow path is connected to the injection port 166.
  • the refrigerant flowing from the second interface 14 first enters the inlet of the main heat exchange flow path, and then the main heat exchange
  • the outlet of the flow path enters the inlet of the auxiliary heat exchange flow path, and the outlet of the auxiliary heat exchange flow path enters the injection port 166, so as to realize the supplementary air and enthalpy compression of the air-jet enthalpy-increasing compressor 16.
  • the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are both connected to the second interface 14, and the outlet of the auxiliary heat exchange flow path is The injection port 166 is connected.
  • a specific connection method inside the supercooler 20 is provided, that is, the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path are both connected to the second interface 14, and the The outlet is connected to the injection port 166.
  • the refrigerant flowing from the second interface 14 enters the inlet of the main heat exchange flow path and the inlet of the auxiliary heat exchange flow path respectively, and then passes through the main In the heat exchange flow path and the auxiliary heat exchange flow path, the refrigerant flowing out of the main heat exchange flow path enters the inlet of the outdoor heat exchanger 10 through the throttle assembly 22, and the refrigerant flowing out of the auxiliary heat exchange flow path enters through the injection port 166
  • the air-increasing enthalpy compressor 16 is used for supplementary air enthalpy-increasing compression.
  • the two-control air-enhanced air-enhanced outdoor unit includes: a first solenoid valve 26 disposed between the auxiliary heat exchange flow path and the injection port 166, the first The conduction direction of the solenoid valve 26 is the direction from the auxiliary heat exchange flow path to the injection port 166.
  • the two-control jet enthalpy-increasing outdoor unit includes a first solenoid valve 26, the first solenoid valve 26 is energized, on, off and closed, and when the first solenoid valve 26 is energized, the first solenoid valve 26
  • the conduction direction of is from the auxiliary heat exchange flow path to the injection port 166, that is, only the refrigerant is allowed to conduct from the auxiliary heat exchange flow path to the injection port 166, to avoid the phenomenon of refrigerant backflow.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a first throttle device 24, and the first throttle device 24 is disposed on the auxiliary heat exchange flow path At the entrance of the auxiliary heat exchange flow path.
  • the two-control jet enthalpy-increasing outdoor unit includes a first throttling device 24, the first throttling device 24 is disposed on the auxiliary heat exchange flow path, and the first throttle device 24 is located on the auxiliary heat exchange flow path
  • the refrigerant passes through the main heat exchange flow path, a part of it can enter the auxiliary heat exchange flow path after the throttling and pressure reduction of the throttle device, and then the refrigerant in the auxiliary heat exchange flow path and the main heat exchange flow path
  • the internal refrigerant carries out heat exchange, which can effectively improve the heating capacity of the two-control jet enthalpy-increasing outdoor unit, which is conducive to improving the reliability of the two-control jet enthalpy-increasing outdoor unit.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a first one-way valve 38, and the first one-way valve 38 connects the second interface 14 with the reversing component The fourth end of 18 is connected, and the conduction direction of the first one-way valve 38 is the direction from the second port 14 to the fourth end of the reversing assembly 18; the second one-way valve 40, the second one-way valve 40 connects the first The interface 12 is connected to the fourth end of the reversing assembly 18.
  • the conduction direction of the second check valve 40 is the direction from the fourth end of the reversing assembly 18 to the first interface 12.
  • the two-control jet enthalpy-increasing outdoor unit includes a first one-way valve 38 and a second one-way valve 40.
  • the first one-way valve 38 connects the second port 14 to the fourth end of the reversing assembly 18,
  • the conduction direction of the first check valve 38 is from the second port 14 to the fourth end of the reversing assembly 18,
  • the second check valve 40 connects the first port 12 to the fourth end of the reversing assembly 18,
  • the conduction direction of the second one-way valve 40 is the direction from the fourth end of the reversing assembly 18 to the first interface 12.
  • the first one-way valve 38 is turned on and the second one-way valve The valve 40 is closed, and in the heating and main heating modes, the second check valve 40 is turned on and the first check valve 38 is closed.
  • the two-control air-jet enthalpy-increasing outdoor unit includes: a third one-way valve 34, the third one-way valve 34 will change the third end of the reversing assembly 18 Connected to the inlet of the outdoor heat exchanger 10, the conduction direction of the third one-way valve 34 is the direction from the third end of the reversing assembly 18 to the outdoor heat exchanger 10; the fourth one-way valve 36, the fourth one-way The valve 36 connects the third end of the reversing assembly 18 to the outlet of the outdoor heat exchanger 10, and the conduction direction of the fourth check valve 36 is the direction from the outlet of the outdoor heat exchanger 10 to the third end of the reversing assembly 18 .
  • the two-control jet enthalpy-increasing outdoor unit includes: a third one-way valve 34 and a fourth one-way valve 36, the third one-way valve 34 and the fourth one-way valve 36 are both The three ends are connected, and the other ends of the third check valve 34 and the fourth check valve 36 are connected to the inlet of the outdoor heat exchanger 10 and the outlet of the outdoor heat exchanger 10, respectively, and the conduction of the third check valve 34
  • the direction is from the third end of the reversing assembly 18 to the outdoor heat exchanger 10;
  • the conduction direction of the fourth check valve 36 is the direction from the outlet of the outdoor heat exchanger 10 to the third end of the reversing assembly 18;
  • the third check valve 34 is turned on, and the fourth check valve 36 is closed.
  • the fourth check valve 36 is turned on, and the fifth check valve.
  • the valve 224 is closed.
  • the throttle assembly 22 includes at least one second throttle device 222 and at least one fifth check valve 224 connected in series, the fifth check valve
  • the conduction direction of 224 is the direction from the subcooler 20 to the inlet of the outdoor heat exchanger 10.
  • the throttle assembly 22 includes at least one second throttle device 222 and at least one fifth check valve 224 connected in series.
  • the conduction direction of the fifth check valve 224 is from the subcooler 20 to the outdoor
  • the direction of the inlet of the heat exchanger 10 may be a second throttle device 222 connected in series with a fifth check valve 224, or a second throttle device 222 connected in series with a plurality of fifth check valves 224, a plurality of second sections
  • the flow device 222 is connected with a fifth one-way valve 224 in series to ensure the effect of throttling and depressurization, and can achieve better depressurization effect after multi-stage depressurization.
  • the two-control jet enthalpy-increasing outdoor unit includes: a second pipeline 28 connecting the air outlet 162 to the first interface 12; a second solenoid valve 30 , Arranged on the second pipeline 28, the conducting direction of the second solenoid valve 30 is the direction from the air outlet 162 to the first interface 12.
  • the two-control jet enthalpy-increasing outdoor unit includes a second pipeline 28 and a second solenoid valve 30 provided on the second pipeline 28.
  • the second solenoid valve 30 is closed and the All the refrigerant discharged from the air port 162 enters the inlet of the outdoor heat exchanger 10 through the third end of the reversing assembly 18; in the main cooling mode, the second solenoid valve 30 is opened, and the part of the refrigerant discharged from the air outlet 162 passes through the reversing assembly 18
  • the third end enters the inlet of the outdoor heat exchanger 10, and the other part enters the first interface 12 from the second solenoid valve 30, so as to ensure that the two-control air-jet enthalpy multi-online system can realize both cooling and main cooling modes.
  • the two-control air-entrapping enthalpy-increasing outdoor unit includes: a third pipeline 32, one end of the third pipeline 32 is connected to the outlet of the outdoor heat exchanger 10 Then, the other end of the third pipeline 32 is located between the second check valve 40 and the first port 12; the sixth check valve 42 is disposed on the third pipeline 32.
  • the two-control jet enthalpy-increasing outdoor unit includes a third pipeline 32 and a sixth check valve 42.
  • the sixth check valve 42 In the heating and main heating modes, the sixth check valve 42 is opened and the outdoor heat exchanger The refrigerant discharged from the outlet 10 enters the first port 12 through the sixth check valve 42; in the cooling and main cooling modes, the sixth check valve 42 is closed.
  • a two-control jet enthalpy multi-entry system includes the two-control jet enthalpy-enhanced outdoor unit according to any of the foregoing embodiments.
  • the enthalpy multi-connection system has all the beneficial effects of the two-control air-jet enthalpy-enhancing outdoor unit of any of the above embodiments.
  • the two-control air-jet enthalpy increasing outdoor unit includes: a seventh check valve 48, and the seventh check valve 48 connects the main heat exchange flow path with the second The ports are connected, and the conduction direction of the seventh check valve 48 is the direction from the second port to the entrance of the main heat exchange flow path.
  • the two-control jet enthalpy-increasing outdoor unit includes a seventh check valve 48, and the conduction direction of the seventh check valve 48 is the direction from the second port to the entrance of the main heat exchange flow path.
  • the seventh check valve 48 In the main heating mode, the seventh check valve 48 is opened, and in the cooling and main cooling modes, the seventh check valve 48 is closed, so in the heating and main heating mode, the jet enthalpy compressor can achieve jet
  • the effect of increasing enthalpy is that in the cooling and main cooling modes, the refrigerant cannot pass through the subcooler, so the effect of air injection to increase enthalpy cannot be achieved.
  • the two-control air-jet enthalpy multi-online system includes a refrigerant flow switching device 46.
  • the refrigerant flow switching device 46 includes a gas-liquid separator for gas-liquid two-phase refrigerant splitting, and a plate heat exchanger is used to obtain supercooling degree of liquid refrigerant.
  • Group solenoid valves are used to switch the refrigerant flow.
  • a high-temperature and high-pressure gas refrigerant comes out of the jet enthalpy-increasing compressor 16 and passes through the second solenoid valve 30 and the reversing assembly 18 and the second check valve 40 to the high-pressure valve, and then From the high-pressure valve through the high-pressure pipe to the refrigerant flow to the inlet of the switching device 46, enter the gas-liquid separator, from the gas-liquid separator gas side outlet through the heating solenoid valve from the gas pipe into the two-control jet enthalpy increase indoor unit 44, in the two control
  • the enthalpy-increasing enthalpy indoor unit 44 is condensed into a high-pressure liquid refrigerant, it flows through the internal unit electronic expansion valve to become a high-pressure two-phase refrigerant, and the refrigerant flows to the throttle element of the switching device 46, returns to the low-pressure pipe, passes through the low-pressure valve, and enters the outside.
  • a high-temperature and high-pressure gas refrigerant comes out of the jet enthalpy-increasing compressor 16 and passes through the second solenoid valve 30 and the reversing assembly 18 and the second one-way valve 40 to the high-pressure valve.
  • the refrigerant flows through the high-pressure pipe to the inlet of the switching device 46 and enters the gas-liquid separator.
  • the high-pressure gaseous refrigerant passes from the gas-liquid separator gas-side outlet through the heating solenoid valve and enters the heated two-control air-jet enthalpy-increasing indoor unit 44 through the gas pipe.
  • the inlet of the second supercooling device of the device 46 after coming out of the second supercooling device, becomes a high-pressure liquid refrigerant, enters the refrigerated two-control air-increasing enthalpy indoor unit 44 through the cooling check valve, and is throttled by the electronic expansion valve to become medium pressure
  • the two-phase refrigerant enters the internal unit to evaporate and absorb heat, and becomes a medium-pressure gaseous refrigerant.
  • the low-pressure pipe and the medium-pressure two-phase refrigerant flowing through the throttle element flowing from the refrigerant to the switching device 46 merge back to the external unit. Enter the external supercooler 20 through the seventh check valve 48.
  • Part of the medium-pressure refrigerant flowing out of the main outlet of the external supercooler 20 enters the auxiliary circuit of the subcooler 20 through the first throttle device 24.
  • the medium-pressure gaseous refrigerant enters the compression chamber of the jet enthalpy-increasing compressor 16 through the first solenoid valve 26, and the other part of the refrigerant passes through the throttling component 22 to reduce the pressure and enter the outdoor heat exchanger 10 to evaporate and exchange heat, and then flows through the reversing component 18 enters the low-pressure tank, and then returns to the air return port 164 of the jet enthalpy compressor 16.
  • Figure 4 is a schematic diagram of the two-control air injection enthalpy multi-online system in cooling mode, in which the refrigerant flow in the pipeline is as shown in the figure
  • Figure 6 shows the two-control air injection enthalpy multi-online system in the main Schematic diagram in cooling mode, where the refrigerant flow in the pipeline is as shown in the figure.
  • the pressure-enthalpy diagram shown in FIG. 7 indicates that the two-control air-jet multi-enthalpy multi-online system provided by the present application can significantly increase the capacity of the internal heating unit, especially under low temperature conditions. Due to the high return air pressure of the jet enthalpy compressor and the same exhaust volume at the same frequency, the system refrigerant circulation will increase significantly, and the increase in the work of the jet enthalpy compressor will also lead to an increase in capacity.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种两管制喷气增焓室外机及一种多联机系统,两管制喷气增焓室外机包括:室外换热器(10)及第二接口(14);喷气增焓压缩机(16),包括出气口(162)、回气口(164)和喷射口(166);换向组件(18),包括第一端至第四端;过冷器(20),包括相连通的主换热流路与辅换热流路,主换热流路与第二接口(14)相连,辅换热流路与喷射口(166)相接;节流组件(22),节流组件(22)的一端与主换热流路的出口相连,另一端与室外换热器(10)的入口相连。

Description

两管制喷气增焓室外机及多联机系统
相关申请的交叉引用
本申请基于申请号为201811227771.9,申请日为2018年10月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调领域,更具体而言,涉及一种两管制喷气增焓室外机及一种两管制喷气增焓多联机系统。
背景技术
常规的喷气增焓低温强热技术目前还只应用于热泵和三管制热回收系统中,两管制系统由于其外机侧回气管只有低压,很难在压缩机喷气口实现喷焓。这样两管制系统多联机系统在低温环境下,会由于环境温度低,导致低压侧压力低,回气密度小,冷媒循环量小,进而出现制热能力不足的问题,同时会出现两管制系统高温环境下,排气过热度高,制冷能力不足的问题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
本申请的一个方面提供了一种两管制喷气增焓室外机。
本申请的一个方面提供了一种两管制喷气增焓多联机系统。
鉴于上述,本申请提供的一种两管制喷气增焓室外机,两管制喷气增焓室外机包括:室外换热器及第二接口;喷气增焓压缩机,包括出气口、回气口和喷射口;换向组件,包括第一端至第四端,换向组件的第一端与出气口相连,换向组件的第二端与回气口相连;过冷器,包括相连通的主换热流路与辅换热流路,主换热流路与第二接口相连,辅换热流路与喷射口相接;节流组件,节流组件的一端与主换热流路的出口相连,另一端与室外换热器的入口相连。
本申请提供的两管制喷气增焓室外机包括,室外换热器、喷气增焓压缩机、换向组件、过冷器及节流组件,换向组件的第一端与出气口相连,换向组件的第二端与回气口相连;过冷器的主换热流路与辅换热流路相连通,主换热流路与第二接口相连,辅换热流路与喷射口相接,节流组件的一端与主换热流路的出口相连,另一端与室外换热器的 入口相连,本申请通过使用喷气增焓压缩机,从喷气增焓换热器流出的气态制冷剂直接从压缩机的中间喷射口进入压缩机以进行补气增焓压缩,同时增加过冷器和节流组件,显著增加低温制热运行时冷媒循环量,在两管制喷气增焓室外机中扩展低温制热运行范围,同时显著提高制热能力的效果。
两管制喷气增焓室外机为两管制结构,外机与内机间有两根连接管,即第一接口及第二接口与室内机相连接,与相关技术中的三管制多联机系统相比,本申请提供的两管制热回收多联机系统结构简单,节约了铜管材料,降低了安装成本。
此外,本申请提供的两管制喷气增焓室外机应用于两管制喷气增焓多联机系统,并且该多联机系统为热回收多联机,热回收的含义就是回收制冷房间排出的热量用于制热房间制热,具体来说,系统通过室内机换热器从制冷房间吸收热量,然后通过室内机换热器将该热量全部或部分释给制热房间用于制热,系统不足或剩余的热量再通过室外机换热器从环境吸取。而对于普通热泵多联机,制热室内机所需热量全部来自于室外机换热器吸热和耗电。因此,相比普通热泵,热回收多联机具有明显的节能效果。
热回收多联机存在4种运行模式:制冷、主制冷、主制热和制热。当所有运行的室内机都处于制冷/制热模式时,室外机在制冷/制热模式下运行;当运行的室内机既有制冷又有制热且制冷负荷大于制热负荷时,室外机将在主制冷模式下运行;当运行的室内机既有制冷又有制热且制冷负荷小于制热负荷时,室外机将在主制热模式下运行。如果运行制冷室内机和制热室内机的所需的流量刚好相等,则系统以全热回收模式运行。
另外,根据本申请上述技术方案提供的两管制喷气增焓室外机还具有如下附加技术特征:
在上述任一技术方案中,在本申请的一些实施例中,换向组件的第三端可转换地连接至室外换热器的入口或室外换热器的出口,换向组件的第四端可转换地连接至第二接口或第一接口。
在该技术方案中,换向组件的第三端可转换地连接至室外换热器的入口或室外换热器的出口,换向组件的第四端可转换地连接至第二接口或第一接口,在两管制喷气增焓多联机系统为制冷和主制冷模式时,换向组件的第三端与室外换热器的入口相连,换向组件的第四端与第二接口相连;在两管制喷气增焓多联机系统为制热和主制热模式时,换向组件的第三端与室外换热器的出口相连,换向组件的第四端与第一接口相连,以实现冷媒的不同流向。
在上述任一技术方案中,在本申请的一些实施例中,主换热流路的入口与第二接口相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口相接。
在该技术方案中,提供了一种过冷器内部的具体连接方式,即主换热流路的入口与第二接口相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口相接,在制热或主制热模式时,由第二接口流入的冷媒首先进入到主换热流路的入口,再由主换热流路的出口进入辅换热流路的入口,由辅换热流路的出口进入到喷射口,以实现对喷气增焓压缩机进行补气增焓压缩。
在上述任一技术方案中,在本申请的一些实施例中,主换热流路的入口和辅换热流路的入口均与第二接口相连,辅换热流路的出口与喷射口相接。
在该技术方案中,提供了一种过冷器内部的具体连接方式,即主换热流路的入口和辅换热流路的入口均与第二接口相连,辅换热流路的出口与喷射口相接,在制热或主制热模式时,由第二接口处流入的冷媒分别进入到主换热流路的入口和辅换热流路的入口,再分别通过主换热流路和辅换热流路,由主换热流路流出的冷媒通过节流组件进入到室外换热器的入口,由辅换热流路流出的冷媒通过喷射口进入到喷气增焓压缩机内,以实现对喷气增焓压缩机进行补气增焓压缩。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一电磁阀,设置在辅换热流路与喷射口之间,第一电磁阀的导通方向为由辅换热流路至喷射口方向。
在该技术方案中,两管制喷气增焓室外机包括第一电磁阀,第一电磁阀为通电导通断电闭合,并且在第一电磁阀通电导通时,第一电磁阀的导通方向为由辅换热流路至喷射口方向,即仅允许冷媒由辅换热流路向喷射口的方向导通,避免出现冷媒回流的现象。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一节流装置,第一节流装置设置在辅换热流路上,位于辅换热流路的入口处。
在该技术方案中,两管制喷气增焓室外机包括第一节流装置,将第一节流装置设置在辅换热流路上,并且第一节流装置位于辅换热流路的入口处,因此冷媒经过主换热流路后,一部分经过节流装置的节流降压作用后可进入到辅换热流路内,然后辅换热流路内的冷媒与主换热流路内的冷媒进行换热,从而可以有效地提高两管制喷气增焓室外机的制热能力,有利于提高两管制喷气增焓室外机的可靠性。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一单向阀,第一单向阀将第二接口与换向组件的第四端相连,第一单向阀的导通方向为由第二接口至换向组件的第四端的方向;第二单向阀,第二单向阀将第一接口与换向组件的第四端相连,第二单向阀的导通方向为由换向组件的第四端至第一接口的方向。
在该技术方案中,两管制喷气增焓室外机包括第一单向阀及第二单向阀,第一单向 阀将第二接口与换向组件的第四端相连,并且第一单向阀的导通方向为由第二接口至换向组件的第四端的方向,第二单向阀将第一接口与换向组件的第四端相连,第二单向阀的导通方向为由换向组件的第四端至第一接口的方向,在进行制冷和主制冷模式时,第一单向阀导通、第二单向阀闭合,在进行制热和主制热模式时,第二单向阀导通、第一单向阀闭合。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第三单向阀,第三单向阀将换向组件的第三端与室外换热器的入口相连,第三单向阀的导通方向为由换向组件的第三端至室外换热器的方向;第四单向阀,第四单向阀将换向组件的第三端与室外换热器的出口相连,第四单向阀的导通方向为由室外换热器的出口至换向组件的第三端的方向。
在该技术方案中,两管制喷气增焓室外机包括:第三单向阀和第四单向阀,第三单向阀和第四单向阀均匀换向组件的第三端相连,第三单向阀和第四单向阀的另一端则分别与室外换热器的入口及室外换热器的出口相接,第三单向阀的导通方向为由换向组件的第三端至室外换热器的方向;第四单向阀的导通方向为由室外换热器的出口至换向组件的第三端的方向;在进行制冷和主制冷模式时,第三单向阀导通、第四单向阀闭合,在进行制热和主制热模式时,第四单向阀导通、第五单向阀闭合。
在上述任一技术方案中,在本申请的一些实施例中,节流组件包括相串联的至少一个第二节流装置与至少一个第五单向阀,第五单向阀的导通方向为由过冷器至室外换热器入口的方向。
在该技术方案中,节流组件包括相串联的至少一个第二节流装置与至少一个第五单向阀,第五单向阀的导通方向为由过冷器至室外换热器入口的方向,可以为一个第二节流装置串联一个第五单向阀,或者为一个第二节流装置串联多个第五单向阀、多个第二节流装置串联一个第五单向阀,以保证节流降压的效果,并且在多级降压后可以实现更好的降压效果。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第二管路,将出气口与第一接口相连;第二电磁阀,设置在第二管路上,第二电磁阀的导通方向为由出气口至第一接口的方向。
在该技术方案中,两管制喷气增焓室外机包括第二管路及设在第二管路上的第二电磁阀,在进行制冷模式时,第二电磁阀闭合,由出气口排出的冷媒全都通过换向组件的第三端进入室外换热器的入口;在进行主制冷模式,第二电磁阀开启,由出气口排出的冷媒部分通过换向组件的第三端进入室外换热器的入口,另一部分由第二电磁阀进入第 一接口,以保证两管制喷气增焓多联机系统可以实现制冷和主制冷两种模式。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第三管路,第三管路的一端与室外换热器的出口相接,第三管路的另一端位于第二单向阀与第一接口之间;第六单向阀,设置在第三管路上。
在该技术方案中,两管制喷气增焓室外机包括第三管路和第六单向阀,在制热及主制热模式时,第六单向阀开启,由室外换热器出口排出的冷媒通过第六单向阀进入第一接口;在制冷及主制冷模式时,第六单向阀关闭。
在上述任一技术方案中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第七单向阀,第七单向阀将主换热流路与第二接口相连,第七单向阀的导通方向为由第二接口至主换热流路的入口的方向。
在该技术方案中,两管制喷气增焓室外机包括第七单向阀,第七单向阀的导通方向为由第二接口至主换热流路的入口的方向,在制热和主制热模式时,第七单向阀开启,在制冷和主制冷模式时,第七单向阀关闭,因此在制热和主制热模式时,喷气增焓压缩机可实现喷气增焓的效果,在制冷和主制冷模式时,冷媒无法通过过冷器,因此不能实现喷气增焓的效果。
根据本申请的一个方面提供了一种两管制喷气增焓多联机系统,两管制喷气增焓多联机系统包括如上述任一技术方案的两管制喷气增焓室外机,因此,该两管制喷气增焓多联机系统具有如上述任一技术方案的两管制喷气增焓室外机的全部有益效果。
根据本申请的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例提供的两管制喷气增焓多联机系统的一个结构示意图;
图2示出了本申请的一个实施例提供的两管制喷气增焓多联机系统的又一结构示意图;
图3示出了本申请的一个实施例提供的两管制喷气增焓多联机系统在制冷模式时的结构示意图;
图4示出了本申请的一个实施例提供的两管制喷气增焓多联机系统在制热模式时的结构示意图;
图5示出了本申请的一个实施例提供的两管制喷气增焓多联机系统在主制冷模式时的 结构示意图;
图6示出了本申请的一个实施例提供的两管制喷气增焓多联机系统在主制热模式时的结构示意图;
图7示出了本申请的一个实施例提供的两管制喷气增焓多联机系统的压焓图。
附图标记:
其中,图1至图6中附图标记与部件名称之间的对应关系为:
10室外换热器,12第一接口,14第二接口,16喷气增焓压缩机,162出气口,164回气口,166喷射口,18换向组件,20过冷器,22节流组件,222第二节流装置,224第五单向阀,24第一节流装置,26第一电磁阀,28第二管路,30第二电磁阀,32第三管路,34第三单向阀,36第四单向阀,38第一单向阀,40第二单向阀,42第六单向阀,44两管制喷气增焓室内机,46制冷剂流向切换装置,48第七单向阀。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7来描述根据本申请的一个实施例提供两管制喷气增焓室外机及系统。
如图1至图6所示,本申请提供的一种两管制喷气增焓室外机,两管制喷气增焓室外机包括:室外换热器10、第一接口12及第二接口14;喷气增焓压缩机16,包括出气口162、回气口164和喷射口166;换向组件18,包括第一端至第四端,换向组件18的第一端与出气口162相连,换向组件18的第二端与回气口164相连;过冷器20,包括相连通的主换热流路与辅换热流路,主换热流路与第二接口14相连,辅换热流路与喷射口166相接;节流组件22,节流组件22的一端与主换热流路的出口相连,另一端与室外换热器10的入口相连。
本申请提供的两管制喷气增焓室外机包括,室外换热器10、喷气增焓压缩机16、换向组件18、过冷器20及节流组件22,换向组件18的第一端与出气口162相连,换向组件18的第二端与回气口164相连;过冷器20的主换热流路与辅换热流路相连通, 主换热流路与第二接口14相连,辅换热流路与喷射口166相接,节流组件22的一端与主换热流路的出口相连,另一端与室外换热器10的入口相连,本申请通过使用喷气增焓压缩机16,从喷气增焓换热器流出的气态制冷剂直接从压缩机的中间喷射口166进入压缩机以进行补气增焓压缩,同时增加过冷器20和节流组件22,显著增加低温制热运行时冷媒循环量,在两管制喷气增焓室外机中扩展低温制热运行范围,同时显著提高制热能力的效果。
两管制喷气增焓室外机为两管制结构,外机与内机间有两根连接管,即第一接口12及第二接口14与室内机相连接,与相关技术中的三管制多联机系统相比,本申请提供的两管制热回收多联机系统结构简单,节约了铜管材料,降低了安装成本。
此外,本申请提供的两管制喷气增焓室外机应用于两管制喷气增焓多联机系统,并且该多联机系统为热回收多联机,热回收的含义就是回收制冷房间排出的热量用于制热房间制热,具体来说,系统通过室内机换热器从制冷房间吸收热量,然后通过室内机换热器将该热量全部或部分释给制热房间用于制热,系统不足或剩余的热量再通过室外机换热器从环境吸取。而对于普通热泵多联机,制热室内机所需热量全部来自于室外机换热器吸热和耗电。因此,相比普通热泵,热回收多联机具有明显的节能效果。
热回收多联机存在4种运行模式:制冷、主制冷、主制热和制热。当所有运行的室内机都处于制冷/制热模式时,室外机在制冷/制热模式下运行;当运行的室内机既有制冷又有制热且制冷负荷大于制热负荷时,室外机将在主制冷模式下运行;当运行的室内机既有制冷又有制热且制冷负荷小于制热负荷时,室外机将在主制热模式下运行。如果运行制冷室内机和制热室内机的所需的流量刚好相等,则系统以全热回收模式运行。
在本申请提供的一个实施例中,在本申请的一些实施例中,换向组件18的第三端可转换地连接至室外换热器10的入口或室外换热器10的出口,换向组件18的第四端可转换地连接至第二接口14或第一接口12。
在该实施例中,换向组件18的第三端可转换地连接至室外换热器10的入口或室外换热器10的出口,换向组件18的第四端可转换地连接至第二接口14或第一接口12,在两管制喷气增焓多联机系统为制冷和主制冷模式时,换向组件18的第三端与室外换热器10的入口相连,换向组件18的第四端与第二接口14相连;在两管制喷气增焓多联机系统为制热和主制热模式时,换向组件18的第三端与室外换热器10的出口相连,换向组件18的第四端与第一接口12相连,以实现冷媒的不同流向。
在本申请提供的一个实施例中,在本申请的一些实施例中,主换热流路的入口与第二接口14相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷 射口166相接。
在该实施例中,提供了一种过冷器20内部的具体连接方式,即主换热流路的入口与第二接口14相连,辅换热流路的入口与主换热流路的出口相连,辅换热流路的出口与喷射口166相接,在制热或主制热模式时,由第二接口14流入的冷媒首先进入到主换热流路的入口,再由主换热流路的出口进入辅换热流路的入口,由辅换热流路的出口进入到喷射口166,以实现对喷气增焓压缩机16进行补气增焓压缩。
在本申请提供的一个实施例中,在本申请的一些实施例中,主换热流路的入口和辅换热流路的入口均与第二接口14相连,辅换热流路的出口与喷射口166相接。
在该实施例中,提供了一种过冷器20内部的具体连接方式,即主换热流路的入口和辅换热流路的入口均与第二接口14相连,辅换热流路的出口与喷射口166相接,在制热或主制热模式时,由第二接口14处流入的冷媒分别进入到主换热流路的入口和辅换热流路的入口,再分别通过主换热流路和辅换热流路,由主换热流路流出的冷媒通过节流组件22进入到室外换热器10的入口,由辅换热流路流出的冷媒通过喷射口166进入到喷气增焓压缩机内,以实现对喷气增焓压缩机16进行补气增焓压缩。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一电磁阀26,设置在辅换热流路与喷射口166之间,第一电磁阀26的导通方向为由辅换热流路至喷射口166方向。
在该实施例中,两管制喷气增焓室外机包括第一电磁阀26,第一电磁阀26为通电导通断电闭合,并且在第一电磁阀26通电导通时,第一电磁阀26的导通方向为由辅换热流路至喷射口166方向,即仅允许冷媒由辅换热流路向喷射口166的方向导通,避免出现冷媒回流的现象。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一节流装置24,第一节流装置24设置在辅换热流路上,位于辅换热流路的入口处。
在该实施例中,两管制喷气增焓室外机包括第一节流装置24,将第一节流装置24设置在辅换热流路上,并且第一节流装置24位于辅换热流路的入口处,因此冷媒经过主换热流路后,一部分经过节流装置的节流降压作用后可进入到辅换热流路内,然后辅换热流路内的冷媒与主换热流路内的冷媒进行换热,从而可以有效地提高两管制喷气增焓室外机的制热能力,有利于提高两管制喷气增焓室外机的可靠性。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第一单向阀38,第一单向阀38将第二接口14与换向组件18的第四端相连,第 一单向阀38的导通方向为由第二接口14至换向组件18的第四端的方向;第二单向阀40,第二单向阀40将第一接口12与换向组件18的第四端相连,第二单向阀40的导通方向为由换向组件18的第四端至第一接口12的方向。
在该实施例中,两管制喷气增焓室外机包括第一单向阀38及第二单向阀40,第一单向阀38将第二接口14与换向组件18的第四端相连,并且第一单向阀38的导通方向为由第二接口14至换向组件18的第四端的方向,第二单向阀40将第一接口12与换向组件18的第四端相连,第二单向阀40的导通方向为由换向组件18的第四端至第一接口12的方向,在进行制冷和主制冷模式时,第一单向阀38导通、第二单向阀40闭合,在进行制热和主制热模式时,第二单向阀40导通、第一单向阀38闭合。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第三单向阀34,第三单向阀34将换向组件18的第三端与室外换热器10的入口相连,第三单向阀34的导通方向为由换向组件18的第三端至室外换热器10的方向;第四单向阀36,第四单向阀36将换向组件18的第三端与室外换热器10的出口相连,第四单向阀36的导通方向为由室外换热器10的出口至换向组件18的第三端的方向。
在该实施例中,两管制喷气增焓室外机包括:第三单向阀34和第四单向阀36,第三单向阀34和第四单向阀36均与换向组件18的第三端相连,第三单向阀34和第四单向阀36的另一端则分别与室外换热器10的入口及室外换热器10的出口相接,第三单向阀34的导通方向为由换向组件18的第三端至室外换热器10的方向;第四单向阀36的导通方向为由室外换热器10的出口至换向组件18的第三端的方向;在进行制冷和主制冷模式时,第三单向阀34导通、第四单向阀36闭合,在进行制热和主制热模式时,第四单向阀36导通、第五单向阀224闭合。
在本申请提供的一个实施例中,在本申请的一些实施例中,节流组件22包括相串联的至少一个第二节流装置222与至少一个第五单向阀224,第五单向阀224的导通方向为由过冷器20至室外换热器10入口的方向。
在该实施例中,节流组件22包括相串联的至少一个第二节流装置222与至少一个第五单向阀224,第五单向阀224的导通方向为由过冷器20至室外换热器10入口的方向,可以为一个第二节流装置222串联一个第五单向阀224,或者为一个第二节流装置222串联多个第五单向阀224、多个第二节流装置222串联一个第五单向阀224,以保证节流降压的效果,并且在多级降压后可以实现更好的降压效果。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第二管路28,将出气口162与第一接口12相连;第二电磁阀30,设置在第二管 路28上,第二电磁阀30的导通方向为由出气口162至第一接口12的方向。
在该实施例中,两管制喷气增焓室外机包括第二管路28及设在第二管路28上的第二电磁阀30,在进行制冷模式时,第二电磁阀30闭合,由出气口162排出的冷媒全都通过换向组件18的第三端进入室外换热器10的入口;在进行主制冷模式,第二电磁阀30开启,由出气口162排出的冷媒部分通过换向组件18的第三端进入室外换热器10的入口,另一部分由第二电磁阀30进入第一接口12,以保证两管制喷气增焓多联机系统可以实现制冷和主制冷两种模式。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第三管路32,第三管路32的一端与室外换热器10的出口相接,第三管路32的另一端位于第二单向阀40与第一接口12之间;第六单向阀42,设置在第三管路32上。
在该实施例中,两管制喷气增焓室外机包括第三管路32和第六单向阀42,在制热及主制热模式时,第六单向阀42开启,由室外换热器10出口排出的冷媒通过第六单向阀42进入第一接口12;在制冷及主制冷模式时,第六单向阀42关闭。
根据本申请的一个方面提供了一种两管制喷气增焓多联机系统,两管制喷气增焓多联机系统包括如上述任一实施例的两管制喷气增焓室外机,因此,该两管制喷气增焓多联机系统具有如上述任一实施例的两管制喷气增焓室外机的全部有益效果。
在本申请提供的一个实施例中,在本申请的一些实施例中,两管制喷气增焓室外机包括:第七单向阀48,第七单向阀48将主换热流路与第二接口相连,第七单向阀48的导通方向为由第二接口至主换热流路的入口的方向。
在该实施例中,两管制喷气增焓室外机包括第七单向阀48,第七单向阀48的导通方向为由第二接口至主换热流路的入口的方向,在制热和主制热模式时,第七单向阀48开启,在制冷和主制冷模式时,第七单向阀48关闭,因此在制热和主制热模式时,喷气增焓压缩机可实现喷气增焓的效果,在制冷和主制冷模式时,冷媒无法通过过冷器,因此不能实现喷气增焓的效果。
两管制喷气增焓多联机系统包括制冷剂流向切换装置46,制冷剂流向切换装置46包括气液分离器用于气液两相制冷剂分流,板式换热器用于获得液态制冷剂过冷度,多组电磁阀用于切换制冷剂流向。
如图3所示,制热时,高温高压的气体冷媒从喷气增焓压缩机16出来,分别经过第二电磁阀30和换向组件18及第二单向阀40两路到高压阀,再从高压阀通过高压管流到制冷剂流向切换装置46入口,进入气液分离器,从气液分离器气侧出口经过制热电磁阀从气管进入两管制喷气增焓室内机44,在两管制喷气增焓室内机44被冷凝成高 压液态冷媒后,流过内机电子膨胀阀,变成高压两相冷媒,流过制冷剂流向切换装置46的节流元件回到低压管经过低压阀进入外机,经过第七单向阀48后进入过冷器20主路入口,从过冷器20主路出口出来后,冷媒一部分通过节流组件22变成低压两相态冷媒进入室外换热器10吸热,然后经过换向组件18回到低压罐,随后进入喷气增焓压缩机16的回气口164;另外一部分冷媒通过第一节流装置24后进入过冷器20辅路入口,从过冷器20辅路出口出来后,中压气态冷媒经过第一电磁阀26进入喷气增焓压缩机16的压缩腔。
如图5所示,主制热时,高温高压的气体冷媒从喷气增焓压缩机16出来,分别经过第二电磁阀30和换向组件18及第二单向阀40两路到高压阀,再从高压阀通过高压管流到制冷剂流向切换装置46入口,进入气液分离器。高压气态冷媒从气液分离器气侧出口经过制热电磁阀从气管进入制热的两管制喷气增焓室内机44,冷凝后的高压液冷媒经过内机电子膨胀阀后流回制冷剂流向切换装置46第二过冷装置入口,从第二过冷装置出来后变成高压液态冷媒经过制冷单向阀进入制冷的两管制喷气增焓室内机44,通过电子膨胀阀节流后变成中压两相冷媒进入内机蒸发吸热,变成中压气态冷媒后在低压管与从制冷剂流向切换装置46的节流元件流过的中压两相态冷媒汇合回到外机。通过第七单向阀48进入外机过冷器20,从外机过冷器20主路出口流出的中压冷媒一部分经过第一节流装置24进入过冷器20辅路,从辅路出口出来的中压气态冷媒经过第一电磁阀26进入喷气增焓压缩机16的压缩腔,另外一部分冷媒经过节流组件22节流降压进入室外换热器10蒸发换热后,再流经换向组件18进入低压罐,然后回到喷气增焓压缩机16的回气口164。
如图4所示为两管制喷气增焓多联机系统在制冷模式下的示意图,其中管路内的冷媒流向如图中所示,如图6所示为两管制喷气增焓多联机系统在主制冷模式下的示意图,其中管路内的冷媒流向如图中所示。
图7所示的压焓图表明本申请提供的两管制喷气增焓多联机系统可显著增加制热内机的能力,尤其是在低温工况下。由于喷气增焓压缩机部分回气压力高,相同的排气量,在频率一样时,系统冷媒循环量会显著增加,同时喷气增焓压缩机做功的增加也会导致能力提升。
在本说明书的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以 是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    室外换热器及第二接口;
    喷气增焓压缩机,包括出气口、回气口和喷射口;
    换向组件,所述换向组件的第一端与所述出气口相连,所述换向组件的第二端与所述回气口相连;
    过冷器,包括相连通的主换热流路与辅换热流路,所述主换热流路与所述第二接口相连,所述辅换热流路与所述喷射口相接;
    节流组件,所述节流组件的一端与所述主换热流路的出口相连,另一端与所述室外换热器的入口相连。
  2. 根据权利要求1所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机还包括第一接口,
    所述换向组件的第三端可转换地连接至所述室外换热器的入口或所述室外换热器的出口,所述换向组件的第四端可转换地连接至所述第二接口或所述第一接口。
  3. 根据权利要求1所述的两管制喷气增焓室外机,其特征在于,
    所述主换热流路的入口与所述第二接口相连,所述辅换热流路的入口与所述主换热流路的出口相连,所述辅换热流路的出口与所述喷射口相接。
  4. 根据权利要求1所述的两管制喷气增焓室外机,其特征在于,
    所述主换热流路的入口和所述辅换热流路的入口均与所述第二接口相连,所述辅换热流路的出口与所述喷射口相接。
  5. 根据权利要求1至4中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第一电磁阀,设置在所述辅换热流路与所述喷射口之间,所述第一电磁阀的导通方向为由所述辅换热流路至所述喷射口方向。
  6. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第一节流装置,所述第一节流装置设置在所述辅换热流路上,位于所述辅换热流路的入口处。
  7. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第一单向阀,所述第一单向阀将所述第二接口与所述换向组件的第四端相连,所述第一单向阀的导通方向为由所述第二接口至所述换向组件的第四端的方向;
    第二单向阀,所述第二单向阀将第一接口与所述换向组件的第四端相连,所述第二单向阀的导通方向为由所述换向组件的第四端至所述第一接口的方向。
  8. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第三单向阀,所述第三单向阀将所述换向组件的第三端与所述室外换热器的入口相连,所述第三单向阀的导通方向为由所述换向组件的第三端至所述室外换热器的方向;
    第四单向阀,所述第四单向阀将所述换向组件的第三端与所述室外换热器的出口相连,所述第四单向阀的导通方向为由所述室外换热器的出口至所述换向组件的第三端的方向。
  9. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,
    所述节流组件包括相串联的至少一个第二节流装置与至少一个第五单向阀,所述第五单向阀的导通方向为由所述过冷器至所述室外换热器入口的方向。
  10. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第二管路,将所述出气口与第一接口相连;
    第二电磁阀,设置在所述第二管路上,所述第二电磁阀的导通方向为由所述出气口至所述第一接口的方向。
  11. 根据权利要求7所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第三管路,所述第三管路的一端与所述室外换热器的出口相接,所述第三管路的另一端位于所述第二单向阀与所述第一接口之间;
    第六单向阀,设置在所述第三管路上。
  12. 根据权利要求1至5中任一项所述的两管制喷气增焓室外机,其特征在于,所述两管制喷气增焓室外机包括:
    第七单向阀,所述第七单向阀将所述主换热流路与所述第二接口相连,所述第七单向阀的导通方向为由所述第二接口至所述主换热流路的入口的方向。
  13. 一种两管制喷气增焓多联机系统,其特征在于,所述两管制喷气增焓多联机系统包括如权利要求1至12中任一项所述的两管制喷气增焓室外机。
PCT/CN2019/089869 2018-10-22 2019-06-03 两管制喷气增焓室外机及多联机系统 WO2020082741A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/619,729 US11300329B2 (en) 2018-10-22 2019-06-03 Two-pipe enhanced-vapor-injection outdoor unit and multi-split system
CA3081380A CA3081380C (en) 2018-10-22 2019-06-03 Two-pipe enhanced-vapor-injection outdoor unit and multi-split system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811227771.9A CN109386989B (zh) 2018-10-22 2018-10-22 两管制喷气增焓室外机及多联机系统
CN201811227771.9 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020082741A1 true WO2020082741A1 (zh) 2020-04-30

Family

ID=65427586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089869 WO2020082741A1 (zh) 2018-10-22 2019-06-03 两管制喷气增焓室外机及多联机系统

Country Status (4)

Country Link
US (1) US11300329B2 (zh)
CN (1) CN109386989B (zh)
CA (1) CA3081380C (zh)
WO (1) WO2020082741A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109386989B (zh) 2018-10-22 2020-07-28 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机系统
CN115574394A (zh) * 2022-11-09 2023-01-06 珠海格力电器股份有限公司 空调系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808626A1 (en) * 2012-01-24 2014-12-03 Mitsubishi Electric Corporation Air-conditioning unit
JP2015059719A (ja) * 2013-09-19 2015-03-30 ダイキン工業株式会社 冷凍装置
CN105008820A (zh) * 2013-03-12 2015-10-28 三菱电机株式会社 空调装置
JP2016125721A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機
CN106352572A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 空调系统
CN109386989A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557377B1 (en) * 2010-04-05 2021-06-02 Mitsubishi Electric Corporation Air conditioning and hot-water supply composite system
WO2011158305A1 (ja) * 2010-06-18 2011-12-22 三菱電機株式会社 冷凍空調装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808626A1 (en) * 2012-01-24 2014-12-03 Mitsubishi Electric Corporation Air-conditioning unit
CN105008820A (zh) * 2013-03-12 2015-10-28 三菱电机株式会社 空调装置
JP2015059719A (ja) * 2013-09-19 2015-03-30 ダイキン工業株式会社 冷凍装置
JP2016125721A (ja) * 2014-12-26 2016-07-11 ダイキン工業株式会社 蓄熱式空気調和機
CN106352572A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 空调系统
CN109386989A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机系统

Also Published As

Publication number Publication date
CN109386989A (zh) 2019-02-26
US11300329B2 (en) 2022-04-12
US20200158384A1 (en) 2020-05-21
CA3081380A1 (en) 2020-04-30
CA3081380C (en) 2023-01-24
CN109386989B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN103175344B (zh) 一种寒冷地区用多联机热泵系统及其控制方法
WO2019091241A1 (zh) 空调制冷循环系统及空调器
WO2020082740A1 (zh) 两管制喷气增焓室外机及多联机系统
WO2016188295A1 (zh) 热回收多联机的室外机及热回收多联机
US10393417B2 (en) Heat pump unit control system with enhanced vapor injection capabilities for upstream and downstream liquid extraction
CN102759147A (zh) 空调器多联机系统
WO2020082741A1 (zh) 两管制喷气增焓室外机及多联机系统
CN108800393B (zh) 空调系统
WO2020082739A1 (zh) 两管制喷气增焓室外机及多联机系统
CN219037133U (zh) 一种多蒸发器并行化霜空气源热泵单热机组
CN114001484A (zh) 冷媒系统和制冷设备
CN215930176U (zh) 一种制冷系统
CN213119316U (zh) 采用节流阀的空调机组
CN213778222U (zh) 空调系统
WO2021047158A1 (zh) 空调器及其控制方法
CN209944563U (zh) 空调器
CN210832268U (zh) 空调室内机和空调器
CN209944565U (zh) 空调器
EP4008973A1 (en) Air conditioner
CN215808984U (zh) 一种空调系统
CN211177490U (zh) 空调器
CN113465220B (zh) 一种制冷系统及控制方法
CN217844347U (zh) 一种制冷制热切换模块及热泵系统
CN218915208U (zh) 蓄能空调系统
CN211876422U (zh) 改进型低温空气源冷暖热泵

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019813406

Country of ref document: EP

Effective date: 20191211

ENP Entry into the national phase

Ref document number: 3081380

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19813406

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19813406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE