CN103148649B - 蒸汽压缩制冷循环系统中喷射器设计方法 - Google Patents

蒸汽压缩制冷循环系统中喷射器设计方法 Download PDF

Info

Publication number
CN103148649B
CN103148649B CN201310100071.4A CN201310100071A CN103148649B CN 103148649 B CN103148649 B CN 103148649B CN 201310100071 A CN201310100071 A CN 201310100071A CN 103148649 B CN103148649 B CN 103148649B
Authority
CN
China
Prior art keywords
diameter
injector
nozzle
mixing chamber
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310100071.4A
Other languages
English (en)
Other versions
CN103148649A (zh
Inventor
柳建华
戚大威
段文珊
赵路平
丁杨
赵凯
王融
梁亚英
姜林林
翁晶凯
殷文华
陆至羚
吴昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USTT Technology Transfer Co., Ltd.
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310100071.4A priority Critical patent/CN103148649B/zh
Publication of CN103148649A publication Critical patent/CN103148649A/zh
Application granted granted Critical
Publication of CN103148649B publication Critical patent/CN103148649B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

本发明涉及一种蒸汽压缩制冷循环系统中喷射器设计方法,将RKS(Redlich-Kwong-Soave)状态方程、两相流声速计算公式以及经典热力学法对喷射器的分析计算结合在一起,利用RKS方程计算制冷剂在循环系统各状态点的物性参数,用声速公式计算喷射器中两相流的声速以及用经典热力学法计算喷射器中绝热膨胀过程和压缩过程的终态参数,确定喷射器各部分的尺寸,完成了不同制冷剂、不同工作工况和不同制冷量条件下喷射器的喷嘴、混合室、扩散器等部分结构参数。可以通过输入制冷剂的种类、不同的工作工况、不同制冷量等条件,快速计算喷射器的结构参数和制冷剂的物性参数,大大提高了设计效率和计算的准确性。

Description

蒸汽压缩制冷循环系统中喷射器设计方法
技术领域
本发明涉及一种喷射器设计方法,特别涉及一种蒸汽压缩制冷循环系统中喷射器设计方法。 
背景技术
进入21世纪以来,随着经济的发展,能源消耗日益增加,节能减排已成为全球范围内的重大课题。蒸汽压缩/喷射制冷系统是在蒸汽压缩制冷系统中引入结构简单、成本低、无运动部件的喷射器,起到回收节流损失和提升压缩机入口制冷剂压力的双重作用,使系统中制冷压缩机的吸气压力高于蒸发压力,提高了制冷系数,同时亦减少了节流膨胀损失。 
在蒸汽压缩/喷射制冷循环系统中,喷射器起到回收节流损失和提升压缩机入口制冷剂压力的双重作用,有助于提高制冷系统效率。循环运行流程,如图1、2所示。制冷剂饱和气体经压缩机1加压升温后进入冷凝器2,冷凝器2出口高压液体制冷剂作为工作流体进入喷射器3的喷嘴内加速降压,将势能转变为动能,喷嘴4出口工质引射蒸发器9出口的气体制冷剂在混合室5混合为两相状态,并在扩散器6内减速升压,将动能转变为势能,然后在气液分离器7中进行气液分离,气相制冷剂进入压缩机1,液相制冷剂经节流阀8节流后进入蒸发器9蒸发。如此往复,完成制冷循环。 
由于喷射器内部流场复杂,目前对于流动过程的分析和计算不完善,使喷射器的设计方法较复杂,传统的喷射器设计方法主要有三种,经验系数法、气体动力函数法和经典热力学法,每种方法都有其各自的优缺点,但是需要进行大量的设计计算,非常繁琐。 
发明内容
本发明是针对蒸汽压缩/喷射制冷循环系统中喷射器设计复杂的问题,提出了一种蒸汽压缩制冷循环系统中喷射器设计方法,将RKS(Redlich-Kwong-Soave)状态方程、两相流声速计算公式以及经典热力学法对喷射器的分析计算结合在一起,利用RKS方程计算制冷剂在循环系统各状态点的物性参数,用声速公式计算喷射器中两相流的声速以及用经典热力学法计算喷射器中绝热膨胀过程和压缩过程的终态参数,确定喷射器各部分的尺寸,完成了不同制冷剂、不同工作工况和不同制冷量条件下喷射器的喷嘴、混合室、扩散器等部分结构参数。 
本发明的技术方案为:一种蒸汽压缩制冷循环系统中喷射器设计方法,包括如下具体步骤: 
1)喷射器模型包括喷嘴、混合室和扩散器,冷凝器出口高压液体制冷剂作为工作流体进入喷射器的喷嘴内加速降压,喷嘴出口工质引射蒸发器出口的气体制冷剂在混合室混合为两相状态,并在扩散器内减速升压,
首先喷射器模型设计忽略管路、蒸发器和冷凝器阻力损失;忽略喷射器进、出口的动能变化;假定制冷剂在喷射器内为定压混合,且压力为蒸发压力;制冷剂在喷射器以及压缩机内运行各过程不计摩擦损失,均视为等熵过程;
2)喷嘴设计:确定喷嘴的形状以及喷嘴临界截面和出口截面的直径,
马赫数 ,喷嘴出口处声速
M a<1,则喷嘴应选择渐缩管,只有出口直径为d 4 ,不需计算临界直径,
 ,出口处截面积
如果,则喷嘴为渐缩渐扩管,渐扩后的出口直径为d 4 ,渐缩管临界直径为,喷嘴扩展段,即渐扩长度为l 1
,喷嘴临界截面处截面积: ,  
  ;
公式中v为速度,ρ为密度,x为干度,Rv为蒸汽的气体常数,T为温度,q为相变潜热,cp,g为气体定压比热容,cp,l为液体定压比热容,ρ1和ρ4分别是压缩机入口和喷嘴出口处气体密度,q4为喷嘴出口处相变潜热,v 4 为喷嘴出口处制冷剂速度,x 4 为喷嘴出口处制冷剂干度,x 5 为混合室出口处制冷剂干度,h min 为喷嘴临界截面处制冷剂焓,v min 为喷嘴临界截面处制冷剂速度;
3)混合室设计:混合室分为两段,前段为圆锥形,后段为圆柱形,圆柱段直径为d 5 , 圆锥段入口直径为d’,
圆柱段直径:
  ;                       
圆锥段入口直径:
   ;
定义喷射系数u为引射流体与工作流体的流量之比,自由流束的长度L,离喷嘴出口距离L处的自由流束直径为D,
时,                       
 ;                       
时,                       ;                
式中β为实验常数,
若混合室圆柱段直径,则圆锥段长度l 2  ;
若混合室圆柱段直径,则圆锥段长度l 2 ;   
式中为混合室入口段的形成线与喷射器轴线间的夹角,一般取45°,
圆柱段长度l 3 :  ;    
4)扩散器设计:
扩散器要确定的尺寸为扩散器出口直径及扩散器长度,
扩散器出口直径d 6 :   ;                    
扩散器长度l 4 :   。
所述步骤3)中β为实验常数,混合室内的介质为弹性介质时,β值在0.07~0.09之间。 
本发明的有益效果在于:本发明蒸汽压缩制冷循环系统中喷射器设计方法,可以通过输入制冷剂的种类、不同的工作工况、不同制冷量等条件,快速计算喷射器的结构参数和制冷剂的物性参数,大大提高了设计效率和计算的准确性。 
附图说明
图1为传统蒸汽压缩制冷系统图; 
图2为传统蒸汽压缩制冷系统中喷射器结构示意图;
图3为本发明蒸汽压缩制冷系统喷射器设计程序计算流程图。
具体实施方式
下面阐述设计的过程: 
一、制冷剂的物性参数计算:
在进行喷射器3结构的相关计算与设计之前,需要首先知道制冷剂在各状态点的物性参数。RKS方程在引入压缩因子Z后,方程可写成关于压缩因子的三次方程的形式:
                      (2.1)
其中
                             (2.2)
                              (2.3)
                     (2.4)
                         (2.5)
                          (2.6)
                           (2.7)
                       (2.8)
                           (2.9)
式中,T c 、P c 分别表示临界温度和临界压力,R表示气体常数,P、v、T分别是压力、比容和温度,m、n分别为随物质不同而变化的常数,α为计算中间值。
二、喷射器3设计: 
(1)首先喷射器模型设计忽略管路、蒸发器9和冷凝器2等阻力损失;忽略喷射器3进、出口的动能变化;假定制冷剂在喷射器3内为定压混合,且压力为蒸发压力;制冷剂在喷射器3以及压缩机1内运行各过程不计摩擦损失,均视为等熵过程。
(2) 喷嘴4设计: 
由之前假设可认为制冷剂在喷射器3内的过程为理想过程。
定义喷射系数u为引射流体与工作流体的流量之比,引射流体为蒸发器9出口处流体m 9 ,工作流体为喷嘴4出口处流体m 4 ,即: 
                             (3.1)
分析制冷剂在气液分离器7内的过程可知,根据质量守恒定律,扩散器6出口处的制冷剂干度x 6 必须满足:
                         (3.2)
则喷射系数u可以表示为: 
                            (3.3)
喷嘴4设计的基本任务就是确定喷嘴的形状以及喷嘴临界截面和出口截面的直径。制冷剂在喷嘴4内绝热膨胀,是一个势能转变为动能的过程,即制冷剂的焓降等于动能的增加。对制冷剂在喷嘴4内的绝热流动列能量方程,喷射器3入口处与喷嘴4出口处的流体能量守恒:
  (3.4)
h 3 为喷射器入口处制冷剂焓,v 3 为喷射器入口处制冷剂速度, h 4 为喷嘴出口处制冷剂焓,v 4 为喷嘴出口处制冷剂速度,
即:                            (3.5)
引射流体质量流量:      
                 (3.6)
h1为压缩机1入口处制冷剂焓,h8为节流阀8出口处制冷剂焓。
工作流体质量流量: 
                             (3.7)
喷嘴4出口处截面积:
                             (3.8)
喷嘴4出口处直径:
       (3.9)
喷嘴4出口处声速: 
        (3.10)
ρ1和ρ4分别是压缩机入口和喷嘴出口处气体密度,q4为喷嘴出口处相变潜热,x 4 为喷嘴4出口处制冷剂干度,x 5 为混合室5出口处制冷剂干度。
马赫数: 
                             (3.11)
M α <1,则喷嘴应选择渐缩管,只有出口直径如式3.9,不需计算临界直径。若,则喷嘴4为渐缩渐扩管,渐扩后的出口直径如式3.9,还需要计算渐缩管临界直径计算方法如下: 
喷射器3入口处与喷嘴临界截面处的流体能量守恒:
                            (3.12)
h min 为喷嘴临界截面处制冷剂焓,v min为喷嘴临界截面处制冷剂速度,
即:                             (3.13)
喷嘴临界截面处截面积:
                             (3.14)
喷嘴临界截面处直径:
                     (3.15)
喷嘴4扩展段长度:
                           (3.16)
M α <1,则无扩展段长度计算。
公式中h为焓,v为速度,Q为制冷量,ρ为密度,x为干度,Rv为蒸汽的气体常数,T为温度,q为相变潜热,cp,g为气体定压比热容,cp,l为液体定压比热容。 
(3) 混合室5设计 
混合室5结构分为两段,前段为圆锥形,后段为圆柱形。
由质量守恒定律: 
                           (3.17)
由动量守恒定律:
                  (3.18)
即:                   (3.19)
公式中m为质量流量,v为速度,h为焓。
圆柱段直径: 
                          (3.20)
圆锥段入口直径:
                           (3.21)
在计算混合室5轴向尺寸时,还必须计算两个尺寸:自由流束的长度L,离喷嘴4出口距离L处的自由流束直径D。工作流体在喷嘴出口截面上的流束具有均匀的速度场, 当工作流体和引射流体相混合时, 一起形成紊流边界层, 边界层的厚度沿流动方向逐渐加大。边界层以外侧面和速度等于零的介质相毗连, 边界层以内侧面形成速度不变的中心区, 中心区截面随着距喷嘴出口距离的增加而减小, 至某一距离时, 中心区消失, 这段距离就称为自由流束长度L。
时,                        (3.22) 
                         (3.23)
时,                      (3.24)
                  (3.25)
式中β为实验常数,对于弹性介质,在0.07~0.09之间。
若混合室5圆柱段直径,则圆锥段长度:     (3.26) 
若混合室5圆柱段直径,则圆锥段长度:    (3.27)
式中为混合室5入口段的形成线与喷射器轴线间的夹角,一般取45°。
圆柱段长度:           (3.28) 
(4) 扩散器6设计:
扩散器6要确定的尺寸为扩散器出口直径及扩散器长度。
扩散器6出口直径:                         (3.29) 
扩散器6长度:                (3.30)。

Claims (2)

1.一种蒸汽压缩制冷循环系统中喷射器设计方法,其特征在于,包括如下具体步骤:
1)喷射器模型包括喷嘴、混合室和扩散器,冷凝器出口高压液体制冷剂作为工作流体进入喷射器的喷嘴内加速降压,喷嘴出口流体引射蒸发器出口的气体后,制冷剂在混合室混合为两相状态,并在扩散器内减速升压,
首先喷射器模型设计忽略管路、蒸发器和冷凝器阻力损失;忽略喷射器进、出口的动能变化;假定制冷剂在喷射器内为定压混合,且压力为蒸发压力;制冷剂在喷射器以及压缩机内运行各过程不计摩擦损失,均视为等熵过程;
2)喷嘴设计:确定喷嘴的形状以及喷嘴临界截面和出口截面的直径,马赫数 M a = v 4 a , 喷嘴出口处声速 a = { &rho; 4 2 [ x 4 ( 1 R v T - 2 q 4 + Tc p , g q 4 2 ) 1 &rho; 1 2 + ( 1 - x 5 ) Tc p , l q 4 2 ] } - 1 2 , 若Ma<1,则喷嘴应选择渐缩管,只有出口直径为d4,不需计算临界直径, d 4 = 4 A 4 &pi; , 出口处截面积 A 4 = m 4 &rho; 4 v 4 ;
如果Ma>1,则喷嘴为渐缩渐扩管,渐扩后的出口直径为d4,渐缩管临界直径为dmin,喷嘴扩展段,即渐扩长度为l1
d min = 4 A min &pi; , 喷嘴临界截面处截面积: A min = m 4 &rho; min v min ,
公式中v为速度,ρ为密度,x为干度,Rv为蒸汽的气体常数,T为温度,q为相变潜热,cp,g为气体定压比热容,cp,l为液体定压比热容,ρ1和ρ4分别是压缩机入口和喷嘴出口处气体密度,q4为喷嘴出口处相变潜热,v4为喷嘴出口处制冷剂速度,x4为喷嘴出口处制冷剂干度,x5为混合室出口处制冷剂干度,hmin为喷嘴临界截面处制冷剂焓,vmin为喷嘴临界截面处制冷剂速度;
3)混合室设计:混合室分为两段,前段为圆锥形,后段为圆柱形,圆柱段直径为d5,圆锥段入口直径为d’,
圆柱段直径:
d 5 = 4 m 5 &rho; 5 v 5 &pi; ;
圆锥段入口直径:
d &prime; = 2 d 5 ;
定义喷射系数u为引射流体与工作流体的流量之比,自由流束的长度L,离喷嘴出口距离L处的自由流束直径为D,
当u>0.5时,D=1.55d4(1+u)
L = 0.37 + u 4.4 &beta; d 4 ;
当u≤0.5时, D = 3.4 d 4 0.083 + 0.76 u
L = ( 0.083 + 0.76 u - 0.29 ) d 4 2 &beta; ;
式中β为实验常数,
若混合室圆柱段直径d5>D,则圆锥段长度l2:l2=L;
若混合室圆柱段直径d5<D,则圆锥段长度l2
式中γ为混合室入口段的形成线与喷射器轴线间的夹角,一般取45°,
圆柱段长度l3:l3=(3~7)d5
4)扩散器设计:
扩散器要确定的尺寸为扩散器出口直径及扩散器长度,
扩散器出口直径d6:d6=2d5
扩散器长度l4:
2.根据权利要求1所述蒸汽压缩制冷循环系统中喷射器设计方法,其特征在于,所述步骤3)中β为实验常数,当混合室内的介质为弹性介质时,β值在0.07~0.09之间。
CN201310100071.4A 2013-03-27 2013-03-27 蒸汽压缩制冷循环系统中喷射器设计方法 Expired - Fee Related CN103148649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310100071.4A CN103148649B (zh) 2013-03-27 2013-03-27 蒸汽压缩制冷循环系统中喷射器设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310100071.4A CN103148649B (zh) 2013-03-27 2013-03-27 蒸汽压缩制冷循环系统中喷射器设计方法

Publications (2)

Publication Number Publication Date
CN103148649A CN103148649A (zh) 2013-06-12
CN103148649B true CN103148649B (zh) 2015-03-04

Family

ID=48546866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310100071.4A Expired - Fee Related CN103148649B (zh) 2013-03-27 2013-03-27 蒸汽压缩制冷循环系统中喷射器设计方法

Country Status (1)

Country Link
CN (1) CN103148649B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110910A (zh) * 2014-07-04 2014-10-22 珠海格力电器股份有限公司 空调系统
CN105975660B (zh) * 2016-04-27 2018-12-28 珠海凌达压缩机有限公司 冷冻冷藏用旋转式压缩机喷液结构的设计方法及系统
CN106500383B (zh) * 2016-10-27 2019-07-05 山东大学 一种喷射器运行区间的优化控制方法
WO2018086238A1 (zh) * 2016-11-14 2018-05-17 张玉良 利用循环升压升温节能方法
CN106813429B (zh) * 2016-12-31 2019-09-13 广州市粤联水产制冷工程有限公司 一种立式分离容器的制冷量计算方法及装置
CN106813430B (zh) * 2016-12-31 2019-08-23 广州市粤联水产制冷工程有限公司 一种立式分离容器的制冷量计算方法及装置
CN108981223A (zh) * 2018-09-17 2018-12-11 天津商业大学 喷射过冷制冷系统
CN109647240B (zh) * 2018-12-28 2020-08-28 西安交通大学 一种喷雾式射流与主流气体掺混的组织方法
CN110173914B (zh) * 2019-06-24 2024-05-07 郑州轻工业学院 针对压缩/喷射制冷系统的反馈式自动调节的喷射器
CN112016161B (zh) * 2020-08-24 2023-01-03 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种无能耗变质量气-液两相流散热方法
WO2022048094A1 (zh) * 2020-09-02 2022-03-10 李华玉 减小并利用吸热过程传热温差的方法
WO2022048095A1 (zh) * 2020-09-04 2022-03-10 李华玉 减小并利用放热过程传热温差的方法
CN115077909A (zh) * 2021-03-12 2022-09-20 中国航发商用航空发动机有限责任公司 直连式核心机试车台引射比测试方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392612A (en) * 1984-08-08 1995-02-28 Richard H. Alsenz Refrigeration system having a self adjusting control range
DE60112184T2 (de) * 2000-06-01 2006-06-01 Denso Corp., Kariya Ejektorzyklus
JP3903766B2 (ja) * 2001-10-30 2007-04-11 株式会社日本自動車部品総合研究所 エジェクタ
US20050103035A1 (en) * 2003-11-19 2005-05-19 Massachusetts Institute Of Technology Oil circulation observer for HVAC systems

Also Published As

Publication number Publication date
CN103148649A (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
CN103148649B (zh) 蒸汽压缩制冷循环系统中喷射器设计方法
Yan et al. Optimization on ejector key geometries of a two-stage ejector-based multi-evaporator refrigeration system
Zhu et al. Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system
Sun et al. Evaluation of a novel combined ejector-absorption refrigeration cycle—I: computer simulation
Yapıcı et al. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model
Tang et al. A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system
Lee et al. Experimental study on the improvement of CO2 air conditioning system performance using an ejector
Sag et al. Energetic and exergetic comparison of basic and ejector expander refrigeration systems operating under the same external conditions and cooling capacities
Fu et al. Numerical study for the influences of primary nozzle on steam ejector performance
Wang et al. Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle
Chang et al. Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle
Sumeru et al. A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle
Elbel et al. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation
Cizungu et al. Modelling and optimization of two-phase ejectors for cooling systems
Selvaraju et al. Analysis of a vapour ejector refrigeration system with environment friendly refrigerants
Fangtian et al. Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector
Manjili et al. Performance of a new two-stage multi-intercooling transcritical CO2 ejector refrigeration cycle
Hong et al. A novel ejector-absorption combined refrigeration cycle
Sag et al. Experimental investigation on motive nozzle throat diameter for an ejector expansion refrigeration system
Kairouani et al. Use of ejectors in a multi-evaporator refrigeration system for performance enhancement
Zou et al. Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors
Wang et al. Influences of area ratio and surface roughness on homogeneous condensation in ejector primary nozzle
Yan et al. Numerical study on the auxiliary entrainment performance of an ejector with different area ratio
Liu et al. Thermodynamic modeling and sensitivity analysis of ejector in refrigeration system
Liu et al. R744 ejector simulation based on homogeneous equilibrium model and its application in trans-critical refrigeration system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Liu Jianhua

Inventor after: Weng Jingkai

Inventor after: Yin Wenhua

Inventor after: Lu Zhiling

Inventor after: Wu Hao

Inventor after: Qi Dawei

Inventor after: Duan Wenshan

Inventor after: Zhao Luping

Inventor after: Ding Yang

Inventor after: Zhao Kai

Inventor after: Wang Rong

Inventor after: Liang Yaying

Inventor after: Jiang Linlin

Inventor before: Liu Jianhua

Inventor before: Qi Dawei

Inventor before: Jiang Linlin

Inventor before: Ding Yang

Inventor before: Weng Jingkai

Inventor before: Yin Wenhua

Inventor before: Liang Yaying

Inventor before: Lu Zhiling

Inventor before: Wu Hao

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: LIU JIANHUA QI DAWEI JIANG LINLIN DING YANG WENG JINGKAI YIN WENHUA LIANG YAYING LU ZHILING WU HAO TO: LIU JIANHUA QI DAWEI DUAN WENSHAN ZHAO LUPING DING YANG ZHAO KAI WANG RONG LIANG YAYING JIANG LINLIN WENG JINGKAI YIN WENHUA LU ZHILING WU HAO

C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160505

Address after: 200433 No. 128 Xiang Yin Road, Shanghai, Yangpu District

Patentee after: USTT Technology Transfer Co., Ltd.

Address before: 200093 Shanghai military road, Yangpu District, No. 516

Patentee before: University of Shanghai for Science and Technology

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20200327