WO2022048095A1 - 减小并利用放热过程传热温差的方法 - Google Patents

减小并利用放热过程传热温差的方法 Download PDF

Info

Publication number
WO2022048095A1
WO2022048095A1 PCT/CN2021/000177 CN2021000177W WO2022048095A1 WO 2022048095 A1 WO2022048095 A1 WO 2022048095A1 CN 2021000177 W CN2021000177 W CN 2021000177W WO 2022048095 A1 WO2022048095 A1 WO 2022048095A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
heat
heat exchange
section
exchange tube
Prior art date
Application number
PCT/CN2021/000177
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2022048095A1 publication Critical patent/WO2022048095A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels

Definitions

  • the invention belongs to the technical field of thermal/heat pump.
  • the thermal power device converts thermal energy into mechanical energy to obtain and provide power for people;
  • the refrigeration (heat pump) device converts mechanical energy into thermal energy to realize cooling/heating.
  • both thermal power devices and refrigeration (heat pump) devices there is a heat transfer process in which the circulating working medium provides heat to the heat source.
  • the circulating working fluid releases the low temperature heat load to the low temperature heat source; reducing the heat transfer temperature difference during the exothermic process will reduce the average heat release temperature of the power cycle, which will improve the thermal power conversion efficiency of the thermal device and improve the energy utilization rate.
  • the refrigeration working medium provides high temperature heat load to the heated medium; reducing the heat transfer temperature difference in the heat release process will reduce the average heat release temperature of the refrigeration cycle, thereby improving the performance index of the refrigeration (heat pump) device and reducing the mechanical energy. consumption. Therefore, in view of the specific situation that the working medium releases heat to different heat sources (the heated medium), the present invention proposes a method to reduce the heat transfer temperature difference in the heat release process by effectively utilizing the heat release temperature difference for the fundamental purpose of improving the energy utilization rate. method.
  • the main purpose of the present invention is to provide a method for reducing and utilizing the heat transfer temperature difference in the exothermic process.
  • the speed When the speed is not higher than the speed of sound, it enters the tapered variable-section heat exchange tube; when the initial speed of the working medium is supersonic, and the speed of the working medium at the end of the heat exchange process is higher than the initial speed, it enters the tapered variable-section heat exchange tube.
  • Cross-section heat exchange tube when the initial speed of the working medium is subsonic, and the speed of the working medium is higher than the sonic speed at the end of the heat exchange process, it enters the tapered-expanded variable-section heat exchange tube.
  • the temperature is lowered and depressurized - in which, when the initial speed of the working medium is subsonic, and the speed of the working medium is not higher than the speed of sound at the end of the heat exchange process, it enters the tapered variable-section heat exchange tube; when The initial velocity of the working medium is supersonic, and when the velocity of the working medium is higher than the initial velocity at the end of the heat exchange process, it enters the gradually expanding variable-section heat exchange tube; when the initial velocity of the working medium is subsonic, and the heat exchange process ends When the speed of the working medium is higher than the speed of sound, it enters the tapered-expanded variable-section heat exchange tube.
  • the method of reducing and using the heat transfer temperature difference in the exothermic process when the constant pressure and heat release of the working medium is a constant temperature condensation heat release and the heat source heats up to absorb heat, and the working medium constant pressure constant temperature condensation heat release and supercooling, make the work
  • the medium firstly flows through the heat exchange tube with gradual cross section to complete the exothermic condensation and simultaneously cool down and reduce
  • the speed of the working medium is not higher than the speed of sound, it enters the tapered variable-section-fixed-section composite heat exchange tube; when the initial speed of the working medium is supersonic, and the speed of the working medium is higher than the initial speed at the end of the heat exchange process
  • the temperature of the working medium is subsonic, and the speed of the working medium is higher than the speed of sound at the end of the heat exchange process, it enters the scaling variable section.
  • -Fixed section composite heat exchange tube when the constant pressure and heat release of the working medium is a constant temperature condensation heat release and the heat source heats up to absorb heat, and the
  • Figure 1/11 is a schematic diagram of the first T-s process flow of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • Fig. 2/11 is a schematic diagram of the second T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • Figure 3/11 is a schematic diagram of the third T-s process flow of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • Figure 4/11 is a schematic diagram of the fourth T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • Fig. 5/11 is a schematic diagram of the fifth T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • Fig. 6/11 is a schematic diagram of the sixth T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • 7/11 is a schematic diagram of the seventh T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • 8/11 is a schematic diagram of the eighth T-s flow chart of the method for reducing and utilizing the heat transfer temperature difference in the exothermic process provided by the present invention.
  • 9/11 is a schematic diagram of the first flow heat transfer process given by the method of reducing and utilizing the heat transfer temperature difference in the endothermic process provided by the present invention.
  • 10/11 is a schematic diagram of the second flow heat transfer process given by the method of reducing and utilizing the heat transfer temperature difference in the endothermic process provided by the present invention.
  • 11/11 is a schematic diagram of the third flow heat transfer process given by the method of reducing and utilizing the heat transfer temperature difference in the endothermic process provided by the present invention.
  • the AB process represents the endothermic process line of the heated medium (heat source or heat sink), 12 represents the exothermic process line of the working medium, the ab process represents the constant pressure exothermic process line of the working medium, and the s2 process represents the liquid phase
  • the constant pressure exothermic process line of the working medium; the Ts diagram is the temperature-entropy diagram.
  • Heat transfer conditions The heat release process at constant pressure of the working medium is cooling and heat release, and the heated medium maintains a constant temperature T during the heat absorption process.
  • Target requirements The working medium is cooled down or the heat is released at a constant temperature to T 2 , and the process line is gentler than the constant pressure line when the temperature is cooled and released.
  • Target requirements The working medium is exothermic from T1 to T2, so that the exothermic process line is steeper than the constant pressure exothermic process line.
  • Target requirements The working medium is cooled from T 1 to T 2 , so that the exothermic process line is gentler than the constant pressure exothermic process line.
  • Target requirements The working medium is depressurized, exothermic and condensed, and the temperature is lowered from T1 to T2.
  • the initial speed of the working medium is subsonic, and the speed of the working medium at the end of the heat exchange process is not higher than the sonic speed.
  • the case is analyzed—when the working medium is condensed and released at constant pressure according to the ab process line, the temperature does not change, The average temperature of the exothermic process will be higher than the average temperature of the decompression condensation exothermic process 12; the working medium enters the tapered variable-section heat exchange tube, exothermic condensation and cooling and decompression, which will make - the low temperature in the power plant
  • the average temperature of the exothermic process is reduced to improve the thermal power conversion efficiency, and the average temperature of the high-temperature heating process in the refrigeration (heat pump) device is reduced to improve the performance index.
  • Target requirements the working medium is depressurized and exothermic and condensed for 1t, and the temperature is cooled and exothermic condensed from T 1 to T t ; during the fluid cooling and exothermic supercooling process t2, the temperature is cooled from T t to T 2 .
  • the fixed-section heat exchange section completes low-temperature exothermic condensation and subcooling, which will reduce the average temperature of the low-temperature exothermic process in the power plant, thereby improving the thermal power conversion efficiency, and the high-temperature supply in the refrigeration (heat pump) device.
  • the average temperature of the thermal process is reduced to improve the performance index.
  • Heat transfer conditions the heated medium maintains a constant temperature T during the heat absorption process, and the working medium cools down at a constant pressure and releases heat.
  • Target requirements The working medium is heated to T 2 at a constant temperature or at a constant temperature, so that the process line when it releases heat is a straight line segment or is gentler than the constant pressure line ab.
  • the endothermic process line is steeper than the constant pressure condensation exothermic process line of the working medium.
  • Target requirements The working medium is cooled and condensed and released at a constant pressure from T 1 to T 2 , so that the process line of cooling, condensation and heat release is steeper than the process line of constant pressure condensation and heat release.
  • Realization method make the working medium flow through the heat exchange tube with gradual cross section, and depressurize while cooling and releasing heat; compared with the process ab of constant pressure cooling, condensation and heat release, the working medium is cooled, condensed and released, and the pressure is reduced at the same time Process 12 - the temperature is reduced from T 1 to T 2 , and the pressure after the endothermic process is reduced.
  • the endothermic process line is gentler than the constant pressure condensation and exothermic process line of the working medium.
  • Target requirements The working medium is cooled and condensed and released at a constant pressure from T 1 to T 2 , so that the process line of cooling, condensation and heat release is smoother than that of constant pressure condensation and heat release.
  • the heat pipe will produce the following thermodynamic effects: the temperature will be exothermic and cooled from T 1 to T 2 , the pressure will be increased from p 1 to p 2 , and the speed will be changed from c f1 to c f2 (or c f2 is lower than the working medium flowing through the constant section exchange.
  • the outlet velocity of the heat pipe after constant pressure release ).
  • the tapered variable cross-section heat exchange tube shown in Figure 10/11 makes the working medium (saturated steam) at subsonic speed enter the tapered variable cross-section heat exchange tube, and releases the heat load Q to the heated medium, then the working medium Flowing through the tapered variable-section heat exchange tube will produce the following thermodynamic effects: the temperature is lowered from T 1 to T 2 , the pressure is reduced from p 1 to p 2 , and the speed is changed from c f1 to c f2 (or c f2 higher than the outlet velocity of the working medium after the constant pressure condensation of the heat exchange tube of constant cross section).
  • the tapered variable section-fixed section composite heat exchange tube shown in Figure 11/11 is selected to make the working medium ( Saturated steam) enters the tapered variable-section-fixed-section composite heat exchange tube and releases heat load Q to the heated medium, then the working medium flows through the tapered variable-section-fixed-section composite heat-exchange tube to produce the following Thermodynamic effect: in the tapered variable-section heat exchange tube part, the temperature is lowered from T 1 to T t , the pressure is reduced from p 1 to p t , and the speed is changed from c f1 to c f
  • An effective method is provided for reducing the irreversible loss of the temperature difference between the working medium and the low-temperature heat source in the thermal device.

Abstract

减小并利用放热过程传热温差的方法,属于热动/热泵技术领域。当工作介质的定压放热为降温放热而热源定温吸热时,使工作介质流经渐变截面换热管,在放热的同时进行升压。其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。

Description

减小并利用放热过程传热温差的方法 技术领域:
本发明属于热动/热泵技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见。其中,热动装置利用热能转换为机械能,为人们获得和提供动力;制冷(热泵)装置利用机械能转换为热能,从而实现制冷/制热。在热动装置和制冷(热泵)装置中,都存在着循环工质向热源提供热量的传热过程。热动装置中,循环工质向低温热源释放低温热负荷;减小放热过程传热温差,将降低动力循环平均放热温度,将提升热动装置的热变功效率,提高能源利用率。制冷(热泵)装置中,制冷工质向被加热介质提供高温热负荷;减小放热过程传热温差,将降低制冷循环平均放热温度,从而提升制冷(热泵)装置的性能指数,降低机械能的消耗。为此,针对工作介质向不同热源(被加热介质)放热的具体情况,本发明提出了以提高能源利用率为根本目的、对放热温差加以有效利用的减小放热过程传热温差的方法。
发明内容:
本发明主要目的是要提供减小并利用放热过程传热温差的方法,具体发明内容分项阐述如下:
1.减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源定温吸热时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
2.减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源升温吸热,且温-熵图中热源的升温吸热过程线比工作介质定压放热过程线陡峭时,使工作介质流经渐变截面换热管,在放热的同时进行降压——其中,当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
3.减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源升温吸热,且温-熵图中热源的升温吸热过程线比工作介质定压放热过程线平缓时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
4.减小并利用放热过程传热温差的方法——当工作介质的定压放热为定温冷凝放热而热源升温吸热时,使工作介质流经渐变截面换热管,在放热并冷凝的同时进行降温降压——其中,当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工 作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
5.减小并利用放热过程传热温差的方法——当工作介质的定压放热为定温冷凝放热而热源升温吸热,工作介质定压定温冷凝放热并过冷时,使工作介质首先流经渐变截面换热管完成放热冷凝并同时进行降温降压,之后流经定截面换热管放热降温——其中,当工作介质初始速度为亚声速时,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面-定截面复合式换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面-定截面复合式换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入缩放型变截面-定截面复合式换热管。
6.减小并利用放热过程传热温差的方法——当工作介质的定压放热过程温度降低而热源定温吸热时,使工作介质流经渐变截面换热管,在降温放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
7.减小并利用放热过程传热温差的方法——当工作介质的定压冷凝放热过程温度降低而热源升温吸热,且温-熵图中工作介质的降温放热过程线比热源升温吸热过程线平缓时,使工作介质流经渐变截面换热管,在降温放热的同时进行降压——其中,当工作介质初始速度为亚声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
8.减小并利用放热过程传热温差的方法——当工作介质的定压冷凝放热过程温度降低而热源升温吸热,且温-熵图中工作介质的降温放热过程线比热源升温吸热过程线陡峭时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,则使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
附图说明:
图1/11是依据本发明提供的减小并利用放热过程传热温差的方法第1种T-s流程示意图。
图2/11是依据本发明提供的减小并利用放热过程传热温差的方法第2种T-s流程示意图。
图3/11是依据本发明提供的减小并利用放热过程传热温差的方法第3种T-s流程示意图。
图4/11是依据本发明提供的减小并利用放热过程传热温差的方法第4种T-s流程示意图。
图5/11是依据本发明提供的减小并利用放热过程传热温差的方法第5种T-s流程示意图。
图6/11是依据本发明提供的减小并利用放热过程传热温差的方法第6种T-s流程示意 图。
图7/11是依据本发明提供的减小并利用放热过程传热温差的方法第7种T-s流程示意图。
图8/11是依据本发明提供的减小并利用放热过程传热温差的方法第8种T-s流程示意图。
图9/11是依据本发明提供的减小并利用吸热过程传热温差的方法给出的第1种流动换热过程示意图。
图10/11是依据本发明提供的减小并利用吸热过程传热温差的方法给出的第2种流动换热过程示意图。
图11/11是依据本发明提供的减小并利用吸热过程传热温差的方法给出的第3种流动换热过程示意图。
图中,AB过程表示被加热介质(热源或称热汇)的吸热过程线,12表示工作介质的放热过程线,ab过程表示工作介质的定压放热过程线,s2过程表示液相工作介质的定压放热过程线;T-s图即温-熵图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:工作介质定压放热过程为降温放热,被加热介质吸热过程中维持定温T。
(2)目标要求:工作介质降温或定温放热至T 2,降温放热时过程线比定压线平缓。
(3)实现方法:使工作介质流经渐变截面换热管,在放热的同时进行升压;与定压放热过程ab相比较,工作介质进行放热并同时升压的过程12——温度由T 1降低到T 2,放热过程结束之后的压力是升高的;当工作介质的初始温度设定为T 2时,放热过程温度不变,压力也是升高的。
(4)技术措施:当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速为例进行分析——当工作介质按照ab过程线定压放热至温度T 2(b)时,放热过程的平均温度将高于升压放热过程12的平均温度;使工作介质进入渐扩型变截面换热管,放热升压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图2/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质升温吸热,温度由T A降温至T B;工作介质定压放热过程为降温放热,在温-熵图中被加热介质的升温吸热过程线比工作介质定压放热过程线更陡峭。
(2)目标要求:工作介质由T 1变温放热至T 2,使其放热过程线比定压放热过程线陡峭。
(3)实现方法:使工作介质流经渐变截面换热管,在放热的同时进行降压;与定压放热过程ab相比较,工作介质进行放热并同时降压的过程12——温度由T 1降低到T 2,放热过程结束之后的压力是降低的。
(4)技术措施:当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速为例进行分析——当工作介质按照ab过程线定压放热至温度T b时,放热过程的平均温度高于降压放热过程12的平均温度;使工作介质进入渐缩型变截面换热管,放热并降压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图3/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压放热过程为降温放热,在温-熵图中被加热介质的升温吸热过程线比工作介质定压放热过程线平缓。
(2)目标要求:工作介质由T 1降温放热至T 2,使其放热过程线比定压放热过程线平缓。
(3)实现方法:使工作介质流经渐变截面换热管,在放热的同时进行升压;与定压放热过程ab相比较,工作介质进行放热并同时升压的过程12——温度由T 1降低到T 2,吸热过程结束之后的压力是升高的。
(4)技术措施:当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速为例进行分析——当工作介质按照ab过程线定压放热至温度T 2(b)时,放热过程的平均温度高于升压放热过程12的平均温度;使工作介质进入渐扩型变截面换热管,放热并增压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图4/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压放热冷凝过程温度不变。
(2)目标要求:工作介质降压放热冷凝,由T 1降温放热至T 2
(3)实现方法:使工作介质流经渐变截面换热管,在放热并冷凝的同时进行降温降压;与定压放热冷凝过程ab相比较,工作介质进行放热并同时降温降压的过程12——温度由T 1降低到T 2,放热过程结束之后的压力是降低的。
(4)技术措施:当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速,而换热过程结束时工作介质速度不高于 声速例进行分析——当工作介质按照ab过程线定压冷凝放热时温度不变,放热过程的平均温度将高于降压冷凝放热过程12的平均温度;使工作介质进入渐缩型变截面换热管,放热冷凝并降温降压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图5/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压放热冷凝之后放热降温,工作介质的定压放热冷凝过程温度不变。
(2)目标要求:工作介质降压放热冷凝1t,温度由T 1降温放热冷凝至T t;流体降温放热过冷过程t2,温度由T t降温放热至T 2
(3)实现方法:使工作介质首先流经渐变截面换热管完成放热冷凝并同时进行降温降压,之后流经定截面换热管放热降温;与定压放热过程ab相比较,工作介质进行放热冷凝并同时降压的过程1s2——温度由T 1降低到T 2,放热过程结束之后的压力是降低的。
(4)技术措施:当工作介质初始速度为亚声速时,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面-定截面复合式换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面-定截面复合式换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入缩放型变截面-定截面复合式换热管。
(5)温差利用:以工作介质初始速度为亚声速,而换热过程结束时工作介质速度不高于声速为例进行分析——当工作介质按照asb过程线定压低温放热冷凝之后过冷降温时,吸热过程的平均温度高于降温放热过程1t2的平均温度;使工作介质进入渐缩型变截面-定截面复合式换热管,渐缩型变截面换热段进行放热冷凝并降温降压,定截面换热段完成低温放热冷凝和过冷,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图6/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中维持定温T,工作介质定压降温放热。
(2)目标要求:工作介质变温或定温放热至T 2,使其放热时过程线为直线段或比定压线ab平缓。
(3)实现方法:使工作介质流经渐变截面换热管,在降温放热的同时进行升压;与定压降温放热过程ab相比较,工作介质进行降温放热并同时升压的过程12——温度由T 1降低到T 2,放热过程结束之后的压力是升高的。
(4)技术措施:当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速为例进行分析——当工作介质按照ab过程线定压降温放热至温度T 2(b)时,放热过程的平均温度高于升压放热过程12的平均温度;使工作介质流经渐扩截面换热管,放热并升压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图7/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压冷凝放热过程温度降低,在温-熵图中被加热介质的升温吸热过程线比工作介质定压冷凝放热过程线陡峭。
(2)目标要求:工作介质由T 1定压降温冷凝放热至T 2,使其降温冷凝放热过程线比定压冷凝放热过程线更陡峭。
(3)实现方法:使工作介质流经渐变截面换热管,在降温放热的同时进行降压;与定压降温冷凝放热过程ab相比较,工作介质进行降温冷凝放热并同时降压的过程12——温度由T 1降低到T 2,吸热过程结束之后的压力是降低的。
(4)技术措施:当工作介质初始速度为亚声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速,而换热过程结束时工作介质速度不高于声速为例进行分析——当工作介质按照ab过程线定压降温冷凝放热至温度T b时,冷凝放热过程的平均温度高于降压冷凝放热过程12的平均温度;使工作介质进入渐缩型变截面换热管,放热冷凝并降压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图8/11所示的减小并利用放热过程传热温差的方法是这样的:
(1)传热条件:被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压冷凝放热过程温度降低,在温-熵图中被加热介质的升温吸热过程线比工作介质定压冷凝放热过程线平缓。
(2)目标要求:工作介质由T 1定压降温冷凝放热至T 2,使其降温冷凝放热过程线比定压冷凝放热过程线更平缓。
(3)实现方法:使工作介质流经渐变截面换热管,在放热的同时进行升压;与定压降温冷凝放热过程ab相比较,工作介质进行降温冷凝放热并同升压的过程12——温度由T 1降低到T 2,吸热过程结束之后的压力是升高的。
(4)技术措施:当工作介质初始速度为亚声速时,则使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
(5)温差利用:以工作介质初始速度为亚声速为例进行分析——当工作介质按照ab过程线定压降温冷凝放热至温度T 2(b)时,冷凝放热过程的平均温度高于降压冷凝放热过程12的平均温度;使工作介质进入渐扩型变截面换热管,放热冷凝并升压,这会使得——动力装置中低温放热过程的平均温度降低从而提高热变功效率,制冷(热泵)装置中高温供热过程的平均温度降低从而提升性能指数。
图9/11所示的按照减小并利用放热过程传热温差的方法而给出的流动换热过程是这样进行的:
针对被加热介质吸热过程中维持定温T,工作介质定压放热过程为降温放热,按照以图1所示的减小并利用放热过程传热温差的方法,选择图9/11所示的渐扩型变截面换热管,使处于亚声速的工作介质进入该渐扩型变截面换热管,向被加热介质释放热负荷Q,则工作 介质流经该渐扩型变截面换热管将产生如下热力学效果:温度由T 1放热降温至T 2,压力由p 1升压至p 2,速度由c f1变化到c f2(或者c f2低于工作介质流经定截面换热管定压放热之后的出口速度)。
图10/11所示的按照减小并利用放热过程传热温差的方法而给出的流动换热过程是这样进行的:
针对被加热介质吸热过程中温度由T A升温至T B,工作介质定压放热冷凝过程温度不变,按照以图4所示的减小并利用放热过程传热温差的方法,选择图10/11所示的渐缩型变截面换热管,使处于亚声速的工作介质(饱和蒸汽)进入该渐缩型变截面换热管,向被加热介质释放热负荷Q,则工作介质流经该渐缩型变截面换热管将产生如下热力学效果:温度由T 1降温放热至T 2,压力由p 1降压至p 2,速度由c f1变化到c f2(或者c f2高于工作介质流经定截面换热管定压冷凝之后的出口速度)。
图11/11所示的按照减小并利用放热过程传热温差的方法而给出的流动换热过程是这样进行的:
被加热介质吸热过程中温度升高,温度由T A升高至T B;工作介质定压放热冷凝过程温度不变,工作介质先行定压定温冷凝放热成饱和液体,之后降温放热;按照图5所示的减小并利用放热过程传热温差的方法,选择图11/11所示的渐缩型变截面-定截面复合式换热管,使处于亚声速的工作介质(饱和蒸气)进入该渐缩型变截面-定截面复合式换热管,向被加热介质释放热负荷Q,则工作介质流经该渐缩型变截面-定截面复合式换热管将产生如下热力学效果:在渐缩型变截面换热管部分,温度由T 1降温至T t,压力由p 1降压至p t,速度由c f1变化到c ft(或者c ft高于工作介质流经对应定截面换热管定压放热冷凝之后的出口速度);在定截面换热管部分,温度由T t降温至T 2,不计摩擦时压力和速度不变,受摩擦因素影响,出口速度c f2略小于c ft,出口压力p 2略小于p t
本发明技术可以实现的效果——本发明所提出的减小并利用放热过程传热温差的方法,具有如下效果和优势:
(1)为降低热动装置中工作介质与低温热源之间温差不可逆损失提供了有效方法。
(2)为降低制冷(热泵)装置中工作介质与被加热介质之间温差不可逆损失提供了有效方法。
(3)针对定温吸热,给出了工作介质连续保持小温差放热的方法,使尽可能减小温差不可逆损失成为现实。
(4)针对变温吸热,给出了工作介质连续保持小温差放热的方法,使尽可能减小温差不可逆损失成为现实。
(5)给出了多种技术条件下减小放热过程传热温差的具体方法,能够有效应对定温热需求、变温热需求、单质相变放热、混合物相变放热、气体变温放热和液体变温放热等多种工况,将有利于提升热能和机械能的利用水平与利用效果。

Claims (8)

  1. 减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源定温吸热时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
  2. 减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源升温吸热,且温-熵图中热源的升温吸热过程线比工作介质定压放热过程线陡峭时,使工作介质流经渐变截面换热管,在放热的同时进行降压——其中,当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
  3. 减小并利用放热过程传热温差的方法——当工作介质的定压放热为降温放热而热源升温吸热,且温-熵图中热源的升温吸热过程线比工作介质定压放热过程线平缓时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
  4. 减小并利用放热过程传热温差的方法——当工作介质的定压放热为定温冷凝放热而热源升温吸热时,使工作介质流经渐变截面换热管,在放热并冷凝的同时进行降温降压——其中,当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
  5. 减小并利用放热过程传热温差的方法——当工作介质的定压放热为定温冷凝放热而热源升温吸热,工作介质定压定温冷凝放热并过冷时,使工作介质首先流经渐变截面换热管完成放热冷凝并同时进行降温降压,之后流经定截面换热管放热降温——其中,当工作介质初始速度为亚声速时,而换热过程结束时工作介质的速度不高于声速时,使其进入渐缩型变截面-定截面复合式换热管;当工作介质初始速度为超声速,而换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面-定截面复合式换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入缩放型变截面-定截面复合式换热管。
  6. 减小并利用放热过程传热温差的方法——当工作介质的定压放热过程温度降低而热源定温吸热时,使工作介质流经渐变截面换热管,在降温放热的同时进行升压——其中,当工作介质初始速度为亚声速时,使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
  7. 减小并利用放热过程传热温差的方法——当工作介质的定压冷凝放热过程温度降低而热源升温吸热,且温-熵图中工作介质的降温放热过程线比热源升温吸热过程线平缓时,使工作介质流经渐变截面换热管,在降温放热的同时进行降压——其中,当工作介质初始速度为亚声速时,使其进入渐缩型变截面换热管;当工作介质初始速度为超声速,而 换热过程结束时工作介质的速度高于初始速度时,使其进入渐扩型变截面换热管;当工作介质初始速度为亚声速,而换热过程结束时工作介质的速度高于声速时,使其进入渐缩-渐扩型变截面换热管。
  8. 减小并利用放热过程传热温差的方法——当工作介质的定压冷凝放热过程温度降低而热源升温吸热,且温-熵图中工作介质的降温放热过程线比热源升温吸热过程线陡峭时,使工作介质流经渐变截面换热管,在放热的同时进行升压——其中,当工作介质初始速度为亚声速时,则使其进入渐扩型变截面换热管;当工作介质初始速度为超声速时,使其进入渐缩型变截面换热管。
PCT/CN2021/000177 2020-09-04 2021-08-30 减小并利用放热过程传热温差的方法 WO2022048095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010945609 2020-09-04
CN202010945609.1 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048095A1 true WO2022048095A1 (zh) 2022-03-10

Family

ID=78996098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000177 WO2022048095A1 (zh) 2020-09-04 2021-08-30 减小并利用放热过程传热温差的方法

Country Status (2)

Country Link
CN (1) CN113865151A (zh)
WO (1) WO2022048095A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2399695Y (zh) * 1999-12-11 2000-10-04 潘安康 即热式增压热交换装置
CN101144616A (zh) * 2007-10-15 2008-03-19 洛阳蓝海实业有限公司 动态调节式变声速增压热交换装置
CN101303178A (zh) * 2008-04-11 2008-11-12 西安交通大学 一种气动式气体加热装置及气体加热方法
CN101936309A (zh) * 2009-07-01 2011-01-05 洛阳蓝海实业有限公司 两相流喷射式升压热交换器
CN103148649A (zh) * 2013-03-27 2013-06-12 上海理工大学 蒸汽压缩制冷循环系统中喷射器设计方法
CN103398484A (zh) * 2013-07-05 2013-11-20 西安交通大学 一种超音速气体对撞式加热装置及加热方法
JP2015001363A (ja) * 2013-06-18 2015-01-05 株式会社デンソー エジェクタ
US20160033183A1 (en) * 2013-08-05 2016-02-04 Panasonic Intellectual Property Management Co., Ltd. Ejector and heat pump apparatus including the same
CN106839049A (zh) * 2015-12-05 2017-06-13 哈尔滨工大金涛科技股份有限公司 喷射式大温差换热方法与喷射式大温差换热装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2399695Y (zh) * 1999-12-11 2000-10-04 潘安康 即热式增压热交换装置
CN101144616A (zh) * 2007-10-15 2008-03-19 洛阳蓝海实业有限公司 动态调节式变声速增压热交换装置
CN101303178A (zh) * 2008-04-11 2008-11-12 西安交通大学 一种气动式气体加热装置及气体加热方法
CN101936309A (zh) * 2009-07-01 2011-01-05 洛阳蓝海实业有限公司 两相流喷射式升压热交换器
CN103148649A (zh) * 2013-03-27 2013-06-12 上海理工大学 蒸汽压缩制冷循环系统中喷射器设计方法
JP2015001363A (ja) * 2013-06-18 2015-01-05 株式会社デンソー エジェクタ
CN103398484A (zh) * 2013-07-05 2013-11-20 西安交通大学 一种超音速气体对撞式加热装置及加热方法
US20160033183A1 (en) * 2013-08-05 2016-02-04 Panasonic Intellectual Property Management Co., Ltd. Ejector and heat pump apparatus including the same
CN106839049A (zh) * 2015-12-05 2017-06-13 哈尔滨工大金涛科技股份有限公司 喷射式大温差换热方法与喷射式大温差换热装置

Also Published As

Publication number Publication date
CN113865151A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2020220727A1 (zh) 联合循环动力装置
WO2022048095A1 (zh) 减小并利用放热过程传热温差的方法
WO2020224284A1 (zh) 联合循环动力装置
CN105401988A (zh) 利用涡流管的高效热力循环系统
WO2022048094A1 (zh) 减小并利用吸热过程传热温差的方法
CN205330748U (zh) 利用涡流管的高效热力循环系统
WO2020224283A1 (zh) 联合循环动力装置
WO2020220726A1 (zh) 联合循环动力装置
WO2022062270A1 (zh) 回热式热力循环与回热式气体热动装置
CN105805978B (zh) 利用内部热耦合精馏塔的氨水吸收式制冷循环系统
WO2022057163A1 (zh) 回热式热力循环与回热式气体热动装置
WO2022193795A1 (zh) 第一类热驱动联合循环热泵装置
WO2022068119A1 (zh) 回热式热力循环与新型回热机械压缩式热泵
WO2020224285A1 (zh) 联合循环动力装置
CN108895716B (zh) 多端供热吸收式热泵
WO2022161112A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022166504A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022141610A1 (zh) 双燃料联合循环蒸汽动力装置
WO2021244028A1 (zh) 第一类热驱动联合循环热泵装置
WO2021072989A1 (zh) 单工质联合循环热泵装置
WO2022161114A1 (zh) 双燃料高温热源与双燃料动力装置
WO2021068429A1 (zh) 单工质联合循环热泵装置
WO2021042649A1 (zh) 单工质蒸汽联合循环
CN115200255A (zh) 热驱动压缩-吸收式热泵
CN112944715A (zh) 吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863167

Country of ref document: EP

Kind code of ref document: A1