WO2022222548A1 - 氢燃料-低品位燃料联合循环动力装置 - Google Patents

氢燃料-低品位燃料联合循环动力装置 Download PDF

Info

Publication number
WO2022222548A1
WO2022222548A1 PCT/CN2022/000067 CN2022000067W WO2022222548A1 WO 2022222548 A1 WO2022222548 A1 WO 2022222548A1 CN 2022000067 W CN2022000067 W CN 2022000067W WO 2022222548 A1 WO2022222548 A1 WO 2022222548A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
low
combustion chamber
heating furnace
evaporator
Prior art date
Application number
PCT/CN2022/000067
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2022222548A1 publication Critical patent/WO2022222548A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention belongs to the technical field of dual-fuel combined cycle thermodynamics.
  • Fuel is an important option for building high-temperature heat sources, with different types and properties; the temperature of the gas formed by the combustion of fuel directly determines the heat-to-work efficiency.
  • hydrogen is a high-quality energy source and should be fully utilized; for the use of hydrogen as fuel to achieve thermal power conversion, air-assisted combustion is the easiest method for people to use - but this leads to the pollution of nitrogen oxides in the combustion products substances of the environment; for this reason, the use of pure oxygen for combustion is sought to avoid the production and emission of any pollutants.
  • hydrogen fuel is used as the source energy for pure oxygen combustion to obtain power, the combined power cycle device will obtain higher heat-to-work efficiency.
  • the main purpose of the present invention is to provide a hydrogen fuel-low-grade fuel combined cycle power plant, and the specific content of the invention is explained as follows:
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of an expander, a second expander, a compressor, a booster pump, a combustion chamber, a heating furnace, a heat source regenerator, a condenser and an evaporator; external There are respectively a hydrogen channel and an oxygen channel that communicate with the combustion chamber or an external hydrogen-oxygen mixed gas channel that communicates with the combustion chamber, an external low-grade fuel channel that communicates with the heating furnace, and an external air channel that communicates with the heating furnace through the heat source regenerator.
  • the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator; the condenser has a condensed water pipeline that is connected to the evaporator through a booster pump, and then the evaporator has a steam channel that communicates with the expander.
  • the expander also has a steam channel through the heating furnace. Connected with the combustion chamber, the compressor has a steam channel that communicates with the combustion chamber through the heating furnace, the combustion chamber also has a steam channel that communicates with the second expander, and the second expander also has a low-pressure steam channel that communicates with the evaporator. After that, the evaporator has a low pressure.
  • the steam passage is communicated with the compressor and the condenser respectively, and the condenser and the condensed water pipeline are communicated with the outside; the condenser and the cooling medium passage are communicated with the outside;
  • the expander is connected to the compressor and transmits power to form a hydrogen fuel-low-grade fuel combined cycle power plant; wherein, the or expander and the second expander are connected to the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of an expander, a second expander, a compressor, a booster pump, a combustion chamber, a heating furnace, a heat source regenerator, a condenser and an evaporator; external There are respectively a hydrogen channel and an oxygen channel that communicate with the combustion chamber or an external hydrogen-oxygen mixed gas channel that communicates with the combustion chamber, an external low-grade fuel channel that communicates with the heating furnace, and an external air channel that communicates with the heating furnace through the heat source regenerator.
  • the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator; the condenser has a condensed water pipeline that is connected to the evaporator through a booster pump, and then the evaporator has a steam channel that communicates with the expander, and the expander has a steam channel through the evaporator. It communicates with the heating furnace and the combustion chamber.
  • the compressor has a steam channel that communicates with the combustion chamber through the heating furnace.
  • the combustion chamber also has a steam channel that communicates with the second expander.
  • the second expander also has a low-pressure steam channel that communicates with the evaporator.
  • the condenser and the condensed water pipeline are communicated with the outside;
  • the condenser also has a cooling medium channel communicated with the outside, the evaporator or a heat source medium channel is communicated with the outside, and the expander is connected to the outside.
  • the compressor and the second expander are connected to the compressor and transmit power to form a hydrogen fuel-low-grade fuel combined cycle power plant; wherein, the or expander and the second expander are connected to the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of expander, second expander, compressor, booster pump, combustion chamber, heating furnace, heat source regenerator, condenser, evaporator, regenerator It is composed of a heater and a heater; the outside has a hydrogen channel and an oxygen channel that communicate with the combustion chamber or a hydrogen-oxygen mixed gas channel that communicates with the combustion chamber.
  • the regenerator is connected with the heating furnace, and the heating furnace and the gas channel are connected with the outside through the heat source regenerator;
  • the compressor also has a steam channel that communicates with the combustion chamber through the regenerator and the heating furnace.
  • the compressor has a steam channel that communicates with the combustion chamber through the heating furnace.
  • the combustion chamber also has a steam channel that communicates with the second expander.
  • the second expander also has a low pressure.
  • the steam passage is communicated with the heater through the regenerator, the heat supply and the low-pressure steam passage are respectively communicated with the compressor and the condenser, the condenser and the condensed water pipeline are communicated with the outside; the condenser and the cooling medium passage are communicated with the outside.
  • the evaporator and the heat source medium channel communicate with the outside
  • the heater and the heated medium channel communicate with the outside
  • the expander and the second expander are connected to the compressor and transmit power to form a hydrogen fuel-low-grade fuel combined cycle power plant ; wherein, the or expander and the second expander are connected to the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of expander, second expander, compressor, booster pump, combustion chamber, heating furnace, heat source regenerator, condenser, evaporator and heat source heat exchange It consists of a hydrogen gas channel and an oxygen channel on the outside that communicate with the combustion chamber or a hydrogen-oxygen mixed gas channel on the outside that communicates with the combustion chamber, a low-grade fuel channel on the outside that communicates with the heating furnace, and an air channel on the outside that passes through the heat source regenerator.
  • the steam passage communicates with the heat source heat exchanger, and the heat source heat exchanger also has a steam passage that communicates with the second expander through the intermediate steam inlet passage.
  • the compressor has a steam passage that communicates with the combustion chamber through the heating furnace.
  • the second expander is connected to the second expander, and the second expander also has a low-pressure steam channel that communicates with the evaporator. After that, the evaporator has a low-pressure steam channel that communicates with the compressor and the condenser respectively.
  • the condenser and the condensed water pipeline are connected to the outside; the condenser also has The cooling medium channel communicates with the outside, the evaporator or the heat source medium channel communicates with the outside, the heat source heat exchanger and the heat source medium channel communicate with the outside, the expander and the second expander are connected to the compressor and transmit power to form hydrogen fuel- A low-grade fuel combined cycle power plant; wherein the or expander and the second expander are connected to the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of expander, second expander, compressor, booster pump, combustion chamber, heating furnace, heat source regenerator, condenser, evaporator, heat source heat exchange It is composed of a gas generator and a third expander; the external hydrogen channel and the oxygen channel are respectively connected to the combustion chamber or the external hydrogen-oxygen mixed gas channel is connected to the combustion chamber, the external low-grade fuel channel is connected to the heating furnace, and the external air channel
  • the heating furnace is connected with the heating furnace through the heat source regenerator, and the heating furnace and the gas channel are connected with the outside through the heat source regenerator.
  • the expander also has a steam channel that communicates with the third expander through the heat source heat exchanger
  • the third expander also has a low-pressure steam channel that communicates with the evaporator
  • the compressor has a steam channel that communicates with the combustion chamber through the heating furnace
  • the combustion chamber also has The steam passage is communicated with the second expander
  • the second expander also has a low-pressure steam passage and is communicated with the evaporator
  • the evaporator and the low-pressure steam passage are respectively communicated with the compressor and the condenser
  • the condenser and the condensed water pipeline are communicated with the outside
  • the condenser also has a cooling medium channel that communicates with the outside, the evaporator or a gas channel communicates with the outside
  • the heat source heat exchanger also has a heat source medium channel that communicates with the outside
  • the expander, the second expander, and the third expander are connected to the compressor. And transmit power to form a hydrogen fuel-low-grade fuel combined cycle
  • Hydrogen fuel-low-grade fuel combined cycle power plant which mainly consists of an expander, a second expander, a compressor, a booster pump, a combustion chamber, a heating furnace, a heat source regenerator, a condenser, an evaporator and a heater It consists of a hydrogen channel and an oxygen channel on the outside that communicate with the combustion chamber or a hydrogen-oxygen mixed gas channel on the outside that communicates with the combustion chamber, a low-grade fuel channel on the outside that communicates with the heating furnace, and an air channel on the outside through the heat source regenerator.
  • the heating furnace is connected, and the heating furnace and the gas channel are connected with the outside through the heat source regenerator;
  • the condenser has a condensed water pipeline connected with the evaporator through the booster pump, and then the evaporator has a steam channel connected with the expander, and the expander also has steam
  • the passage communicates with the combustion chamber through the heating furnace, the compressor has a steam channel which communicates with the combustion chamber through the heating furnace, the combustion chamber also has a steam channel which communicates with the second expander, and the second expander also has a low-pressure steam channel which communicates with the evaporator and then evaporates.
  • the compressor has a low-pressure steam channel that communicates with the heater, the heater and a low-pressure steam channel communicate with the compressor and the condenser respectively, the condenser and the condensed water pipeline communicate with the outside; the condenser also has a cooling medium channel that communicates with the outside.
  • the evaporator or the heat source medium channel is connected to the outside
  • the heater and the heated medium channel are connected to the outside
  • the expander and the second expander are connected to the compressor and transmit power to form hydrogen fuel-low-grade fuel combined cycle power device; wherein, the or expander and the second expander are connected to the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly composed of expander, second expander, compressor, booster pump, combustion chamber, heating furnace, heat source regenerator, condenser, evaporator and heater It consists of a hydrogen channel and an oxygen channel on the outside that communicate with the combustion chamber or a hydrogen-oxygen mixed gas channel on the outside that communicates with the combustion chamber, a low-grade fuel channel on the outside that communicates with the heating furnace, and an air channel on the outside through the heat source regenerator.
  • the heating furnace is connected, and the heating furnace and the gas channel are connected with the outside through the heat source regenerator;
  • the condenser has a condensed water pipeline connected with the evaporator through the booster pump, and then the evaporator has a steam channel connected with the expander, and the expander also has steam
  • the passage is communicated with the combustion chamber through the evaporator and the heating furnace.
  • the compressor has a steam passage that communicates with the combustion chamber through the heating furnace.
  • the combustion chamber also has a steam passage that communicates with the second expander.
  • the evaporator has a low-pressure steam channel that communicates with the heater, the heater and the low-pressure steam channel are respectively connected to the compressor and the condenser, and the condenser and the condensed water pipeline are communicated with the outside;
  • the condenser also has a cooling medium channel Connect with the outside, the evaporator or the heat source medium channel is connected with the outside, the heater and the heated medium channel are connected with the outside, the expander and the second expander are connected to the compressor and transmit power to form hydrogen fuel - low-grade fuel A combined cycle power plant; wherein the or expander and the second expander connect the compressor and the booster pump and transmit power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant is to add a new regenerator to the hydrogen fuel-low-grade fuel combined cycle power plant described in item 1 or 6, and connect the expander with the steam passage through the power plant.
  • the connection between the heating furnace and the combustion chamber is adjusted so that the expander has a steam channel connected with the combustion chamber through the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the regenerator and the heating furnace are communicated with the combustion chamber, and the second expander has a low-pressure steam channel to communicate with the evaporator, and the second expander has a low-pressure steam channel to communicate with the evaporator through the newly added regenerator to form a hydrogen fuel-low-pressure steam channel.
  • Grade fuel combined cycle power plant is to add a new regenerator to the hydrogen fuel-low-grade fuel combined cycle power plant described in item 1 or 6, and connect the expander with the steam passage through the power plant.
  • the connection between the heating furnace and the combustion chamber is adjusted so
  • Hydrogen fuel-low-grade fuel combined cycle power plant is the addition of a new regenerator to the hydrogen fuel-low-grade fuel combined cycle power plant described in item 1 or 6.
  • the connection between the heating furnace and the combustion chamber is adjusted so that the expander has a steam channel connected with the combustion chamber through the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the regenerator and the heating furnace are communicated with the combustion chamber, and the combustion chamber has a steam channel to communicate with the second expander and is adjusted so that the combustion chamber has a steam channel and the second expander communicates with the second expander.
  • After the second expander has a steam channel for new heat recovery The device communicates with itself to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant in the hydrogen fuel-low-grade fuel combined cycle power plant described in item 2 or 7, a new regenerator is added, and the expander and the steam passage are added.
  • the expansion machine and the steam channel are connected with the combustion chamber through the evaporator, the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the compressor has a steam passage that communicates with the combustion chamber through a newly added regenerator and a heating furnace, and the second expander has a low-pressure steam passage to communicate with the evaporator.
  • the device is connected to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant in the hydrogen fuel-low-grade fuel combined cycle power plant described in item 2 or 7, adds a new regenerator, and connects the expander and steam passages.
  • the expansion machine and the steam channel are connected with the combustion chamber through the evaporator, the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the compressor has a steam channel which is connected to the combustion chamber through the newly added regenerator and the heating furnace, and the combustion chamber has a steam channel and the second expander is adjusted to communicate with the second expander.
  • a steam channel is connected with itself through the newly added regenerator to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant in the hydrogen fuel-low-grade fuel combined cycle power plant described in item 3, a new regenerator is added, and the expander has a steam passage through the regenerator. It is adjusted to connect with the heating furnace and the combustion chamber so that the expander has a steam channel connected with the combustion chamber through the regenerator, the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the steam channel is connected with the combustion chamber through the newly added regenerator and the heating furnace, and the second expander has a low-pressure steam channel through the regenerator to communicate with the heat supply, and the second expander has a low-pressure steam channel through the newly added regenerator. It is communicated with the regenerator and the heater to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant in the hydrogen fuel-low-grade fuel combined cycle power plant described in item 3, a new regenerator is added, and the expander has a steam passage through the regenerator. It is adjusted to connect with the heating furnace and the combustion chamber so that the expander has a steam channel connected with the combustion chamber through the regenerator, the newly added regenerator and the heating furnace, and the compressor has a steam channel connected with the combustion chamber through the heating furnace.
  • the steam passage is connected with the combustion chamber through the newly added regenerator and the heating furnace, and the steam passage in the combustion chamber is adjusted to communicate with the second expander so that the combustion chamber has a steam passage in communication with the second expander, and then the second expander has a steam passage.
  • the new regenerator is connected with itself to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant is the hydrogen fuel-low-grade fuel combined cycle power plant described in item 4 or 5, adding a new regenerator, and connecting the compressor with the steam passage through the power plant.
  • the connection between the heating furnace and the combustion chamber is adjusted so that the compressor has a steam channel connected with the combustion chamber through the newly added regenerator and the heating furnace, and the second expander has a low-pressure steam channel and the evaporator is adjusted so that the second expander has a low-pressure steam channel
  • the new regenerator is communicated with the evaporator to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant which is to add a new regenerator to the hydrogen fuel-low-grade fuel combined cycle power plant described in item 4 or 5.
  • the connection between the heating furnace and the combustion chamber is adjusted so that the compressor has a steam channel connected with the combustion chamber through the newly added regenerator and the heating furnace, and the combustion chamber has a steam channel and the second expander is adjusted so that the combustion chamber has a steam channel and the second expansion machine.
  • the second expander has a steam channel connected with itself through the newly added regenerator to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant mainly consisting of an expander, a second expander, a compressor, a booster pump, a combustion chamber, a heating furnace, a heat source regenerator, a condenser, an evaporator and a heat source heat exchange It consists of a hydrogen gas channel and an oxygen channel on the outside that communicate with the combustion chamber or a hydrogen-oxygen mixed gas channel on the outside that communicates with the combustion chamber, a low-grade fuel channel on the outside that communicates with the heating furnace, and an air channel on the outside that passes through the heat source regenerator.
  • the steam passage communicates with the combustion chamber through the heat source heat exchanger and the heating furnace.
  • the compressor has a steam passage which communicates with the combustion chamber through the heating furnace.
  • the combustion chamber also has a steam passage which communicates with the second expander.
  • the evaporator After being connected to the evaporator, the evaporator has a low-pressure steam channel that is connected to the compressor and the condenser respectively, the condenser and the condensed water pipeline are connected to the outside; the condenser also has a cooling medium channel that is connected to the outside, the evaporator or the heat source medium The channel is communicated with the outside, the heat source heat exchanger and the heat source medium channel are communicated with the outside, the expander and the second expander are connected to the compressor and transmit power to form a hydrogen fuel-low-grade fuel combined cycle power plant; wherein, or the expander and The second expander connects the compressor and the booster pump and transmits power.
  • Hydrogen fuel-low-grade fuel combined cycle power plant which is to add a second booster pump and a low-temperature regenerator to any of the hydrogen fuel-low-grade fuel combined cycle power plants described in items 1-16
  • the condenser has a condensed water pipeline connected to the evaporator via a booster pump
  • the condenser has a condensed water pipeline connected to the low-temperature regenerator via the second booster pump
  • the compressor adds an intermediate steam extraction channel to connect with the low-temperature regenerator.
  • the low temperature regenerator has a condensed water pipeline connected to the evaporator through a booster pump to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant in any of the hydrogen fuel-low-grade fuel combined cycle power plant described in items 1-4, adding an expansion speed-up machine and replacing the second expander , adding a dual-energy compressor and replacing the compressor, adding a diffuser pipe and replacing the booster pump, and forming a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Hydrogen fuel-low-grade fuel combined cycle power plant is any one of the hydrogen fuel-low-grade fuel combined cycle power plant described in items 1-5, adding a new expander, the evaporator has a low pressure The connection between the steam channel and the condenser is adjusted so that the evaporator has a low-pressure steam channel and is connected with the condenser through the newly added expander to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • Figure 1/19 is a first principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 2/19 is a second principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 3/19 is the third principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 4/19 is a fourth principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 5/19 is the fifth principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 6/19 is the sixth principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 7/19 is the seventh principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 8/19 is the eighth principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 9/19 is the ninth principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 10/19 is a tenth principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 11/19 is an eleventh principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 12/19 is a 12th principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 13/19 is a thirteenth principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 14/19 is a schematic diagram of the 14th principle thermodynamic system of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figures 15/19 are diagrams of the fifteenth principle thermodynamic system of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 16/19 is the 16th principle thermodynamic system diagram of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 17/19 is a schematic diagram of the 17th principle thermodynamic system of the hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Fig. 18/19 is an 18th principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • Figure 19/19 is a 19th principle thermodynamic system diagram of a hydrogen fuel-low-grade fuel combined cycle power plant provided according to the present invention.
  • 1-expander, 2-second expander, 3-compressor, 4-boost pump 5-combustion chamber, 6-heating furnace, 7-heat source regenerator, 8-condenser, 9- Evaporator (waste heat boiler), 10-regenerator, 11-heater, 12-heat source heat exchanger, 13-third expander, 14-second booster pump, 15-low temperature regenerator, 16- Expansion speed increaser, 17-dual-energy compressor, 18-diffuser pipe; A-new regenerator, B-new expander.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 1/19 is implemented as follows:
  • the channel is communicated with the combustion chamber 5, the external low-grade fuel channel is communicated with the heating furnace 6, and the external air channel is communicated with the heating furnace 6 through the heat source regenerator 7, and the heating furnace 6 also has a gas channel through the heat source regenerator 7.
  • the condenser 8 has a condensed water pipeline connected with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel to communicate with the expander 1, and the expander 1 also has a steam channel to communicate with the combustion chamber 5 through the heating furnace 6 , the compressor 3 has a steam channel that communicates with the combustion chamber 5 through the heating furnace 6, the combustion chamber 5 also has a steam channel that communicates with the second expander 2, and the second expander 2 also has a low-pressure steam channel that communicates with the evaporator 9.
  • the external low-grade fuel enters the heating furnace 6, and the external air flows into the heating furnace 6 after the heat source regenerator 7 absorbs heat and raises the temperature, and the low-grade fuel and air are mixed in the heating furnace 6 and burned to generate a higher temperature
  • the gas of the heating furnace 6 releases heat to the steam flowing through it and lowers the temperature, and then flows through the heat source regenerator 7 to release heat to lower the temperature and discharge to the outside;
  • the hydrogen and oxygen with higher external pressure enter the combustion chamber 5 for combustion, generating High temperature and high pressure water vapor;
  • the condensed water of the condenser 8 is boosted by the booster pump 4 and enters the evaporator 9, absorbs heat to heat up and vaporize, flows through the expander 1 to depressurize and work, and flows through the heating furnace 6 to absorb heat and heat up and enter the combustion Chamber 5 mixes with high-temperature steam, absorbs heat and heats up, and the steam discharged from compressor 3 flows through heating furnace 6 to absorb heat and heat up and enter combustion chamber 5 to mix with
  • the heat load is driven, and the cooling medium takes away the low temperature heat load through the condenser 8; the expander 1 and the second expander 2 provide power to the compressor 3 and the outside, or the expander 1 and the second expander 2 supply the compressor 3, liter
  • the pressure pump 4 and the outside provide power to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 2/19 is implemented as follows:
  • the channel is communicated with the combustion chamber 5, the external low-grade fuel channel is communicated with the heating furnace 6, and the external air channel is communicated with the heating furnace 6 through the heat source regenerator 7, and the heating furnace 6 also has a gas channel through the heat source regenerator 7.
  • the condenser 8 has a condensed water pipeline connected with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel to communicate with the expander 1, and the expander 1 also has a steam channel through the evaporator 9 and the heating furnace 6.
  • the combustion chamber 5 is communicated, the compressor 3 has a steam passage that communicates with the combustion chamber 5 through the heating furnace 6, the combustion chamber 5 also has a steam passage that communicates with the second expander 2, and the second expander 2 also has a low-pressure steam passage and the evaporator 9.
  • the evaporator 9 has a low-pressure steam passage to communicate with the compressor 3 and the condenser 8 respectively, and the condenser 8 also has a condensed water pipeline to communicate with the outside; the condenser 8 also has a cooling medium channel to communicate with the outside, and the expander 1 and the first The second expander 2 is connected to the compressor 3 and transmits power.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 3/19 is implemented as follows:
  • the channel is communicated with the outside through the heat source regenerator 7; the condenser 8 has a condensed water pipeline that is connected to the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel to communicate with the expander 1, and the expander 1 also has a steam channel.
  • the regenerator 10 and the heating furnace 6 are communicated with the combustion chamber 5, the compressor 3 has a steam passage communicated with the combustion chamber 5 through the heating furnace 6, and the combustion chamber 5 also has a steam passage communicated with the second expander 2, and the second expander 2 There is also a low-pressure steam passage that communicates with the heater 11 through the regenerator 10, and the heater 11 also has a low-pressure steam passage that communicates with the compressor 3 and the condenser 8, respectively, and the condenser 8 and the condensed water pipeline are communicated with the outside; condensation
  • the evaporator 8 also has a cooling medium channel that communicates with the outside
  • the evaporator 9 has a heat source medium channel that communicates with the outside
  • the heater 11 also has a heated medium channel that communicates with the outside
  • the expander 1 and the second expander 2 are connected to the compressor 3. and transmit power.
  • the steam flows through the heating furnace 6 to absorb heat and heat up, it enters the combustion chamber 5 and mixes with the high-temperature steam, absorbs heat and heats up;
  • the steam flows through the regenerator 10 and the heat supplier 11 to gradually release heat and cool down, and then is divided into two paths - the first path enters the compressor 3 to increase the pressure, and the second path enters the condenser 8 to release heat and condense; the condenser 8
  • the condensed water is divided into two paths - the first path is discharged to the outside, and the second path is supplied to the booster pump 4; hydrogen and oxygen provide driving heat load through combustion, low-grade fuel provides driving heat load through combustion, and cooling medium passes through condenser 8 Take away the low temperature heat load, the heat source medium provides the driving heat load through the evaporator 9, and the heated medium takes away the medium temperature heat load through the heater 11;
  • the expander 1 and the second expander 2 provide power to the compressor 3 and the outside, Or the expander 1 and the second expander 2 provide power to
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 4/19 is implemented as follows:
  • a hydrogen channel and an oxygen channel are communicated with the combustion chamber 5
  • a low-grade fuel channel is communicated with the heating furnace 6 outside
  • an air channel is communicated with the heating furnace 6 through the heat source regenerator 7 outside
  • the heating furnace 6 also has a gas channel through the heat source.
  • the regenerator 7 is communicated with the outside; the condenser 8 has a condensed water pipeline that is communicated with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel to communicate with the expander 1, and the expander 1 also has a steam channel for heat exchange with the heat source.
  • the heat source heat exchanger 12 is connected with the second expander 2 through the intermediate steam inlet channel, the compressor 3 has a steam channel connected with the combustion chamber 5 through the heating furnace 6, and the combustion chamber 5 also has a steam channel with the second expander 2.
  • the second expander 2 is connected, and the second expander 2 also has a low-pressure steam channel that communicates with the evaporator 9.
  • the evaporator 9 has a low-pressure steam channel that communicates with the compressor 3 and the condenser 8 respectively.
  • the condenser 8 also has a condensate water pipeline. Connect with the outside; the condenser 8 and the cooling medium channel communicate with the outside, the heat source heat exchanger 12 and the heat source medium channel communicate with the outside, the expander 1 and the second expander 2 are connected to the compressor 3 and transmit power.
  • the heating furnace 6 After the heating furnace 6 absorbs heat and heats up, it enters the combustion chamber 5 and mixes with the high temperature steam, absorbs heat and heats up, and the steam discharged from the combustion chamber 5 flows through the second expander 2 to depressurize and work; the low pressure steam discharged from the second expander 2 flows.
  • the heat is released and cooled by the evaporator 9, and then divided into two paths - the first path enters the compressor 3 to increase the pressure, and the second path enters the condenser 8 to release heat and condense; the condensed water of the condenser 8 is divided into two paths - the first path One route is discharged to the outside, and the second route is supplied to the booster pump 4; the heat source medium is increased to provide driving heat load through the heat source heat exchanger 12 to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 5/19 is implemented as follows:
  • the outside has a hydrogen channel and an oxygen channel to communicate with the combustion chamber 5,
  • the outside has a low-grade fuel channel to communicate with the heating furnace 6, and the outside also has an air channel to communicate with the heating furnace 6 through the heat source regenerator 7, and the heating furnace 6 also
  • the condenser 8 has a condensed water pipeline that communicates with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel to communicate with the expander 1, and the expander 1 also has steam.
  • the evaporator 9 also has a low-pressure steam passage that communicates with the compressor 3 and the condenser 8, respectively.
  • the condenser 8 There is also a condensed water pipeline that communicates with the outside; the condenser 8 also has a cooling medium channel that communicates with the outside, the evaporator 9 has a gas channel that communicates with the outside, and the heat source heat exchanger 12 also has a heat source medium channel that communicates with the outside.
  • the second expander 2 and the third expander 13 are connected to the compressor 3 and transmit power.
  • Heater 9 releases heat and lowers the temperature; the steam discharged from the compressor 3 flows through the heating furnace 6 to absorb heat and heat up and enter the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up, and the steam discharged from the combustion chamber 5 flows through the second expander 2 to reduce the temperature.
  • the pressure works, and the low-pressure steam discharged from the second expander 2 enters the evaporator 9 to release heat and cool down; the low-pressure steam discharged from the evaporator 9 is divided into two paths—the first path enters the compressor 3 for boosting and heating, and the second path enters the condensing path.
  • the condenser 8 releases heat and condenses; the condensed water of the condenser 8 is divided into two paths - the first path is discharged to the outside, and the second path is supplied to the booster pump 4; the heat source medium is increased to provide driving heat load through the heat source heat exchanger 12, and the expander 1.
  • the second expander 2 and the third expander 13 provide power to the compressor 3 and the outside, or the expander 1, the second expander 2 and the third expander 13 provide power to the compressor 3, the booster pump 4 and the outside Power, the formation of hydrogen fuel - low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 6/19 is implemented as follows:
  • the hydrogen channel and the oxygen channel are communicated with the combustion chamber 5
  • the external low-grade fuel channel is communicated with the heating furnace 6
  • the external air channel is communicated with the heating furnace 6 through the heat source regenerator 7, and the heating furnace 6 also has a gas channel through the heat source.
  • the heater 7 is communicated with the outside; the condenser 8 has a condensed water pipeline connected with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel communicated with the expander 1, and the expander 1 also has a steam channel through the heating furnace 6.
  • the combustion chamber 5 is communicated, the compressor 3 has a steam passage that communicates with the combustion chamber 5 through the heating furnace 6, the combustion chamber 5 also has a steam passage that communicates with the second expander 2, and the second expander 2 also has a low-pressure steam passage and the evaporator 9.
  • the evaporator 9 After being connected, the evaporator 9 has a low-pressure steam passage to communicate with the heater 11, and the heater 11 also has a low-pressure steam passage to communicate with the compressor 3 and the condenser 8 respectively, and the condenser 8 also has a condensed water pipeline to communicate with the outside; condensation
  • the heater 8 also has a cooling medium channel that communicates with the outside, the heater 11 has a heated medium channel that communicates with the outside, and the expander 1 and the second expander 2 are connected to the compressor 3 and transmit power.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 7/19 is implemented as follows:
  • the hydrogen channel and the oxygen channel are communicated with the combustion chamber 5
  • the external low-grade fuel channel is communicated with the heating furnace 6
  • the external air channel is communicated with the heating furnace 6 through the heat source regenerator 7, and the heating furnace 6 also has a gas channel through the heat source.
  • the heater 7 is communicated with the outside; the condenser 8 has a condensed water pipeline connected with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel communicated with the expander 1, and the expander 1 also has a steam channel through the evaporator 9 and the evaporator 9.
  • the heating furnace 6 is communicated with the combustion chamber 5, the compressor 3 has a steam passage that communicates with the combustion chamber 5 through the heating furnace 6, and the combustion chamber 5 also has a steam passage that communicates with the second expander 2, and the second expander 2 also has a low-pressure steam passage.
  • the evaporator 9 After being communicated with the evaporator 9, the evaporator 9 has a low-pressure steam passage that communicates with the heater 11, and the heater 11 also has a low-pressure steam passage that communicates with the compressor 3 and the condenser 8, respectively.
  • External communication; condenser 8 and cooling medium channel are connected to the outside, heater 11 and heated medium channel are connected to the outside, expander 1 and second expander 2 are connected to compressor 3 and transmit power.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 8/19 is implemented as follows:
  • regenerator A and the heating furnace 6 are communicated with the combustion chamber 5, and the second expander 2 has a low-pressure steam passage and the evaporator 9 is adjusted to communicate with the evaporator 9 so that the second expander 2 has a low-pressure steam passage through the newly added regenerator A and the evaporator. device 9 is connected.
  • the low-pressure steam discharged from the second expander 2 flows through the newly added regenerator A and the evaporator 9 to gradually release heat and cool down, and then is divided into two paths - the first path enters the compressor 3 for boosting and heating, and the second path enters the condensing path.
  • Heater 8 releases heat and condenses to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 9/19 is implemented as follows:
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 10/19 is implemented as follows:
  • the steam mixes, absorbs heat and heats up, and the steam discharged from the compressor 3 flows through the newly added regenerator A and the heating furnace 6 to gradually absorb heat and heat up, and then enters the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up;
  • the steam flows through the second expander 2 to depressurize and perform work, and the low-pressure steam discharged from the second expander 2 flows through the newly added regenerator A and evaporator 9 to gradually release heat and cool down, and then divide into two paths—the first path enters the compression
  • the engine 3 is boosted and heated up, and the second path enters the condenser 8 to release heat and condense to form a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 11/19 is implemented as follows:
  • the steam mixes, absorbs heat and heats up, and the steam discharged from the compressor 3 flows through the newly added regenerator A and the heating furnace 6 to gradually absorb heat and heat up, and then enters the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up;
  • the steam enters the second expander 2 to depressurize and perform work to a certain extent, and then flows through the newly added regenerator A to release heat and cool down, and enters the second expander 2 to continue to depressurize and perform work; the low-pressure steam discharged from the second expander 2 flows through the evaporation process.
  • the compressor 9 releases heat and cools down, and then it is divided into two paths - the first path enters the compressor 3 for boosting and heating, and the second path enters the condenser 8 to release heat and condense, forming a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 12/19 is implemented as follows:
  • the temperature rises the steam discharged from the compressor 3 flows through the newly added regenerator A and the heating furnace 6 to gradually absorb heat and then enter the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up; the steam discharged from the combustion chamber 5 flows through the second expansion
  • the machine 2 is depressurized to perform work, and the low-pressure steam discharged from the second expander 2 flows through the newly added regenerator A, the regenerator 10 and the heater 11 to gradually release heat and cool down, and then divide into two paths—the first path enters
  • the compressor 3 is boosted and heated up, and the second path enters the condenser 8 to release heat and condense, forming a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 13/19 is implemented as follows:
  • the steam discharged from the compressor 3 flows through the newly added regenerator A and the heating furnace 6 to gradually absorb heat and heat up, and then enters the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up; the steam discharged from the combustion chamber 5 enters the second expander. 2.
  • the depressurization work After the depressurization work reaches a certain level, it flows through the newly added regenerator A to release heat and cool down, and enters the second expander 2 to continue depressurization and work; the low-pressure steam discharged from the second expander 2 flows through the regenerator 10 and provides heat
  • the compressor 11 gradually releases heat and cools down, and then it is divided into two paths—the first path enters the compressor 3 to increase pressure and temperature, and the second path enters the condenser 8 to release heat and condense, forming a hydrogen fuel-low-grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 14/19 is implemented as follows:
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 15/19 is implemented as follows:
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 16/19 is implemented as follows:
  • a hydrogen channel and an oxygen channel are communicated with the combustion chamber 5
  • a low-grade fuel channel is communicated with the heating furnace 6 outside
  • an air channel is communicated with the heating furnace 6 through the heat source regenerator 7 outside
  • the heating furnace 6 also has a gas channel through the heat source.
  • the regenerator 7 is communicated with the outside; the condenser 8 has a condensed water pipeline connected with the evaporator 9 through the booster pump 4, and then the evaporator 9 has a steam channel communicated with the expander 1, and the expander 1 also has a steam channel through the heat source heat exchange.
  • the compressor 12 and the heating furnace 6 are communicated with the combustion chamber 5.
  • the compressor 3 has a steam passage that communicates with the combustion chamber 5 through the heating furnace 6.
  • the combustion chamber 5 also has a steam passage that communicates with the second expander 2.
  • the second expander 2 also has a steam channel.
  • the evaporator 9 After the low-pressure steam passage is communicated with the evaporator 9, the evaporator 9 has a low-pressure steam passage that communicates with the compressor 3 and the condenser 8 respectively, and the condenser 8 also has a condensed water pipeline that communicates with the outside; the condenser 8 also has a cooling medium passage and the outside.
  • the heat source heat exchanger 12 and the heat source medium channel communicate with the outside, and the expander 1 and the second expander 2 are connected to the compressor 3 and transmit power.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 17/19 is implemented as follows:
  • Road the first road is discharged to the outside, and the second road is supplied to the second booster pump 14; the low-pressure steam entering the compressor 3 is boosted and heated to a certain degree and then divided into two roads—the first road enters through the middle steam extraction channel Low-temperature regenerator 15, the second path continues to increase pressure and temperature; hydrogen and oxygen provide driving heat load through combustion, low-grade fuel provides driving heat load through combustion, and cooling medium takes away low-temperature heat load through condenser 8; expander 1 and The second expander 2 provides power to the compressor 3 and the outside, or the expander 1 and the second expander 2 provide power to the compressor 3, the booster pump 4, the second booster pump 14 and the outside, forming hydrogen fuel-low Grade fuel combined cycle power plant.
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 18/19 is implemented as follows:
  • the heating furnace 6 After the heating furnace 6 absorbs heat and heats up, it enters the combustion chamber 5 to mix with the high-temperature steam, absorb heat and heat up; the high-temperature steam discharged from the combustion chamber 5 flows through the expansion speed-up machine 16 to depressurize and increase the speed, and the expansion speed-up machine 16 discharges
  • the low-pressure steam flows through the evaporator 9 to release heat and cool down, and then it is divided into two paths—the first path enters the dual-energy compressor 17 to increase the pressure and heat up and slow down, and the second path enters the condenser 8 to release heat and condense;
  • the condensed water is divided into two paths - the first path is discharged to the outside, and the second path enters the diffuser pipe 18; hydrogen and oxygen provide driving heat load through combustion, low-grade fuel provides driving heat load through combustion, and the cooling medium is taken away through condenser 8 Low temperature heat load; the expander 1 and the expansion speed increaser 16 provide power to the dual-energy compressor 17 and the outside,
  • the hydrogen fuel-low grade fuel combined cycle power plant shown in Figure 19/19 is implemented as follows:
  • Water vapor is the circulating working medium
  • hydrogen is the fuel
  • hydrogen-oxygen combustion produces high-temperature steam and becomes an integral part of the circulating working medium
  • the fuel combustion product has the same properties as the circulating working medium, and the separation process of the combustion product is simple.
  • the proportion between the circulating working fluid and the fuel can be flexibly determined according to the working conditions, effectively coordinating and solving the relationship and contradiction between combustion temperature, material, investment and thermal efficiency, and has good adaptability.
  • the low-grade fuel and hydrogen fuel are reasonably matched to jointly provide the driving heat load, improve the thermal power conversion efficiency of the low-grade fuel, and effectively reduce the fuel cost.
  • Low-grade fuel can be used or helpful to reduce the boost ratio of the top gas power cycle system, increase the flow rate of the gas cycle working medium, and is conducive to the construction of a large-load combined cycle power plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供氢燃料-低品位燃料联合循环动力装置,属于双燃料联合循环热动技术领域。外部分别有氢气通道和氧气通道连通燃烧室,外部有低品位燃料通道连通加热炉,外部还有空气通道经热源回热器连通加热炉,加热炉还有燃气通道经热源回热器连通外部;冷凝器经升压泵、蒸发器连通膨胀机,膨胀机还有蒸汽通道经加热炉连通燃烧室,压缩机有蒸汽通道经加热炉连通燃烧室,燃烧室还有蒸汽通道连通第二膨胀机,第二膨胀机还有低压蒸汽通道连通蒸发器之后再分别连通压缩机和冷凝器,冷凝器还有冷凝水管路连通外部;冷凝器还有冷却介质通道连通外部,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置。

Description

氢燃料-低品位燃料联合循环动力装置 技术领域:
本发明属于双燃料联合循环热动技术领域。
背景技术:
动力需求为人类生活与生产所常见,利用燃料燃烧形成的热能转换为机械能是获得和提供动力的重要方式,实现高效热变功需要高温驱动热源和合理的热力循环。
燃料是构建高温热源的重要选项,有不同的种类和不同的性质;其中燃料燃烧所形成燃气的温度高低直接决定着热变功效率。在燃料中,氢气属于高品质能源,应加以充分利用;对于利用氢气为燃料来实现热变功,空气助燃是人们最容易采用的手段——但这导致燃烧产物中含有氮氧化物这一污染环境的物质;为此,人们寻求采用纯氧助燃以避免任何污染物的产生和排放。以氢燃料为源头能源进行纯氧燃烧来获得动力时,利用联合动力循环装置将得到较高的热变功效率。
尽管采用联合循环动力装置,但受工作原理、工作介质性质、材料性质、设备及其它部件制造水平等某一或多个因素所限制,氢氧燃烧产物与循环工质之间仍然存在较大的温差不可能损失——这为低品位燃料参与构建热源提供了机遇。
人们需要简单、主动、安全、高效地利用氢燃料来获得动力,考虑到水蒸气作为循环工质具有低温冷凝放热和高温变温吸热的双重优势,且氢氧燃烧产物也是水蒸气,本发明给出了低品位燃料与氢燃料搭配使用,热效率高、安全性强、适应氢氧燃烧并灵活确定循环最高工作参数、循环工质与燃料产物相一致的氢燃料-低品位燃料联合循环动力装置。发明内容:
本发明主要目的是要提供氢燃料-低品位燃料联合循环动力装置,具体发明内容分项阐述如下:
1.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
2.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源 回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经蒸发器和加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
3.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器、回热器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经回热器和加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道经回热器与供热器连通,供热器还有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器还有热源介质通道与外部连通,供热器还有被加热介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
4.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道与热源热交换器连通,热源热交换器还有蒸汽通道经中间进汽通道与第二膨胀机连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,热源热交换器还有热源介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
5.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器、热源热交换器和第三膨胀机所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经热源热交换器与第三膨胀机连通,第三膨胀机还有低压蒸汽通道与蒸发器连通,压缩机有蒸汽通道经加热炉与燃 烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通,蒸发器还有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有燃气通道与外部连通,热源热交换器还有热源介质通道与外部连通,膨胀机、第二膨胀机和第三膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机、第二膨胀机和第三膨胀机连接压缩机和升压泵并传输动力。
6.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道与供热器连通,供热器还有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,供热器还有被加热介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
7.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经蒸发器和加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道与供热器连通,供热器还有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,供热器还有被加热介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
8.氢燃料-低品位燃料联合循环动力装置,是在第1或第6项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机有蒸汽通道经加热炉与燃烧室连通调整为膨胀机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将第二膨胀机有低压蒸汽通道与蒸发器连通调整为第二膨胀机有低压蒸汽通道经新增回热器与蒸发器连通,形成氢燃料-低品位燃料联合循环动力装置。
9.氢燃料-低品位燃料联合循环动力装置,是在第1或第6项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机有蒸汽通道经加热炉与燃烧室连通调整为膨胀机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热 炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将燃烧室有蒸汽通道与第二膨胀机连通调整为燃烧室有蒸汽通道与第二膨胀机连通之后第二膨胀机再有蒸汽通道经新增回热器与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
10.氢燃料-低品位燃料联合循环动力装置,是在第2或第7项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机还有蒸汽通道经蒸发器和加热炉与燃烧室连通调整为膨胀机还有蒸汽通道经蒸发器、新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将第二膨胀机有低压蒸汽通道与蒸发器连通调整为第二膨胀机有低压蒸汽通道经新增回热器与蒸发器连通,形成氢燃料-低品位燃料联合循环动力装置。
11.氢燃料-低品位燃料联合循环动力装置,是在第2或第7项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机还有蒸汽通道经蒸发器和加热炉与燃烧室连通调整为膨胀机还有蒸汽通道经蒸发器、新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将燃烧室有蒸汽通道与第二膨胀机连通调整为燃烧室有蒸汽通道与第二膨胀机连通之后第二膨胀机再有蒸汽通道经新增回热器与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
12.氢燃料-低品位燃料联合循环动力装置,是在第3项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机有蒸汽通道经回热器和加热炉与燃烧室连通调整为膨胀机有蒸汽通道经回热器、新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将第二膨胀机有低压蒸汽通道经回热器与供热器连通调整为第二膨胀机有低压蒸汽通道经新增回热器和回热器与供热器连通,形成氢燃料-低品位燃料联合循环动力装置。
13.氢燃料-低品位燃料联合循环动力装置,是在第3项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机有蒸汽通道经回热器和加热炉与燃烧室连通调整为膨胀机有蒸汽通道经回热器、新增回热器和加热炉与燃烧室连通,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将燃烧室有蒸汽通道与第二膨胀机连通调整为燃烧室有蒸汽通道与第二膨胀机连通之后第二膨胀机再有蒸汽通道经新增回热器与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
14.氢燃料-低品位燃料联合循环动力装置,是在第4或第5项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将第二膨胀机有低压蒸汽通道与蒸发器连通调整为第二膨胀机有低压蒸汽通道经新增回热器与蒸发器连通,形成氢燃料-低品位燃料联合循环动力装置。
15.氢燃料-低品位燃料联合循环动力装置,是在第4或第5项所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机有蒸汽通道经加热炉与燃烧室连通调整为压缩机有蒸汽通道经新增回热器和加热炉与燃烧室连通,将燃烧室有蒸汽通道与第二膨胀机连通调整为燃烧室有蒸汽通道与第二膨胀机连通之后第二膨胀机再有蒸汽通道经新增回热器与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
16.氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室连通或外部有氢氧混合气体通道与燃烧室连通,外部有低品位燃料通道与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通;冷凝器有冷凝水管路经升压泵与蒸发器连通之后蒸发器再有蒸汽通道与膨胀机连通,膨胀机还有蒸汽通道经热源热交换器和加热炉与燃烧室连通,压缩机有蒸汽通道经加热炉与燃烧室连通,燃烧室还有蒸汽通道与第二膨胀机连通,第二膨胀机还有低压蒸汽通道与蒸发器连通之后蒸发器再有低压蒸汽通道分别与压缩机和冷凝器连通,冷凝器还有冷凝水管路与外部连通;冷凝器还有冷却介质通道与外部连通,蒸发器或还有热源介质通道与外部连通,热源热交换器还有热源介质通道与外部连通,膨胀机和第二膨胀机连接压缩机并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机和第二膨胀机连接压缩机和升压泵并传输动力。
17.氢燃料-低品位燃料联合循环动力装置,是在第1-16项所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加第二升压泵和低温回热器,将冷凝器有冷凝水管路经升压泵与蒸发器连通调整为冷凝器有冷凝水管路经第二升压泵与低温回热器连通,压缩机增设中间抽汽通道与低温回热器连通,低温回热器再有冷凝水管路经升压泵与蒸发器连通,形成氢燃料-低品位燃料联合循环动力装置。
18.氢燃料-低品位燃料联合循环动力装置,是在第1-4项所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加膨胀增速机并取代第二膨胀机,增加双能压缩机并取代压缩机,增加扩压管并取代升压泵,形成氢燃料-低品位燃料联合循环动力装置。
19.氢燃料-低品位燃料联合循环动力装置,是在第1-5项所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加新增膨胀机,将蒸发器有低压蒸汽通道与冷凝器连通调整为蒸发器有低压蒸汽通道经新增膨胀机与冷凝器连通,形成氢燃料-低品位燃料联合循环动力装置。
附图说明:
图1/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第1种原则性热力系统图。
图2/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第2种原则性热力系统图。
图3/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第3种原则性热力系统图。
图4/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第4种原则性热力系统图。
图5/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第5种原则性热力系统图。
图6/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第6种原则性热力系统图。
图7/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第7种原则性热力系统图。
图8/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第8种原则性热力系统图。
图9/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第9种原则性热力系统图。
图10/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第10种原则性热力系统图。
图11/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第11种原则性热力系统图。
图12/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第12种原则性热力系统图。
图13/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第13种原则性热力系统图。
图14/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第14种原则性热力系统图。
图15/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第15种原则性热力系统图。
图16/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第16种原则性热力系统图。
图17/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第17种原则性热力系统图。
图18/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第18种原则性热力系统图。
图19/19是依据本发明所提供的氢燃料-低品位燃料联合循环动力装置第19种原则性热力系统图。
图中,1-膨胀机,2-第二膨胀机,3-压缩机,4-升压泵,5-燃烧室,6-加热炉,7-热源回热器,8-冷凝器,9-蒸发器(余热锅炉),10-回热器,11-供热器,12-热源热交换器,13-第三膨胀机,14-第二升压泵,15-低温回热器,16-膨胀增速机,17-双能压缩机,18-扩压管;A-新增回热器,B-新增膨胀机。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9 再有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,外部低品位燃料进入加热炉6,外部空气流经热源回热器7吸热升温之后进入加热炉6,低品位燃料和空气在加热炉6内混合并燃烧生成温度较高的燃气,加热炉6的燃气放热于流经其内的蒸汽并降温,之后流经热源回热器7放热降温和对外排放;外部压力较高的氢气和氧气进入燃烧室5燃烧,生成高温高压水蒸气;冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经蒸发器9放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝;冷凝器8的冷凝水分成两路——第一路对外排放,第二路提供给升压泵4;氢气和氧气通过燃烧提供驱动热负荷,低品位燃料通过燃烧提供驱动热负荷,冷却介质通过冷凝器8带走低温热负荷;膨胀机1和第二膨胀机2向压缩机3和外部提供动力,或膨胀机1和第二膨胀机2向压缩机3、升压泵4和外部提供动力,形成氢燃料-低品位燃料联合循环动力装置。
图2/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经蒸发器9和加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9再有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经蒸发器9、加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,形成氢燃料-低品位燃料联合循环动力装置。
图3/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器、回热器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经回热器10和加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通 道经回热器10与供热器11连通,供热器11还有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,蒸发器9还有热源介质通道与外部连通,供热器11还有被加热介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经回热器10和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经回热器10和供热器11逐步放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝;冷凝器8的冷凝水分成两路——第一路对外排放,第二路提供给升压泵4;氢气和氧气通过燃烧提供驱动热负荷,低品位燃料通过燃烧提供驱动热负荷,冷却介质通过冷凝器8带走低温热负荷,热源介质通过蒸发器9提供驱动热负荷,被加热介质通过供热器11带走中温热负荷;膨胀机1和第二膨胀机2向压缩机3和外部提供动力,或膨胀机1和第二膨胀机2向压缩机3、升压泵4和外部提供动力,形成氢燃料-低品位燃料联合循环动力装置。
图4/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道与热源热交换器12连通,热源热交换器12还有蒸汽通道经中间进汽通道与第二膨胀机2连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9再有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,热源热交换器12还有热源介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经热源热交换器12吸热升温之后通过中间进汽通道进入第二膨胀机2降压作功,压缩机3排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,燃烧室5排放的蒸汽流经第二膨胀机2降压作功;第二膨胀机2排放的低压蒸汽流经蒸发器9放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝;冷凝器8的冷凝水分成两路——第一路对外排放,第二路提供给升压泵4;增加热源介质通过热源热交换器12提供驱动热负荷,形成氢燃料-低品位燃料联合循环动力装置。
图5/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源 回热器、冷凝器、蒸发器、热源热交换器和第三膨胀机所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经热源热交换器12与第三膨胀机13连通,第三膨胀机13还有低压蒸汽通道与蒸发器9连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通,蒸发器9还有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,蒸发器9还有燃气通道与外部连通,热源热交换器12还有热源介质通道与外部连通,膨胀机1、第二膨胀机2和第三膨胀机13连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经热源热交换器12吸热升温,之后进入第三膨胀机13降压作功,第三膨胀机13排放的低压蒸汽进入蒸发器9放热并降温;压缩机3排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽进入蒸发器9放热并降温;蒸发器9排放的低压蒸汽分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝;冷凝器8的冷凝水分成两路——第一路对外排放,第二路提供给升压泵4;增加热源介质通过热源热交换器12提供驱动热负荷,膨胀机1、第二膨胀机2和第三膨胀机13向压缩机3和外部提供动力,或膨胀机1、第二膨胀机2和第三膨胀机13向压缩机3、升压泵4和外部提供动力,形成氢燃料-低品位燃料联合循环动力装置。
图6/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9再有低压蒸汽通道与供热器11连通,供热器11还有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,供热器11还有被加热介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:第二膨胀机2排放的低压蒸汽流经蒸发器9和供热器11逐步放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝;增加的被加热介质通过供热器11带走中温热负荷,形成氢燃料-低品位燃料联合循环动力装置。
图7/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经蒸发器9和加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9再有低压蒸汽通道与供热器11连通,供热器11还有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,供热器11还有被加热介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图6/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经蒸发器9、加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,形成氢燃料-低品位燃料联合循环动力装置。
图8/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图1/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机1有蒸汽通道经加热炉6与燃烧室5连通调整为膨胀机1有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将第二膨胀机2有低压蒸汽通道与蒸发器9连通调整为第二膨胀机2有低压蒸汽通道经新增回热器A与蒸发器9连通。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经新增回热器A和蒸发器9逐步放热降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图9/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图1/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机1有蒸汽通道经加热炉6与燃烧室5连通调整为膨胀机1有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将燃烧室5有蒸汽通道与第二膨胀机2连通调整为燃烧室5有蒸汽通道与第二膨胀机2连通之后第二膨胀机2再有蒸汽通道经新增回热器A与自身连通。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降 压作功,流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽进入第二膨胀机2降压作功至一定程度之后流经新增回热器A放热降温,进入第二膨胀机2继续降压作功;第二膨胀机2排放的低压蒸汽流经蒸发器9放热降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图10/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图2/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机1还有蒸汽通道经蒸发器9和加热炉6与燃烧室5连通调整为膨胀机1还有蒸汽通道经蒸发器9、新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将第二膨胀机2有低压蒸汽通道与蒸发器9连通调整为第二膨胀机2有低压蒸汽通道经新增回热器A与蒸发器9连通。
(2)流程上,与图2/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经蒸发器9再行吸热升温,流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经新增回热器A和蒸发器9逐步放热降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图11/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图2/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机1还有蒸汽通道经蒸发器9和加热炉6与燃烧室5连通调整为膨胀机1还有蒸汽通道经蒸发器9、新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将燃烧室5有蒸汽通道与第二膨胀机2连通调整为燃烧室5有蒸汽通道与第二膨胀机2连通之后第二膨胀机2再有蒸汽通道经新增回热器A与自身连通。
(2)流程上,与图2/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经蒸发器9再行吸热升温,流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽进入第二膨胀机2降压作功至一定程度之后流经新增回热器A放热降温,进入第二膨胀机2继续降压作功;第二膨胀机2排放的低压蒸汽流经蒸发器9放热降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图12/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图3/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热 器,将膨胀机1有蒸汽通道经回热器10和加热炉6与燃烧室5连通调整为膨胀机1有蒸汽通道经回热器10、新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将第二膨胀机2有低压蒸汽通道经回热器10与供热器11连通调整为第二膨胀机2有低压蒸汽通道经新增回热器A和回热器10与供热器11连通。
(2)流程上,与图3/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经回热器10、新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经新增回热器A、回热器10和供热器11逐步放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图13/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图3/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机1有蒸汽通道经回热器10和加热炉6与燃烧室5连通调整为膨胀机1有蒸汽通道经回热器10、新增回热器A和加热炉6与燃烧室5连通,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将燃烧室5有蒸汽通道与第二膨胀机2连通调整为燃烧室5有蒸汽通道与第二膨胀机2连通之后第二膨胀机2再有蒸汽通道经新增回热器A与自身连通。
(2)流程上,与图3/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经回热器10、新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽进入第二膨胀机2降压作功至一定程度之后流经新增回热器A放热降温,进入第二膨胀机2继续降压作功;第二膨胀机2排放的低压蒸汽流经回热器10和供热器11逐步放热并降温,之后分成两路——第一路进入压缩机3升压升温,第二路进入冷凝器8放热并冷凝,形成氢燃料-低品位燃料联合循环动力装置。
图14/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图5/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将第二膨胀机2有低压蒸汽通道与蒸发器9连通调整为第二膨胀机2有低压蒸汽通道经新增回热器A与蒸发器9连通。
(2)流程上,与图5/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,燃烧室5排放的蒸汽流经第二膨胀机2降压作功;第二膨胀机2排放的低压蒸汽流经新增回热器A和蒸发器9逐步放热并降温,形成氢燃料-低品位燃料联合循环动力装置。
图15/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图5/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机3有蒸汽通道经加热炉6与燃烧室5连通调整为压缩机3有蒸汽通道经新增回热器A和加热炉6与燃烧室5连通,将燃烧室5有蒸汽通道与第二膨胀机2连通调整为燃烧室5有蒸汽通道与第二膨胀机2连通之后第二膨胀机2再有蒸汽通道经新增回热器A与自身连通。
(2)流程上,与图5/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:压缩机3排放的蒸汽流经新增回热器A和加热炉6逐步吸热升温,之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽进入第二膨胀机2降压作功至一定程度之后流经新增回热器A放热降温,进入第二膨胀机2继续降压作功;第二膨胀机2排放的低压蒸汽流经蒸发器9放热并降温,形成氢燃料-低品位燃料联合循环动力装置。
图16/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,它主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室5连通,外部有低品位燃料通道与加热炉6连通,外部还有空气通道经热源回热器7与加热炉6连通,加热炉6还有燃气通道经热源回热器7与外部连通;冷凝器8有冷凝水管路经升压泵4与蒸发器9连通之后蒸发器9再有蒸汽通道与膨胀机1连通,膨胀机1还有蒸汽通道经热源热交换器12和加热炉6与燃烧室5连通,压缩机3有蒸汽通道经加热炉6与燃烧室5连通,燃烧室5还有蒸汽通道与第二膨胀机2连通,第二膨胀机2还有低压蒸汽通道与蒸发器9连通之后蒸发器9再有低压蒸汽通道分别与压缩机3和冷凝器8连通,冷凝器8还有冷凝水管路与外部连通;冷凝器8还有冷却介质通道与外部连通,热源热交换器12还有热源介质通道与外部连通,膨胀机1和第二膨胀机2连接压缩机3并传输动力。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:膨胀机1排放的蒸汽流经热源热交换器12和加热炉6逐步吸热升温,之后进入燃烧室5与高温蒸汽混合、吸热并升温,增加的热源介质通过热源热交换器12提供驱动热负荷,形成氢燃料-低品位燃料联合循环动力装置。
图17/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图2/19所示的氢燃料-低品位燃料联合循环动力装置中,增加第二升压泵和低温回热器,将冷凝器8有冷凝水管路经升压泵4与蒸发器9连通调整为冷凝器8有冷凝水管路经第二升压泵14与低温回热器15连通,压缩机3增设中间抽汽通道与低温回热器15连通,低温回热器15再有冷凝水管路经升压泵4与蒸发器9连通。
(2)流程上,与图2/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经第二升压泵14升压进入低温回热器15,与来自压缩机3的抽汽混合吸热并升温,抽汽与冷凝水混合之后放热并冷凝;低温回热器15的冷凝水经升压泵4升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经蒸发器9再行吸热升温,流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,压缩机3排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的蒸汽流经第二膨胀机2降压作功,第二膨胀机2排放的低压蒸汽流经蒸发器9放热并降温,之后分成两路——第一路进入压缩机3,第二路进入冷凝器8放热并冷凝;冷凝器8 的冷凝水分成两路——第一路对外排放,第二路提供给第二升压泵14;进入压缩机3的低压蒸汽升压升温到一定程度之后又分成两路——第一路经中间抽汽通道进入低温回热器15,第二路继续升压升温;氢气和氧气通过燃烧提供驱动热负荷,低品位燃料通过燃烧提供驱动热负荷,冷却介质通过冷凝器8带走低温热负荷;膨胀机1和第二膨胀机2向压缩机3和外部提供动力,或膨胀机1和第二膨胀机2向压缩机3、升压泵4、第二升压泵14和外部提供动力,形成氢燃料-低品位燃料联合循环动力装置。
图18/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图1/19所示的氢燃料-低品位燃料联合循环动力装置中,增加膨胀增速机16并取代第二膨胀机2,增加双能压缩机17并取代压缩机3,增加扩压管18并取代升压泵4。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:冷凝器8的冷凝水经扩压管18降速升压进入蒸发器9、吸热升温和汽化,流经膨胀机1降压作功,流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温,双能压缩机17排放的蒸汽流经加热炉6吸热升温之后进入燃烧室5与高温蒸汽混合、吸热并升温;燃烧室5排放的高温蒸汽流经膨胀增速机16降压作功并增速,膨胀增速机16排放的低压蒸汽流经蒸发器9放热并降温之后分成两路——第一路进入双能压缩机17升压升温并降速,第二路进入冷凝器8放热并冷凝;冷凝器8的冷凝水分成两路——第一路对外排放,第二路进入扩压管18;氢气和氧气通过燃烧提供驱动热负荷,低品位燃料通过燃烧提供驱动热负荷,冷却介质通过冷凝器8带走低温热负荷;膨胀机1和膨胀增速机16向双能压缩机17和外部提供动力,形成氢燃料-低品位燃料联合循环动力装置。
图19/19所示的氢燃料-低品位燃料联合循环动力装置是这样实现的:
(1)结构上,在图1/19所示的氢燃料-低品位燃料联合循环动力装置中,增加新增膨胀机,将蒸发器9有低压蒸汽通道与冷凝器8连通调整为蒸发器9有低压蒸汽通道经新增膨胀机B与冷凝器8连通。
(2)流程上,与图1/19所示的氢燃料-低品位燃料联合循环动力装置相比较,不同之处在于:蒸发器9排放的一部分低压蒸汽流经新增膨胀机B降压作功,之后进入冷凝器8放热冷凝,形成氢燃料-低品位燃料联合循环动力装置。
本发明技术可以实现的效果——本发明所提出的氢燃料-低品位燃料联合循环动力装置,具有如下效果和优势:
(1)水蒸气为循环工质,氢气为燃料,氢氧燃烧生产高温蒸汽而成为循环工质的组成部分;燃料燃烧产物与循环工质性质一致,燃烧产物分离过程简单。
(2)循环工质与燃料之间比例组成可根据工况灵活确定,有效协调和解决燃烧温度、材料、投资与热效率之间的关系和矛盾,有很好的适应性。
(3)低品位燃料与氢燃料合理搭配,共同提供驱动热负荷,提升低品位燃料热变功效率,有效降低燃料成本。
(4)驱动热负荷分级利用,显著降低温差不可逆损失,有效提升装置热效率。
(5)低品位燃料可用于或有助于降低顶部气体动力循环系统升压比,提升气体循环工质流量,有利于构建大负荷联合循环动力装置。
(6)提升热动装置的燃料选择范围及燃料使用价值,降低装置能耗成本。
(7)氢氧燃烧放热环节温差损失小,有利于提高动力装置热效率。
(8)循环工质低温相变放热,低温放热环节温差损失可控,有利于提高热效率。
(9)在实现高热效率前提下,可选择低压运行,装置运行的安全性得到较大幅度提高。
(10)采用膨胀增速机实现降压和采用双能压缩机/扩压管实现升压的技术方案,能够灵活和有效降低联合循环动力装置制造难度和成本。

Claims (19)

  1. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  2. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器和蒸发器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经蒸发器(9)和加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  3. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器、回热器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经回热器(10)和加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道经回热器(10)与供热器(11)连通,供热器(11)还有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)还有热源介质通道与外部连通,供热器(11)还有被加热介质通道与外部连通,膨胀机(1) 和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  4. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道与热源热交换器(12)连通,热源热交换器(12)还有蒸汽通道经中间进汽通道与第二膨胀机(2)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,热源热交换器(12)还有热源介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  5. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器、热源热交换器和第三膨胀机所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经热源热交换器(12)与第三膨胀机(13)连通,第三膨胀机(13)还有低压蒸汽通道与蒸发器(9)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通,蒸发器(9)还有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有燃气通道与外部连通,热源热交换器(12)还有热源介质通道与外部连通,膨胀机(1)、第二膨胀机(2)和第三膨胀机(13)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)、第二膨胀机(2)和第三膨胀机(13)连接压缩机(3)和升压泵(4)并传输动力。
  6. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经 加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道与供热器(11)连通,供热器(11)还有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,供热器(11)还有被加热介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  7. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和供热器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经蒸发器(9)和加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道与供热器(11)连通,供热器(11)还有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,供热器(11)还有被加热介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  8. 氢燃料-低品位燃料联合循环动力装置,是在权利要求1或权利要求6所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为膨胀机(1)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将第二膨胀机(2)有低压蒸汽通道与蒸发器(9)连通调整为第二膨胀机(2)有低压蒸汽通道经新增回热器(A)与蒸发器(9)连通,形成氢燃料-低品位燃料联合循环动力装置。
  9. 氢燃料-低品位燃料联合循环动力装置,是在权利要求1或权利要求6所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为膨胀机(1)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将燃烧室(5)有蒸汽通道与第二膨胀机(2)连通调整为燃烧室(5)有蒸汽通道与第二膨胀机(2)连通之后第二膨胀机(2)再有蒸汽通道经新增回热器(A)与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
  10. 氢燃料-低品位燃料联合循环动力装置,是在权利要求2或权利要求7所述的氢燃 料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)还有蒸汽通道经蒸发器(9)和加热炉(6)与燃烧室(5)连通调整为膨胀机(1)还有蒸汽通道经蒸发器(9)、新增回热器(A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将第二膨胀机(2)有低压蒸汽通道与蒸发器(9)连通调整为第二膨胀机(2)有低压蒸汽通道经新增回热器(A)与蒸发器(9)连通,形成氢燃料-低品位燃料联合循环动力装置。
  11. 氢燃料-低品位燃料联合循环动力装置,是在权利要求2或权利要求7所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)还有蒸汽通道经蒸发器(9)和加热炉(6)与燃烧室(5)连通调整为膨胀机(1)还有蒸汽通道经蒸发器(9)、新增回热器(A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将燃烧室(5)有蒸汽通道与第二膨胀机(2)连通调整为燃烧室(5)有蒸汽通道与第二膨胀机(2)连通之后第二膨胀机(2)再有蒸汽通道经新增回热器(A)与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
  12. 氢燃料-低品位燃料联合循环动力装置,是在权利要求3所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)有蒸汽通道经回热器(10)和加热炉(6)与燃烧室(5)连通调整为膨胀机(1)有蒸汽通道经回热器(10)、新增回热器
    (A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将第二膨胀机(2)有低压蒸汽通道经回热器(10)与供热器(11)连通调整为第二膨胀机(2)有低压蒸汽通道经新增回热器(A)和回热器(10)与供热器(11)连通,形成氢燃料-低品位燃料联合循环动力装置。
  13. 氢燃料-低品位燃料联合循环动力装置,是在权利要求3所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将膨胀机(1)有蒸汽通道经回热器(10)和加热炉(6)与燃烧室(5)连通调整为膨胀机(1)有蒸汽通道经回热器(10)、新增回热器(A)和加热炉(6)与燃烧室(5)连通,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将燃烧室(5)有蒸汽通道与第二膨胀机(2)连通调整为燃烧室(5)有蒸汽通道与第二膨胀机(2)连通之后第二膨胀机(2)再有蒸汽通道经新增回热器(A)与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
  14. 氢燃料-低品位燃料联合循环动力装置,是在权利要求4或权利要求5所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将第二膨胀机(2)有低压蒸汽通道与蒸发器(9)连通调整为第二膨胀机(2)有低压蒸汽通道经新增回热器(A)与蒸发器(9)连通,形成氢燃料-低品位燃料联合循环动力装置。
  15. 氢燃料-低品位燃料联合循环动力装置,是在权利要求4或权利要求5所述的氢燃料-低品位燃料联合循环动力装置中,增加新增回热器,将压缩机(3)有蒸汽通道经加热 炉(6)与燃烧室(5)连通调整为压缩机(3)有蒸汽通道经新增回热器(A)和加热炉(6)与燃烧室(5)连通,将燃烧室(5)有蒸汽通道与第二膨胀机(2)连通调整为燃烧室(5)有蒸汽通道与第二膨胀机(2)连通之后第二膨胀机(2)再有蒸汽通道经新增回热器(A)与自身连通,形成氢燃料-低品位燃料联合循环动力装置。
  16. 氢燃料-低品位燃料联合循环动力装置,主要由膨胀机、第二膨胀机、压缩机、升压泵、燃烧室、加热炉、热源回热器、冷凝器、蒸发器和热源热交换器所组成;外部分别有氢气通道和氧气通道与燃烧室(5)连通或外部有氢氧混合气体通道与燃烧室(5)连通,外部有低品位燃料通道与加热炉(6)连通,外部还有空气通道经热源回热器(7)与加热炉(6)连通,加热炉(6)还有燃气通道经热源回热器(7)与外部连通;冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通之后蒸发器(9)再有蒸汽通道与膨胀机(1)连通,膨胀机(1)还有蒸汽通道经热源热交换器(12)和加热炉(6)与燃烧室(5)连通,压缩机(3)有蒸汽通道经加热炉(6)与燃烧室(5)连通,燃烧室(5)还有蒸汽通道与第二膨胀机(2)连通,第二膨胀机(2)还有低压蒸汽通道与蒸发器(9)连通之后蒸发器(9)再有低压蒸汽通道分别与压缩机(3)和冷凝器(8)连通,冷凝器(8)还有冷凝水管路与外部连通;冷凝器(8)还有冷却介质通道与外部连通,蒸发器(9)或还有热源介质通道与外部连通,热源热交换器(12)还有热源介质通道与外部连通,膨胀机(1)和第二膨胀机(2)连接压缩机(3)并传输动力,形成氢燃料-低品位燃料联合循环动力装置;其中,或膨胀机(1)和第二膨胀机(2)连接压缩机(3)和升压泵(4)并传输动力。
  17. 氢燃料-低品位燃料联合循环动力装置,是在权利要求1-16所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加第二升压泵和低温回热器,将冷凝器(8)有冷凝水管路经升压泵(4)与蒸发器(9)连通调整为冷凝器(8)有冷凝水管路经第二升压泵(14)与低温回热器(15)连通,压缩机(3)增设中间抽汽通道与低温回热器(15)连通,低温回热器(15)再有冷凝水管路经升压泵(4)与蒸发器(9)连通,形成氢燃料-低品位燃料联合循环动力装置。
  18. 氢燃料-低品位燃料联合循环动力装置,是在权利要求1-4所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加膨胀增速机(16)并取代第二膨胀机(2),增加双能压缩机(17)并取代压缩机(3),增加扩压管(18)并取代升压泵(4),形成氢燃料-低品位燃料联合循环动力装置。
  19. 氢燃料-低品位燃料联合循环动力装置,是在权利要求1-5所述的任一一款氢燃料-低品位燃料联合循环动力装置中,增加新增膨胀机,将蒸发器(9)有低压蒸汽通道与冷凝器(8)连通调整为蒸发器(9)有低压蒸汽通道经新增膨胀机(B)与冷凝器(8)连通,形成氢燃料-低品位燃料联合循环动力装置。
PCT/CN2022/000067 2021-04-23 2022-04-20 氢燃料-低品位燃料联合循环动力装置 WO2022222548A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110478652.6 2021-04-23
CN202110478652 2021-04-23
CN202110951628.X 2021-08-10
CN202110951628 2021-08-10

Publications (1)

Publication Number Publication Date
WO2022222548A1 true WO2022222548A1 (zh) 2022-10-27

Family

ID=83723532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/000067 WO2022222548A1 (zh) 2021-04-23 2022-04-20 氢燃料-低品位燃料联合循环动力装置

Country Status (1)

Country Link
WO (1) WO2022222548A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761896A (en) * 1994-08-31 1998-06-09 Westinghouse Electric Corporation High efficiency method to burn oxygen and hydrogen in a combined cycle power plant
CN107143403A (zh) * 2017-04-19 2017-09-08 清华大学 氢燃气轮机尾气余热利用系统
CN108119194A (zh) * 2016-12-15 2018-06-05 李华玉 三重联合循环动力装置
CN111379605A (zh) * 2019-03-03 2020-07-07 李华玉 联合循环动力装置
CN113202577A (zh) * 2020-04-21 2021-08-03 李华玉 氢燃料联合循环动力装置
CN113217125A (zh) * 2020-05-03 2021-08-06 李华玉 氢燃料联合循环动力装置
CN113236388A (zh) * 2020-04-17 2021-08-10 李华玉 氢燃料联合循环动力装置
CN113465209A (zh) * 2020-06-01 2021-10-01 李华玉 氢燃料联合循环热泵装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761896A (en) * 1994-08-31 1998-06-09 Westinghouse Electric Corporation High efficiency method to burn oxygen and hydrogen in a combined cycle power plant
CN108119194A (zh) * 2016-12-15 2018-06-05 李华玉 三重联合循环动力装置
CN107143403A (zh) * 2017-04-19 2017-09-08 清华大学 氢燃气轮机尾气余热利用系统
CN111379605A (zh) * 2019-03-03 2020-07-07 李华玉 联合循环动力装置
CN113236388A (zh) * 2020-04-17 2021-08-10 李华玉 氢燃料联合循环动力装置
CN113202577A (zh) * 2020-04-21 2021-08-03 李华玉 氢燃料联合循环动力装置
CN113217125A (zh) * 2020-05-03 2021-08-06 李华玉 氢燃料联合循环动力装置
CN113465209A (zh) * 2020-06-01 2021-10-01 李华玉 氢燃料联合循环热泵装置

Similar Documents

Publication Publication Date Title
WO2022222548A1 (zh) 氢燃料-低品位燃料联合循环动力装置
WO2022213688A1 (zh) 氢燃料-低品位燃料联合循环动力装置
CN113465209A (zh) 氢燃料联合循环热泵装置
CN113217125A (zh) 氢燃料联合循环动力装置
WO2022206087A1 (zh) 双燃料联合循环动力装置
WO2022156523A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022166504A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022193796A1 (zh) 双燃料联合循环动力装置
WO2022141610A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022161112A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022199199A1 (zh) 双燃料联合循环动力装置
WO2022152006A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022206085A1 (zh) 双燃料联合循环动力装置
WO2022141611A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022161114A1 (zh) 双燃料高温热源与双燃料动力装置
WO2022161113A1 (zh) 双燃料联合循环动力装置
WO2022156521A1 (zh) 双燃料联合循环动力装置
WO2022148329A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
CN117722244A (zh) 氢能携同变压回热蒸汽动力装置
CN114739035A (zh) 氢燃料联合循环热泵装置
CN117722245A (zh) 氢能携同变压回热蒸汽动力装置
CN115199359A (zh) 氢燃料-低品位燃料联合循环动力装置
CN117780457A (zh) 氢能携同变压回热蒸汽动力装置
CN115217546A (zh) 氢燃料-低品位燃料联合循环动力装置
CN115324670A (zh) 氢燃料联合循环动力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790658

Country of ref document: EP

Kind code of ref document: A1