WO2022161114A1 - 双燃料高温热源与双燃料动力装置 - Google Patents

双燃料高温热源与双燃料动力装置 Download PDF

Info

Publication number
WO2022161114A1
WO2022161114A1 PCT/CN2022/000016 CN2022000016W WO2022161114A1 WO 2022161114 A1 WO2022161114 A1 WO 2022161114A1 CN 2022000016 W CN2022000016 W CN 2022000016W WO 2022161114 A1 WO2022161114 A1 WO 2022161114A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating furnace
heat source
channel
dual
fuel
Prior art date
Application number
PCT/CN2022/000016
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2022161114A1 publication Critical patent/WO2022161114A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers

Definitions

  • the invention belongs to the technical field of thermodynamics and thermodynamics.
  • Cold demand, heat demand and power demand are common in human life and production; among them, the combustion of fossil fuels and biomass fuels of different qualities to form high temperature heat sources is the primary link for cold, heat and power production and utilization ; Reducing the irreversible loss of temperature difference in the formation process of high temperature heat source is the key and primary link to achieve efficient energy utilization; converting the chemical energy of fuel into thermal energy through combustion, and then converting thermal energy into mechanical energy through different thermal power conversion devices An important means for humans to provide power or electricity.
  • the temperature of fuel combustion to form gas is closely related to the conversion efficiency; from the temperature of the gas formed by combustion - such as adiabatic combustion temperature or constant pressure
  • High-grade high-grade fuels correspond to high-grade heat sources and can convert more mechanical energy
  • low-grade fuels with low constant-pressure combustion temperature are difficult to form high-temperature combustion products, corresponding to low-grade heat sources, the mechanical energy converted is relatively small.
  • the combustion chamber There is a large loss of temperature difference in the formation of high-temperature heat sources, which brings about a large mass loss in fuel utilization—however, this brings opportunities for low-grade fuels to participate in the construction of high-temperature heat sources and provide driving heat loads.
  • the present invention provides a reasonable combination of low-grade fuel and high-grade fuel to achieve learning from each other's strengths and complement each other's advantages, and can improve the utilization value of the two fuels at the same time.
  • Dual-fuel high-temperature heat sources and dual-fuel power plants that reduce greenhouse gas emissions and effectively reduce fuel costs.
  • the main purpose of the present invention is to provide a dual-fuel power plant, and the specific content of the invention is described as follows:
  • the dual-fuel high temperature heat source is mainly composed of a heating furnace, a second heating furnace and a heat source regenerator; an external low-grade fuel channel is connected to the heating furnace, and an external high-grade fuel channel is connected to the second heating furnace.
  • the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, and there is a heated medium channel on the outside that communicates with the second heating furnace through the heating furnace. After the second heating furnace is connected with the outside through a heated medium channel, a dual-fuel high temperature heat source.
  • the dual-fuel power plant is mainly composed of a heating furnace, a second heating furnace, a heat source regenerator, a second heat source regenerator, a steam turbine, a booster pump and a condenser; the steam turbine has a low-pressure steam passage that communicates with the condenser.
  • the condenser and the condensate pipeline are connected to the second heating furnace through the booster pump and the heating furnace, and then the second heating furnace has a high-pressure steam channel to communicate with the steam turbine; the external low-grade fuel channel is connected to the heating furnace, and there is air outside.
  • the channel communicates with the heating furnace through the heat source regenerator, and the heating furnace and the gas channel communicate with the outside through the heat source regenerator; the external high-grade fuel channel communicates with the second heating furnace, and the external air channel is returned through the second heat source.
  • the heater communicates with the second heating furnace, and the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator; the condenser also has a cooling medium channel that communicates with the outside to form a dual-fuel power plant; wherein, or the steam turbine is connected Boost the pump and transmit power.
  • the dual-fuel power plant is mainly composed of a heating furnace, a second heating furnace, a heat source regenerator, a second heat source regenerator, a steam turbine, a booster pump and a condenser; the steam turbine has a low-pressure steam passage that communicates with the condenser.
  • the condenser and the condensate pipeline are connected with the second heating furnace through the booster pump and the heating furnace, and then the second heating furnace has a high-pressure steam channel to communicate with the steam turbine, and the steam turbine also has a reheat steam channel to communicate with itself through the heating furnace; There is a low-grade fuel channel that communicates with the heating furnace, an external air channel that communicates with the heating furnace through a heat source regenerator, and a heating furnace and a gas channel that communicates with the outside through the heat source regenerator.
  • the heating furnace is communicated with the outside, and there is an air channel outside that communicates with the second heating furnace through the second heat source regenerator, and the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator; Externally communicated to form a dual-fuel power plant; among them, the or steam turbine is connected to the booster pump and transmits power.
  • the dual-fuel power plant is mainly composed of a heating furnace, a second heating furnace, a heat source regenerator, a second heat source regenerator, a steam turbine, a booster pump and a condenser; the steam turbine has a low-pressure steam passage that communicates with the condenser.
  • the condenser and the condensate pipeline are connected to the second heating furnace through the booster pump and the heating furnace.
  • the second heating furnace has a high-pressure steam channel that communicates with the steam turbine, and the steam turbine also has a reheat steam channel that communicates with itself through the second heating furnace.
  • the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator.
  • the second heating furnace is connected to the outside, and there is an air channel outside that communicates with the second heating furnace through the second heat source regenerator.
  • the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator.
  • the condenser also has a cooling medium The passage communicates with the outside to form a dual-fuel power plant; wherein, the or steam turbine is connected to the booster pump and transmits power.
  • the dual-fuel power plant is mainly composed of a heating furnace, a second heating furnace, a heat source regenerator, a second heat source regenerator, a steam turbine, a booster pump and a condenser;
  • the steam turbine has a low-pressure steam passage that communicates with the condenser.
  • the condenser and the condensate pipeline are connected with the second heating furnace through the booster pump and the heating furnace.
  • the second heating furnace has a high-pressure steam channel connected with the steam turbine.
  • the steam turbine also has a reheat steam channel through the heating furnace and the second heating furnace.
  • the external low-grade fuel channel is connected to the heating furnace, the external air channel is connected to the heating furnace through the heat source regenerator, and the heating furnace and the gas channel are connected to the outside through the heat source regenerator;
  • the fuel channel is communicated with the second heating furnace, and the external air channel is communicated with the second heating furnace through the second heat source regenerator, and the second heating furnace also has a gas channel communicated with the outside through the second heat source regenerator;
  • the condenser also There is a cooling medium channel that communicates with the outside to form a dual-fuel power plant; wherein, the or steam turbine is connected to the booster pump and transmits power.
  • Dual-fuel power plant which is any of the dual-fuel power plants described in items 3-6, adding an expansion speed increaser and replacing a steam turbine, adding a diffuser pipe and replacing a booster pump to form a dual-fuel power plant device.
  • Dual-fuel power plant which is to add a second booster pump and a regenerator to any of the dual-fuel power plants described in items 3-6, and connect the condenser with a condensate pipeline and a booster pump.
  • the connection is adjusted so that the condenser has a condensate pipeline that is connected to the regenerator through the second booster pump, the steam turbine is added with an extraction channel to communicate with the regenerator, and the regenerator has a condensate pipeline that communicates with the booster pump to form a double fuel power plant.
  • the dual-fuel power plant is any one of the dual-fuel power plants described in item 8, adding an expansion speed-up machine and replacing the steam turbine, adding a diffuser pipe and replacing the booster pump, and adding a second diffuser pipe And replace the second booster pump to form a dual-fuel power plant.
  • the second heat source regenerator is eliminated, and the external air passage is passed through the second heat source regenerator and the second heat source regenerator.
  • the heating furnace is connected, and the heating furnace has a gas channel that communicates with the outside through the second heat source regenerator, and an external air channel that communicates with the heating furnace through the air preheater.
  • Dual-fuel power plant mainly composed of compressor, expander, cooler, heating furnace, second heating furnace, heat source regenerator and second heat source regenerator; low-grade fuel is externally connected to the heating furnace, There is also an external air channel that communicates with the heating furnace through the heat source regenerator, the heating furnace has a gas channel that communicates with the outside through the heat source regenerator, and an external high-grade fuel channel that communicates with the second heating furnace.
  • the second heat source regenerator communicates with the second heating furnace, and the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator, and the compressor has a circulating working medium channel through the heating furnace and the second heating furnace and the expander
  • the expander and the circulating working medium channel are communicated with the compressor through the cooler; the cooler and the cooling medium channel are communicated with the outside, and the expander is connected with the compressor and transmits power to form a dual-fuel power device.
  • 1/11 is a first principle thermodynamic system diagram of a dual-fuel high-temperature heat source provided according to the present invention.
  • Figure 3/11 is a first principle thermodynamic system diagram of a dual-fuel power plant provided according to the present invention.
  • Figure 4/11 is a second principle thermodynamic system diagram of a dual-fuel power plant provided according to the present invention.
  • Fig. 5/11 is a third principle thermodynamic system diagram of a dual-fuel power plant provided according to the present invention.
  • Fig. 7/11 is a fifth principle thermodynamic system diagram of a dual-fuel power plant provided according to the present invention.
  • Fig. 8/11 is the sixth principle thermodynamic system diagram of the dual-fuel power plant provided according to the present invention.
  • Fig. 9/11 is the seventh principle thermodynamic system diagram of the dual-fuel power plant provided according to the present invention.
  • Fig. 11/11 is the ninth principle thermodynamic system diagram of the dual-fuel power plant provided according to the present invention.
  • the steam flows through the steam turbine 1 to achieve thermal power conversion.
  • the steam at the outlet of the steam turbine 1 has a very low pressure and a small flow rate (corresponding to a small kinetic energy), and the mechanical energy required by the booster pump 6 can be mechanically transmitted by the steam turbine. 1 or provided externally.
  • heat exchange tube bundles are installed inside the heating furnace to heat the medium flowing through it - including the heat exchanger for heating the medium, and the evaporator for heated vaporization and the reheating device for reheating the steam. Heater etc.
  • the heat source regenerator involves the temperature grade of the gas in the heating furnace (ie, the high temperature section of the heat source), which is listed separately.
  • 1Low-grade fuel refers to the fuel with a relatively low maximum temperature (such as adiabatic combustion temperature or constant-pressure combustion temperature) that can be formed by combustion products; compared with high-quality coal, coal gangue, coal slime, etc. are low-grade fuels. From the concept of heat source, low-grade fuel refers to fuel whose combustion products are difficult to form a high-temperature heat source with higher temperature.
  • 2High-grade fuel refers to the fuel with the highest temperature (such as adiabatic combustion temperature or constant pressure combustion temperature) that can be formed by combustion products; compared with coal gangue, coal slime and other fuels, high-quality coal, natural gas, Methane, hydrogen, etc. are all high-grade fuels. From the concept of heat source, low-grade fuel refers to fuel whose combustion products can form a high-temperature heat source with higher temperature.
  • the dual fuel high temperature heat source shown in Figure 1/11 is implemented as follows:
  • the regenerator 3 communicates with the heating furnace 1, and the heating furnace 1 also has a gas channel that communicates with the outside through the heat source regenerator 3;
  • the heat source regenerator 4 is communicated with the second heating furnace 2, the second heating furnace 2 also has a gas channel that communicates with the outside through the second heat source regenerator 4, and there is a heated medium channel on the outside through the heating furnace 1 and the second heating furnace. After 2 is connected, the second heating furnace 2 has a heated medium channel to communicate with the outside.
  • the external low-grade fuel enters the heating furnace 1, and the first external air flows through the heat source regenerator 3 to absorb heat and heat up and then enters the heating furnace 1.
  • the low-grade fuel and air are mixed in the heating furnace 1 and burned into
  • the gas in the heating furnace 1 releases heat to the heated medium flowing through it and cools down, and then flows through the heat source regenerator 3 to release heat to cool down and discharge to the outside;
  • the external high-grade fuel enters the second heating furnace 2
  • the external second air flows through the second heat source regenerator 4 and then enters the second heating furnace 2 after absorbing heat and heating up.
  • the heated medium flows through it and cools down, and then flows through the second heat source regenerator 4 to release heat for cooling and external discharge; the low-grade fuel passes through the heating furnace 1 and the high-grade fuel passes through the second heating furnace 2 to provide high-temperature heat sources Heat load, the heated medium flows through the heating furnace 1 and the second heating furnace 2 to obtain high temperature heat load, forming a dual fuel high temperature heat source.
  • the dual fuel high temperature heat source shown in Figure 2/11 is implemented as follows:
  • 3 communicates with the outside
  • the second heating furnace 2 also has a gas channel that communicates with the outside through the heat source regenerator 3
  • the outside also has a heated medium channel that communicates with the second heating furnace 2 through the heating furnace 1. After the second heating furnace 2 is connected, The heated medium passage communicates with the outside.
  • the external air flows through the heat source regenerator 3 and then divides into two paths after absorbing heat and heating up—the first path enters the heating furnace 1, and the second path enters the second heating furnace 2; the external low-grade fuel enters the heating furnace 1 , the low-grade fuel and air are mixed in the heating furnace 1 and burned into gas with a higher temperature.
  • the gas in the heating furnace 1 releases heat to the heated medium flowing through it and cools down, and then flows through the heat source regenerator 3 to release heat Cooling and external discharge;
  • the external high-grade fuel enters the second heating furnace 2, the high-grade fuel and air are mixed in the second heating furnace 2 and burn into high-temperature gas, and the high-temperature gas releases heat to the heated medium flowing through it and cools down , and then flows through the heat source regenerator 3 to release heat for cooling and external discharge;
  • the low-grade fuel passes through the heating furnace 1 and the high-grade fuel passes through the second heating furnace 2 to provide heat load for the high-temperature heat source respectively, and the heated medium flows through the heating furnace 1 and 2.
  • the second heating furnace 2 obtains a high temperature heat load to form a dual fuel high temperature heat source.
  • the dual fuel powerplant shown in Figure 3/11 is implemented as follows:
  • the steam turbine 5 has a low-pressure steam passage and a condenser 7 Connected, the condenser 7 and the condensate pipeline are connected with the second heating furnace 2 through the booster pump 6 and the heating furnace 1, and the second heating furnace 2 has a high-pressure steam passage and is connected with the steam turbine 5;
  • the heating furnace 1 is connected to the outside, and there is an external air channel that communicates with the heating furnace 1 through the heat source regenerator 3.
  • the heating furnace 1 also has a gas channel that communicates with the outside through the heat source regenerator 3;
  • the furnace 2 is connected, and there is an external air passage that communicates with the second heating furnace 2 through the second heat source regenerator 4, and the second heating furnace 2 also has a gas channel that communicates with the outside through the second heat source regenerator 4;
  • the condenser 7 is also A cooling medium passage communicates with the outside.
  • the external low-grade fuel enters the heating furnace 1, and the first external air flows through the heat source regenerator 3 to absorb heat and heat up and then enters the heating furnace 1.
  • the low-grade fuel and air are mixed in the heating furnace 1 and burned into
  • the gas in the heating furnace 1 releases heat to the circulating working medium flowing through it and cools down, and then flows through the heat source regenerator 3 to release heat to cool down and discharge to the outside;
  • the external high-grade fuel enters the second heating furnace 2.
  • the external second air flows through the second heat source regenerator 4 and then enters the second heating furnace 2 after absorbing heat and heating up.
  • the circulating working medium flows through it and cools down, and then flows through the second heat source regenerator 4 to release heat and cool down and discharge to the outside;
  • the second heating furnace 2 gradually absorbs heat to heat up and vaporize, flows through the steam turbine 5 to depressurize and perform work, and then enters the condenser 7 to release heat and condense; the low-grade fuel passes through the heating furnace 1 and the high-grade fuel passes through the second heating furnace 2.
  • the heat load, the cooling medium takes away the low temperature heat load through the condenser 7; the work output by the steam turbine 5 is provided to the outside, or the work output by the steam turbine 5 is provided to the booster pump 6 and the outside, forming a dual-fuel power plant.
  • the dual-fuel powerplant shown in Figure 4/11 is implemented as follows:
  • the steam turbine 5 has a low-pressure steam passage and a condenser 7 Connected, the condenser 7 and the condensate pipeline are connected with the second heating furnace 2 through the booster pump 6 and the heating furnace 1, and then the second heating furnace 2 has a high-pressure steam channel to communicate with the steam turbine 5, and the steam turbine 5 also has reheated steam.
  • the channel communicates with itself through the heating furnace 1; the external low-grade fuel channel communicates with the heating furnace 1, and the external air channel communicates with the heating furnace 1 through the heat source regenerator 3, and the heating furnace 1 also has a gas channel through the heat source regenerator.
  • 3 is communicated with the outside; there is also a high-grade fuel channel on the outside that communicates with the second heating furnace 2, and an air channel on the outside that communicates with the second heating furnace 2 through the second heat source regenerator 4, and the second heating furnace 2 also has a gas channel.
  • the second heat source regenerator 4 communicates with the outside; the condenser 7 also has a cooling medium channel to communicate with the outside.
  • the condensate of the condenser 7 flows through the booster pump 6 to boost pressure, and flows through the heating furnace 1 and the second heating furnace.
  • Furnace 2 gradually absorbs heat to heat up and vaporize, enters steam turbine 5 to depressurize and work to a certain extent, and then flows through heating furnace 1 to absorb heat and increase temperature, and then enters steam turbine 5 to continue depressurization and work; the low-pressure steam discharged from steam turbine 5 enters condenser 7 to release heat. Condenses to form a dual fuel powerplant.
  • the steam turbine 5 has a low-pressure steam passage and a condenser 7 Connected, the condenser 7 and the condensate pipeline are connected with the second heating furnace 2 through the booster pump 6 and the heating furnace 1, and then the second heating furnace 2 has a high-pressure steam channel to communicate with the steam turbine 5, and the steam turbine 5 also has reheated steam.
  • the channel communicates with itself through the second heating furnace 2; the external low-grade fuel channel communicates with the heating furnace 1, and the external air channel communicates with the heating furnace 1 through the heat source regenerator 3, and the heating furnace 1 also has a gas channel through the heat source.
  • the heater 3 communicates with the outside; there is also a high-grade fuel channel outside that communicates with the second heating furnace 2, and an external air channel communicates with the second heating furnace 2 through the second heat source regenerator 4, and the second heating furnace 2 also has The gas channel communicates with the outside through the second heat source regenerator 4; the condenser 7 also has a cooling medium channel communicated with the outside.
  • the condensate of the condenser 7 flows through the booster pump 6 to boost pressure, and flows through the heating furnace 1 and the second heating furnace.
  • the furnace 2 gradually absorbs heat to heat up and vaporize, enters the steam turbine 5 to depressurize the work to a certain extent, and then flows through the second heating furnace 2 to absorb heat and heat up, and then enters the steam turbine 5 to continue depressurization and work;
  • the low-pressure steam discharged from the steam turbine 5 enters the condenser 7 Exothermic condensation, forming a dual fuel power plant.
  • the steam turbine 5 has a low-pressure steam passage and a condenser 7 Connected, the condenser 7 and the condensate pipeline are connected with the second heating furnace 2 through the booster pump 6 and the heating furnace 1, and then the second heating furnace 2 has a high-pressure steam channel to communicate with the steam turbine 5, and the steam turbine 5 also has reheated steam.
  • the channel communicates with itself through the heating furnace 1 and the second heating furnace 2; the external low-grade fuel channel communicates with the heating furnace 1, and the external air channel communicates with the heating furnace 1 through the heat source regenerator 3, and the heating furnace 1 also has gas
  • the channel is communicated with the outside through the heat source regenerator 3; the external high-grade fuel channel is communicated with the second heating furnace 2, and the external air channel is communicated with the second heating furnace 2 through the second heat source regenerator 4, and the second heating furnace 2.
  • the furnace 2 also has a gas channel communicated with the outside through the second heat source regenerator 4; the condenser 7 also has a cooling medium channel communicated with the outside.
  • the condensate of the condenser 7 flows through the booster pump 6 to boost pressure, and flows through the heating furnace 1 and the second heating furnace.
  • Furnace 2 gradually absorbs heat to heat up and vaporize, enter the steam turbine 5 to depressurize the work to a certain extent, and then flows through the heating furnace 1 and the second heating furnace 2 to gradually absorb heat to increase temperature, and then enters the steam turbine 5 to continue depressurization and work; the low pressure discharged by the steam turbine 5.
  • the steam enters the condenser 7 to release heat and condense to form a dual-fuel power plant.
  • the condensate of the condenser 7 flows through the diffuser pipe 9 to reduce the speed and increase the pressure, and flows through the heating furnace 1 and the first
  • the second heating furnace 2 gradually absorbs heat, heats up and vaporizes, and flows through the expansion speed-up machine 8 to depressurize and increase the speed, and then enter the condenser 7 to release heat and condense. device.
  • Endothermic temperature rise and vaporization enter the steam turbine 5 to depressurize the work to a certain extent, and then divide into two paths - the first path is supplied to the regenerator 11, and the second path continues to depressurize and work, and then enters the condenser 7 to release heat and condense, forming a double flow. fuel power plant.
  • the condensed liquid of the regenerator 11 flows through the diffuser pipe 9 to decelerate and increase the pressure, and flows through the heating furnace 1 and the second heating furnace 2 gradually absorb heat to heat up and vaporize, enter the expansion speed-up machine 8 to depressurize the work to a certain extent, and then divide into two paths - the first path is provided to the regenerator 11, and the second path continues to depressurize and perform work and After the acceleration, it enters the condenser 7 to release heat and condense, forming a dual-fuel power plant.
  • the second heat source regenerator is canceled, and the external air passage is communicated with the second heating furnace 2 through the second heat source regenerator 4 to heat the
  • the furnace 2 has a gas channel that communicates with the outside through the second heat source regenerator 4, and an external air channel that communicates with the heating furnace 1 through the air preheater 3, and is adjusted so that the outside has an air channel that communicates with the heat source regenerator 3.
  • the furnace 2 has a gas channel to communicate with the outside through the heat source regenerator 3 .
  • the external low-grade fuel is communicated with the heating furnace 1 , there are also air passages on the outside that communicate with the heating furnace 1 through the heat source regenerator 3,
  • the heating furnace 1 also has a gas channel that communicates with the outside through the heat source regenerator 3, and there are high-grade fuel channels on the outside that communicate with the second heating furnace 2,
  • the second heating furnace 2 also has a gas channel that communicates with the outside through the second heat source regenerator 4, and the compressor 13 has a circulating working medium channel.
  • the external low-grade fuel enters the heating furnace 1, and the first external air flows through the heat source regenerator 3 to absorb heat and heat up and then enters the heating furnace 1.
  • the low-grade fuel and air are mixed in the heating furnace 1 and burned into
  • the gas in the heating furnace 1 releases heat to the circulating working medium flowing through it and cools down, and then flows through the heat source regenerator 3 to release heat to cool down and discharge to the outside;
  • the external high-grade fuel enters the second heating furnace 2.
  • the external second air flows through the second heat source regenerator 4 and then enters the second heating furnace 2 after absorbing heat and heating up.
  • the circulating working medium flows through it and cools down, and then flows through the second heat source regenerator 4 to release heat to cool down and discharge to the outside;
  • the circulating working medium discharged from the compressor 13 flows through the heating furnace 1 and the second heating furnace 2 to gradually absorb
  • the heat rises up flows through the expander 5 to depressurize the work, flows through the cooler 14 to release heat and cools down, and then enters the compressor 13 to increase the pressure and raise the temperature;
  • the cooling medium takes away the low temperature heat load through the cooler 14, and the work output by the expander 5 provides the compressor 13 and the external power to form a dual-fuel power plant.
  • Low-grade fuels participate in the construction of high-temperature heat sources, reduce the input of high-grade fuels, and improve the utilization value of low-grade fuels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供双燃料动力装置,属于热力学与热动技术领域。汽轮机有低压蒸汽通道与冷凝器连通,冷凝器还有冷凝液管路经升压泵和加热炉与第二加热炉连通之后第二加热炉再有高压蒸汽通道与汽轮机连通,汽轮机还有再热蒸汽通道经加热炉与自身连通;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通;冷凝器还有冷却介质通道与外部连通,形成双燃料动力装置。

Description

双燃料高温热源与双燃料动力装置 技术领域:
本发明属于热力学与热动技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,将不同品质的化石燃料、生物质燃料等通过燃烧形成高温热源,是进行冷、热、动力生产与利用的首要环节;减少高温热源形成过程的温差不可逆损失,是实现能源高效利用的关键和首要环节;将燃料的化学能通过燃烧转换为热能,进而通过不同的热变功装置再将热能转换为机械能,是向人类提供动力或电力的重要手段。
燃料有不同的种类和不同的性质,其中燃料燃烧形成燃气的温度高低与转换效率密切相关;从燃烧形成的燃气温度——如绝热燃烧温度或定压燃烧温度——来看,定压燃烧温度高的高品位燃料,对应着高品位热源,可转化更多的机械能;而定压燃烧温度低的低品位燃料,难以形成高温燃烧产物,对应着低品位热源,转化的机械能相对较少。
由于受限于工作原理,或受限于工作介质的性质,或受限于材料性质,或受限于压缩设备及其它部件的制造水平等原因,采用高品位优质燃料的动力装置中,燃烧室内高温热源的形成过程中存在较大的温差损失,这带来较大的燃料利用上的质量损失——不过,这为低品位燃料参与高温热源构建和提供驱动热负荷带来了机遇。
人们需要简单、主动、安全、高效地利用燃料来形成高温热源,本发明给出了将低品位燃料与高品位燃料进行合理搭配使用,实现取长补短和优势互补,能够同时提升两种燃料利用价值,减少温室气体排放,以及有效降低燃料成本的双燃料高温热源与双燃料动力装置。
发明内容:
本发明主要目的是要提供双燃料动力装置,具体发明内容分项阐述如下:
1.双燃料高温热源,主要由加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有被加热介质通道经加热炉与第二加热炉连通之后第二加热炉再有被加热介质通道与外部连通,形成双燃料高温热源。
2.双燃料高温热源,主要由加热炉、第二加热炉和热源回热器所组成;外部有低品位燃料通道与加热炉连通,外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经热源回热器之后分成两路——第一路与加热炉连通和第二路与第二加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,第二加热炉还有燃气通道经热源回热器与外部连通,外部还有被加热介质通道经加热炉与第二加热炉连通之后第二加热炉再有被加热介质通道与外部连通,形成双燃料高温热源。
3.双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽 轮机、升压泵和冷凝器所组成;汽轮机有低压蒸汽通道与冷凝器连通,冷凝器还有冷凝液管路经升压泵和加热炉与第二加热炉连通之后第二加热炉再有高压蒸汽通道与汽轮机连通;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通;冷凝器还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机连接升压泵并传输动力。
4.双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机有低压蒸汽通道与冷凝器连通,冷凝器还有冷凝液管路经升压泵和加热炉与第二加热炉连通之后第二加热炉再有高压蒸汽通道与汽轮机连通,汽轮机还有再热蒸汽通道经加热炉与自身连通;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通;冷凝器还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机连接升压泵并传输动力。
5.双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机有低压蒸汽通道与冷凝器连通,冷凝器还有冷凝液管路经升压泵和加热炉与第二加热炉连通之后第二加热炉再有高压蒸汽通道与汽轮机连通,汽轮机还有再热蒸汽通道经第二加热炉与自身连通;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通;冷凝器还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机连接升压泵并传输动力。
6.双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机有低压蒸汽通道与冷凝器连通,冷凝器还有冷凝液管路经升压泵和加热炉与第二加热炉连通之后第二加热炉再有高压蒸汽通道与汽轮机连通,汽轮机还有再热蒸汽通道经加热炉和第二加热炉与自身连通;外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通;冷凝器还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机连接升压泵并传输动力。
7.双燃料动力装置,是在第3-6项所述的任一一款双燃料动力装置中,增加膨胀增速机并取代汽轮机,增加扩压管并取代升压泵,形成双燃料动力装置。
8.双燃料动力装置,是在第3-6项所述的任一一款双燃料动力装置中,增加第二升压泵和回热器,将冷凝器有冷凝液管路与升压泵连通调整为冷凝器有冷凝液管路经第二升压泵与回热器连通,汽轮机增设抽汽通道与回热器连通,回热器再有冷凝液管路与升压泵连 通,形成双燃料动力装置。
9.双燃料动力装置,是在第8项所述的任一一款双燃料动力装置中,增加膨胀增速机并取代汽轮机,增加扩压管并取代升压泵,增加第二扩压管并取代第二升压泵,形成双燃料动力装置。
10.双燃料动力装置,是在第3-9项所述的任一一款双燃料动力装置中,取消第二热源回热器,将外部有空气通道经第二热源回热器与第二加热炉连通,加热炉有燃气通道经第二热源回热器与外部连通,以及外部有空气通道经空气预热器与加热炉连通,一并调整为外部有空气通道与热源回热器连通之后分成两路——第一路与加热炉连通,第二路与第二加热炉连通;将第二加热炉有燃气通道经第二热源回热器与外部连通调整为第二加热炉有燃气通道经热源回热器与外部连通,形成双燃料动力装置。
11.双燃料动力装置,主要由压缩机、膨胀机、冷却器、加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部还有高品位燃料通道与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,压缩机有循环工质通道经加热炉和第二加热炉与膨胀机连通,膨胀机还有循环工质通道经冷却器与压缩机连通;冷却器还有冷却介质通道与外部连通,膨胀机连接压缩机并传输动力,形成双燃料动力装置。
附图说明:
图1/11是依据本发明所提供的双燃料高温热源第1种原则性热力系统图。
图2/11是依据本发明所提供的双燃料高温热源第2种原则性热力系统图。
图3/11是依据本发明所提供的双燃料动力装置第1种原则性热力系统图。
图4/11是依据本发明所提供的双燃料动力装置第2种原则性热力系统图。
图5/11是依据本发明所提供的双燃料动力装置第3种原则性热力系统图。
图6/11是依据本发明所提供的双燃料动力装置第4种原则性热力系统图。
图7/11是依据本发明所提供的双燃料动力装置第5种原则性热力系统图。
图8/11是依据本发明所提供的双燃料动力装置第6种原则性热力系统图。
图9/11是依据本发明所提供的双燃料动力装置第7种原则性热力系统图。
图10/11是依据本发明所提供的双燃料动力装置第8种原则性热力系统图。
图11/11是依据本发明所提供的双燃料动力装置第9种原则性热力系统图。
图中,1-加热炉,2-第二加热炉,3-热源回热器,4-第二热源回热器,5-汽轮机,6-升压泵,7-冷凝器,8-膨胀增速机,9-扩压管,10-回热器,11-第二升压泵,12-第二扩压管,13-压缩机,14-冷却器。
关于膨胀增速机、加热炉、热源回热器、低品位燃料和高品位燃料,这里给出如下简要说明:
(1)为揭示汽轮机1和膨胀增速机8在工作流程上的区别,这里作如下解释:
①图3/11中,蒸汽流经汽轮机1实现热变功,汽轮机1出口蒸汽具有很低压力和较小流速(对应较小的动能),升压泵6需要的机械能可通过机械传输由汽轮机1或由外部提供。
②相比之下,图7/11中,膨胀增速机8出口蒸汽同样具有很低的压力,但流速相对较 大(一部分压降转换为低压蒸汽的动能)以满足扩压管9降速升压的需要。
③对图1/11中蒸汽流经汽轮机1实现热变功的过程采用“降压作功”,对图7/11中蒸汽流经膨胀增速机8实现热变功的过程采用“降压作功并增速”来表示。
(2)加热炉和热源回热器:
①根据需要,加热炉内部设置换热管束,对流经其内的介质进行加热——包括用于介质升温的热交换器,还可设置用于受热汽化的蒸发器和对蒸汽进行再热的再热器等。
②不具体指明循环介质流经加热炉受热时所涉及到的具体换热管束,而统一采用加热炉来表述。
③热源回热器涉及加热炉内燃气(即热源高温段)的温度品位,单独列出。
(3)低品位燃料和高品位燃料:
①低品位燃料:指的是燃烧产物所能够形成的最高温度(比如绝热燃烧温度或定压燃烧温度)相对较低的燃料;相对于优质煤炭,煤矸石、煤泥等则是低品位燃料。从热源的概念来看,低品位燃料指的是燃烧产物难以形成较高温度的高温热源的燃料。
②高品位燃料:指的是燃烧产物所能够形成的最高温度(比如绝热燃烧温度或定压燃烧温度)相对较高的燃料;相对于煤矸石、煤泥等燃料而言,优质煤、天然气、甲烷、氢气等都是高品位燃料。从热源的概念来看,低品位燃料指的是燃烧产物能够形成较高温度的高温热源的燃料。
③对固体燃料来说,燃烧产物的气态物质是构成热源的核心,是热力系统的重要组成部分;而燃烧产物中的固态物质,如废渣,在其含有热能得到利用(利用流程及设备包含在加热炉内或在加热炉本体之外预热空气)之后被排出,不单独列出,其作用不单独表述。
④受限于现行技术条件或材料性能等原因,尤其对于需要通过间接手段向循环工质提供驱动高温热负荷的燃料来说,它们的品位高低应以燃烧产物所能够形成的最高温度减去间接传热温差之后的温度高低来划分;或者,以现行技术条件下能够使循环工质所能达到的温度高低来划分——使循环工质(工作介质)能够达到的温度更高者为高品位燃料,使循环工质(工作介质)能够达到的温度较低者为低品位燃料。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/11所示的双燃料高温热源是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料通道与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通;外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通,外部还有被加热介质通道经加热炉1与第二加热炉2连通之后第二加热炉2再有被加热介质通道与外部连通。
(2)流程上,外部低品位燃料进入加热炉1,外部第一路空气流经热源回热器3吸热升温之后进入加热炉1,低品位燃料和空气在加热炉1内混合并燃烧成温度较高的燃气,加热炉1内燃气放热于流经其内的被加热介质并降温,之后流经热源回热器3放热降温和对外排放; 外部高品位燃料进入第二加热炉2,外部第二路空气流经第二热源回热器4吸热升温之后进入第二加热炉2,高品位燃料和空气在第二加热炉2内混合并燃烧成高温燃气,高温燃气放热于流经其内的被加热介质并降温,之后流经第二热源回热器4放热降温和对外排放;低品位燃料通过加热炉1和高品位燃料通过第二加热炉2分别为高温热源提供热负荷,被加热介质流经加热炉1和第二加热炉2获取高温热负荷,形成双燃料高温热源。
图2/11所示的双燃料高温热源是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉和热源回热器所组成;外部有低品位燃料通道与加热炉1连通,外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经热源回热器3之后分成两路——第一路与加热炉1连通和第二路与第二加热炉2连通,加热炉1还有燃气通道经热源回热器3与外部连通,第二加热炉2还有燃气通道经热源回热器3与外部连通,外部还有被加热介质通道经加热炉1与第二加热炉2连通之后第二加热炉2再有被加热介质通道与外部连通。
(2)流程上,外部空气流经热源回热器3吸热升温之后分成两路——第一路进入加热炉1,第二路进入第二加热炉2;外部低品位燃料进入加热炉1,低品位燃料和空气在加热炉1内混合并燃烧成温度较高的燃气,加热炉1内燃气放热于流经其内的被加热介质并降温,之后流经热源回热器3放热降温和对外排放;外部高品位燃料进入第二加热炉2,高品位燃料和空气在第二加热炉2内混合并燃烧成高温燃气,高温燃气放热于流经其内的被加热介质并降温,之后流经热源回热器3放热降温和对外排放;低品位燃料通过加热炉1和高品位燃料通过第二加热炉2分别为高温热源提供热负荷,被加热介质流经加热炉1和第二加热炉2获取高温热负荷,形成双燃料高温热源。
图3/11所示的双燃料动力装置是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机5有低压蒸汽通道与冷凝器7连通,冷凝器7还有冷凝液管路经升压泵6和加热炉1与第二加热炉2连通之后第二加热炉2再有高压蒸汽通道与汽轮机5连通;外部有低品位燃料通道与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通;外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通;冷凝器7还有冷却介质通道与外部连通。
(2)流程上,外部低品位燃料进入加热炉1,外部第一路空气流经热源回热器3吸热升温之后进入加热炉1,低品位燃料和空气在加热炉1内混合并燃烧成温度较高的燃气,加热炉1内的燃气放热于流经其内的循环工质并降温,之后流经热源回热器3放热降温和对外排放;外部高品位燃料进入第二加热炉2,外部第二路空气流经第二热源回热器4吸热升温之后进入第二加热炉2,高品位燃料和空气在第二加热炉2内混合并燃烧成高温燃气,高温燃气放热于流经其内的循环工质并降温,之后流经第二热源回热器4放热降温和对外排放;冷凝器7的冷凝液流经升压泵6升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,流经汽轮机5降压作功,之后进入冷凝器7放热冷凝;低品位燃料通过加热炉1和高品位燃料通过第二加热炉2共同提供驱动热负荷,冷却介质通过冷凝器7带走低温热负荷;汽轮 机5输出的功对外提供,或汽轮机5输出的功提供给升压泵6和外部,形成双燃料动力装置。
图4/11所示的双燃料动力装置是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机5有低压蒸汽通道与冷凝器7连通,冷凝器7还有冷凝液管路经升压泵6和加热炉1与第二加热炉2连通之后第二加热炉2再有高压蒸汽通道与汽轮机5连通,汽轮机5还有再热蒸汽通道经加热炉1与自身连通;外部有低品位燃料通道与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通;外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通;冷凝器7还有冷却介质通道与外部连通。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7的冷凝液流经升压泵6升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,进入汽轮机5降压作功至一定程度之后流经加热炉1吸热升温,然后进入汽轮机5继续降压作功;汽轮机5排放的低压蒸汽进入冷凝器7放热冷凝,形成双燃料动力装置。
图5/11所示的双燃料动力装置是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机5有低压蒸汽通道与冷凝器7连通,冷凝器7还有冷凝液管路经升压泵6和加热炉1与第二加热炉2连通之后第二加热炉2再有高压蒸汽通道与汽轮机5连通,汽轮机5还有再热蒸汽通道经第二加热炉2与自身连通;外部有低品位燃料通道与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通;外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通;冷凝器7还有冷却介质通道与外部连通。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7的冷凝液流经升压泵6升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,进入汽轮机5降压作功至一定程度之后流经第二加热炉2吸热升温,然后进入汽轮机5继续降压作功;汽轮机5排放的低压蒸汽进入冷凝器7放热冷凝,形成双燃料动力装置。
图6/11所示的双燃料动力装置是这样实现的:
(1)结构上,它主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机5有低压蒸汽通道与冷凝器7连通,冷凝器7还有冷凝液管路经升压泵6和加热炉1与第二加热炉2连通之后第二加热炉2再有高压蒸汽通道与汽轮机5连通,汽轮机5还有再热蒸汽通道经加热炉1和第二加热炉2与自身连通;外部有低品位燃料通道与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通;外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通;冷凝器7还有冷却介质通道与外部连通。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7的冷凝 液流经升压泵6升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,进入汽轮机5降压作功至一定程度之后流经加热炉1和第二加热炉2逐步吸热升温,然后进入汽轮机5继续降压作功;汽轮机5排放的低压蒸汽进入冷凝器7放热冷凝,形成双燃料动力装置。
图7/11所示的双燃料动力装置是这样实现的:
(1)结构上,在图3/11所示的双燃料动力装置中,增加膨胀增速机8并取代汽轮机5,增加扩压管9并取代升压泵6。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7的冷凝液流经扩压管9降速升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,流经膨胀增速机8降压作功并增速,之后进入冷凝器7放热冷凝,膨胀增速机8输出的功对外提供,形成双燃料动力装置。
图8/11所示的双燃料动力装置是这样实现的:
(1)结构上,在图3/11所示的双燃料动力装置中,增加第二升压泵和回热器,将冷凝器7有冷凝液管路与升压泵6连通调整为冷凝器7有冷凝液管路经第二升压泵10与回热器11连通,汽轮机5增设抽汽通道与回热器11连通,回热器11再有冷凝液管路与升压泵6连通。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7排放的冷凝液流经第二升压泵10升压之后进入回热器11,与来自汽轮机5的抽汽混合、吸热和升温,抽汽放热成冷凝液;回热器11的冷凝液流经升压泵6升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,进入汽轮机5降压作功至一定程度之后分成两路——第一路提供给回热器11,第二路继续降压作功之后进入冷凝器7放热冷凝,形成双燃料动力装置。
图9/11所示的双燃料动力装置是这样实现的:
(1)结构上,在图8/11所示的双燃料动力装置中,增加膨胀增速机8并取代汽轮机5,增加扩压管9并取代升压泵6,增加第二扩压管12并取代第二升压泵10。
(2)流程上,与图8/11所示的双燃料动力装置相比较,不同之处在于:冷凝器7排放的冷凝液流经第二扩压管12降速升压之后进入回热器11,与来自膨胀增速机8的抽汽混合、吸热和升温,抽汽放热成冷凝液;回热器11的冷凝液流经扩压管9降速升压,流经加热炉1和第二加热炉2逐步吸热升温和汽化,进入膨胀增速机8降压作功至一定程度之后分成两路——第一路提供给回热器11,第二路继续降压作功并增速之后进入冷凝器7放热冷凝,形成双燃料动力装置。
图10/11所示的双燃料动力装置是这样实现的:
(1)结构上,在图3/11所示的双燃料动力装置中,取消第二热源回热器,将外部有空气通道经第二热源回热器4与第二加热炉2连通,加热炉2有燃气通道经第二热源回热器4与外部连通,以及外部有空气通道经空气预热器3与加热炉1连通,一并调整为外部有空气通道与热源回热器3连通之后分成两路——第一路与加热炉1连通,第二路与第二加热炉2连通;将第二加热炉2有燃气通道经第二热源回热器4与外部连通调整为第二加热炉2有燃气通道经热源回热器3与外部连通。
(2)流程上,与图3/11所示的双燃料动力装置相比较,不同之处在于:第二加热炉2排放的燃气流经热源回热器3放热降温之后对外排放,外部空气流经热源回热器3吸热升温 之后分成两路——第一路进入加热炉1,第二路进入第二加热炉2,形成双燃料动力装置。
图11/11所示的双燃料动力装置是这样实现的:
(1)结构上,它主要由压缩机、膨胀机、冷却器、加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料与加热炉1连通,外部还有空气通道经热源回热器3与加热炉1连通,加热炉1还有燃气通道经热源回热器3与外部连通,外部还有高品位燃料通道与第二加热炉2连通,外部还有空气通道经第二热源回热器4与第二加热炉2连通,第二加热炉2还有燃气通道经第二热源回热器4与外部连通,压缩机13有循环工质通道经加热炉1和第二加热炉2与膨胀机5连通,膨胀机5还有循环工质通道经冷却器14与压缩机13连通;冷却器14还有冷却介质通道与外部连通,膨胀机5连接压缩机13并传输动力。
(2)流程上,外部低品位燃料进入加热炉1,外部第一路空气流经热源回热器3吸热升温之后进入加热炉1,低品位燃料和空气在加热炉1内混合并燃烧成温度较高的燃气,加热炉1内的燃气放热于流经其内的循环工质并降温,之后流经热源回热器3放热降温和对外排放;外部高品位燃料进入第二加热炉2,外部第二路空气流经第二热源回热器4吸热升温之后进入第二加热炉2,高品位燃料和空气在第二加热炉2内混合并燃烧成高温燃气,高温燃气放热于流经其内的循环工质并降温,之后流经第二热源回热器4放热降温和对外排放;压缩机13排放的循环工质流经加热炉1和第二加热炉2逐步吸热升温,流经膨胀机5降压作功,流经冷却器14放热降温,之后进入压缩机13升压升温;低品位燃料通过加热炉1和高品位燃料通过第二加热炉2共同提供驱动热负荷,冷却介质通过冷却器14带走低温热负荷,膨胀机5输出的功提供给压缩机13和外部作动力,形成双燃料动力装置。
本发明技术可以实现的效果——本发明所提出的双燃料动力装置,具有如下效果和优势:
(1)合理搭配,分段构建,有效降低高温热源形成过程中的温差不可逆损失。
(2)低品位燃料与高品位燃料共同构建高温热源,显著提升低品位燃料的能源利用价值。
(3)低品位燃料参与构建高温热源,减少高品位燃料投入,提升低品位燃料利用价值。
(4)降低高品位燃料在形成高温热源过程中的温差不可逆损失,提升高品位燃料形成高温热源的利用价值。
(5)提升燃料利用价值,减少温室气体排放,减少污染物排放,节能减排效益突出。
(6)结构简单,流程合理;提升燃料选择范围和使用价值,降低动力装置能耗成本。

Claims (11)

  1. 双燃料高温热源,主要由加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料通道与加热炉(1)连通,外部还有空气通道经热源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通,外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通,外部还有被加热介质通道经加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有被加热介质通道与外部连通,形成双燃料高温热源。
  2. 双燃料高温热源,主要由加热炉、第二加热炉和热源回热器所组成;外部有低品位燃料通道与加热炉(1)连通,外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经热源回热器(3)之后分成两路——第一路与加热炉(1)连通和第二路与第二加热炉(2)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通,第二加热炉(2)还有燃气通道经热源回热器(3)与外部连通,外部还有被加热介质通道经加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有被加热介质通道与外部连通,形成双燃料高温热源。
  3. 双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机(5)有低压蒸汽通道与冷凝器(7)连通,冷凝器(7)还有冷凝液管路经升压泵(6)和加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有高压蒸汽通道与汽轮机(5)连通;外部有低品位燃料通道与加热炉(1)连通,外部还有空气通道经热源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通;外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通;冷凝器(7)还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机(5)连接升压泵(6)并传输动力。
  4. 双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机(5)有低压蒸汽通道与冷凝器(7)连通,冷凝器(7)还有冷凝液管路经升压泵(6)和加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有高压蒸汽通道与汽轮机(5)连通,汽轮机(5)还有再热蒸汽通道经加热炉(1)与自身连通;外部有低品位燃料通道与加热炉(1)连通,外部还有空气通道经热源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通;外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通;冷凝器(7)还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机(5)连接升压泵(6)并传输动力。
  5. 双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机(5)有低压蒸汽通道与冷凝器(7)连通,冷凝器(7)还有冷凝液管路经升压泵(6)和加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有高压蒸汽通道与汽轮机(5)连通,汽轮机(5)还有再热蒸汽通道经第二加热炉(2)与自身连通;外部有低品位燃料通道与加热炉(1)连通,外部还有空气通道经热 源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通;外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通;冷凝器(7)还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机(5)连接升压泵(6)并传输动力。
  6. 双燃料动力装置,主要由加热炉、第二加热炉、热源回热器、第二热源回热器、汽轮机、升压泵和冷凝器所组成;汽轮机(5)有低压蒸汽通道与冷凝器(7)连通,冷凝器(7)还有冷凝液管路经升压泵(6)和加热炉(1)与第二加热炉(2)连通之后第二加热炉(2)再有高压蒸汽通道与汽轮机(5)连通,汽轮机(5)还有再热蒸汽通道经加热炉(1)和第二加热炉(2)与自身连通;外部有低品位燃料通道与加热炉(1)连通,外部还有空气通道经热源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通;外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通;冷凝器(7)还有冷却介质通道与外部连通,形成双燃料动力装置;其中,或汽轮机(5)连接升压泵(6)并传输动力。
  7. 双燃料动力装置,是在权利要求3-6所述的任一一款双燃料动力装置中,增加膨胀增速机(8)并取代汽轮机(5),增加扩压管(9)并取代升压泵(6),形成双燃料动力装置。
  8. 双燃料动力装置,是在权利要求3-6所述的任一一款双燃料动力装置中,增加第二升压泵和回热器,将冷凝器(7)有冷凝液管路与升压泵(6)连通调整为冷凝器(7)有冷凝液管路经第二升压泵(10)与回热器(11)连通,汽轮机(5)增设抽汽通道与回热器(11)连通,回热器(11)再有冷凝液管路与升压泵(6)连通,形成双燃料动力装置。
  9. 双燃料动力装置,是在权利要求8所述的任一一款双燃料动力装置中,增加膨胀增速机(8)并取代汽轮机(5),增加扩压管(9)并取代升压泵(6),增加第二扩压管(12)并取代第二升压泵(10),形成双燃料动力装置。
  10. 双燃料动力装置,是在权利要求3-9所述的任一一款双燃料动力装置中,取消第二热源回热器,将外部有空气通道经第二热源回热器(4)与第二加热炉(2)连通,加热炉(2)有燃气通道经第二热源回热器(4)与外部连通,以及外部有空气通道经空气预热器(3)与加热炉(1)连通,一并调整为外部有空气通道与热源回热器(3)连通之后分成两路——第一路与加热炉(1)连通,第二路与第二加热炉(2)连通;将第二加热炉(2)有燃气通道经第二热源回热器(4)与外部连通调整为第二加热炉(2)有燃气通道经热源回热器(3)与外部连通,形成双燃料动力装置。
  11. 双燃料动力装置,主要由压缩机、膨胀机、冷却器、加热炉、第二加热炉、热源回热器和第二热源回热器所组成;外部有低品位燃料与加热炉(1)连通,外部还有空气通道经热源回热器(3)与加热炉(1)连通,加热炉(1)还有燃气通道经热源回热器(3)与外部连通,外部还有高品位燃料通道与第二加热炉(2)连通,外部还有空气通道经第二热源回热器(4)与第二加热炉(2)连通,第二加热炉(2)还有燃气通道经第二热源回热器(4)与外部连通,压缩机(13)有循环工质通道经加热炉(1)和第二加热炉(2)与膨 胀机(5)连通,膨胀机(5)还有循环工质通道经冷却器(14)与压缩机(13)连通;冷却器(14)还有冷却介质通道与外部连通,膨胀机(5)连接压缩机(13)并传输动力,形成双燃料动力装置。
PCT/CN2022/000016 2021-01-27 2022-01-28 双燃料高温热源与双燃料动力装置 WO2022161114A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110151585 2021-01-27
CN202110151583 2021-01-27
CN202110151583.8 2021-01-27
CN202110151585.7 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022161114A1 true WO2022161114A1 (zh) 2022-08-04

Family

ID=82653008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/000016 WO2022161114A1 (zh) 2021-01-27 2022-01-28 双燃料高温热源与双燃料动力装置

Country Status (1)

Country Link
WO (1) WO2022161114A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319934A (en) * 1989-10-06 1994-06-14 Pyropower Corporation Combined gas turbine and steam turbine power plant for high efficiency use of low grade coal
US20130029277A1 (en) * 2011-07-27 2013-01-31 Hitachi, Ltd. Combustor, Burner, and Gas Turbine
CN104929706A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN104948245A (zh) * 2014-06-09 2015-09-30 李华玉 联合循环供能系统
CN104963732A (zh) * 2014-05-28 2015-10-07 李华玉 联合循环供能系统
CN106352579A (zh) * 2015-12-30 2017-01-25 李华玉 第一类热驱动压缩式热泵
CN206875819U (zh) * 2017-06-15 2018-01-12 西安陕鼓动力股份有限公司 一种液化天然气联合循环制冷系统
CN111238081A (zh) * 2018-08-20 2020-06-05 李华玉 联合循环热泵装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319934A (en) * 1989-10-06 1994-06-14 Pyropower Corporation Combined gas turbine and steam turbine power plant for high efficiency use of low grade coal
US20130029277A1 (en) * 2011-07-27 2013-01-31 Hitachi, Ltd. Combustor, Burner, and Gas Turbine
CN104929706A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN104963732A (zh) * 2014-05-28 2015-10-07 李华玉 联合循环供能系统
CN104948245A (zh) * 2014-06-09 2015-09-30 李华玉 联合循环供能系统
CN106352579A (zh) * 2015-12-30 2017-01-25 李华玉 第一类热驱动压缩式热泵
CN206875819U (zh) * 2017-06-15 2018-01-12 西安陕鼓动力股份有限公司 一种液化天然气联合循环制冷系统
CN111238081A (zh) * 2018-08-20 2020-06-05 李华玉 联合循环热泵装置

Similar Documents

Publication Publication Date Title
WO2022161114A1 (zh) 双燃料高温热源与双燃料动力装置
WO2022141610A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022161112A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022166504A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022156521A1 (zh) 双燃料联合循环动力装置
WO2022152006A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022161113A1 (zh) 双燃料联合循环动力装置
WO2022141611A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022148329A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022206087A1 (zh) 双燃料联合循环动力装置
WO2022152007A1 (zh) 双燃料联合循环动力装置
WO2022156523A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022193796A1 (zh) 双燃料联合循环动力装置
WO2022156522A1 (zh) 双燃料高温热源与双燃料燃气轮机装置
WO2022134201A1 (zh) 双燃料气体动力装置
WO2022199199A1 (zh) 双燃料联合循环动力装置
WO2022222548A1 (zh) 氢燃料-低品位燃料联合循环动力装置
WO2022206085A1 (zh) 双燃料联合循环动力装置
WO2022213688A1 (zh) 氢燃料-低品位燃料联合循环动力装置
WO2022134200A1 (zh) 双燃料燃气轮机装置
WO2022141612A1 (zh) 双燃料高温热源
CN114811574A (zh) 双燃料高温热源与双燃料蒸汽动力装置
CN115217557A (zh) 双燃料联合循环蒸汽动力装置
CN115217556A (zh) 双燃料联合循环蒸汽动力装置
CN115217548A (zh) 双燃料蒸汽动力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22744992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22744992

Country of ref document: EP

Kind code of ref document: A1